Flexural waves on narrow plates

Andrew N. Norris®
Department of Mechanical & Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway,
New Jersey 08854-8058

(Received 16 July 2002; revised 24 January 2003; accepted 28 Januajy 2003

Flexural wave speeds on beams or plates depend upon the bending stiffnesses which differ by the
well-known factor (1 »?). A quantitative analysis of a plate of finite lateral width displays the
plate-to-beam transition, and permits asymptotic analysis that shows the leading order dependence
on the width. Orthotropic plates are analyzed using both the Kirchhoff and Kirchhoff—Rayleigh
theories, and isotropic plates are considered for Mindlin’s theory with and without rotational inertia.

A frequency-dependent Young’s modulus for beams or strips of finite width is suggested, although
the form of the correction to the modulus is not unique and depends on the theory used. The sign
of the correction for the Kirchhoff theory is opposite to that for the Mindlin theory. These results
indicate that the different plate and beam theories can produce quite distinct behavior. This
divergence in predictions is further illustrated by comparison of the speeds for antisymmetric
flexural, or torsional, modes on narrow plates. The four classical theories predict limiting wave
speeds as the plate width vanishes, but the values are different in each case. The deviations can be
understood in terms of torsional waves and how each theory succeeds, or fails, in approximating the
effect of torsion. Dispersion equations are also derived, some for the first time, for the flexural edge
wave in each of the four “engineering” theories. @003 Acoustical Society of America.
[DOI: 10.1121/1.1561493

PACS numbers: 43.40.Cw, 43.40.DXIM]

I. INTRODUCTION Kirchhoff theory for orthotropic plates and we show that the
beam theory prediction for the wave number falls out in the
limit of zero plate width. The analysis yields surprising dif-
ferences. Thus, the four theories contribute different physical
aspects which lead to serious differences in the high-
frequency limit, but they all agree in the low or quasi-static
ness for the beam i®=EI, while that of the plate of the limit Wher.e the Euler—Bernoulli predictions remainsn ipvio-
same thickness as the beamDs= EI/(1—1?), whereE is late. In this _context, the results here show the surprising re-
Young's modulus,| is the moment of inertia of the cross- sult, a surprise to the aut_hqr anyway, that the flrst_correctlon
section, andis Poisson’s ratio. The appearance of the factort© the beam theory prediction from the four theories are all
1/(1— »?) can be explained in terms of the different assumlo_distinct. While the main results are for flexural waves sym-
tions in each theory. Both make use of the Kirchhoff kine-metric about the center line of the beam or plate, we also
matic assumption; the plate theory assumes plane stresgpalyze the situation where the flexural wave is totally anti-
while the beam theory is based on the assumption of uniaxiglymmetric about the center line, and again demonatrate that
stress. The factor can therefore be attributed to the differerihe four theories provide distinct predictions. Comparison of
assumed forms for the stress in the structure. The uniaxidhe symmetric and asymmetric modes offers some explana-
stress approximation is clearly reasonable for a beam, bar, dion for the variations in the prediction for the first correction
rod that is thin in the cross directions, both transverse antb the flexural wavdsymmetric case
lateral. The transverse direction is defined as the direction The methodology adopted here uses known plate theo-
perpendicular to the plate, and a beam of rectangular crossies as the starting point to examine the narrow plate limit.
section can therefore be considered as the limit of a plat®©ne could also begin with the exact theory of elasticity and
where the lateral dimension is small. derive reduced order theories appropriate to the narrow plate.
The purpose of this paper is to examine how the beanThis approach is outlined briefly in Appendix B for a re-
and plate theories are reconciled, that is, how the transitioduced order model consistent with the Kirchoff hypothesis,
occurs between the uniaxial and plane stress theories. Wgenerating a uni-dimensional beam theory. It is shown that
will demonstrate explicitly how the beam limit occurs, and in the predictions of this reduced order model are entirely con-
particular will examine the leading order correction to beamsistent with those found using the Kirchhoff plate theory. It is
theory that includes the dependence on the lateral width. Thgypected that similar connections could be obtained between
analysis is performed in the context of several classicalhe present results for the Mindlin plate theory and a higher
theories—the four engineering theoriebgginning with the  order reduced parameter model for narrow plates that in-
cludes shear and rotary inerfigyut the analysis is overly
dElectronic mail: norris@jove.rutgers.edu complicated and beyond the present study.

The wave number of a flexural wave in a beam of rect-
angular cross-section or in a platekis (w?m/D)Y* accord-
ing to classicalKirchhoff, Euler—Bernoulli theory, whereD
is the bending stiffnessnis the mass densitiper unit length
or area and w is the circular frequency. The bending stiff-
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We begin in the next section with the classical plate I*w *w I*w IPW
equations, and derive the dispersion relation for waves DXW+2(D0+2ny)axz—aszFDyﬁ—yzﬁrmWZO-
propagating in a plate of finite lateral width. A mode which is )
symmetric about the center line is shown to exist for all
frequencies, and it reduces to the beam mode in the apprdis possesses a wave solution of the fonwr(x,t)
priate limit. We also show that this mode has the flexural=RgAd®*~ Y], wherek, is the wave number of a wave
edge wave speédis asymptote for large width. Subsequenttraveling in thex direction in a plate of infinite width, and for
sections consider the same problem in the context of théater use we also define the analog for thdirection,
refined models, the Kirchhoff-Rayleigh and Mindlin plates

theories. In each case we illustrate how the appropriate beam K= (m_wz v (8a)
theory naturally drops out in the limit as the lateral width X Dy ’

becomes small, and we derive the leading order correction to

the beam theory that includes the width for asymptotically mo?\ Y4

small values. Modes asymmetric about the plate center line ky:(D_y) (8b)

are also examined for the four theories, and the behavior of
the lowest order mode as the width vanishes is examinedZonsider, for instance, the limiting case of an isotropic plate,

and compared with the symmetric results. for which the bending stiffnesses reduce to
Dy=Dy=D, Do=vD, Dy=31-»)D, 9
Il. KIRCHHOFF PLATE THEORIES with
The classical Kirchhoff theory ignores shearing of cross El 2
sections and rotational inertia, effects that are included inthe D= 1,2 | = §h3, (10

Mindlin plate theory, discussed in the next section. We first

consider the classical theory, and then the related Kirchhoffyheres is Poisson’s ratio and is the Young’s modulus, and,

Rayleigh theory which includes rotational inertia. Both theo'hence,kxz((l— 12)mw?/ENY4. By comparison, the flex-

ries are examined in the context of orthotropic plates for, .4 wave number in a beam, a purely 1D constructk is

greater generality. =(mw?/ENY* In the following we will determine how this

A. Classical Kirchhoff plate theory factor of (1—»?) arises, simultaneously examining the
The plate occupies—=<x<w, —b=<y<b, —h=z analogous 5|tuat_|on for the orthotropic plat_e. We _note he_re

<h. with flexural motion in thez- dir’ection The ’governing th.at an orthotropic pllate composed of an anisotropic material

o ) . with in-plane extensiondlY¥oung’s) moduli E; andE,, shear

equations for the displacemewt(x,y,t), in the absence of modulusGy,, and generalized Poisson’s ratiog, and vy

external loading, afe related byvy,E,= v,,E; has

IQx dQy  Fw
—+—=m—, (1) IE; V21
ax J at D,=—, D,=—D,,
Y © l-vvp 2T
My IMyy (13)
X +W‘Qx:01 2 Do=v21Dx, Dyy=1G1,.
IM M In general, the bending stiffnessBs, Dy, Dy, andD,,

Ty T =0, (3)  satisfy the inequalitie®, +D,>0, D,D,— p§>0, Dyy>0,
X ady as a result of the fact that the flexural strain energy is neces-
_ : . . . sarily a positive quantity.
wherem=2ph is the mass density per unit area. The plate is . . -
assumed to be orthotropic with axes of symmetry in the | toufrva%?rﬁ‘i’fhvﬁ dttcr)1 cltr)1nsr|;ie: tthf 2eihm asr therll'?n'ittcv)\f a
andy directions, for which the momentd,, M, andM,, piate ot vanisning - N orderto take the prope N
must enforce free-free boundary conditions on the edges

are ==*b, viz.,
Fw 9w
M,=—Dy—5—Dg—>, (4) My(X,2b,t)=0, Vy(X,£b,t)=0, —w<x<c,
M.——D ﬁZW—D d*w (5 WhereV,=Q+dM,/dx is the Kirchhoff shear forcé We
y y 2 0 2 . . . .
ay IX consider time harmonic solutions of the form(x,y,t)
, =RgdW(y)d®“Y]. The most general solution that is sym-
My = _ZDXV;((\;:/' ()  metric about the center line > <x<c, y=0, is
W(y)=A,; coshy,;y+ A, coshy,y, (13
Substituting from Eqgs(2)—(6) into (1) yields the flex-
ural wave equation where the transverse wave numbeis, are
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FIG. 1. Dispersion curves for symmet-
ric flexural modes on a strip of width
2b, from Kirchhoff theory, Eq(16) for

O 15F > an isotropic plate with/=3. The quan-
tity plotted is the phase speed
=k, /k relative to the speed on a plate
of infinite  width, k=mw?(1

1k —v?)/EL.
051 1

0 1 1 1 1 1
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kb
D.+2D 1/DA+2D 2 D 1/2) 1/2
'}’j:[ OD—XV k%%—l)'[(%) K4+ D_X(ki_k4) } . j=1.2. (14
y y y

Note thaty,>0, while y, is positive for subsonick>k,) solutions, and pure imaginary, =i|y4|, for supersonic K<k,)
solutions. Applying the boundary conditiof%2) gives the simultaneous equations

(Dok?~Dyyj)coshysb (Dok?—Dyy5)coshy,b Al [0
{[(DOMny)kZ—Dwi] yisinhyb  [(Dot4D,y)ki—Dy 317 sinhyg A2 “Jo] 9
|
from which the dispersion relation follows as o [Dyww?\ ¥
SRR o
(Dok?~Dyy%)2y; * cothy;b
—(Dokz—Dyyg)zyz‘lcothyzb:o_ (16) Note the appearance in Fig. 1 of the modes at discrete

frequencies, which in general occur whkr 0, at discrete
values ofk b satisfying

The relationy+ y5=(2Do+4D,,)k?/D, has been used in

simplifying Eq. (16). tank,b+tanhk,b=0, symmetric cut off, (18)
The first few dispersion curves are plotted in Fig. 1 ver-

sus the nondimensional parameigb for an isotropic plate.

The nondimensional speed plottedds k,/k, which char-  wherek,, defined in Eq(8b), is the wavenumber of a wave

acterizes the wave number of the wave in théirection. traveling in they direction in a plate of infinite widtisee

Solutions with c<1(c>1) correspond to waves that Table ).

are subsonic(supersonig relative to the reference phase In addition to these modes, the symmetric solution dis-

speed plays a mode that exists at arbitrarily low valueskgb,

TABLE |. The first five cutoff frequencies for the Kirchhoff plate model, E@s) and(49), follow from these
values ofx, according tok b= mx.

Symmetric: tanfrx)+tanh@@x)=0. 0 x=0.7528 1.7500 2.7500 3.7500
Asymmetric: tanfrx) —tanh@@x)=0 x=0 1.2499 2.2500 3.2500 4.2500
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which is the mode that reduces to the flexural wave on a 4G,
beam. Before considering this limit, we note that the ldsge- ~ E*=Ej| 1+ 3E, e viwa(kyob) >+ O(k*b%) |, (24)
asymptote of this mode in Fig. 1 is reached whein> 1, for
which (16) reduces to wherek,q is the wave number of simple beam theokyj
) - 5 2o =(mw?/E,1)¥* Thus, the beam flexural wave number that
(Dok®=Dyy1)%72= (Dok™=Dyy3)%y1=0. (19 includes the leading order correction ks=(mw?/E* )Y
This has a unique positive rooat k=Ky/Cegge Where 0 +0(b%).
<Cegge=1 is given by Equation (24) suggests that the first correction to the
> > 5 beam limit for nonzero widthb>0 can be interpreted as an
4 _q_ (VDo +4D5y—2D,y) (20 increasein uniaxial stiffness. The increase is proportional to
edge D.Dy ’ b%\w, and the leading order approximation assurkgs
<1. In the case of isotropy, we have

C

The speed of a flexural wave guided by the free edge of a
semi-infinite isotropic elastic thin plate was first derived by
Konenkov? and later by Sinta and by Thurston and E*=E
McKenna’ The flexural edge wave speed for an isotropic

plate was also derived from the modes of a thin plate of finiteand ky is the beam flexural wave number. The veracity of
width by taking the limit in which the width becomes this leading order correction is verified by the straight line
infinite® The edge wave decays exponentially with distanceapproximation in Fig. 2, which shows the nondimensional
from the edge, similar to a Rayleigh wave on an elastic halfrelative phase speean=k.. /k versus the K..b)2 wherek., is
space. The existence of the edge wave on orthotropic thithe flexural wave number of a plate, i.&,,=kq(1— )4
plates was demonstrated by Nortisyho first derived the

explicit expressior(20). Abrahams and Norrisshowed that

it can also exist in the presence of fluid loading, a resultB Kirchhoff—Rayleigh plate theory

which is perhaps surprising. However, the existence is re-

stricted to very light fluid loading conditions: for example, ~ The equation of motion of an orthotropic plate is again
thin plates of aluminum or plexiglass can support edgeEd. (1), but now the effect of rotational inertia is included as
waves in air, although not in watéiThe classical Kirchhoff ~ follows:

plate theory predicts a speed for the edge wave which is in M, M

v2k2p?

Y3aey

+0(kgb%), (25)

I*w

constant proportion to the flexural wave speed. The constant X Qu=—pl ——, (26)
of proportionality is independent of the frequency and de- X %y gtoox

pends only on the Poisson’s ratio, being slightly less than L?Mxy 5M (93

unity and equal to unity when the Poisson’s ratio vanishes. X —Qy= (?t oy’ (27)

As noted by Thurston and McKenrahis equality reflects
the fact that a flexural wave traveling parallel to the edge ofThe moments are as before, E¢$—(6), and the governing
a thin plate of zero Poisson’s ratio gives no bending momenéquation for flexural displacement becomes

or shear and hence automatically satisfies the free edge con-
iti i w 4 aw o dPw
ditions of the classical plate theory. w1 +2(Dg+2Dy) =52 +Dy—7+m—7
We now turn to the beam limit by considering small but =~ 9X IX=dy ay ot
nonzero width, specificalli,b<<1, by taking the leading or- 92w
der terms in cothfy ). Using cothé=1/¢+ £/3+0O(&3), —plV2—s 2 =0 (28)
Eq. (16) simplifies to
D2 D2D The wave number of a wave traveling in tkelirection in a
Dy— —0 K4 — M2+ — Y k6p2+ O(kBb*) =0 plate of infinite width, formerly given by Eq8), is now
W (k"b")=0,
21 | w? lw?|Z mo?|Y?
_ _ N = 29
which may be rewritten 2Dy 2Dy Dy
. Maw? Despite the more sophisticated theory, it can be shown fol-
k D (22 lowing the same procedures as before that the dispersion
. B . relation for the plate of finite lateral widthi2is again given
with modified stiffnessD*, by Eg.(16), but where= vy, , are now roots of
D*(b)=D, 1- D2 . 4DfDy,  kZb? Dyy*—[2(Dg+2Dy,)k?— pl 2] y?+ D,k*— pl w?k?
X
D,by 3D.Dy b,D,-Dj CMw?=0. (30)
s The wave number for the edge wave is defined (b9),
O(k"™0") |. (23)  derived from(16) in the limit b—, wherey; and y, are

roots of(30). The equation for the edge wave number may be
Substituting from (11) gives D*=E*|, with effective expressed as a quartic k3. At high frequencies it becomes
Youngs modulus nondispersive, and reduces to a cubidin
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FIG. 2. The relative phase speed
=k, /k of the lowest symmetric mode
versus k.b)? (frequency for an iso-
tropic plate (v= %) using Kirchhoff
theory. The zero frequency limit is (1
— 1% The dashed straight line is
the smallb leading order correction
based on Eq(25).
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We now examine the behavior of this plate theory as thdll. MINDLIN AND SHEAR PLATE THEORIES
width b vanishes. Expandingl6) to first order inb?, subject

to the constraint30) on vy, ,, yields

Do
1+ ?kzbz} [(DyDy—D3)k*~Dypl w?k?—D,ymw?]

2

DO
+ 3—Dyk4b2(4nyk2—pI »?)+0(b*=0. (31)
The limiting wave number as— 0 therefore solves
(D,D,—D§)k*—Dypl w?k?—~Dymw?=0, (32

that is, it is given by(29) with D, replaced byD* (0) of Eq.
(23). This is the precisely the prediction according to

Kirchhoff—Rayleigh beam theory.

Based upon the leading order equati3®2), we may
simplify (31) so that the first-order correction satisfies the

following,
[(DxDy—D§)k*—D,pl w?k?*—D,maw?]
2

k*b?(4Dyk*~ pl ?)+O(b*)=0. (33

0
+ _
3D,

Unlike the previous case of the simple Kirchhoff theory, it
does not seem possible to interpret this result in terms of an
effective stiffness alone. No simplification is apparent even if

we consider the isotropic version {33),

2 2E1Kk?
[Elk*—pl 0?k?>— mw?]+ §k4b2( ey w2>

+0(b*) =0. (34)

Mindlin’s theory contains the rotational inertia of the
Kirchhoff—Rayleigh theory plus a shear correction. Based on
the previous analysis for the Kirchhoff—-Rayleigh theory it
would seem likely that the Mindlin theory will not yield a
simpler result, and probably more complicated tk@4). De-
spite the extra refinements in Mindlin’s theory we will see
that the first correction to the beam theory, or Timoshenko’s
theory, only involves an effective stiffness. In fact, it will
emerge that the leading order correction for the shear theory
is identically zero.

A. Mindlin plate theory

The wave numbers for straight crested waves in an iso-
tropic Mindlin plate and in a Timoshenko beam of the same
thickness B are solutions of quadratic equations fdr.

k*— (k3+k3)k?—k2k3+ k=0, (35)
k*— (k3+ k3o k2 — k3k3,+ kio=0, (36)
respectively. Here,
. \/m . mw?(1—1?)| ¥
PPONTTE ¢ YT\TTEL )
37

m

p wZ 1/4 ® p
kpoz w E, kFO: F and kS:Z ;,

where u is the shear modulus and is a nondimensional
factor, with 0<a<1.? The details of the Mindlin plate theory

In particular, this equation cannot be expressed using thare in Appendix A, where the following dispersion relation

modified stiffness of25) alone.
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FIG. 3. Comparison of the lowest or-
der symmetric mode for the Mindlin
plate theory, and the prediction using
the Timoshenko beam equatiqd3)
and the modified Young’'s modulus of
Modified Timoshenko (45). The ratiob/h=0.2. The speed
c* =kqm /K, where kg, is Timosh-

-2

4+ 4 enko wave number anklis either the
Mindlin wave number or the wave
number predicted by the modified Ti-
-5- 1 moshenko dispersion equation.
-6 Mindlin —_— 1
_7 L 1
0 0.005 0.01 0.015

K2 p?

PO

k2 |2 further specify thatb<<h. The latter is required because
k?— 1, (k§—K§)K3y7 * coth(y;b) when we allow the frequency to tend to zero we hayb
=0(b/h), and therefore the consistent smallimit is

, K\ reached by allowing;b<1, j=1, 2, 3. We shall return to
_(k - 1_V) (ks—ka)kiy, ~ coth(y;b) this point later.

By consideringkb<1 andb<h, we find thaty;b<1,
+k2kZ(kZ—k3) 3 coth y3b)=0. (39 j=1, 2, and by using the leading order approximation

cothé=1/é+0O(&), combined with(A9), it can be shown
that Eq.(38) reduces to Eq(36), which is precisely the dis-
persion relation for a flexural wave on a Timoshenko beam.
Using the two-term approximation of coflplus the leading
order approximation given b§B6), we find that the first cor-
rection to the wave number satisfies

The three wavenumbetls;, j=1,2,3, in this equation are
defined in Eq(A9), andy;= N j=1,2,3. Note thak;
andk, are roots of the Mindlin equatio85).

It is interesting to note that the dispersion relation for the
Kirchhoff—Rayleigh theory falls out of Eq438) by settingkg
to zero or, equivalently, allowing—~oe. In the limit of infi-

nite width, (38) reduces to . 2 2o 2o . 12 )
2 \2 o \2 K (K&+ ko) k2~ kBkBo + kg~ (1 1)
(kz_ 1 ) (kz—kz)kzy_l—<k2— 2 )
1-p) 7S T 1-v X b2Kk3,y(k2,k2+ k32, — k& o) + O(k8b*) =0. (42)
X (Kg—K3)KEy, H+ k?kE(k; —K3) y3=0. (39 The derivation of Eq(42) was performed using the symbolic

This equation has been examined by Normisall® who @/gebra program Maple. It may be written as

showed that it possesses a root at all frequencies. In the KA — (K24 K2 VK2 — K2K2. + K. + O(K8b%) = 0 43
high-frequency limitks ph>1, the edge wave speed be- (kstkps) sKps ke 0D =0, “3
comes nondispersive, and equal to the Rayleigh wave spegghere

in plane stres&’ given by

2\ 14
p mw
(2K = k7)? = 4k*(k?— k) YAk? — kp) =0, (40 ke =0\ &5 kF*=(—E*,) , (44)

wherek?= w?p/ . Also, the cutoff frequencies of E¢39)
for the plate of finite width are given by

(k3—k3)k, cotk,b— (k3—k3)k, cotk,b=0. (42) E*—E

and

2

1- %(1— P)k2ob%+O(b% |, (45)

These define the modal cut-on frequencies, which are infinite
in number but includev=0. We now consider the mode that The approximation to the flexural wave number based on
exists down to zero frequency: the flexural mode. (43)—(45) is compared with the exact prediction from Mind-
Unlike the previous expansions for the Kirchhoff plate lin theory in Fig. 3. We note the agreement between the
models, greater care is necessary with the Mindlin theorylowest order mode and the asymptotic approximation. We
Thus, in addition to the assumptidib<<1, we now need to also note that the effective Young’s modulus of E4jp) is
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FIG. 4. Dispersion curves for the
phase speed¢=k./k for the asym-

©1.5r metric modes on a plate of widthb2
according to Kirchhoff theory, Eg.
(49). Note the existence of the mode
i down to zero frequency, see EG4).
0.5 A
0 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

different in form from that for the Kirchhoff theory, E5), ever, as we will see, these modes all reduce to dispersionless

but defer discussion until later. waves, which can be understood in termstafsion rather
than flexure. The question arises then whether the plate theo-
B. Shear plate theory ries reduce to the correct torsional limits. As before, we con-

] o ) _ . sider the four engineering theories in sequence.
Shear plate theory is a simplified version of Mindlin’s

theory, as it only considers the shear correction to the Kirch-

hoff model without the rotational inertia effects. Thus, the” Kirchhoff plate theory

model is described by Eq§l)—(3) and (A3); the analysis is The general solution that is asymmetric about the center
similar to that for the Mindlin theory, and requires a three-line —cc<x<<o, y=0, is

wave solution which is identical with the Mindlin solution if

the replacemerkp— 0 is made in(A9). Thus, instead of Eq. W(y)=Aqsinhy,y+Az sinhyzy. (48)
(A9), we have Applying the boundary condition§l2) on the free edges
1 1 2 gives the dispersion relatioisee Fig. 4
. . [
kaziké_(_l)J \/Zkg"' ki, =12, kgz‘?’ﬁf- (D0k2—Dyy§)27{ltanhylb
(46) — (Dok2=Dy72)2y, L tanhy,b=0. (49)

The dispersion relation so obtained is formally equivalent to
(38), and therefore the asymptotic approximation that resultsS
is the same as for the Mindlin plate. That is, the limiting tank,b—tanhk,b=0, asymmetric cut off. (50
wave number reduces to the pure shear beam theory predi
tion asb—0. The edge wave solutiond{>>) are also
given by the Mindlin equatiori39), and in the limit of high
frequency the edge wave becomes nondispersive, With
—Kg.

However, becausle-= 0, we find that the first correction
to the leading order equation is identically zero. That is, the*Dxy
narrow plate limit is given by43) and (44) with

ettingk=0 implies that the cutoff frequencies satisfy

These are enumerated in Table I, and include zero, indicating
a mode exists for all nonzero values lof
Expanding the asymmetric dispersion relati@®) to
leading order irk,b<1 gives
2 b? 4 4 L4
ke— S_E)y{[D°+4DXV]k +D,Dy(ky—k)}

4 +0(b*)=0. (51)
E*=E[1+0O(b")]. (47) _ . .
The only consistent solution isb=0(kb)?, with
IV. ASYMMETRIC MODES Mw?2b?
. k2= +0(b%). (52)
We have seen how the beam theory prediction follows 12D,,

from the limit of plate solutions that are symmetric about theygte that the limiting wave is nondispersive, since w/k is

centerllneyzo. We now consider the analogous S|Fuat|on fo_rindependent of frequency. Thus, usibg,= G, gives
asymmetric modes or, more correctly, pure antisymmetric

modes satisfyingv(x, —y,t)=—w(x,y,t). These are plate 02:4G12h2+o(b0) 53
modes which possess no limit in the beam theories. How- pb? ‘
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In the isotropic caseGq,=pw), we find the limiting wave

speedv —vq as w—0,

UOZFCT7 (54)

wherect= \ul/p is the bulk transverse wave speed. We will

discuss this limit later in terms of torsion theory.

B. Kirchhoff—Rayleigh plate theory

k?b?| b2 ki
kg(l—T +3 —(1-v)k*+2k? (1+v)k§—2Eg
+ky+ kg { +0(b*)=0. (61)

The dominant terms in61) for both smallb and low fre-
guency are

2

2 b2 4[
k3+ —kg|1—-4
PT3F kg

~0. (62

The dispersion relation for asymmetric modes is again

(49), but where now we have the identities, frg80),

Dy(¥2+ v3)=(2Dg+4Dy,)K?,

55
Dy')/%y%:ka“—plwzkz—mwz. ©9

The equation for cutoff frequencie&£0) is also(50), im-
plying the existence of a mode with a cutoff at zero fre-

quency.

Hence the limiting value of the phase speed w/k—uv at
zero frequency is

2aC-|—

N

which is discussed in the next section.

(63

The mode with zero cutoff may be examined using Eq.

(55), yielding
b2
4D, k*— pl w?— 3—Dy{[(DO+4DXy)k2—pI w?]?

+D,D,(ky—k* —Dypl w?k?}+O(b*) =0. (56)
Hence,
2 2
2_p|_w __ 4142
k—4DXy(1+hz +O(k*b?). (57

This is again nondispersive, with limiting phaserave
speed for the isotropic plate

2ct
VomT——.
o /[1+bZh?

Again, we defer discussion of this result until later.

(58

C. Mindlin plate theory

It may be shown using the same procedure as for the

D. Mindlin shear theory

If the rotational inertia is ignored and the pure shear
theory is employed, then formally the result can be obtained
from the analysis for the Mindlin theory by taking the limit
of kp— 0. The outcome is that expressi®R) simplifies to

b2 2

gk;‘{l—zl@ ~0, (64)

or k=kg2. Thus, the zero frequency limit for the phase
speed becomes in this case

U():ZC(CT. (65)

Note that the resulting wave number is independent of both
the half-widthb and the semithickneds

V. DISCUSSION

We have derived the dispersion relations for symmetric

symmetric modes that the dispersion relation for asymmetriand asymmetric modes on a plate of finite width according to

modes according to the Mindlin theory is
2

Kk 2
( k*— 1—1) (ks—ki)kZ; * tanh(y;b)

k3 \? )
—(kz— ) (k&—k3)kSy; ' tani(y,b)

1—v
+ k?k3(k3— k3) y3 tanh( y3b) =0. (59)
Settingk=0 implies that the cutoff frequencies satisfy
(k3—k3)k, tank,b— (k3—k3)k, tank,b=0, (60)

which includes zero as a cut-on frequency.
Retaining the first two terms in the expansion(69) in
terms ofb yields
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the four engineering theories. In the limit of zero width,
—0, each plate theory predicts that the symmetric mode has
the wave number of the corresponding beam theory. The four
plate theories also predict the existence of an edge wave
solution in the limit of infinite widthjp—oo. The edge wave
speed for the Kirchhoff theory is given K20), and by(39)

for the Mindlin and Mindlin-shear theories, respectively. In
the high-frequency limit only the Kirchhoff edge wave re-
mains dispersive; the other three theories predict constant but
different values for the edge wave speed. We have also ex-
amined the behavior of the asymmetric mode in the narrow
plate limit, and found in each case that the mode is nondis-
persive at zero frequency, but with different limiting values.
We now discuss the symmetic and asymmetric cases in more
detail.
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A. Symmetric or flexural mode E**

-1
The two main results are Eq$25) and (45), for the E
effective Young’s moduli of narrow plates or beams of rect- S
angular cross section. By writing the fundamental Kirchhoff = — \/;kpoh
beam wave number asw?/ El=3k3,/h?, wherekp is de- 0 Kirchhoff
fined in (37), the corrections to the beam theories can be ' ’
expressed 1+0(k3,h?),  Kirchhoff—Rayleigh,
X
2(1+ v)/a+O(k§,0h2), Mindlin—shear only,
(202 Kpgb? , 1+2(1+v)/a+0O(k3,h?), Mindlin.
_ +0O(b%), Kirchhoff,
- V3(1+w) h (68)
E—1=< V2 2 o . o (66) It is interesting to now compare Eqg66) and (68),
— 3 (1= v9)kpeb™+O(b%),  Mindlin, which summarize the leading order corrections for plate
4 - width and beam thickness, respectively. Beam thickness has
( 0+O(b"), Mindlin-Shear only.

the consistent effect of reducing the effective Young’s modu-
lus for each of the refinements to the classical Kirchhoff
The Kirchhoff—Rayleigh theory is not included as it does nott€am theory. However, the finite width of the plate affects
reduce to an effective Young’s modul & . each model quite differently, as it leads to an initial increase

The effective stiffiness differs for each theory, and thein E* for the Kirchhoff plate theory, and a decrease for the
differences are significant in terms of the leading order deMindlin theory. The distinction between the beam and plate
pendence on the width. Thus, the signs for the correction ifodels can be explained as a Poisson effect, which disap-
(66) are such that in Kirchhoff theory the beam is stiffened, itP@ars whenv=0. Thus, for very wide plates, both models
softens for the Mindlin theory, and in the Mindlin-shear reduce to the plane stress limit, for whiét —E/(1—»?)
theory the leading order correction is identically zero. In ad-=E. With equality only if »=0. Note that Eq(66) retains
dition to this fundamental deviation between the conflictingthis feature, as all the corrections B are O¢?), with
theories, we note the distinct frequency dependence of th€guency-dependent factors. The surprising feature of Eq.
correction terms: linear im for the Kirchhoff correction, and  (66) is that Mindlin theory initially predicts a decrease in the
quadratic for the Mindlin plate theory. It is interesting to note Stiffness, although it eventually does increase to the plane
that the latter does not depend on the shear correction fact§t'€ss value akb increases. In fact, numerical experiments
a. Yet, when we consider the Mindlin theory without the indicate that the prediction c'666) is only val!d fqr gxtremely
rotational inertia, that is the pure shear theory, the correctiofMall values okpgb (for which the correction is itself even
vanishes. These asymptotic corrections have been verified Inalle.
numerical examples, see Figs. 2 and 3.

It is perhaps useful to compare the correctiongG6) B. Asymmetric or torsional mode
with the well-known corrections to the various beam theories

as a function of frequency. In this case the variation depends | € results of Sec. Il are summarized by the following
on the beam semi-thickness which enters into the beam cduation for the phase speeds w/k in the zero frequency
theories as follows: limit, from Eqs. (54), (58), (63), and(65),

[ h
25, Kirchhoff,
k2h2=\/§kpoh p2\ —1/2
0, Kirchhoff, 2 1+? ,  Kirchhoff—Rayleigh,
11,2 W2 3 K3 ; ; Vo= CrX (69)
3Kpoh“+O(kpoh®),  Kirchhoff-Rayleigh, 2a, Mindlin—shear only,
+
$k2h?+0(k2h®), Mindlin—shear only, h2\ -2
2a 1+F ,  Mindlin.
3 (k3+k3,)h2+0(k3h3),  Mindlin. \

Note that these are all nondispersive, yet it is remarkable
©7) how the i i i
y provide quite different results.
Each of these limiting values can be understood as an

Each of the refinements to the classical Kirchhoff or Euler—approximation to the torsional mode for a plate. A proper
Bernoulli beam theory predicts an increase in the wave numanalysis for the torsional wave in the zero frequency or qua-
ber, with the increase dependent on the model. Furthermorsistatic limit requires an estimate of the torsional rigidy
the leading order correction in each case has the same frilom which the wave speed is calculated @as \C/pJ,
quency and thickness dependence, that is, each correctionivherelJ is the centroidal moment of inertfalhe rectangular
(67) is quadratic in frequency and in the beam thickness, andross-section of the plate implids=(b2+h?)A/3, whereA
may be characterized by another effective Young’s moduluss=4bh. The torsional stiffness of a rectangular rod is not
E**, where available in closed form, although it does satisfy the inequal-

J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003 Andrew N. Norris: Bending waves on narrow plates 2655



ity C<ud, implying thatv <c;. However, we may approxi- the four classical engineering theories applied to narrow
mate C for rectangular cross sections that are far fromplates. It is argued that only the Mindlin theory provides a

square'! thus realistic result in this case, and by extension, the Mindlin
h theory is recommended for considering the symmeftex-
b for b>h, ural) waves in beams of rectangular cross-section and finite
M2 width.
=-A“X 7 . . .
C 3 b (70 As part of the analysis we have also derived the disper-

for b<h. sion equations for edge-guided waves in each of the four

) . . . classical plate theories. This is given by E9) for ortho-
Hence, in the two extreme but interesting cases of very Wld@ropic plates in the Kirchhoff theory, with explicit solution

and extremely narrow plates, the torsional wave speed is (20). This is the only case of the four for which the edge

=

2\ -2 wave is nondispersive and for which the edge wave speed
2|1+ 12 for b>h, has an explicit expression, as in E80). Equation(19) also
v=CX o 1o (71) defines the edge wave for the Kirchhoff-Rayleigh theory,
2(1+ = for b<h. where'yl and 72 are now dgfined by. Eq30). The ed.ge
b wave in the Mindlin theory with and without rotational iner-

Referring to Eq.(69) we see that the Kirchhoff and tia is dgfined by Eq(39). The wave ”Pmbe’kl’ Kz, andks
Kirchhoff—Rayleigh plate theories each predict the correc®® defined by Eq(AQ) for the Mmdlm theory, gnd _by Eq.
behavior for wide platey>h, in the quasistatic limit. How- (46) for the Mlndlln—s_hear theory. This is the first _tlme that
ever, neither is correct in the limit of interest here, when the'€ €d9€ wave equations have been derived or discussed for

plate is narrowb<h. In that case the Kirchhoff theory pre- the Kirchhoff-Rayleigh and the Mindlin—shear theories.
dicts an unphysically large speed, and the Kirchhoff—

Rayleigh theory gives a finite limi;g—2c+, which is also _

incorrect(and unphysically large Only the Mindlin theory APPENDIX A: MINDLIN PLATE THEORY

predicts the correct behavior fdr<h, if « is taken to be Mindlin’s theory for an isotropic plate is Eq1), with

unity, which is not unreasonable. The shear-only model preg,, aqditional variables corresponding to angles of rotation,
dicts a finite limiting speed, which is incorrect. Thus we arewx(x y,t) and gy(x,y,1) 4 \with

led to conclude that of the four theories only Mindlin’s gives

a proper limit for very narrow plates. IMy N IMyy | iy (AL)
This result is perhaps surprising. A very narrow plate ox ay Qu=p I

with b<h undergoing asymmetric “flexural” motion is more 9

aptly described as a plate oriented at 90° with the motion %+ %_Q =pl 07_% (A2)

similarly rotated. Despite this extreme test of the model, 28 ay Y -

Mindlin’s plate theory is capable of predicting the correct i i i o

limiting wave speed—the speed of a torsional wave. Finally, M, = E,l (_X + ,,_V) . M,=E,l (_y + V_X) ,

it should be noted that the Mindlin expansion(6fl) is not 24 Iy y X

sufficient to give the wide plate torsional wave limit. The I Py

reason for this is as follows. Let=b/h>1, and e=k:b Mxy=M|(W+ W)’ (A3)

<1, such thateA = o(1). Then, multiplying the expression

(61) by b? to make it nondimenional, we find that it is ) oW ) oW

O(e2\% and this arises from the single term Q=@ 2hu|— +yy),  Qy=a"2hu W*"ﬂy :

— 4b*k?k¢/(3k3). In order to cancel this leading order term
we need to expancb9) to at least the next order, but leave
that as a separate exercise for the interested reader.

Note that the thickness-integrated shear modulus appearing
in the shear force®, andQ, is modified by the facton? in
order to better approximate shear forces in the plate,&and
may be chosen according to different criteria, but normally

VI. CONCLUSION a?<1* We consider solutions of the form

We have examined the transition between the plate anflv(x,y,t), yy(X,y,t), (X, y,t)}
beam regimes and how both the symmetffiexura) and e ot)
asymmetric(torsiona) modes depend upon the width of the = REW(Y), Wx(y), ¥y(y)}e , (A4)
plate in the lateral direction. Analytical asymptotic predic- wherd®
tions for narrow plates have been illustrated by numerical
results, and suggest the use of a frequency-dependen
Young's modulus for describing the flexural wave on beams  _(y)=ik 8,A; coshy,y+ik 8,A, coshy,y
or strips of finite width, although the form of the correction
to the modulus is not unique and depends on the theory used. + y3Az coshysy, (AB)
The sign of the correction for the Kirchhoff theory is oppo- _ . -
site to that for the Mindlin theory. Analysis of the asymmet- TyY)=v1BiAssinhysy +7,6,A sinhyy
ric or torsional mode also displays quite distinct behavior for —ikAgsinhy,y, (A7)

t WI(y)=A; coshy,y+A;coshy,y, (A5)
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and flexural wave in a plate according to Mindlin’s theory.

Y=Vkok, =123, B 1rkdky, ELA%) are defined by Eq(36), and are given by, k, of Eq.

(A9) with the replacementkp, kp—kpg, kgg, that is, the

=§(k§ ) (—1)ly/ 4(k2 k2 )2+ ki, j=1.2, stiffness for uniaxial extension is substituted for the plate
(A9a) stiffness.
2k2K2 The boundary conditions oy= * b require the simulta-
k%zﬁ. (A9b)  neous vanishing oQ,, M, and M, implying the disper-
S sion relation
The wave numberkp, kg, and kg are defined in Eqg.
(37). The wave numberk; describes a straight crested
|
(1+B1)’yl Sinh'ylb (1+ﬁ2)’}/2 Sinh’)/zb —ik Sinh’}/3b
Ba(vi—vk®)coshyib  Ba(y5—vk?)coshyb  (1—v)k?yscoshysb| =0, (A10)
2iky,181 sinhy,b 2iky»B, sinhy,b (K?+ yg)sinh v3b
Using row and column manipulation, this can be rearranged as
ki k3 kS
k3 k3 2k? o (A1)
k? cothy;b k3 cothy,b '
(kz = )<k2 k) — (kz_ - 2| (K3—k3) — 2= 2kZy;cothysb

This can be further reduced to E@®8) by using(A9b). m 5 El 5 5
Lo(w,q) = 3 (W +Kai +Iway) — m[wxx+q

2
APPENDIX B: A REDUCED PLATE THEORY FOR Kot It 200 Wax + 130G

NARROW PLATES +2(1-v)J q)2(], (B4)
An alternative procedure for examining the dependence m._, ElJ El
of the flexural wave speed on the width of a narrow plate is ~ L1(P)= 7 Jp;— 2(1—7) Pix— 15, Px (BS)

to derive a theory appropriate to this limit. In this Appendix
we demonstrate that the first corrections to the beam theonyhere J=b?/3, K=b*/20. These in turn imply the Euler—
prediction, Eqs(22) and(23), are obtained for the Kirchhoff Lagrange equations
theory using this approach. El J J

Starting with the Kirchhoff kinematic ansatz, 7(WXXX)@L 5 Ghoooct Pl | + MW+ Eq”:O' (B6)
u(x,y,z,t) = —zW,(x,y,t), v(X,y,2,t)=—zW,(X,y,t),
w(x,y,z,t)=W(x,y,t), along with the assumption of plane g J
g+ KOyxxxt waxxx"' YWy — (2= 31) I Gyy | + MK

stress, implies the Lagrangian density per unit area 1,2
1
_ = 2 2 J
LIW(X,y,1))= vavt2 2(1 ) [WXX+WYY +§tht:0, (B7)
+20W Wy +2(1-»)WZ ). (BL) g 2E| )
+m
For the narrow plate, we make the further assumption 12 Pooo (17,2 7 P MP=
y2 Note that the torsionalasymmetri¢ mode, p, decouples
W(X,y,t)=w(x,t)+yp(x,t)+ 7q(x,t). (B2)  from the symmetric modew,q). Dispersions relations can

be easily determined for each mode from E@&6)—(B8),
Substituting into(B1) and integrating over the plate width (K —KH[1- 41— »)k?b2+ A(k*—k*)b*]— vk*=0
—b<y<b yields a Lagrangian density per unit length ” ° * ” (B9)
L(w,p,q)=Lo(w,q) +Ls(p), (B3) k* , h%k?

+4c2 =1, (B10)
with decoupled terms K& Th2w?
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The corresponding wave numbers for a Timoshenko beam
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