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Summary

A new result enables direct calculation of thermoelastic damping in vibrating elastic solids.
The mechanism for energy loss is thermal diffusion caused by inhomogeneous deformation,
flexure in thin plates. The general result is combined with the Kirchhoff assumption to obtain
a new equation for the flexural vibration of thin plates incorporating thermoelastic loss as a
damping term. The thermal relaxation loss is inhomogeneous and depends upon the local
state of vibrating flexure, specifically, the principal curvatures at a given point on the plate.
Thermal loss is zero at points where the principal curvatures are equal and opposite, that is,
saddle shaped or pure anticlastic deformation. Conversely, loss is maximal at points where the
curvatures are equal, that is, synclastic or spherical flexure. The influence of modal curvature
on the thermoelastic damping is described through a modal participation factor. The effect
of transverse thermal diffusion on plane wave propagation is also examined. It is shown that
transverse diffusion effects are always small provided the plate thickness is far greater than the
thermal phonon mean free path, a requirement for the validity of the classical theory of heat
transport. These results generalize Zener’s theory of thermoelastic loss in beams and are useful
in predicting mode widths in micro- and nano-electromechanics systems oscillators.

1. Introduction

High-Q resonators are central to the development of new devices and applications that include radio
frequency filters, next generation magnetic reasonance imaging systems, and torque magnetometers.
Silicon based micro- and nano-electromechanical systems (MEMS/NEMS) oscillators are the
candidates of choice, and include free-standing planar devices, such as double paddle oscillators
(DPOs), and micro-cantilevers. As the oscillators shrink in size, it has been found that the
Q achieved is orders of magnitude smaller than expected based on classical fundamental loss
mechanisms. Many mechanisms have been proposed, including surface loss (1 to 3) that increases
with the surface-to-volume ratio. However, under controlled conditions with minimal surface
defects and adsorbates, measurements on silicon DPOs have shown that room temperature losses are
adequately described by thermoelastic relaxation, while unexplained mechanisms operate at lower
temperatures. Interestingly, the mode of vibration of DPOs is designed to be primarily torsional with
very little flexure (and hence no thermoelastic coupling). However, as demonstrated by Photiadis
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144 A. N. NORRIS AND D. M. PHOTIADIS

and his co-workers (4 to 7) it is precisely the small amount of flexural motion that accounts for loss
in these supposedly torsional oscillators.

The purpose of this paper is to provide a consistent theory for predicting intrinsic dissipation
arising from thermoelasticity in elastic structures. Particular attention will be given to flexural
motion of thin plates. This work is a step towards understanding the fundamental limits of
dissipation in small structures such as NEM and MEM devices.

We are concerned with determining the thermomechanical loss of elastic modes; for example,
the flexural mode of a rectangular thin plate. A useful point of departure is the classic theory
of Zener (8) for anelastic thermoelastic damping. The key to this approach is the assumption,
implicit in Zener’s work, that there is little relative difference between the isentropic (unrelaxed)
and isothermal (relaxed) mechanical responses, and hence the mechanical and thermal problems are
essentially decoupled. Since the thermoelasticity is weak, the transition from the instantaneous or
unrelaxed system to the relaxed state can be viewed as a quasistatic thermal process, governed by
the standard equations for thermal diffusion, although now in the presence of an inhomogeneous
deformation.

Energy loss in a mechanical oscillator is measured in terms of the quality factor, defined as
Q = 2πE0/�E , where E0 is the mechanical energy of the oscillator and �E is the energy loss
per cycle. The quality factor for a lightly damped single degree of freedom system with non-
dimensional damping ζ � 1 is Q = 1/(2ζ ), and by assumption we only consider systems with
light damping, or Q � 1. The relation between Q and αat, the attenuation per unit length of a
propagating wave of frequency ω, is Q = ω/(2αatv), where v is the speed of energy propagation,
also equivalent to the group velocity. This identity can be derived by assuming the energy is a
quadratic function of the field variables, so that energy decays with distance d as e−2αatd . The
distance travelled in one period is d = 2πv/ω, and hence the fractional decrease in energy per
period is 1 − e−4παatv/ω ≈ 4παatv/ω from which the relation for Q follows.

Thermoelastic loss can be most simply viewed as a relaxation mechanism with a single relaxation
time τ . The generic frequency dependent quality factor Q(ω) for a relaxation mechanism is

Q−1 = �c

c0

ωτ

1 + ω2τ 2
, (1.1)

where �c is the (relatively) instantaneous increase in elastic modulus, c0 → c0 + �c, caused by
the process under consideration. The change in elasticity is well known for thermoelasticity, and τ

has been estimated for several configurations. Thus, Zener (8) showed for flexure of a beam that

Q−1 = Eα2T

C p

ωτ0

1 + ω2τ 2
0

, (1.2)

where E is the isothermal Young’s modulus, T is the absolute temperature, α is the volume
coefficient of thermal expansion, and C p is the heat capacity at constant stress. The characteristic
relaxation time is τ0 = h2C p/(π

2 K ), where h is the thickness and K the thermal conductivity. In
fact, as Zener first demonstrated (9), the simple expression (1.2) is the leading term in an infinite
series which is well approximated by the single term (see (4.6) and Appendix B). Zener’s method
was derived in the context of scalar problems, where the strain, for instance, involves a single
component. An important example is the flexure of a beam or reed, as considered originally by
Zener, and later by others, for example, (10). The present work generalizes Zener’s method to
consider general elastic deformation. This includes the inhomogeneous deformation associated
with modes in thin plates and other structures.
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THERMOELASTIC RELAXATION IN THIN PLATES 145

Since the original work of Zener numerous papers have appeared on thermal relaxation in
the context of coupled thermoelasticity. In a pair of papers (11, 12) Alblas provided a rigorous
formulation using continuum thermomechanics and linear elasticity theory for isotropic materials.
He derived detailed and explicit solutions for the thermoelastic damping in vibrating beams,
including the circular rod and the rectangular beam. The result for the latter was derived separately
by Lifshitz and Roukes (13), although Alblas’s solution is the more general of the two. These
analyses are compared with the present formulation later (see Appendix B). Kinra and Milligan
(14) again derived the coupled isotropic thermoelastic equations and provided a solution for
unidimensional structures, including a discontinuous beam. Perhaps the most thorough analysis of
thermal damping in the context of the coupled equations of thermoelasticity is due to Chadwick (15).
By considering a modal decomposition of the elastic and thermal fields, an exact relation for the
complex-valued frequency of oscillation of each mode was obtained. This enabled Chadwick to
derive a generalization of Zener’s expression for the thermoelastic damping of an arbitrary elastic
body. Chadwick subsequently derived the governing equations of thermoelasticity for thin plates
and beams (16). The equations are in the form of coupled equations, one of which reduces to the
classical equations for the structural mode, for example, flexural waves in thin plates, and the other
the temperature diffusion equation, in the limit of zero coupling. The analysis in (15,16) is restricted
to isotropic solids.

This paper has several objectives. The first is to demonstrate how the Zener model follows from
the full equations for the coupled dynamic system by using a consistent approximation scheme. In
the process we generalize Zener’s approach to incorporate general elastic deformation, specifically
the elastic stress and strain tensors. The main applications are to thin plate structures, for which
we obtain a Zener-like result for arbitrary flexural deformation that includes the general curvature
tensor. Our results will also include the possibility of thermal diffusion in the lateral direction in
thin plates, which is explicitly ignored in Zener’s approach, but was considered by Alblas (11, 12)
and Chadwick (16). However, it will be shown that circumstances under which lateral thermal flux
becomes important coincide with the limit in which the thin plate theory is no longer applicable.

The paper is arranged as follows. Governing equations of thermoelasticity are presented in
section 2 for anisotropic elastic bodies. General solutions are discussed in section 3 with no
particular type of structure in mind. The theory is applied to thin plates in flexure in section 4
and a non-dimensional modal participation factor (MPF) is introduced which defines the local
contribution to thermoelastic (TE) loss in terms of the plate curvature. An alternative method for
deriving the TE loss of travelling flexural waves is presented in section 5 using generalized plate
equations. The effects of lateral thermal diffusion are discussed in the context of travelling wave
solutions in section 5.

2. Equations of thermoelasticity

2.1 Constitutive relations of thermomechanics

The thermomechanical variables are the bulk stress and strain, σ and e, the temperature deviation, θ ,
from the ambient absolute temperature θa (|θ |/θa � 1), and the entropy deviation per unit volume,
s, from the ambient entropy sa . All quantities are defined relative to their ambient values, and would
be zero in the absence of exterior motivating forces. The constitutive relations for strain and entropy
in terms of the independent variables stress and temperature, {σ, θ}, are (17 to 19)

e = Sσ + αθ, s = C p(θ/θa) + α · σ. (2.1)
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146 A. N. NORRIS AND D. M. PHOTIADIS

Table 1 Thermoelastic constitutive equations. The left-most column indicates the dependent
variable. Each subsequent column corresponds to a set of constitutive equations in terms of the

independent variables in the first row

Dependent σ, θ e, θ e, s σ, s
variable

e = Sσ + αθ Ssσ + θa

C p
α s

s = C p

θa
θ + α · σ

Cv

θa
θ + β · e

σ = Ce− βθ Cse− θa

Cv

βs

θ = θa

Cv

(s − β · e)
θa

C p
(s − α · σ)

Table 1 summarizes the alternative formulations of the same equations based on different choices
of the independent variables: {e, θ}, {e, s} or {σ, s}.

The material constants are as follows: S is the fourth-order tensor of isothermal compliances,
with inverse C, and corresponding adiabatic quantities are Ss and Cs . The symmetric second-order
tensor of thermal expansion coefficients is α, and the related tensor β is defined as β = Cα,
while the quantities C p and Cv are the heat capacities per unit volume at constant stress and strain
respectively. The following relations can be verified from Table 1:

C p/θa = (Cv/θa) + α · Cα, S = Ss + (θa/C p)α ⊗ α, C = Cs − (θa/Cv) β ⊗ β. (2.2)

A word about notation: α · σ = tr (ασ) is a scalar, while α ⊗ α is a fourth-order tensor.
The constitutive relations in Table 1 follow from the standard thermodynamic relations

dU = σ · de+ θads, d F = σ · de− sadθ, (2.3)

dG = −e · dσ − sadθ, d H = −e · dσ + θads, (2.4)

where U , F , G and H are, respectively, internal energy, Helmholtz free energy, Gibbs free energy
and enthalpy, all per unit volume. These are related by the standard connections U = F + T S =
H + σ · e = G + T S + σ · e, where here, T and S are the absolute temperature and entropy,
T = θa + θ , S = sa + s. The energy densities can be expressed, in the quadratic approximation that
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THERMOELASTIC RELAXATION IN THIN PLATES 147

is used here, as

2U = e · Ce+ (Cv/θa) θ2, 2F = e · Cse− (θa/Cv) s2, (2.5)

2G = −σ · Ssσ − (θa/C p) s2, 2H = −σ · Sσ + (C p/θa) θ2, (2.6)

The constitutive relations in Table 1 follow from (2.3) and (2.5) combined with the basic definitions
of the thermal expansion coefficients and the heat capacity,

α = ∂e
∂T

∣∣∣∣
σ

, �Q p,v = C p,v�T . (2.7)

2.2 Thermoelastic relaxation governing equations

We first present the exact governing equations and then make appropriate asymptotic approxima-
tions. The motion is assumed to be caused by external forcing with no internal applied body forces
or sources of heat. The heat flow in an elastic body is governed by the energy balance

θa ṡ + div q = 0, (2.8)

where q is the heat flux. The equation for s in terms of θ and σ in Table 1 and (2.8) imply

C p θ̇ + div q = −θa α · σ̇. (2.9)

Irreversibility is introduced by requiring the heat flux to satisfy a generalized form of Fourier’s
relation (19)

q + τr q̇ + K∇θ = 0, (2.10)

where K is the positive definite thermal conductivity tensor, and τr is the thermal relaxation time
(19). The Cattaneo–Vernotte heat flux equation (2.10) includes the classical and more commonly
used Kirchhoff law in the limit as τr → 0. The parameter τr is sometimes introduced to ensure
finite speeds in the theory (20). Our objective is to solve the linear system of partial differential
equations, (2.9) and (2.10), for θ as a function of the forcing in the right member of (2.9). The heat
flux can be eliminated to give a single equation for θ ,

C p
(
θ̇ + τr θ̈

) − div K∇θ = −
(

1 + τr
∂

∂t

)
θa α · σ̇. (2.11)

A closed system of equations is obtained by applying the dynamic equilibrium condition

divσ − ρü = 0, (2.12)

where ρ is the mass per unit volume and u is the elastic displacement vector, related to the strain via
e = (∇u + (∇u)T

)
/2. It is shown in Appendix A that closed-form solutions of the coupled system

of equations (2.11) and (2.12) are generally feasible only under restricted conditions. These require,
essentially, that the material must be elastically isotropic, which is too limiting for our purposes.
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148 A. N. NORRIS AND D. M. PHOTIADIS

3. Solution for arbitrary structures

3.1 Asymptotic approximation

The key quantities are the positive definite compliance and stiffness differences �S ≡ S− Ss and
�C ≡ Cs − C. These determine the energy decrement between the final (isothermal) relaxed
and initial unrelaxed (adiabatic) states, and they follow from (2.2) as �S = (θa/C p)ααT and
�C ≡ Cs − C = (θa/Cv)ββT . Zener’s approach is based on a separation between the mechanics
and the thermodynamics. By assumption, the total difference between the relaxed and unrelaxed
energies is small. Specifically �E0/E0 � 1, where the mechanical energy E0 = 1

2σ0 · e0 is defined
by e0 and σ0, which are related by the purely mechanical equation σ0 = Ce0 (ignoring temperature
and entropy variations). Thus, E0 = 1

2σ0 · Sσ0 and the decrement may be defined as

�E0 = σ0 · �Sσ0 = (θa/C p)
(
α · σ0

)2. (3.1)

Alternatively, �E0 ≈ e0 ·�Ce0 = (θa/Cv)
(
β ·e0

)2, where the approximation is due to the assumed
purely mechanical relation between σ0 and e0. The main point is that the relative change in energy
between the unrelaxed and relaxed states in either case is the same to leading order in ε, where the
non-dimensional parameter governing TE damping is

ε = Eθaα2/C p. (3.2)

This definition of ε is chosen to equal the relative change in elastic moduli �c/c0 for TE relaxation
of a thin beam, equation (1.2). It can also be expressed as

ε = 1
3 (1 − 2ν)(C p − Cv)/C p, (3.3)

where ν is the isothermal Poisson’s ratio. Chadwick (15) employed a slightly different non-
dimensional parameter (denoted here by εc to distinguish it from ε)

εc = 1

3

(
1 + ν

1 − ν

)
C p − Cv

Cv

. (3.4)

It is clear that the non-dimensional parameters are closely related and, in particular, of the same
order of magnitude.

3.2 Solution by projections for anisotropic systems

The coupled equations (2.11) and (2.12) are solved using a regular perturbation procedure in the
asymptotic parameter ε � 1. We will achieve the solution using a projection method, similar to
Zener’s approach. A separation of variables reduces the problem to coupled ordinary differential
equations in time. Anisotropy in the elastic material does not permit a modal expansion with a
common set of scalar eigenfunctions, the basis for Zener’s method, and the key to a generalization
of his method to the limited but important case of isotropic solids (15); see Appendix A. However,
even in the case of the exact solution obtained by Chadwick (15), the interesting phenomena are
obtained by the leading-order approximation to the complex-valued frequencies. It therefore makes
more sense ultimately to proceed by a regular asymptotic approximation at the stage of the coupled
equations (2.11) and (2.12). In this approach we view them as decoupled to leading order, whereby
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THERMOELASTIC RELAXATION IN THIN PLATES 149

the elasticity problem is solved with no thermal effects. That is, we consider the elasticity as an
uncoupled but vital forcing term in the ‘thermal equation’ (2.11).

Thus, to leading order equation (2.11) gives an uncoupled equation for temperature with the stress
entering on the right-hand side as a forcing term. It is important to note that the forcing in (2.11) is
proportional to α · σ̇. When the thermal expansion tensor is isotropic, the forcing depends upon the
rate of hydrostatic stress, even when the material is elastically anisotropic. Thus, it is the hydrostatic
stress, not strain, that governs the TE loss.

Further progress is made using projections onto a set of eigenfunctions. In fact, this is similar to
the method first proposed by Zener (8), which treated a simpler decoupled thermoelasticity problem.
We first discuss the generalization of Zener’s method to (2.11) as it allows us to determine the final
answer in a form similar to the familiar and classical result of Zener for an elastic beam in flexure.
We will later compare the general solution with direct solutions for particular configurations.
Assume the temperature can be represented as

θ(x, t) =
∞∑

n=0

θn(t)φn(x), (3.5)

where x = (x, y, z) = (x1, x2, x3) and the eigenvalues τn and eigenfunctions φn satisfy

C−1
p div K∇φn + τ−1

n φn = 0, n = 0, 1, 2, . . . , (3.6)

plus appropriate boundary conditions (for example, no flux). The amplitudes solve

θ̇n + τr θ̈n + τ−1
n θn = −

(
1 + τr

∂

∂t

)
θa

C p
〈φn, α · σ̇〉 (3.7)

where the brackets indicate the inner product 〈 f, g〉 = ∫
dV f (x) g(x).

3.3 A general result for energy loss

Before considering applications of (3.5) to (3.7) to particular structures we first derive a general
result for TE dissipation. A measure of local structural damping may be defined in terms of the
local relative loss in energy per cycle. The rate of change of local mechanical energy per unit
volume is Ė = σ · ė. We assume periodic oscillation for σ and e and determine the loss in the
mechanical energy through the coupling to irreversible thermal process, θ , also periodic. Using the
relation for e in terms of σ and θ in Table 1, gives

Ė = σ · Sσ̇ + σ · α θ̇ . (3.8)

Taking the average over a cycle, and using f ḟ = 0, where the overbar indicates a time average,
implies that the local irreversible energy loss rate per unit volume is

Ė(x) = − θ(x, t) α · σ̇(x, t) =
∞∑

n=0

φn(x) θn(t)α · σ̇(x, t). (3.9)
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150 A. N. NORRIS AND D. M. PHOTIADIS

The total power dissipated is thus


d = −
∫

dV Ė(x) = −
∞∑

n=0

θn(t)〈φn, α · σ̇〉

=
∞∑

n=0

ω2τn

(1 − ω2τrτn)2 + ω2τ 2
n

θa

C p
〈φn, α · σ〉2, (3.10)

where we have assumed periodic motion of period 2π/ω and used (3.7) to express the time harmonic
temperature field in terms of the stress.

The loss factor is then given by Q−1 ≈ tan δ = �E/(2πE0), where �E = 
d 2π/ω is the loss
per cycle and E0 is the total energy of oscillation. We find

Q−1 = θa

C pE0

∞∑
n=0

ωτn

(1 − ω2τrτn)2 + ω2τ 2
n

〈φn, α · σ〉2. (3.11)

This provides a general formula for the TE loss in terms of the inhomogeneous stress. The Q of
a particular mode may be straightforwardly obtained by integrating (3.11) over the volume of the
oscillator and dividing by the total energy. This equation may alternatively be expressed in terms of
the inhomogeneous strain; however, we find the stress formulation more convenient.

Equation (3.11) is one of the main results of the paper, as it provides a means to compute TE
dissipation given a solution in terms of the inhomogeneous stress.

We remark on the summation in (3.11). If the first term in the infinite sum is dominant, as is often
the case (8), the sum can be truncated after only one term (n = 0). This gives a result very similar
to (1.1) except that the simple Lorentzian in the latter is replaced by the generalized Lorentzian
amplitude

A(ωτ) = ωτ

(1 − ω2τrτ)2 + ω2τ 2
. (3.12)

Of course, this reduces to the classical Lorentzian when τr = 0, which has a maximum as a function
of ω when ωτ = 1. It is worth describing the properties of this generalized Lorentzian, in particular
how τr influences the maximum. For every τr � 0, A has a single maximum at a unique value of
ω = ω∗ defined by

ω∗τ = [
(1 − 4r + 16r2)1/2 − 1 + 2r

]1/2
/(r

√
6), where r = τr/τ . (3.13)

Furthermore, ω∗τ � 1 for a restricted range of τr . Specifically, 1 � ω∗τ �
√

4/3 for 0 � τr �
2τ/3, with ω∗τ equal to unity at the two extremes (τr = 0 and τr = 2τ/3) and ω∗τ = √

4/3 for
τr = τ/4. Conversely, ω∗τ < 1 for τr > 2τ/3. In particular, for relatively large τr � τ , the
maximum is at ω∗(ττr )

1/2 = 1. The value of A at the maximum, Amax, increases monotonically
from Amax = 1

2 when there is zero thermal relaxation, τr = 0, to Amax ≈ (τr/τ)1/2 for τr � τ .

4. Thermoelastically damped orthotropic thin plates

4.1 Thin plate dynamics

We consider plates that are orthotropic with axes of symmetry coincident with the coordinate
axes. Assume, with no loss in generality, that the thermal expansion tensor is diagonal, α =
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THERMOELASTIC RELAXATION IN THIN PLATES 151

diag (α1, α2, α3). By virtue of the thin plate configuration we can ignore the normal stress σzz ,
and employing the Kirchhoff approximation for the deformation, we have

α · σ = α1σxx + α2σyy = z

1 − ν12ν21

[
(1 + ν21)E1 α1κxx + (1 + ν12)E2 α2κyy

]
, (4.1)

where κ is the curvature tensor with components κxx , κyy and κxy . The curvature is related to the
transverse deflection of the centre-plane, w(x, y), by

κi j = −∂2w(x, y)

∂xi∂x j
. (4.2)

The quantity νi j is the Poisson ratio for strain in the j-direction caused by stress in the i-direction,
and the two Poisson’s ratios satisfy ν21 E1 = ν12 E2. The instantaneous potential energy density per
unit area of a plate in flexure is

EP E = I

2

{
1

1 − ν12ν21

(
E1κ

2
xx + E2κ

2
yy + 2ν21 E1κxxκyy

) + 4µκ2
xy

}
, (4.3)

where µ is the in-plane shear modulus and I ≡ 〈z, z〉 = h3/12.

4.2 Asymptotic solution by projections for thin plates

Our purpose here is to obtain a general solution for the TE loss based on the assumption that the
transverse diffusion of heat can be ignored. This assumption is examined in section 5 where it is
shown that provided the assumptions of thin plate theory and classical heat transport are satisfied,
the transverse heat flow gives rise only to small corrections to the TE loss.

The governing equation for the non-equilibrium temperature field is obtained by ignoring the
transverse heat flow terms in (2.11),

C p
(
θ̇ + τr θ̈

) − K3
∂2θ

∂z2
= −

(
1 + τr

∂

∂t

)
θa α · σ̇, (4.4)

where the dependence of the local temperature on position is governed solely by the x-dependence
of the prescribed stress field σ , where now x = (x, y) = (x1, x2). Also, K3 is the through-
thickness element of the thermal conductivity tensor which, in keeping with the general orthotropic
formulation, is K = diag (K1, K2, K3).

The analysis leading to (3.10) for the power dissipated by TE effects can be repeated with
the proviso that the eigenfunctions φn of the heat equation are now functions only of z, the
thickness direction, and inner products should in this case be interpreted accordingly as 〈 f, g〉 =∫

dz f (z) g(z). Hence the analogue to (3.10) refers not to the total power lost, but instead to the rate
of energy loss per unit area at position x,

Ė(x) = −
∞∑

n=0

ω2τn

(1 − ω2τrτn)2 + ω2τ 2
n

θa

C p
〈φn(z), α · σ(x, z)〉2. (4.5)

The temperature modes of interest are antisymmetric about the mid-plane (8) with

φn = (2/h)1/2 sin(2n + 1)
π z

h
, τn = (2n + 1)−2 h2C p

π2 K3
, n = 0, 1, 2, . . . . (4.6)
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152 A. N. NORRIS AND D. M. PHOTIADIS

Temperature modes that are symmetric in z have zero coupling to flexural stress components, since
they are antisymmetric, and also to any membrane stresses, which are constant across the thickness.
It is evident from (4.5) and (4.1) that the thermal loss in flexure depends upon the quantities (8)

fn ≡ 〈φn, z〉2/〈z, z〉 = 96/[(2n + 1)π ]4. (4.7)

Combining (4.1), (4.5) and (4.7), we obtain

Ė(x) = − EDiss(κ(x))
Ēθa ᾱ2

C p

∞∑
n=0

fn
ω2τn

(1 − ω2τrτn)2 + ω2τ 2
n

, (4.8)

where Ē = (E1 + E2)/2 is the average Young’s modulus, ᾱ = (α1 + α2)/2, κ is the curvature
tensor, and the ‘dissipation energy density’ (per unit area) EDiss is given by

EDiss(κ(x)) = I

Ē ᾱ2

[
(1 + ν21)E1α2 κxx + (1 + ν12)E2α2 κyy

1 − ν12ν21

]2

. (4.9)

Equation (4.8) is a key result pertaining to TE dissipation in structures which can be modelled as
thin plates. Unlike most previous results, the predicted dissipation is inhomogeneous.

The local TE dissipation depends on position via the dependence on the local curvature tensor
κ(x). This aspect may be explored by defining the quantity p(κ) = EDiss(κ)/E0(κ), which gives a
measure of the local TE energy dissipation relative to the local deformation energy. Expressing the
total energy as twice the average potential energy by virtue of the virial theorem we find

p(κ) =
[
Ē ᾱ2(1 − ν12ν21)

]−1 [
(1 + ν21)E1α1 κxx + (1 + ν12)E2α2 κyy

]2

E1κ2
xx + E2κ2

yy + 2ν21 E1κxxκyy + 4µ(1 − ν12ν21)κ2
xy

. (4.10)

The parameter p simplifies for materials of cubic symmetry, such as silicon, with E1 = E2 =
Ē ≡ E , α1 = α2 and ν12 = ν21 ≡ ν, and hence

p(κ) =
(

1 + ν

1 − ν

) (
κxx + κyy

)2

κ2
xx + κ2

yy + 2νκxxκyy + 4E−1µ(1 − ν2)κ2
xy

. (4.11)

For isotropic materials, E = 2µ(1 + ν), and p(κ) becomes

p(κ) =
(

1 + ν

1 − ν

)
(tr κ)2

(tr κ)2 − 2(1 − ν) det κ
. (4.12)

In this case, p(κ) depends upon the two principal invariants of the curvature: tr κ = κxx + κyy and
det κ = κxxκyy − κ2

xy . Let κ1 and κ2 be the two principal curvatures, satisfying κ1 + κ2 = tr κ and
κ1κ2 = det κ, then

p(κ) =
(

1 + ν

1 − ν

) (
κ1 + κ2

)2(
κ1 + κ2

)2 − 2(1 − ν)κ1κ2

. (4.13)

Thus,

0 � p(κ) � 2/(1 − ν), (4.14)

with p(κ) = 0 at locations where the plate is locally saddle-shaped, κ1 = −κ2, and p achieves its
maximum value at points where it is locally spherical, κ1 = κ2.

The bounds (4.14) also apply to materials of cubic anisotropy, and occur in the same
circumstances as for the isotropic material, as can be verified from (4.11).
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THERMOELASTIC RELAXATION IN THIN PLATES 153

4.3 TE loss factors for flexural modes and waves

The loss factor of a particular flexural mode may be predicted via (4.8) once the displacement
field w(x) of the mode is known. The curvature tensor is first evaluated via the standard relation
(4.2). The total energy lost from the mode per cycle is then calculated by integrating (4.8) over the
volume of the plate and time averaging. In the most common situation, the displacement field will
be evaluated in frequency space as a complex quantity, and the time average is obtained in the usual
way as f (t)g(t) = 1

2 Re [ f̃ (ω)g̃∗(ω)], where f̃ is the Fourier transform. Thus the TE dissipation
for mode σ is given by

Q−1
σ = Ēθa ᾱ2

C p

∞∑
n=0

fn
ωτn

(1 − ω2τrτn)2 + ω2τ 2
n

[∫
d A EDiss(κ)

E0σ

]
, (4.15)

where E0σ = ∫
d A (EK E + EP E ) is the total energy of mode σ .

The modal energy E0σ may be computed as either twice the average kinetic energy of the system
or twice the average potential energy of the system, whichever is more convenient. The kinetic
energy is often preferable when using experimental data because the second derivatives appearing
in the curvature tensor can be ill-behaved in the presence of noise.

The expression for the TE loss factor given above is closely related to the loss factor given by
Zener for a simple beam in flexure. Zener gave the result (see (1.2))

Q−1
Zener = Eθaα2

C p

ωτ0

1 + ω2τ 2
0

, (4.16)

where we have included only the first term in the infinite sum. Our results may thus be interpreted
as

Q−1
σ =

∫
d A EDiss(κ)

E0σ

Q−1
Zener = pσ Q−1

Zener, (4.17)

where the quantity pσ was called the modal participation factor in the isotropic case studied in (4).
Clearly the MPF is closely related to the quantity p(κ) analysed above.

The MPF simplifies considerably for an isotropic medium. Using manipulations similar to those
employed above, we find

pσ = I E

E0(1 − ν)2

∫
d A (tr κ)2; (4.18)

a result which differs from that given in (4) by a factor of (1 − ν)−2. The reason for the difference
is that it was assumed in (4) that flexural energy would be dissipated at the rate predicted by Zener
for a beam. However, a plate undergoes more compressive stress than a beam and thus dissipates
more energy accordingly.

It is not difficult to show, based on (4.18), that the MPF for travelling flexural waves in an isotropic
plate is

pσ = 1 + ν

1 − ν
for a flexural wave. (4.19)

This shows the difference between the TE dissipation of a cantilever beam (pσ = 1) versus the
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154 A. N. NORRIS AND D. M. PHOTIADIS

corresponding vibration of a plate. The identity (4.19) may be obtained by explicit substitution of
a flexural waves solution, or more simply, as follows. Integrating by parts and using the governing
plate equation E I (1 − ν2)−1∇4w − ρhω2w = 0, gives∫

d A (tr κ)2 =
∫

d A w∇4w = 2(1 − ν2)

I E

∫
d A EK E = (1 − ν2)

I E
E0. (4.20)

The last equality employs the expression for the potential energy, (4.3). Also, it is assumed that the
plate boundary conditions may be ignored in the above integration, which is true for a travelling
wave in a plate of ‘infinite’ extent.

5. Effective thin plate equations and flexural waves

The general theory is now applied to thin plates in flexure with the goal of deriving general
governing equations similar to the classical Kirchhoff thin plate equations. Our objective is to
provide an alternative means of calculating pσ for flexural waves, and also to examine the range of
validity of our approximation in ignoring lateral thermal diffusion.

The equation for θ , (2.11), becomes for time harmonic motion (e−iωt assumed)

∂2θ

∂z2
+ k2θ = −k2(θa/C p)α · σ −

(
K1

K3

∂2θ

∂x2
+ K2

K3

∂2θ

∂y2

)
, (5.1)

where K = diag (K1, K2, K3) and

k2 = iω(1 − iωτr )C p/K3. (5.2)

If the stress term on the right-hand side of (5.1) is weakly dependent on x and y, then we may
argue that θ inherits the same weak dependence. Provided this dependence on transverse position
is uniform, the case of simple plane wave, the final term may be combined with the k2θ term, and
hence interpreted as modifying the thermal diffusion rate. Here, we ignore this and simplify (5.1) to

∂2θ

∂z2
+ k2θ = −k2(θa/C p)α · σ. (5.3)

The importance of the simplification (5.3) at this stage is that it allows us to derive a set of effective
plate equations in which the TE damping appears directly. This approach follows on that of Alblas
(12) and of Lifshitz and Roukes (13) who derived the effective equation governing the motion of a
thermoelastically damped beam.

Assuming zero flux conditions at z = ±h/2, and noting that the right member of (5.3) is
proportional to z in flexure, σ = 〈z, σ〉I −1z, we find that the solution is

θ = − θa

I C p
〈z, α · σ〉

(
z − sin kz

k cos(kh/2)

)
. (5.4)

The thermally perturbed stress is therefore, using the expression for entropy in terms of temperature
and strain from Table 1,

σ = Ce+ θa

I C p
〈z, α · σ0〉

(
z − sin kz

k cos(kh/2)

)
β. (5.5)
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THERMOELASTIC RELAXATION IN THIN PLATES 155

The stress in the absence of thermal effects, σ0, is proportional to z. In order to apply (5.5) to the
thin plate the standard plane stress conditions must be enforced. We consider an orthotropic plate
with a symmetry plane coincident with the neutral plane (z = 0), for which the standard stress/strain
relations for plane-stress are




σ
(0)
xx

σ
(0)
yy

σ
(0)
xy


 =




E1

1 − ν12ν21

ν21 E1

1 − ν12ν21
0

ν12 E2

1 − ν12ν21

E2

1 − ν12ν21
0

0 0 2µ







e(0)
xx

e(0)
yy

e(0)
xy


 , (5.6)

where σ
(0)
xx , e(0)

xx , etc. are the stresses and strains in the absence of the thermoelastic damping. Based
on (5.5) this implies that the in-plane TE stresses are

σxx = σ (0)
xx + (α1 + α2ν21)θa E1

(1 − ν12ν21)C p I
〈z, α1σ

(0)
xx + α2σ

(0)
yy 〉

(
z − sin kz

k cos(kh/2)

)
,

σyy = σ (0)
yy + (α2 + α1ν12)θa E2

(1 − ν12ν21)C p I
〈z, α1σ

(0)
xx + α2σ

(0)
yy 〉

(
z − sin kz

k cos(kh/2)

)
, (5.7)

σxy = σ (0)
xy .

This provides the variation of stress through the thickness due to the temperature variation. The
moments are found by taking the first moment of the stresses through the plate thickness, leading to

Mxx = M (0)
xx + (α1 + α2ν21)θa E1

(1 − ν12ν21)C p
f (kh)

(
α1 M (0)

xx + α2 M (0)
yy

)
,

Myy = M (0)
yy + (α2 + α1ν12)θa E2

(1 − ν12ν21)C p
f (kh)

(
α1 M (0)

xx + α2 M (0)
yy

)
, (5.8)

Mxy = M (0)
xy ,

where M (0)
xx = 〈z, σ

(0)
xx 〉, etc., and the function f is

f (ζ ) = 1 + 24

ζ 3

[
ζ

2
− tan

ζ

2

]
. (5.9)

The standard moment-curvature relations follow from (5.6) and the Kirchhoff assumption as




M (0)
xx

M (0)
yy

M (0)
xy


 = I




E1

1 − ν12ν21

ν21 E1

1 − ν12ν21
0

ν12 E2

1 − ν12ν21

E2

1 − ν12ν21
0

0 0 2µ







κ
(0)
x

κ
(0)
y

κ
(0)
xy


 . (5.10)

The governing equation for the thin plate is

∂2 Mxx

∂x2
+ 2

∂2 Mxy

∂x∂y
+ ∂2 Myy

∂y2
+ ρhω2w = 0. (5.11)
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156 A. N. NORRIS AND D. M. PHOTIADIS

Thus, we obtain the effective thin plate equation for w,

− I

1 − ν12ν21

{
E1wxxxx + E2wyyyy + 2

[
2µ(1 − ν12ν21) + ν21 E1

]
wxxyy

}

− f (kh)θa I

(1 − ν12ν21)2C p

{
(α1 + α2ν21)

2 E2
1wxxxx + 2(α1 + α2ν21)(α2 + α1ν12)E1 E2wxxyy

+ (α2 + α1ν12)
2 E2

2wyyyy

}
+ ρhω2w = 0. (5.12)

For a plate made of material with cubic symmetry, this reduces to[
1 +

(
1 + ν

1 − ν

)
Eθaα2

C p
f (kh)

]
∇4w + 4(1 − ν)

[
(1 + ν)

µ

E
− 1

2

]
wxxyy − 1 − ν2

E I
ρhω2w = 0.

(5.13)

The second term vanishes for isotropic materials, in which case we may combine the damping with
the plate stiffness to get an equation in the standard form,

D∇4w − ρhω2 w = 0, (5.14)

where the TE loss is now contained in the complex-valued flexural stiffness

D = E I

1 − ν2

{
1 +

(
1 + ν

1 − ν

)
Eθaα2

C p
f (kh)

}
. (5.15)

In the more general orthotropic situation, the TE damping is inhomogeneous, as in (5.12), and
cannot be interpreted in terms of a single frequency-dependent complex modulus of elasticity.

Our equation (5.14), a generalization of Zener’s results for a beam (9), gives a homogeneous
damping as a result of assuming a uniform plane wave vibration. This provides some guidance as
to the loss factors of vibrating thin plate structures, but finite structures will support resonant modes
that consist of a variety of wavenumbers which can interfere with one another, and thus the actual
loss factor for a particular mode may differ significantly from this value. A particularly salient
example is the case of a twisting mode for which the source field for temperature fluctuations, tr σ
(for isotropic σ), is very small, and the resulting values of Q−1 may be orders of magnitude smaller
than the result given in (5.14).

Corresponding results for flexural waves in circular rods are in Appendix C. In particular we note
that the function f takes on a different form from that for a plate.

5.1 Dispersion relation including in-plane variation

It is now relatively straightforward to revise the analysis of section 4 to include in-plane variation in
both the stress and the temperature. We begin by assuming that all field variables possess in-plane
dependence eiζ x with wavenumber ζ . Then (5.1) becomes

∂2θ

∂z2
+ γ 2θ = −k2(θa/C p)α · σ, (5.16)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/58/1/143/1875766 by R

utgers U
niversity Libraries user on 03 O

ctober 2023



THERMOELASTIC RELAXATION IN THIN PLATES 157

where γ = (k2 − ζ 2 K1/K3)
1/2 and k is defined in (5.2). Solving as before, we find that the

temperature is

θ = −〈z, α · σ〉 θa

I C p

k2

γ 2

(
z − sin γ z

γ cos(γ h/2)

)
, (5.17)

and similar generalizations can be obtained for the stresses and moments, (5.5) to (5.10).
We cannot derive a governing equation, similar to (5.14), for example, since now the in-

plane dependence of the stress and hence w has been assumed a priori. However, the in-plane
wavenumber can be obtained in a self-consistent manner from the latter equation by assuming
w = w0eiζ x , where w0 is constant. This yields an equation for ζ ,

ζ 4 − ω2(1 − ν2)
ρh

E I

{
1 +

(
1 + ν

1 − ν

)
Eθaα2

C p

k2

γ 2
f (γ h)

}−1

= 0, (5.18)

the solution of which we discuss next.

5.2 Effects of transverse TE dissipation

The wavenumber of a flexural wave in an undamped thin plate is k f , where

k4
f = ω2(1 − ν2)ρh/(E I ). (5.19)

Treating ζ as an asymptotic series in the small parameter ε, it is clear that the leading-order solution
to the general dispersion relation of (5.18) is ζ = k f + O(ε). The next term is given by

ζ = k f

[
1 − ε

4

(
1 + ν

1 − ν

)
k2

γ 2
f

f (γ f h) + O(ε2)

]
, (5.20)

where γ f = (k2 − k2
f )

1/2. Direct substitution gives

γ f = k0
(
1 + ialmfp/h − iωτr

)1/2
, (5.21)

where k0 = (−iωC p/K3)
1/2 and lmfp, the mean free path for phonons at temperature T , is

lmfp(T ) = 3K3(T )

c̄ C p(T )
. (5.22)

The quantity c̄ is the average elastic wave speed, and the order-one constant a is given by

a = [2(1 − ν)ρ/(3µ)]1/2 (K1/K3) c̄. (5.23)

Values of the mean free path at room temperature are typically on the order of tens of nanometres
using the value c̄ = (cL + 2cT )/3, where cT = √

µ/ρ is the transverse wave speed and cL =
[2(1 − ν)/(1 − 2ν)]1/2 cT is the longitudinal speed. For isotropic conductivity the parameter a is a
function of Poisson’s ratio,

a =
[√

8(1 − ν) + 2(1 − ν)√
1 − 2ν

]
/
√

27, (5.24)

which is of order unity.
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158 A. N. NORRIS AND D. M. PHOTIADIS

Equation (5.21) provides an avenue to compute corrections to classical TE dissipation arising
both from transverse diffusion and thermal relaxation. The asymptotic solution (5.20) indicates that
a propagating flexural wave has attenuation equal to Im ζ . Using the relation between attenuation
and Q, and noting that the undamped flexural wave has group velocity 2ω/k f , we find 1/Q =
Im 4ζ/k f , or

Q−1 = −ε

(
1 + ν

1 − ν

)
Im

{
1 − iωτr

1 − iωτr + ialmfp/h
f
(

k0(1 − iωτr + ialmfp/h)1/2
) }

. (5.25)

In order to proceed further in understanding this we replace the function f by its series expansion.
Equations (B.1), (B.2) and (B.3) imply

f
(

k0(1 − iωτr + ialmfp/h)1/2
)

=
∞∑

n=0

fn

[
1 + 1

−1 + iωτn(1 − iωτr + ialmfp/h)

]
, (5.26)

where τn , n = 0, 1, 2, . . . are defined in (4·6)2. Thus,

Q−1 = ε

(
1 + ν

1 − ν

) ∞∑
n=0

fn
ωτn

(
1 + ωτn(almfp/h)

)
(
1 + ωτn(almfp/h) − ω2τnτr

)2 + ω2τ 2
n

. (5.27)

The classical result for the TE loss in a vibrating beam is (8)

Q−1 = ε
ωτ0

1 + ω2τ 2
0

. (5.28)

This ignores the effect of τr , and for the purpose of comparison with (5.27) we consider the case
τr = 0 in the latter. We truncate (5.27) at the first term (which is reasonable considering f0/ f1 =
81), and for further simplicity, the factor f0 = 96/π4 = 0·9855 is replaced by unity, giving

Q−1 = ε

(
1 + ν

1 − ν

)
ωτ0

(
1 + ωτ0(almfp/h)

)
(
1 + ωτ0(almfp/h)

)2 + ω2τ 2
0

. (5.29)

Comparing (5.28) and (5.29) the first difference is the factor (1 + ν)/(1 − ν) which can be attributed
to the fact that it is a plate rather than a beam as discussed in the previous subsection; see (4.17) and
(4.19). The major additional distinction between the present theory and the classical result is the
presence of the terms involving lmfp resulting from transverse diffusion, which are absent in Zener’s
theory and previous analyses. These corrections are always small, since the domain of validity of
the thermodynamic analysis employed here is restricted to distances far greater than the mean free
path, the domain h � lmfp.

Alternatively, we note that (5.29) contains two characteristic times: the ‘Zener’ relaxation time
τ0 = h2CP/π2 K3, and a new characteristic time defined by τ ∗ = τ0(almfp/h). It is easily checked
that ωτ ∗ = (k f h/π)2, which must be a small quantity in order for the Kirchhoff assumption to
remain valid, that is, a necessary prerequisite for the validity of the plate theory is that the flexural
wavelength is much longer than the thickness. Also,

τ ∗ = hπ−2
√

12(1 − ν2)ρ/E, (5.30)

which suggests interpreting τ ∗ as the travel time of an elastic wave across the thickness. But this
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THERMOELASTIC RELAXATION IN THIN PLATES 159

time must be much less than 1/ω, otherwise thickness resonances can occur, again violating the
conditions of the plate theory.

Thus, the restrictions on the use of both the thermal conduction and the thin plate theories requires
that ωτ0(almfp/h) is small. Nevertheless, small corrections arising from transverse diffusion can be
estimated in this fashion.

The effect of non-zero τr can be considered by using an estimate for this relaxation time. Rudgers
(21) provides the estimates τr = τmfp/3, where τmfp = lmfp/c̄ (Rudgers actually calculates two
approximations for τr but they are of the same order of magnitude). The term ωτr must remain
small in the context of thin plate theory, otherwise the same assumptions as before are violated, for
example, the wavelength is far less than the thickness. However, if the phonon mean free path is
comparable with the plate thickness, then both the transverse diffusion and the Cattaneo–Vernotte
terms can become important.

6. Conclusion

Equation (3.11) is one of the basic results of the paper, as it provides a means to compute TE
dissipation given a solution in terms of the inhomogeneous stress. This computation is in general a
complicated undertaking because it requires the determination of the eigenfunctions and eigenvalues
of the heat equation in the particular geometry of interest. Nevertheless, a clear recipe for an
approximate calculation of the TE dissipation in an arbitrary, anisotropic, elastic medium is given.

The theoretical scope is then narrowed to the case of thin plate structures for which the thermal
heat flow simplifies dramatically. In this case, we are able to obtain an explicit formula for the TE
loss in an arbitrary, anisotropic elastic system, (4.9). This equation, which shows that TE loss is
in general inhomogeneous, is the other principal result obtained. It should be emphasized that the
�E derived in (4.9) has the property that it is not a global measure of damping but is local, and
can be used to define TE loss at a point in a structure, and then integrated to determine the Q of
an arbitrary vibrational mode. This distinction is particularly important for geometries of interest in
MEMS/NEMS applications, for the TE loss rate of low-order modes in typical geometries may vary
significantly with position. The local result for TE loss predicts that the attenuation of a flexural
wave in a large plate is (1 + ν)/(1 − ν) times the attenuation of a wave in a beam at the same
frequency.

Finally, we have investigated the effects of transverse diffusion. Transverse diffusion effects
are most easily analysed for plane wave behaviour. For this case we have derived an effective
plate equation including the effects of thermoelasticity to leading order in the TE coupling. The
TE dissipation can be examined fairly simply in the plane wave case because TE losses are
homogeneous, and are therefore contained in a single loss factor. Corrections to TE loss resulting
from transverse diffusion are found to be generally small within the domain of validity of our
theoretical models.
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APPENDIX A
General solutions of the equations of thermoelasticity

The governing equations (2.11) and (2.12) are more commonly expressed as coupled equations of temperature
and displacement. This can be achieved by first eliminating σ explicitly:

divCe− ρü − β∇θ = 0, (A.1)

θ̇ + τr θ̈ − C−1
v div K∇θ + (

1 + τr
∂

∂t

) θa

Cv
β · ė = 0. (A.2)
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These may be expressed more succinctly as follows for time harmonic motion (e−iωt is assumed):

L(∇, ω)U + ω2U = 0, (A.3)

where

U =
{

ρ1/2 u
(−iω)−1 (Cv/θa)1/2 θ

}
, (A.4)

L =

 ρ−1 Q(∇) iω(ρCv/θa)−1/2 b(∇)

iω(ρCv/θa)−1/2 bT (∇) (θa/Cv) κ̃(∇, ω)


 , (A.5)

Qi j (v) = Cik jl vkvl , b(v) = βv and κ̃(v, ω) = [θa(τr + (−iω)−1)]−1 v · Kv . Equation (A.3) represents a
generalized eigenvalue problem for the complex-valued modal frequencies.

Some simplification is possible for isotropic bodies, for which α = αI and β = 3κT αI , where κT =
E/(1 − 2ν) is the isothermal bulk modulus. Assuming the ansatz (15)

U =
{ ∇ψ

λψ

}
, where ∇2ψ + �2ψ = 0, (A.6)

the eigenvalue problem (A.3) becomes

ω2 − c2
L�2 + iωβλ

(ρCv/θa)1/2
= 0, (A.7)

− iωβ�2

(ρCv/θa)1/2
+

(
ω2 − K�2

Cv(τr + (−iω)−1)

)
λ = 0, (A.8)

where cL is the longitudinal wave speed. Eliminating the constant λ gives an equation for ω in terms of the
wavenumber �:

(
ω2 − c2

L�2) (
K�2

Cv(1 − iωτr )
− iω

)
+ iω�2 θaβ2

ρCv
= 0. (A.9)

Thus, the problem of determining the eigenfrequencies is reduced to finding solutions to the Helmholtz
equation (A.6)2 in the domain of interest. Chadwick (15) discusses this further and provides formulae for
the roots of (A.9) for τr = 0, in which case it reduces to a cubic in ω.

The separation of variables approach does not work for generally anisotropic bodies. However, it is worth
noting that solutions of the form (A.6) are valid as long as the thermal properties are isotropic and the elasticity
tensor C satisfies Ci jkl n j nknl = c0n2ni for all n, and some constant c0. The most general form of anisotropy
with this property has stiffness (using Voigt notation)

[C] =




c0 c0 − 2c66 c0 − 2c55 −2c56 0 0

c0 − 2c66 c0 c0 − 2c44 0 −2c46 0

c0 − 2c55 c0 − 2c44 c0 0 0 −2c45

−2c56 0 0 c44 c45 c46

0 −2c46 0 c45 c55 c56

0 0 −2c45 c46 c56 c66




. (A.10)
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APPENDIX B
Exact results for the function f

Some exact results are presented for the function f of (5.9) occurring in the TE theory for beams and plates in
flexure. We begin with the representation

f (ξ) = 1 +
∞∑
j=0

f j
1
2� j − 1

, (B.1)

where f j , j = 0, 1, 2, . . . , are defined in (4.7) and

� j = 2ξ2/[(2 j + 1)π ]2. (B.2)

The infinite series in (B.1) is a consequence of the fact that the left member is a meromorphic function of ξ

with simple poles at ξ = ±(2 j + 1)π , and residues that are readily determined. Note that

∞∑
j=0

f j = 1. (B.3)

It follows from (B.1) that for real-valued ξ ,

Im f
(
(1 + i)(1 − ir)1/2ξ

)
= −

∞∑
j=0

f j
� j

(1 − r� j )
2 + �2

j

. (B.4)

We also note the identity

f ((1 + i)ξ) = 1 − 6

ξ2

{
i + (1 − i)

ξ

( sinh ξ − i sin ξ

cosh ξ + cos ξ

)}
, (B.5)

which is useful in the case of τr = 0 (r = 0), as it provides a closed form expression for the TE damping in
that case via (13)

Im f ((1 + i)ξ) = − 6

ξ2

{
1 − 1

ξ

( sinh ξ + sin ξ

cosh ξ + cos ξ

)}
. (B.6)

The exact result for a beam in flexure was derived by Lifshitz and Roukes (13), and corresponds to the use
of the function f of (5.9). The equivalence of their derivation and Zener’s prediction (8) is confirmed by (B.4)
(both Zener, and Lifshitz and Roukes considered the case r = 0). Thus, while the closed form expression of
Lifshitz and Roukes is novel, it is simply a more concise expression of the infinite series of Zener. Both are
based on the same implicit or explicit first-order approximation arising from the small difference between the
adiabatic and isothermal systems.

In fact, the analysis of Lifshitz and Roukes (13) is a special case of the more general problem solved by
Alblas (12), in which the lateral (third) dimension of the beam is taken into account and the boundary-value
problem for the temperature is more general. However, Alblas considered the situation in which the boundary
condition for the temperature variation is zero, and as a result he obtained a different functional form of the TE
damping.

APPENDIX C
Thermoelasticity theory for a circular rod

In the case of a circular rod of radius a we find that the solution to (5.3) is

θ = −(Iccp)−1〈z, α · σ〉
(

r − J1(kr)

k J ′
1(ka)

)
cos ψ, (C.1)
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where Ic = 〈z, z〉 = πa4/4, z = r cos ψ and k is defined in (5.2). The function associated with the moment
of the temperature is f (ka), where now

f (ζ ) = 1 + 4

ζ 3

[
ζ − J1(ζ )

J ′
1(ζ )

]
. (C.2)

Zener (22) analysed the circular rod using the projection method involving a series rather than a closed form
expression. By comparing the results here with those of Zener, we conclude that (22)

fn = 8

q2
n (q2

n − 1)
, τn = a2C p

q2
n K

, where J ′
1(qn) = 0, n = 0, 1, 2, . . . . (C.3)
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