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Flexural wave speeds on beams or plates depend upon the bending stiffnesses which differ by the
well-known factor (12n2). A quantitative analysis of a plate of finite lateral width displays the
plate-to-beam transition, and permits asymptotic analysis that shows the leading order dependence
on the width. Orthotropic plates are analyzed using both the Kirchhoff and Kirchhoff–Rayleigh
theories, and isotropic plates are considered for Mindlin’s theory with and without rotational inertia.
A frequency-dependent Young’s modulus for beams or strips of finite width is suggested, although
the form of the correction to the modulus is not unique and depends on the theory used. The sign
of the correction for the Kirchhoff theory is opposite to that for the Mindlin theory. These results
indicate that the different plate and beam theories can produce quite distinct behavior. This
divergence in predictions is further illustrated by comparison of the speeds for antisymmetric
flexural, or torsional, modes on narrow plates. The four classical theories predict limiting wave
speeds as the plate width vanishes, but the values are different in each case. The deviations can be
understood in terms of torsional waves and how each theory succeeds, or fails, in approximating the
effect of torsion. Dispersion equations are also derived, some for the first time, for the flexural edge
wave in each of the four ‘‘engineering’’ theories. ©2003 Acoustical Society of America.
@DOI: 10.1121/1.1561493#
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I. INTRODUCTION

The wave number of a flexural wave in a beam of re
angular cross-section or in a plate isk5(v2m/D)1/4 accord-
ing to classical~Kirchhoff, Euler–Bernoulli! theory, whereD
is the bending stiffness,m is the mass density~per unit length
or area! and v is the circular frequency. The bending stif
ness for the beam isD5EI, while that of the plate of the
same thickness as the beam isD5EI/(12n2), whereE is
Young’s modulus,I is the moment of inertia of the cross
section, andn is Poisson’s ratio. The appearance of the fac
1/(12n2) can be explained in terms of the different assum
tions in each theory. Both make use of the Kirchhoff kin
matic assumption; the plate theory assumes plane st
while the beam theory is based on the assumption of unia
stress. The factor can therefore be attributed to the diffe
assumed forms for the stress in the structure. The unia
stress approximation is clearly reasonable for a beam, ba
rod that is thin in the cross directions, both transverse
lateral. The transverse direction is defined as the direc
perpendicular to the plate, and a beam of rectangular cr
section can therefore be considered as the limit of a p
where the lateral dimension is small.

The purpose of this paper is to examine how the be
and plate theories are reconciled, that is, how the transi
occurs between the uniaxial and plane stress theories.
will demonstrate explicitly how the beam limit occurs, and
particular will examine the leading order correction to be
theory that includes the dependence on the lateral width.
analysis is performed in the context of several class
theories—the four engineering theories,1 beginning with the

a!Electronic mail: norris@jove.rutgers.edu
J. Acoust. Soc. Am. 113 (5), May 2003 0001-4966/2003/113(5)/2
-

r
-
-
ss,
al
nt
ial
or
d
n
s-
te

m
n
e

he
l

Kirchhoff theory for orthotropic plates and we show that t
beam theory prediction for the wave number falls out in t
limit of zero plate width. The analysis yields surprising d
ferences. Thus, the four theories contribute different phys
aspects which lead to serious differences in the hi
frequency limit, but they all agree in the low or quasi-sta
limit where the Euler–Bernoulli predictions remains invi
late. In this context, the results here show the surprising
sult, a surprise to the author anyway, that the first correc
to the beam theory prediction from the four theories are
distinct. While the main results are for flexural waves sy
metric about the center line of the beam or plate, we a
analyze the situation where the flexural wave is totally an
symmetric about the center line, and again demonatrate
the four theories provide distinct predictions. Comparison
the symmetric and asymmetric modes offers some expla
tion for the variations in the prediction for the first correctio
to the flexural wave~symmetric case!.

The methodology adopted here uses known plate th
ries as the starting point to examine the narrow plate lim
One could also begin with the exact theory of elasticity a
derive reduced order theories appropriate to the narrow p
This approach is outlined briefly in Appendix B for a re
duced order model consistent with the Kirchoff hypothes
generating a uni-dimensional beam theory. It is shown t
the predictions of this reduced order model are entirely c
sistent with those found using the Kirchhoff plate theory. It
expected that similar connections could be obtained betw
the present results for the Mindlin plate theory and a hig
order reduced parameter model for narrow plates that
cludes shear and rotary inertia,2 but the analysis is overly
complicated and beyond the present study.
2647647/12/$19.00 © 2003 Acoustical Society of America
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We begin in the next section with the classical pla
equations, and derive the dispersion relation for wa
propagating in a plate of finite lateral width. A mode which
symmetric about the center line is shown to exist for
frequencies, and it reduces to the beam mode in the ap
priate limit. We also show that this mode has the flexu
edge wave speed3 as asymptote for large width. Subseque
sections consider the same problem in the context of
refined models, the Kirchhoff–Rayleigh and Mindlin plat
theories. In each case we illustrate how the appropriate b
theory naturally drops out in the limit as the lateral wid
becomes small, and we derive the leading order correctio
the beam theory that includes the width for asymptotica
small values. Modes asymmetric about the plate center
are also examined for the four theories, and the behavio
the lowest order mode as the width vanishes is examin
and compared with the symmetric results.

II. KIRCHHOFF PLATE THEORIES

The classical Kirchhoff theory ignores shearing of cro
sections and rotational inertia, effects that are included in
Mindlin plate theory, discussed in the next section. We fi
consider the classical theory, and then the related Kirchho
Rayleigh theory which includes rotational inertia. Both the
ries are examined in the context of orthotropic plates
greater generality.

A. Classical Kirchhoff plate theory

The plate occupies2`,x,`, 2b<y<b, 2h<z
<h, with flexural motion in thez- direction. The governing
equations for the displacementw(x,y,t), in the absence o
external loading, are4

]Qx

]x
1

]Qy

]y
5m

]2w

]t2 , ~1!

]Mx

]x
1

]Mxy

]y
2Qx50, ~2!

]Mxy

]x
1

]M y

]y
2Qy50, ~3!

wherem52rh is the mass density per unit area. The plate
assumed to be orthotropic with axes of symmetry in thx
andy directions, for which the momentsMx , M y , andMxy

are

Mx52Dx

]2w

]x2 2D0

]2w

]y2 , ~4!

M y52Dy

]2w

]y2 2D0

]2w

]x2 , ~5!

Mxy522Dxy

]2w

]x]y
. ~6!

Substituting from Eqs.~2!–~6! into ~1! yields the flex-
ural wave equation
2648 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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Dx

]4w

]x4 12~D012Dxy!
]4w

]x2]y2 1Dy

]4w

]y4 1m
]2w

]t2 50.

~7!

This possesses a wave solution of the formw(x,t)
5Re@Aei(kxx2vt)#, where kx is the wave number of a wav
traveling in thex direction in a plate of infinite width, and fo
later use we also define the analog for they direction,

kx5S mv2

Dx
D 1/4

, ~8a!

ky5S mv2

Dy
D 1/4

. ~8b!

Consider, for instance, the limiting case of an isotropic pla
for which the bending stiffnesses reduce to

Dx5Dy5D, D05nD, Dxy5
1
2~12n!D, ~9!

with

D5
EI

12n2 , I 5
2

3
h3, ~10!

wheren is Poisson’s ratio andE is the Young’s modulus, and
hence,kx5((12n2)mv2/EI)1/4. By comparison, the flex-
ural wave number in a beam, a purely 1D construct, isk
5(mv2/EI)1/4. In the following we will determine how this
factor of (12n2) arises, simultaneously examining th
analogous situation for the orthotropic plate. We note h
that an orthotropic plate composed of an anisotropic mate
with in-plane extensional~Young’s! moduli E1 andE2 , shear
modulusG12, and generalized Poisson’s ratiosn12 and n21

related byn12E25n21E1 has

Dx5
IE1

12n12n21
, Dy5

n21

n12
Dx ,

~11!
D05n21Dx , Dxy5IG12.

In general, the bending stiffnessesDx , Dy , D0 , and Dxy

satisfy the inequalitiesDx1Dy.0, DxDy2D0
2.0, Dxy.0,

as a result of the fact that the flexural strain energy is nec
sarily a positive quantity.

Our approach is to consider the beam as the limit o
plate of vanishing width. In order to take the proper limit w
must enforce free-free boundary conditions on the edgey
56b, viz.,

M y~x,6b,t !50, Vy~x,6b,t !50, 2`,x,`,
~12!

whereVy5Qy1]Mxy /]x is the Kirchhoff shear force.4 We
consider time harmonic solutions of the formw(x,y,t)
5Re@W(y)ei(kx2vt)#. The most general solution that is sym
metric about the center line2`,x,`, y50, is

W~y!5A1 coshg1y1A2 coshg2y, ~13!

where the transverse wave numbersg1,2 are
Andrew N. Norris: Bending waves on narrow plates
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g j5H S D012Dxy

Dy
D k21~21! jF S D012Dxy

Dy
D 2

k41
Dx

Dy
~kx

42k4!G1/2J 1/2

, j 51,2. ~14!

Note thatg2.0, while g1 is positive for subsonic (k.kx) solutions, and pure imaginary,g15 i ug1u, for supersonic (k,kx)
solutions. Applying the boundary conditions~12! gives the simultaneous equations

F ~D0k22Dyg1
2!coshg1b ~D0k22Dyg2

2!coshg2b

@~D014Dxy!k
22Dyg1

2#g1 sinhg1b @~D014Dxy!k
22Dyg2

2#g2 sinhg2b
G FA1

A2
G5F00G , ~15!

FIG. 1. Dispersion curves for symmet
ric flexural modes on a strip of width
2b, from Kirchhoff theory, Eq.~16! for
an isotropic plate withn5

1
3. The quan-

tity plotted is the phase speedc
5k` /k relative to the speed on a plat
of infinite width, k`

4 5mv2(1
2n2)/EI.
er

t
e

rete

e

is-
plays a mode that exists at arbitrarily low values ofkxb,
from which the dispersion relation follows as

~D0k22Dyg1
2!2g1

21 cothg1b

2~D0k22Dyg2
2!2g2

21 cothg2b50. ~16!

The relationg1
21g2

25(2D014Dxy)k
2/Dy has been used in

simplifying Eq. ~16!.
The first few dispersion curves are plotted in Fig. 1 v

sus the nondimensional parameterkxb for an isotropic plate.
The nondimensional speed plotted isc5kx /k, which char-
acterizes the wave number of the wave in thex direction.
Solutions with c,1 (c.1) correspond to waves tha
are subsonic~supersonic! relative to the reference phas
speed
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
-
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v

kx
5S Dxv

2

m D 1/4

. ~17!

Note the appearance in Fig. 1 of the modes at disc
frequencies, which in general occur whenk50, at discrete
values ofkyb satisfying

tankyb1tanhkyb50, symmetric cut off, ~18!

whereky , defined in Eq.~8b!, is the wavenumber of a wav
traveling in they direction in a plate of infinite width~see
Table I!.

In addition to these modes, the symmetric solution d
TABLE I. The first five cutoff frequencies for the Kirchhoff plate model, Eqs.~16! and~49!, follow from these
values ofx, according tokyb5px.

Symmetric: tan(px)1tanh(px)50. 0 x50.7528 1.7500 2.7500 3.7500
Asymmetric: tan(px)2tanh(px)50 x50 1.2499 2.2500 3.2500 4.2500
2649Andrew N. Norris: Bending waves on narrow plates
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which is the mode that reduces to the flexural wave o
beam. Before considering this limit, we note that the largb
asymptote of this mode in Fig. 1 is reached whenkxb@1, for
which ~16! reduces to

~D0k22Dyg1
2!2g22~D0k22Dyg2

2!2g150. ~19!

This has a unique positive root5 at k5kx /cedge where 0
,cedge<1 is given by

cedge
4 512

~AD0
214Dxy

2 22Dxy!
2

DxDy
. ~20!

The speed of a flexural wave guided by the free edge o
semi-infinite isotropic elastic thin plate was first derived
Konenkov,3 and later by Sinha6 and by Thurston and
McKenna.7 The flexural edge wave speed for an isotrop
plate was also derived from the modes of a thin plate of fin
width by taking the limit in which the width become
infinite.8 The edge wave decays exponentially with distan
from the edge, similar to a Rayleigh wave on an elastic h
space. The existence of the edge wave on orthotropic
plates was demonstrated by Norris,5 who first derived the
explicit expression~20!. Abrahams and Norris9 showed that
it can also exist in the presence of fluid loading, a res
which is perhaps surprising. However, the existence is
stricted to very light fluid loading conditions: for exampl
thin plates of aluminum or plexiglass can support ed
waves in air, although not in water.9 The classical Kirchhoff
plate theory predicts a speed for the edge wave which i
constant proportion to the flexural wave speed. The cons
of proportionality is independent of the frequency and d
pends only on the Poisson’s ratio, being slightly less th
unity and equal to unity when the Poisson’s ratio vanish
As noted by Thurston and McKenna,7 this equality reflects
the fact that a flexural wave traveling parallel to the edge
a thin plate of zero Poisson’s ratio gives no bending mom
or shear and hence automatically satisfies the free edge
ditions of the classical plate theory.

We now turn to the beam limit by considering small b
nonzero width, specificallykxb!1, by taking the leading or-
der terms in coth(g1,2b). Using cothj51/j1j/31O(j3),
Eq. ~16! simplifies to

S Dx2
D0

2

Dy
D k42mv21

4D0
2Dxy

3Dy
2 k6b21O~k8b4!50,

~21!

which may be rewritten

k45
mv2

D*
, ~22!

with modified stiffnessD* ,

D* ~b!5DxF12
D0

2

DxDy
1

4D0
2Dxy

3DxDy

ky
2b2

ADxDy2D0
2

1O~k4b4!G . ~23!

Substituting from ~11! gives D* 5E* I , with effective
Youngs modulus
2650 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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E* 5E1F11
4G12

3E2
n12n21~kx0b!21O~k4b4!G , ~24!

wherekx0 is the wave number of simple beam theory,kx0

5(mv2/E1I )1/4. Thus, the beam flexural wave number th
includes the leading order correction isk5(mv2/E* I )1/4

1O(b4).
Equation ~24! suggests that the first correction to th

beam limit for nonzero widthb.0 can be interpreted as a
increasein uniaxial stiffness. The increase is proportional
b2Av, and the leading order approximation assumeskx0b
!1. In the case of isotropy, we have

E* 5EF11
2n2k0

2b2

3~11n!
G1O~k0

4b4!, ~25!

and k0 is the beam flexural wave number. The veracity
this leading order correction is verified by the straight li
approximation in Fig. 2, which shows the nondimension
relative phase speedc5k` /k versus the (k`b)2 wherek` is
the flexural wave number of a plate, i.e.,k`5k0(12n2)1/4.

B. Kirchhoff–Rayleigh plate theory

The equation of motion of an orthotropic plate is aga
Eq. ~1!, but now the effect of rotational inertia is included a
follows:

]Mx

]x
1

]Mxy

]y
2Qx52rI

]3w

]t2]x
, ~26!

]Mxy

]x
1

]M y

]y
2Qy52rI

]3w

]t2]y
, ~27!

The moments are as before, Eqs.~4!–~6!, and the governing
equation for flexural displacement becomes

Dx

]4w

]x4 12~D012Dxy!
]4w

]x2]y2 1Dy

]4w

]y4 1m
]2w

]t2

2rI¹2
]2w

]t2 50. ~28!

The wave number of a wave traveling in thex direction in a
plate of infinite width, formerly given by Eq.~8!, is now

kx5S rIv2

2Dx
1AS rIv2

2Dx
D 2

1
mv2

Dx
D 1/2

. ~29!

Despite the more sophisticated theory, it can be shown
lowing the same procedures as before that the disper
relation for the plate of finite lateral width 2b is again given
by Eq. ~16!, but where6g1,2 are now roots of

Dyg
42@2~D012Dxy!k

22rIv2#g21Dxk
42rIv2k2

2mv250. ~30!

The wave number for the edge wave is defined by~19!,
derived from~16! in the limit b→`, whereg1 and g2 are
roots of~30!. The equation for the edge wave number may
expressed as a quartic ink2. At high frequencies it become
nondispersive, and reduces to a cubic ink2.
Andrew N. Norris: Bending waves on narrow plates



FIG. 2. The relative phase speedc
5kx /k of the lowest symmetric mode
versus (k`b)2 ~frequency! for an iso-
tropic plate ~n5

1
3! using Kirchhoff

theory. The zero frequency limit is (1
2n2)1/4. The dashed straight line is
the small-b leading order correction
based on Eq.~25!.
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We now examine the behavior of this plate theory as
width b vanishes. Expanding~16! to first order inb2, subject
to the constraint~30! on g1,2, yields

F11
D0

3
k2b2G@~DxDy2D0

2!k42DyrIv2k22Dymv2#

1
D0

2

3Dy
k4b2~4Dxyk

22rIv2!1O~b4!50. ~31!

The limiting wave number asb→0 therefore solves

~DxDy2D0
2!k42DyrIv2k22Dymv250, ~32!

that is, it is given by~29! with Dx replaced byD* (0) of Eq.
~23!. This is the precisely the prediction according
Kirchhoff–Rayleigh beam theory.

Based upon the leading order equation~32!, we may
simplify ~31! so that the first-order correction satisfies t
following,

@~DxDy2D0
2!k42DyrIv2k22Dymv2#

1
D0

2

3Dy
k4b2~4Dxyk

22rIv2!1O~b4!50. ~33!

Unlike the previous case of the simple Kirchhoff theory,
does not seem possible to interpret this result in terms o
effective stiffness alone. No simplification is apparent eve
we consider the isotropic version of~33!,

@EIk42rIv2k22mv2#1
n2

3
k4b2S 2EIk2

11n
2rIv2D

1O~b4!50. ~34!

In particular, this equation cannot be expressed using
modified stiffness of~25! alone.
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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III. MINDLIN AND SHEAR PLATE THEORIES

Mindlin’s theory contains the rotational inertia of th
Kirchhoff–Rayleigh theory plus a shear correction. Based
the previous analysis for the Kirchhoff–Rayleigh theory
would seem likely that the Mindlin theory will not yield a
simpler result, and probably more complicated than~34!. De-
spite the extra refinements in Mindlin’s theory we will se
that the first correction to the beam theory, or Timoshenk
theory, only involves an effective stiffness. In fact, it wi
emerge that the leading order correction for the shear the
is identically zero.

A. Mindlin plate theory

The wave numbers for straight crested waves in an
tropic Mindlin plate and in a Timoshenko beam of the sa
thickness 2h are solutions of quadratic equations fork2:

k42~kS
21kP

2 !k22kS
2kP

2 1kF
450, ~35!

k42~kS
21kP0

2 !k22kS
2kP0

2 1kF0
4 50, ~36!

respectively. Here,

kP5vAr~12n2!

E
, kF5S mv2~12n2!

EI D 1/4

,

~37!

kP05vAr

E
, kF05S mv2

EI D 1/4

and kS5
v

a
Ar

m
,

where m is the shear modulus anda is a nondimensiona
factor, with 0,a<1.4 The details of the Mindlin plate theory
are in Appendix A, where the following dispersion relatio
for a plate of width 2b is derived,
2651Andrew N. Norris: Bending waves on narrow plates



-

g

f

-

FIG. 3. Comparison of the lowest or
der symmetric mode for the Mindlin
plate theory, and the prediction usin
the Timoshenko beam equation~43!
and the modified Young’s modulus o
~45!. The ratio b/h50.2. The speed
c* 5kTim /k, where kTim is Timosh-
enko wave number andk is either the
Mindlin wave number or the wave
number predicted by the modified Ti
moshenko dispersion equation.
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S k22
k1

2

12n D 2

~kS
22k1

2!k2
2g1

21 coth~g1b!

2S k22
k2

2

12n D 2

~kS
22k2

2!k1
2g2

21 coth~g2b!

1k2kS
2~k1

22k2
2!g3 coth~g3b!50. ~38!

The three wavenumberskj , j 51,2,3, in this equation are
defined in Eq.~A9!, andg j5Ak22kj

2, j 51,2,3. Note thatk1

andk2 are roots of the Mindlin equation~35!.
It is interesting to note that the dispersion relation for t

Kirchhoff–Rayleigh theory falls out of Eq.~38! by settingkS

to zero or, equivalently, allowinga→`. In the limit of infi-
nite width, ~38! reduces to

S k22
k1

2

12n D 2

~kS
22k1

2!k2
2g1

212S k22
k2

2

12n D 2

3~kS
22k2

2!k1
2g2

211k2kS
2~k1

22k2
2!g350. ~39!

This equation has been examined by Norriset al.10 who
showed that it possesses a root at all frequencies. In
high-frequency limit kS,Ph@1, the edge wave speed b
comes nondispersive, and equal to the Rayleigh wave sp
in plane stress,10 given by

~2k22kT
2!224k2~k22kT

2!1/2~k22kP
2 !1/250, ~40!

wherekT
25v2r/m. Also, the cutoff frequencies of Eq.~38!

for the plate of finite width are given by

~kS
22k1

2!k1 cotk1b2~kS
22k2

2!k2 cotk2b50. ~41!

These define the modal cut-on frequencies, which are infi
in number but includev50. We now consider the mode tha
exists down to zero frequency: the flexural mode.

Unlike the previous expansions for the Kirchhoff pla
models, greater care is necessary with the Mindlin the
Thus, in addition to the assumptionkb!1, we now need to
2652 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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further specify thatb!h. The latter is required becaus
when we allow the frequency to tend to zero we havek3b
5O(b/h), and therefore the consistent small-b limit is
reached by allowingkjb!1, j 51, 2, 3. We shall return to
this point later.

By consideringkb!1 andb!h, we find thatg jb!1,
j 51, 2, and by using the leading order approximati
cothj51/j1O(j), combined with~A9!, it can be shown
that Eq.~38! reduces to Eq.~36!, which is precisely the dis-
persion relation for a flexural wave on a Timoshenko bea
Using the two-term approximation of cothj plus the leading
order approximation given by~36!, we find that the first cor-
rection to the wave number satisfies

k42~kS
21kP0

2 !k22kS
2kP0

2 1kF0
4 2

n2

3
~12n2!

3b2kP0
2 ~kP0

2 k21kS
2kP0

2 2kF0
4 !1O~k8b4!50. ~42!

The derivation of Eq.~42! was performed using the symboli
algebra program Maple. It may be written as

k42~kS
21kP*

2
!k22kS

2kP*
2

1kF*
4

1O~k8b4!50, ~43!

where

kP* 5vA r

E*
, kF* 5S mv2

E* I D 1/4

, ~44!

and

E* 5EF12
n2

3
~12n2!kP0

2 b21O~b4!G . ~45!

The approximation to the flexural wave number based
~43!–~45! is compared with the exact prediction from Mind
lin theory in Fig. 3. We note the agreement between
lowest order mode and the asymptotic approximation.
also note that the effective Young’s modulus of Eq.~45! is
Andrew N. Norris: Bending waves on narrow plates
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FIG. 4. Dispersion curves for the
phase speedc5k` /k for the asym-
metric modes on a plate of width 2b
according to Kirchhoff theory, Eq.
~49!. Note the existence of the mod
down to zero frequency, see Eq.~54!.
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different in form from that for the Kirchhoff theory, Eq.~25!,
but defer discussion until later.

B. Shear plate theory

Shear plate theory is a simplified version of Mindlin
theory, as it only considers the shear correction to the Kir
hoff model without the rotational inertia effects. Thus, t
model is described by Eqs.~1!–~3! and~A3!; the analysis is
similar to that for the Mindlin theory, and requires a thre
wave solution which is identical with the Mindlin solution
the replacementkP→0 is made in~A9!. Thus, instead of Eq
~A9!, we have

kj
25

1

2
kS

22~21! jA1

4
kS

41kF
4, j 51,2, k3

253
a2

h2 .

~46!

The dispersion relation so obtained is formally equivalen
~38!, and therefore the asymptotic approximation that res
is the same as for the Mindlin plate. That is, the limitin
wave number reduces to the pure shear beam theory pr
tion as b→0. The edge wave solutions (b→`) are also
given by the Mindlin equation~39!, and in the limit of high
frequency the edge wave becomes nondispersive, witk
→kS .

However, becausekP50, we find that the first correction
to the leading order equation is identically zero. That is,
narrow plate limit is given by~43! and ~44! with

E* 5E@11O~b4!#. ~47!

IV. ASYMMETRIC MODES

We have seen how the beam theory prediction follo
from the limit of plate solutions that are symmetric about t
centerliney50. We now consider the analogous situation
asymmetric modes or, more correctly, pure antisymme
modes satisfyingw(x,2y,t)52w(x,y,t). These are plate
modes which possess no limit in the beam theories. H
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ever, as we will see, these modes all reduce to dispersion
waves, which can be understood in terms oftorsion rather
than flexure. The question arises then whether the plate t
ries reduce to the correct torsional limits. As before, we c
sider the four engineering theories in sequence.

A. Kirchhoff plate theory

The general solution that is asymmetric about the cen
line 2`,x,`, y50, is

W~y!5A1 sinhg1y1A2 sinhg2y. ~48!

Applying the boundary conditions~12! on the free edges
gives the dispersion relation~see Fig. 4!.

~D0k22Dyg1
2!2g1

21 tanhg1b

2~D0k22Dyg2
2!2g2

21 tanhg2b50. ~49!

Settingk[0 implies that the cutoff frequencies satisfy

tankyb2tanhkyb50, asymmetric cut off. ~50!

These are enumerated in Table I, and include zero, indica
a mode exists for all nonzero values ofb.

Expanding the asymmetric dispersion relation~49! to
leading order inkxb!1 gives

4Dxyk
22

b2

3Dy
$@D014Dxy#k

41DxDy~kx
42k4!%

1O~b4!50. ~51!

The only consistent solution iskb5O(kxb)2, with

k25
mv2b2

12Dxy
1O~b4!. ~52!

Note that the limiting wave is nondispersive, sincev5v/k is
independent of frequency. Thus, usingDxy5IG12 gives

v25
4G12h

2

rb2 1O~b0!. ~53!
2653Andrew N. Norris: Bending waves on narrow plates
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In the isotropic case (G125m), we find the limiting wave
speedv→v0 asv→0,

v05
2h

b
cT , ~54!

wherecT5Am/r is the bulk transverse wave speed. We w
discuss this limit later in terms of torsion theory.

B. Kirchhoff–Rayleigh plate theory

The dispersion relation for asymmetric modes is ag
~49!, but where now we have the identities, from~30!,

Dy~g1
21g2

2!5~2D014Dxy!k
2,

~55!
Dyg1

2g2
25Dxk

42rIv2k22mv2.

The equation for cutoff frequencies (k50) is also~50!, im-
plying the existence of a mode with a cutoff at zero fr
quency.

The mode with zero cutoff may be examined using E
~55!, yielding

4Dxyk
22rIv22

b2

3Dy
$@~D014Dxy!k

22rIv2#2

1DxDy~kx
42k4!2DyrIv2k2%1O~b4!50. ~56!

Hence,

k25
rIv2

4Dxy
S 11

b2

h2D1O~k4b2!. ~57!

This is again nondispersive, with limiting phase~wave!
speed for the isotropic plate

v05
2cT

A11b2/h2
. ~58!

Again, we defer discussion of this result until later.

C. Mindlin plate theory

It may be shown using the same procedure as for
symmetric modes that the dispersion relation for asymme
modes according to the Mindlin theory is

S k22
k1

2

12n D 2

~kS
22k1

2!k2
2g1

21 tanh~g1b!

2S k22
k2

2

12n D 2

~kS
22k2

2!k1
2g2

21 tanh~g2b!

1k2kS
2~k1

22k2
2!g3 tanh~g3b!50. ~59!

Settingk50 implies that the cutoff frequencies satisfy

~kS
22k1

2!k1 tank1b2~kS
22k2

2!k2 tank2b50, ~60!

which includes zero as a cut-on frequency.
Retaining the first two terms in the expansion of~59! in

terms ofb yields
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kp
2S 12

k2b2

3 D1
b2

3 H 2~12n2!k412k2F ~11n!kp
222

kF
4

kS
2G

1kp
41kF

4J 1O~b4!50. ~61!

The dominant terms in~61! for both smallb and low fre-
quency are

kp
21

b2

3
kF

4 F124
k2

kS
2G;0. ~62!

Hence the limiting value of the phase speedv5v/k→v0 at
zero frequency is

v05
2acT

A11h2/b2
, ~63!

which is discussed in the next section.

D. Mindlin shear theory

If the rotational inertia is ignored and the pure she
theory is employed, then formally the result can be obtain
from the analysis for the Mindlin theory by taking the lim
of kP→0. The outcome is that expression~62! simplifies to

b2

3
kF

4 F124
k2

kS
2G;0, ~64!

or k5kS/2. Thus, the zero frequency limit for the pha
speed becomes in this case

v052acT . ~65!

Note that the resulting wave number is independent of b
the half-widthb and the semithicknessh.

V. DISCUSSION

We have derived the dispersion relations for symme
and asymmetric modes on a plate of finite width according
the four engineering theories. In the limit of zero width,b
→0, each plate theory predicts that the symmetric mode
the wave number of the corresponding beam theory. The
plate theories also predict the existence of an edge w
solution in the limit of infinite width,b→`. The edge wave
speed for the Kirchhoff theory is given by~20!, and by~39!
for the Mindlin and Mindlin-shear theories, respectively.
the high-frequency limit only the Kirchhoff edge wave r
mains dispersive; the other three theories predict constan
different values for the edge wave speed. We have also
amined the behavior of the asymmetric mode in the narr
plate limit, and found in each case that the mode is non
persive at zero frequency, but with different limiting value
We now discuss the symmetic and asymmetric cases in m
detail.
Andrew N. Norris: Bending waves on narrow plates
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A. Symmetric or flexural mode

The two main results are Eqs.~25! and ~45!, for the
effective Young’s moduli of narrow plates or beams of re
angular cross section. By writing the fundamental Kirchh
beam wave number asmv2/EI53kP0

2 /h2, wherekP0 is de-
fined in ~37!, the corrections to the beam theories can
expressed

E*

E
2155

2n2

A3~11n!

kP0b2

h
1O~b4!, Kirchhoff,

2
n2

3
~12n2!kP0

2 b21O~b4!, Mindlin,

01O~b4!, Mindlin-Shear only.

~66!

The Kirchhoff–Rayleigh theory is not included as it does n
reduce to an effective Young’s modulusE* .

The effective stiffness differs for each theory, and t
differences are significant in terms of the leading order
pendence on the width. Thus, the signs for the correctio
~66! are such that in Kirchhoff theory the beam is stiffened
softens for the Mindlin theory, and in the Mindlin-she
theory the leading order correction is identically zero. In a
dition to this fundamental deviation between the conflicti
theories, we note the distinct frequency dependence of
correction terms: linear inv for the Kirchhoff correction, and
quadratic for the Mindlin plate theory. It is interesting to no
that the latter does not depend on the shear correction fa
a. Yet, when we consider the Mindlin theory without th
rotational inertia, that is the pure shear theory, the correc
vanishes. These asymptotic corrections have been verifie
numerical examples, see Figs. 2 and 3.

It is perhaps useful to compare the corrections in~66!
with the well-known corrections to the various beam theor
as a function of frequency. In this case the variation depe
on the beam semi-thicknessh, which enters into the beam
theories as follows:

k2h25A3kP0h

15
0, Kirchhoff,

1
2 kP0

2 h21O~kP0
3 h3!, Kirchhoff–Rayleigh,

1
2 kS

2h21O~kS
3h3!, Mindlin–shear only,

1
2 ~kS

21kP0
2 !h21O~kS

3h3!, Mindlin.

~67!

Each of the refinements to the classical Kirchhoff or Eule
Bernoulli beam theory predicts an increase in the wave n
ber, with the increase dependent on the model. Furtherm
the leading order correction in each case has the same
quency and thickness dependence, that is, each correcti
~67! is quadratic in frequency and in the beam thickness,
may be characterized by another effective Young’s modu
E** , where
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E**

E
21

52A 2
3 kP0h

35
0, Kirchhoff,

11O~kP0
2 h2!, Kirchhoff–Rayleigh,

2~11n!/a1O~kP0
2 h2!, Mindlin–shear only,

112~11n!/a1O~kP0
2 h2!, Mindlin.

~68!

It is interesting to now compare Eqs.~66! and ~68!,
which summarize the leading order corrections for pl
width and beam thickness, respectively. Beam thickness
the consistent effect of reducing the effective Young’s mod
lus for each of the refinements to the classical Kirchh
beam theory. However, the finite width of the plate affe
each model quite differently, as it leads to an initial increa
in E* for the Kirchhoff plate theory, and a decrease for t
Mindlin theory. The distinction between the beam and pl
models can be explained as a Poisson effect, which dis
pears whenn50. Thus, for very wide plates, both mode
reduce to the plane stress limit, for whichE* →E/(12n2)
>E, with equality only if n50. Note that Eq.~66! retains
this feature, as all the corrections toE* are O(n2), with
frequency-dependent factors. The surprising feature of
~66! is that Mindlin theory initially predicts a decrease in th
stiffness, although it eventually does increase to the pl
stress value askb increases. In fact, numerical experimen
indicate that the prediction of~66! is only valid for extremely
small values ofkP0b ~for which the correction is itself even
smaller!.

B. Asymmetric or torsional mode

The results of Sec. III are summarized by the followin
equation for the phase speedsv5v/k in the zero frequency
limit, from Eqs. ~54!, ~58!, ~63!, and~65!,

v05cT35
2

h

b
, Kirchhoff,

2S 11
b2

h2D 21/2

, Kirchhoff–Rayleigh,

2a, Mindlin–shear only,

2aS 11
h2

b2D 21/2

, Mindlin.

~69!

Note that these are all nondispersive, yet it is remarka
how they provide quite different results.

Each of these limiting values can be understood as
approximation to the torsional mode for a plate. A prop
analysis for the torsional wave in the zero frequency or q
sistatic limit requires an estimate of the torsional rigidityC,
from which the wave speed is calculated asv5AC/rJ,
whereJ is the centroidal moment of inertia.4 The rectangular
cross-section of the plate impliesJ5(b21h2)A/3, whereA
54bh. The torsional stiffness of a rectangular rod is n
available in closed form, although it does satisfy the inequ
2655Andrew N. Norris: Bending waves on narrow plates
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ity C,mJ, implying thatv,cT . However, we may approxi
mate C for rectangular cross sections that are far fro
square,11 thus

C5
m

3
A23H h

b
for b@h,

b

h
for b!h.

~70!

Hence, in the two extreme but interesting cases of very w
and extremely narrow plates, the torsional wave speed i

v5cT3H 2S 11
b2

h2D 21/2

for b@h,

2S 11
h2

b2D 21/2

for b!h.

~71!

Referring to Eq. ~69! we see that the Kirchhoff and
Kirchhoff–Rayleigh plate theories each predict the corr
behavior for wide plates,b@h, in the quasistatic limit. How-
ever, neither is correct in the limit of interest here, when
plate is narrow,b!h. In that case the Kirchhoff theory pre
dicts an unphysically large speed, and the Kirchho
Rayleigh theory gives a finite limit,v0→2cT , which is also
incorrect~and unphysically large!. Only the Mindlin theory
predicts the correct behavior forb!h, if a is taken to be
unity, which is not unreasonable. The shear-only model p
dicts a finite limiting speed, which is incorrect. Thus we a
led to conclude that of the four theories only Mindlin’s giv
a proper limit for very narrow plates.

This result is perhaps surprising. A very narrow pla
with b!h undergoing asymmetric ‘‘flexural’’ motion is mor
aptly described as a plate oriented at 90° with the mot
similarly rotated. Despite this extreme test of the mod
Mindlin’s plate theory is capable of predicting the corre
limiting wave speed—the speed of a torsional wave. Fina
it should be noted that the Mindlin expansion of~61! is not
sufficient to give the wide plate torsional wave limit. Th
reason for this is as follows. Letl5b/h@1, and e5kTb
!1, such thatel5o(1). Then, multiplying the expression
~61! by b2 to make it nondimenional, we find that it i
O(e2l4) and this arises from the single ter
24b4k2kF

4/(3kS
2). In order to cancel this leading order ter

we need to expand~59! to at least the next order, but leav
that as a separate exercise for the interested reader.

VI. CONCLUSION

We have examined the transition between the plate
beam regimes and how both the symmetric~flexural! and
asymmetric~torsional! modes depend upon the width of th
plate in the lateral direction. Analytical asymptotic pred
tions for narrow plates have been illustrated by numer
results, and suggest the use of a frequency-depen
Young’s modulus for describing the flexural wave on bea
or strips of finite width, although the form of the correctio
to the modulus is not unique and depends on the theory u
The sign of the correction for the Kirchhoff theory is opp
site to that for the Mindlin theory. Analysis of the asymme
ric or torsional mode also displays quite distinct behavior
2656 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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the four classical engineering theories applied to narr
plates. It is argued that only the Mindlin theory provides
realistic result in this case, and by extension, the Mind
theory is recommended for considering the symmetric~flex-
ural! waves in beams of rectangular cross-section and fi
width.

As part of the analysis we have also derived the disp
sion equations for edge-guided waves in each of the f
classical plate theories. This is given by Eq.~19! for ortho-
tropic plates in the Kirchhoff theory, with explicit solutio
~20!. This is the only case of the four for which the edg
wave is nondispersive and for which the edge wave sp
has an explicit expression, as in Eq.~20!. Equation~19! also
defines the edge wave for the Kirchhoff–Rayleigh theo
where g1 and g2 are now defined by Eq.~30!. The edge
wave in the Mindlin theory with and without rotational ine
tia is defined by Eq.~39!. The wave numbersk1 , k2 , andk3

are defined by Eq.~A9! for the Mindlin theory, and by Eq.
~46! for the Mindlin–shear theory. This is the first time th
the edge wave equations have been derived or discusse
the Kirchhoff–Rayleigh and the Mindlin–shear theories.

APPENDIX A: MINDLIN PLATE THEORY

Mindlin’s theory for an isotropic plate is Eq.~1!, with
two additional variables corresponding to angles of rotati
cx(x,y,t) andcy(x,y,t),4 with

]Mx

]x
1

]Mxy

]y
2Qx5rI

]2cx

]t2 , ~A1!

]Mxy

]x
1

]M y

]y
2Qy5rI

]2cy

]t2 , ~A2!

Mx5EpI S ]cx

]x
1n

]cy

]y D , M y5EpI S ]cy

]y
1n

]cx

]x D ,

Mxy5mI S ]cx

]y
1

]cy

]x D , ~A3!

Qx5a22hmS ]w

]x
1cxD , Qy5a22hmS ]w

]y
1cyD .

Note that the thickness-integrated shear modulus appea
in the shear forcesQx andQy is modified by the factora2 in
order to better approximate shear forces in the plate, ana
may be chosen according to different criteria, but norma
a2<1.4 We consider solutions of the form

$w~x,y,t !,cx~x,y,t !,cy~x,y,t !%

5Re$W~y!,Cx~y!,Cy~y!%ei ~kx2vt !, ~A4!

where10

W~y!5A1 coshg1y1A2 coshg2y, ~A5!

Cx~y!5 ikb1A1 coshg1y1 ikb2A2 coshg2y

1g3A3 coshg3y, ~A6!

Cy~y!5g1b1A1 sinhg1y1g2b2A2 sinhg2y

2 ikA3 sinhg3y, ~A7!
Andrew N. Norris: Bending waves on narrow plates
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te
and

g j5Ak22kj
2, j 51,2,3, b j5211kS

2/kj
2, j 51,2,

~A8!

kj
25 1

2~kS
21kP

2 !2~21! jA 1
4~kS

22kP
2 !21kF

4, j 51,2,
~A9a!

k3
25

2k1
2k2

2

~12n!kS
2 . ~A9b!

The wave numberskP , kF , and kS are defined in Eq.
~37!. The wave numberk1 describes a straight creste
nc
i

ix
o

f

,

e

h

J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
flexural wave in a plate according to Mindlin’s theor
The corresponding wave numbers for a Timoshenko be
are defined by Eq.~36!, and are given byk1 , k2 of Eq.
~A9! with the replacementskP , kF→kP0 , kF0 , that is, the
stiffness for uniaxial extension is substituted for the pla
stiffness.

The boundary conditions ony56b require the simulta-
neous vanishing ofQy , M y and Mxy , implying the disper-
sion relation
U ~11b1!g1 sinhg1b ~11b2!g2 sinhg2b 2 ik sinhg3b

b1~g1
22nk2!coshg1b b2~g2

22nk2!coshg2b ~12n!k2g3 coshg3b

2ikg1b1 sinhg1b 2ikg2b2 sinhg2b ~k21g3
2!sinhg3b

U50. ~A10!

Using row and column manipulation, this can be rearranged as

U k1
2 k2

2 k3
2

kS
2 kS

2 2k2

S k22
k1

2

12n D ~kS
22k1

2!
cothg1b

g1
S k22

k2
2

12n D ~kS
22k2

2!
cothg2b

g2

2k2g3 cothg3b
U50. ~A11!
This can be further reduced to Eq.~38! by using~A9b!.

APPENDIX B: A REDUCED PLATE THEORY FOR
NARROW PLATES

An alternative procedure for examining the depende
of the flexural wave speed on the width of a narrow plate
to derive a theory appropriate to this limit. In this Append
we demonstrate that the first corrections to the beam the
prediction, Eqs.~22! and~23!, are obtained for the Kirchhof
theory using this approach.

Starting with the Kirchhoff kinematic ansatz
u(x,y,z,t)52zWx(x,y,t), v(x,y,z,t)52zWy(x,y,t),
w(x,y,z,t)5W(x,y,t), along with the assumption of plan
stress, implies the Lagrangian density per unit area

L~W~x,y,t !!5
1

2
mWt

22
EI

2~12n2!
@Wxx

2 1Wyy
2

12nWxxWyy12~12n!Wxy
2 #. ~B1!

For the narrow plate, we make the further assumption

W~x,y,t !5w~x,t !1yp~x,t !1
y2

2
q~x,t !. ~B2!

Substituting into~B1! and integrating over the plate widt
2b,y,b yields a Lagrangian density per unit length

L~w,p,q!5L0~w,q!1L1~p!, ~B3!

with decoupled terms
e
s

ry

L0~w,q!5
m

2
~wt

21Kqt
21Jwtqt!2

EI

2~12n2!
@wxx

2 1q2

1Kqxx
2 1Jwxxqxx12nqwxx1nJqqxx

12~12n!Jqx
2#, ~B4!

L1~p!5
m

2
Jpt

22
EIJ

2~12n2!
pxx

2 2
EI

11n
px

2, ~B5!

where J5b2/3, K5b4/20. These in turn imply the Euler–
Lagrange equations

EI

12n2 S wxxxx1
J

2
qxxxx1nqxxD1mwtt1

J

2
qtt50, ~B6!

EI

12n2 Fq1Kqxxxx1
J

2
wxxxx1nwxx2~223n!JqxxG1mKqtt

1
J

2
mwtt50, ~B7!

EI

12n2 pxxxx2
2EI

~12n2!J
pxx1mptt50. ~B8!

Note that the torsional~asymmetric! mode, p, decouples
from the symmetric mode, (w,q). Dispersions relations can
be easily determined for each mode from Eqs.~B6!–~B8!,

~k42k`
4 !@12 2

3~12n!k2b21 1
45~k42k`

4 !b4#2nk450,
~B9!

k4

k`
4 14cT

2 h2k2

b2v2 51, ~B10!
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where k`5(mv2(12n2)/EI)1/4 is the wide plate flexura
wave number andcT5Am/r. Both dispersion relations yield
k→k` asb→`. A straightforward expansion of the dispe
sion relations in the narrow plate limitkb!1 shows that Eq.
~B9! reproduces the leading order correction of Eq.~25!,
while Eq.~B10! gives the constant wave speed for the Kirc
hoff theory in Eq.~69!. Thus, this particular reduced orde
plate theory for the narrow plate is entirely consistent w
the Kirchoff plate theory, which is not surprising since t
ansatz~B2! is a special case of the general displacem
included in the Kirchhoff theory.

A similar but necessarily more complicated reduc
plate theory for narrow plates is discussed by Russell
White2 within the context of a Timoshenko-type bea
model.

1S. M. Han, H. Benaroya, and T. Wei, ‘‘Dynamics of flexurally vibratin
beams using four engineering theories,’’ J. Sound Vib.225~5!, 935–988
~1999!.
2658 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
-

t

d

2D. L. Russell and L. W. White, ‘‘The bowed narrow plate model,’’ Elec.
Diff. Eqs. 2000„27…, 1–19~2000!.

3Y. K. Konenkov, ‘‘A Rayleigh-type flexural wave,’’ Sov. Phys. Acoust.6,
122–123~1960!.

4K. F. Graff, Wave Motion in Elastic Solids~Dover, New York, 1991!.
5A. N. Norris, ‘‘Flexural edge waves,’’ J. Sound Vib.171, 571–573~1994!.
6B. K. Sinha, ‘‘Some remarks on propagation characteristics of rid
guides for acoustic waves at low frequencies,’’ J. Acoust. Soc. Am.56,
16–18~1974!.

7R. N. Thurston and J. McKenna, ‘‘Flexural acoustic waves along the e
of a plate,’’ IEEE Trans. Sonics Ultrason.21, 296–297~1974!.

8V. A. Veshev, I. I. Klyukin, D. P. Kouzov, and V. D. Lukyanov, ‘‘On
oscillating energy propagation in a thin elastic plate of a finite width
Sov. Phys. Acoust.23, 129–131~1977!.

9I. D. Abrahams and A. N. Norris, ‘‘On the existence of flexural edgewav
on submerged elastic plates,’’ Proc. R. Soc. London, Ser. A456, 1559–
1582 ~2000!.

10A. N. Norris, V. V. Krylov, and I. D. Abrahams, ‘‘Flexural edge waves an
Comments on ‘A new bending wave solution for the classical plate eq
tion’,’’ J. Acoust. Soc. Am.107, 1781–1784~2000!.

11S. Timoshenko,Theory of Elasticity, 3rd ed.~McGraw-Hill, New York,
1970!.
Andrew N. Norris: Bending waves on narrow plates


