Impedance of a sphere oscillating in an elastic medium

with and without slip
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The dynamic impedance of a sphere oscillating in an elastic medium is considered. Oestreicher’s
[J. Acoust. Soc. Am. 23, 707-714 (1951)] formula for the impedance of a sphere bonded to the
surrounding medium can be expressed in a relatively simple form in terms of three lumped
impedances associated with the displaced mass and the longitudinal and transverse waves. If the
surface of the sphere slips while the normal velocity remains continuous, the impedance formula is
modified by adjusting the definition of the transverse impedance to include the interfacial
impedance. © 2006 Acoustical Society of America. [DOI: 10.1121/1.2171526]

PACS number(s): 43.20.Rz, 43.40.Yq, 43.80.Ev, 43.20.Tb [DF]

I. INTRODUCTION

The dynamic impedance of a spherical particle embed-
ded in a medium is important for acoustical measurement
and imaging. The impedance is used, for instance, in mea-
surement of the mechanical properties of tissue, e.g., Ref. 1,
and is intimately related to the radiation forcing on particles.2
The latter is the basis for imaging techniques such as vibro-
acoustography which has considerable potential in mammog-
raphy for detection of microcalcifications in breast tissue.”
Oestreicher” derived the impedance for a rigid sphere oscil-
lating in a viscoelastic medium over 50 years ago. Although
it was derived for a sphere in an infinite medium, Oestreich-
er’s formula is also applicable, with minor modiﬁcation,5 to
dynamical indentation techniques where the particle is in
contact with the surface of the specimen; see Zhang et al.®
for a review of related work. Chen er al.’ recently validated
Oestreicher’s formula experimentally by measuring the dy-
namic radiation force on a sphere in a fluid. The impedance
formula is based on perfect no slip conditions between the
spherical inclusion and its surroundings. This may not al-
ways be a valid assumption, e.g., in circumstances where a
foreign object is embedded in soft material. This was pre-
cisely the situation in recent measurements of the viscosity
of DNA cross-linked gels by magnetic forcing on a small
steel sphere.8 This paper generalizes the impedance formula
to include the possibility of dynamic slip.

Two related results are derived in this paper. The first is
a modified form of Oestreicher’s formula which enables it to
be interpreted in terms of lumped parameter impedances.
This leads to a simple means to consider the more general
case of a sphere oscillating in a viscoelastic medium which is
permitted to slip relative to its surroundings. The slip is char-
acterized by an interfacial impedance which relates the shear
stress to the discontinuity in tangential velocities. This gen-
eralization includes Oestreicher’s original formula as the
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limit of infinite interfacial impedance, and agrees with pre-
vious results for the static stiffness of a spherical inclusion
with and without slip.”

Il. SUMMARY OF RESULTS

A sphere undergoes time harmonic oscillatory motion of
amplitude u in the direction %,

usphere - Moe_iwljf. (1)
The time harmonic factor e~ is omitted but understood in
future expressions. The sphere, which is assumed to be rigid
and of radius a, is embedded in an elastic medium of infinite
extent with mass density p and Lamé moduli A and . The
moduli may be real or complex, corresponding to an elastic
or viscoelastic solid. We will later consider complex shear
modulus pu=u,—iwu,, where the imaginary term dominates
in a viscous medium. The force exerted on the sphere by the
surrounding medium acts in the X-direction, and is defined
by

ch:f Tds, (2)

where T is the traction vector on the surface. The sphere
impedance is defined

F

Z=—".
—iwu

(3)
Oestreicher’s expression for the impedance of a sphere that
does not slip relative to the elastic medium is* [Equation (4)

is Oestreicher’s” Eq. (18) with i replaced by —i since he used
time dependence ¢'“".]
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Here k and h are, respectively, the longitudinal and trans-
verse wave numbers, k=w/cy, with ¢
=\J(\+2u)/p and c;=\ulp.

Noting that Oestreicher’s formula can be rewritten

4 | 1(1 3(1 —ika))‘l
=— 14| - -
37Ta piw 3 2

h=(l)/CT

2 3(1- iha))'l}‘l
fofp o : 5
3( h*a* ©)
implies our first result, that the impedance satisfies
3 1 2
(6)

= =+ y
Z+7Z, Z,+Z, Zr+Z,

where the three additional impedances are defined as

Z, = iw;-‘mﬂp, (7a)
Z; = (iw) '4ma(\ + 2u)(1 — ika), (7b)
Zr=(iw) '4mau(l — iha). (7¢)

The second result is that if the sphere is allowed to slip
relative to the elastic medium then the general form of Eq.
(6) is preserved with Z; modified. Specifically, suppose the
tangential component of the traction satisfies

T-t=z@"™"-v) -1, r=a, (8)

where 7 is a unit tangent vector, v the velocity of the elastic
medium adjacent to the sphere, and z; is an interfacial im-
pedance, discussed later. (Upper case Z and lower case z are
used to distinguish impedances defined by force and stress,
respectively.) Equation (8) holds at each point on the inter-
face r=a. We find that Z now satisfies

3 1 2

= + , )
Z+7Z, Z;+72, Zs+Z,
where the new impedance Zg is given by
1 1 1
—=— (10)

=—+ .
Zs Zp Amd’z+ (io) '8mau

These results are derived in the next section and discussed in
Sec. 1V.

lll. ANALYSIS

We use Oestreicher’s” representation for the elastic field
outside the sphere,

hy(k
u=-4, grad( 1 r)x>
kr

+B, [Zho(hr)grad x = hy(hr)r® grad %} r=a,
r

(11)

where r=|r| is the spherical radius and x is the component of
r in the X-direction, both with origin at the center of the
sphere. Also, h, are spherical Hankel functions of the first
kind.'® Let #="'r denote the unit radial vector, then
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hy(k
= —Al{ ll(crr)fc - hz(kr));ci*}

+B, {2h0(hr)fc — hy(hr) (x - 3%?) ] . (12)

The surface traction is T= o7, where o is the stress tensor.
The traction can be calculated from (12) and the following
identity4 for an isotropic solid,
Ja 1
T:f‘)\divu+£gradr~u+,u(———>u. (13)
r or r

Thus, referring to (2), we have

T &=

2 2
A
2,uh2(kr)<1 - 3%) + N+ 2,u,)krh1(kr)x—2] &l
r r

r
2

X x? B
+ | 2hy(hr)| 1 =3 = | = hrhy(hr)| 1 == | [Bu—.
r r r
(14)
Integrating over the sphere surface, the resultant is

hka) h1<ha)}
ki "ha |

= 277a3pw2{A1 (15)

The coefficients A; and B; follow from the conditions
describing the interaction of the sphere with its surroundings.
These are the general slip condition (8) plus the requirement
that the normal velocity is continuous. The conditions at the
surface of the sphere are

u-F=uyk-r
. . r=a. (16)
T -i=iwz(u—uyx)- 1

By symmetry, the only nonzero tangential component is in
the plane of # and ¥, and we therefore set 7= bE(f cos 0
—X)/sin 6, where @=arccos F-X is the spherical polar angle.
Using polar coordinates, u=u,i'+u(,f9 and T:a,,f'+0',93’,
and (16) becomes
u,=ugycos 6

. . . r=a, 0=s60=<.
T 9—iwzg=iwzu, sin 0

(17)
The shear stress follows from the identity
(9149 1 &Mr M@)
=ul —+—-—/1, 18
7o M( or radl r (18)
and the interface conditions (17) then imply, respectively,
hy(k hy(h
|:h2(ka)— 1( a):|A]+6 1( a)Blzuo. (19&)
hy(ka)  2uh,(k na*\ hy(h
_{ i a)+ ,U~ o a)]A1+[<2+'l.L a ) 1(ha)
ka iwaz; iwaz; ) ha
2
—<1+, ® )hz(ha)]3B]=u0. (19b)
iwaz;

Solving for A; and Bj, then substituting them into Egs. (15)
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and (3), and using the known forms for the spherical Hankel
functions, yields

Z=-2,+311/(Z,+2,) +2/(Zs+ Z,)]. (20)

Equation (20) is identical to (9), which completes the deri-
vation of the generalized impedance formula.

IV. DISCUSSION

It is useful to recall some basic properties of lumped
parameter impedances. The impedance of a spring mass
damper system of stiffness K, mass M, and damping C is

Z=(io)'K-C+ioM. (21)

Two impedances Z; and Z, combined in series have an ef-
fective impedance (Z;'+2;")~!, while the result for the same
pair in parallel is (Z,+Z,).

Referring to the definitions of Eq. (7), it is clear that Z,,
is the impedance of the mass of the volume removed from
the elastic medium. The impedance of a longitudinal or
transverse plane wave is defined as the ratio of the stress
(normal or shear) to particle velocity, and equals z;, z7,
where

2L=pC, Zr=pPCT- (22)

Thus, both Z; and Z; have the form

Z:(.L— 1)4775121, (23)
ika
where « is the wave number (k or /). In particular, the im-
pedances Z; and Z; have stiffness and damping, but no mass
contribution. The damping can be ascribed to the radiation of
longitudinal and transverse waves from the sphere.

The impedance Zg of Eq. (10) corresponds to Z; in se-
ries with an impedance Z;, where

2
8mazy
iha

Z,=4ma*z + (24)
Thus, Z; can be interpreted as the total interfacial impedance
for the surface area of the sphere in parallel with twice the
stiffness part of Zy.

The limit of a purely acoustic fluid is obtained by letting
the shear modulus u tend to zero with A finite, while an
incompressible elastic or viscous medium is obtained in the
limit as the bulk modulus )\+§,u, becomes infinite with u

finite. The acoustic and incompressible limits follow from
(20) as

3,3
2+ cylcr

127au .
5, 2| 1 —tha 2,2
2+ xo+cilcy 2+ xo+cilcy

(iw)™
Z:
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) + O(h2a2)] , |ha

4 1
—mzpc{— (1 29 —Xw)> + _—(1 —4C—T{1 + (—
3 crL ika crL

2 3\! . .
— + — | , acoustic medium,

Zm ZL
Z= i 3 (25)
EZ'" + EZS, incompressible medium.

Thus, Z for the acoustic fluid comprises %Zm in series with
%ZL. Note that, as expected, the interfacial impedance z; is
redundant in the acoustic limit. The impedance for the in-
compressible medium is %Zm and %ZS in parallel, and it de-
pends upon the interfacial impedance.

In order to examine the role of z;, we first express the
impedance Z of Eq. (20) in a form similar to (5),

4 5 1 3(1 - ika) \ ™!
=§7Taplw—1+ 3 I—W

-1 [-1

3(1 —iha)

hzaz{l +§(1 —iha)J

+—[1- , (26)

where the influence of the interfacial impedance is repre-
sented through the nondimensional parameter

. -1

The form of y is chosen so that it takes on the values zero or
unity in the limit that the sphere is perfectly bonded or is
perfectly lubricated,

0, no slip, z;— <,
X={ (28)

1, slip, z;=0.

The acoustic and incompressible limits of (25) are explicitly
'

4 5 (1 - ika) )
STATPIO T 5 5, acoustic,
3 2(1 - ika) — k*a
Z=1 6mau 1 —iha h*a®
j 9 |’ incompressible.
R ’2—‘(1 _ iha) P

(29)

Oestreicher’ showed that the original formula (4) provides
the acoustic and incompressible limits for perfect bonding
(x=0). Ilinskii et al.'! derived the impedance in the context
of incompressible elasticity, also for the case of no slip.

The behavior of Z at low and high frequencies depends
upon how z; and hence y behaves in these limits. For sim-
plicity, let us consider y as constant in each limit, equal to
at low frequency, and x.. at high frequency. Then,

ka| <1,

>

(30)

ka| > 1.

s
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FIG. 1. The reactance (real part of Z) for an oscillating sphere in a tissuelike
material (Ref. 4). The solid and dashed curves correspond to a bonded (y
=0) and slipping (y=1) spherical interface, respectively. The reactance is
positive (masslike) except for frequency below 30 c.p.s. (50 c.p.s. for the
dashed curve) where it is negative (stiffnesslike).

The leading order term at high frequency is a damping, as-
sociated with radiation from the sphere. The dominant effect
at low frequency is, as one might expect, a stiffness, with the
second term a damping. The low frequency stiffness is iden-
tical to that previously determined by Lin et al.’ who con-
sidered the static problem of a sphere in an elastic medium
with an applied force. They derived the resulting displace-
ment, and hence stiffness, under slip and no slip conditions.
In order to compare with their results, we rewrite the leading
order term as

24 1-
7= ()1 22 L=0) (31)
5-6v+2(1-v)xo
where v is the Poisson’s ratio,
1
2i-d
< (32)
v=——".
ci-cr

Equation (31) with x,=0 and x,=1 agrees with Egs. (40)
and (41) of Lin er al.’ respectively. In an incompressible
viscous medium with v=1/2 and u=-iwu,, (31) becomes

6
Z~_ 2Tk (33)

{ 1

+ 5 X0

which reduces to the Stokes'” drag formula F=—-6mau,v for
perfect bonding. When there is slip (xo=1) the drag is re-
duced by one third, F=—4mau,v. It is interesting to note that
one third of the contribution to the drag in Stokes’ formula is
from pressure, 2mau,v, the remained from shear acting on
the sphere. However, under slip conditions, the shear force is
absent and the total drag 4mau,v is caused by the pressure.
The simplest example of the interfacial impedance is a
constant value, which is necessarily negative and corre-
sponds to a damping, z;=—C. For an elastic medium we have
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FIG. 2. The resistance (imaginary part of —Z) for an oscillating sphere in a
tissuelike material (Ref. 4). The solid and dashed curves correspond to a
bonded (y=0) and slipping (y=1) spherical interface.

Z1=—C.

1 )72 . .
X W, = —C, elastic medium,

- iw/o, a
(34)

Hence, xy,=1 and x..=0, corresponding to slip at low fre-
quency and no slip at high frequency. The transition from the
low to high frequency regime occurs for frequencies in the
range of a characteristic frequency w,. Alternatively, if the
medium is purely viscous u=—iwu,, again with constant z;,
the parameter y becomes

__
X= aC’
1+ —
2,

viscous medium, wp=-iou,, z;=-C.

(35)

In this case y is constant with a value between 0 and 1 that
depends upon the ratio of the interfacial to bulk viscous
damping coefficients, and also upon a. One can define a
characteristic particle size a.=u,/C, such that spheres of
radius a<<ac (a>ac) are effectively bonded (lubricated).

Figures 1 and 2 show the reactance and resistance of a
sphere of radius 0.01 m in a medium with the parameters
considered by Oestreicher” based on measurements of human
tissue, p=1100 kg/m3, Mmp=2.5X 103 Pa, Mmo=15Pas, N
=2.6 X 10° Pa. The perfectly bonded (y=0) and perfect slip
(x=1) conditions are compared. Figure 1 indicates that the
masslike reactance is generally reduced by the slipping, and
it also shows that the low frequency stiffness is two-thirds
that of the bonded case, Eq. (31). Interfacial slip leads to a
significant decrease in the resistance, as evident from Fig. 2
which shows a reduction for all frequencies.
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