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This paper is concerned with an investigation into the existence of waves propagating along a free
edge of an orthotropic plate, where the edge is inclined at arbitrary angle to a principal direction of
the material. After deriving the governing equation and edge conditions, an edge wave ansatz is
substituted into this system to reduce it to a set of algebraic equations for the edge wave wave
number and wave vector. These are solved numerically for several typical composite materials
although analytic expressions can be obtained in the case of special values of the material
parameters and inclination angle. It is found that a unique edge wave solution, which generally
exhibits oscillation as well as decay away from the free edge, exists in all cases, and its wave speed
is independent of its direction of propagation along the plate.2@®2 Acoustical Society of
America. [DOI: 10.1121/1.1506686

PACS numbers: 43.20.Gp, 43.20.Jr, 43.40[D&H]

I. INTRODUCTION by generalizing the model to incorporate Mindlin plate
theory. Their results were consistent with that found by
This paper is concerned with the existence of edge&onenkov, as were those of Laga¥send Burridge and
waves propagating on the free edge of a thin elastic platesahinat!?who employed finite element modeling to exam-
Such flexural waves are localized about the edge, i.e., hav@e the existence of localized waves on the edge of a thick
exponential decay in the direction normal to the free edgeg|astic structure employing full three-dimensional elasticity.
and therefore their energy vector is directed along the edg%xperiments in 1976 by Lagasse and Olffidrave demon-
These solutions show similarity with other localized waves strated the existence of the edge wave with wave speed as
such as Rayleigh waves in elasticity, beach waves in watggredicted by theory, although the behavior of the wave speed
wave theory, etc. The existence of edge waves along the freg higher frequencies is better modeled using the improved
edge of a homogeneous and isotropic semi-infinite thin plateneories, such as Mindlin plate thedryarious authors have
modeled using Kirchhoff theory, was first noted by concerned themselves with the existence of edge waves
KonenkoV in 1960. Published in a Russian journal, this ré-along fluid-loaded structures: Kryldthas an approximate
sult was little known in the West until it was independently approach to such problentfr plates of wedge shaped cross
rediscovered by Thurston and MgKeﬁmmd by Smh"ém section submerged in wajemploying a ray theory analysis
articles published in 1974. Indeed, it was also “predicted” by, the limit of high frequency. His results do not prove that
De La Rué in 1972, and surprisingly, continues to this day such wave can propagate without loss, but there is some
to be commonly overlooked by researchésse, €.g., a re-  gynerimental support for their existefd@ven if they do
cent paper by Kauffmarrfin_ Konenkov and these other au- ragiate a small amount of energy in the direction perpendicu-
thors established that, for isotropic plates, precisely one edgg, i the edge. Only recent work by Abrahams and N&ftris
wave solution exi§ts for_ all values of th_e two free_parametershas established rigorously that unattenuated edge waves can
namely the bending stifiness and Poisson’s ratio. The edggyist within a limited frequency window, on thin elastic
wave speed is found to be proportional to and slightly 1es$)|5tes composed of a range of typical materials, from alumi-
than the speed of flexur@ne-dimensionawaves on a plate |, m to Plexiglas™, submerged in air.
of infinite extent. _ , o _ The presence or absence of edge waves on thin elastic
Edge waves are not unique to isotropic Kirchhoff thin gctyres can be of great importance in the field of nonde-
plates; Thurston, Boyd, and McKenehand Krylov/ have  stryctive evaluationNDE) of material components. Ultra-
independently looked for guided e|2_i.StIC modes on the tip of & ,ic elastic waves are regularly employed in NDE to exam-
slender wedge, and work by_Nofhm 1994 demonstrated jne an engineering specimen, such as a rotor blade of an
the existence of edge waves in orthotropic Kirchhoff platesaergiet aircraft, and from measurement of the scattered field
More recently Norris, Krylov, and Ab.raha&mveSUgat(.ad -any imperfections or inclusions in the body can be found.
the propagation of edge waves on thick plates, and did thighjs is an inverse problem, determining the shape, size and
nature (e.g., inclusion, void, crack, change of phase,)ad€.
dElectronic mail: i.d.abrahams@ma.man.ac.uk defects from the overall measured far field. It is helpful, for
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the development of efficient inverse routines, to have knowlwherep is the plate densityj is the plate thicknes$denotes
edge of forward problems; that is, the scattering signaturéime, and the bending stiffnesses in they directions are
produced by a wide variety of common material inhomoge-D,, D,, respectively. FurtherH=D;+2D,,, where
neities. For cracks on thin structures this scattering signaturd,, D,, D;, andD,, can be written as

can be greatly altered by the existence or nonexistence of

3
flexural edge waves, especially in the shadow zone where the Dx=h— L D :V_Zle,
specular field is absent and so the edge wave may be signifi- 121—-viovpy Vv
cantly more energetic than the diffracted wave shed from the h3
crack edges. In the context of NDE the authbrare cur- D1=vDy, Dyy=75012,

rently investigating the forward problem of the diffraction of
flexural waves by a semi-infinite crack in a fiber reinforcedand
thin plate, modeled using orthotropic Kirchhoff thin plate
theory. This is an important problem to study because of the
now widespread use of fiber reinforced and/or laminated maHere, the suffixes 1 and 2 refer to tlxeandy directions,
terials in industrial applications. These offer extremelyrespectively, s&; is the Young modulus in the direction,
strong and light materials but inspection of critical compo-G,, is the shear modulus in the-y plane, andv,, is the
nents is still required because of the possibility of delaminaoisson ratio for transverse strain in thdirection caused by
tion, fiber debonding, or other modes of fracture. stress in thex direction, with similar definitions foE, and

For the above-mentioned diffraction probiéia crack  1,;. Note that the condition of positive definiteness of strain
can, in the general case, be inclined at arbitrary angle to thenergy density means that the material parameters must sat-
principal axes of orthotropy. In view of the relevance of edgeisfy the following conditions:
waves to energy radiation in such models, a precursor study 5
is needed to establish the existence or nonexistence of such DPx~0. Dy=0, Dy,>0, DyDy>Dj. 2
waves alongnclined edges. Norri$ proved existence of a Note that the third inequality gives
unique edge wave on an orthotropic plate, but this result is
only given for the case in which the free edge is parallel to a H>D,, ©)
principal direction of the material. Thus, in this article, the yhile the final inequality reveals that
possibility of edge waves in anisotropic Kirchhoff thin plates
when the free edge is inclined at general angle to a principal VDxDy>D1>—VD,Dy, (4)

direction is investigated. In Sec. Il, the governing equatiO'\NhereDl takes negative values when, and v,; are nega-

and edge conditions governing such a system are deriveflye |t is noted that the bending momeits, andM, arising
where the notation employed by Timoshenko andyom gistributions of in-plane normal stresses and oy,

Woinowsky-Krieget® is loosely foIIowed..An edgg Wave an- gnd the twisting momenM,, and shear forces per unit
satz(of the form employed by Konenkgvs substituted into length Q,, Q, arising from the shear stresses in the plate,

the system, in Sec. Ill, and from this a set of algebraic €quazan pe written in terms of the transverse displacement, re-
tions is obtained for the edge wave wave number and wavg

. o cFectively, as
vector. These equations are a generalization of those foun

VB =B,

by Norris® and in general do not permit analytic solutions. FPW PW
: : My=—|Dy—5+D1—=|, (5
For several special values of the material parameters and X ay

inclination angle, explicit solutions are readily obtainable , )
and these are discussed in Sec. IV. Finally, numerical solu- =—<D ﬂVJrD ﬂv) 6)
tions to the general system of equations are given in Sec. V, y Y ay? Lox2 |

along with some concluding remarks. In particular, it will be

2
shown that a single edge wave solution is found to exist in M, = —M,,=2D, M 7)
all cases considered; however, in general, it possesses oscil- Y Y Yoxay
lation as well as decay in the direction orthogonal to the free P W W
edge, unlike solutions in previous literature, all of which Qx:__(Dx_T’I'H_Z'), (8)
exhibit pure decay. IX\ 79X y
and

Il. DERIVATION OF EQUATIONS J W W

The classical equations of plate flexure for an orthotro- ~ Qy= ~ @( Dy5yz tH W)- (€)

pic, homogeneous thin plate are studied in detail by

Timoshenka® and summarized by NorrfsEmploying the As mentioned in Sec. |, a semi-infinite plate is consid-
latter author’s notation, and taking the principal axes ofered where the free-edge is inclined at arbitrary angle to the

orthotropy, or fiber directiofs), asx andy, the governing principal axes of orthotropy. Thus, as shown in Fig. 1, coor-
equation for flexuraltransversgdisplacementsV is dinatesX, Yare chosen such that the plate is infinite in ¥he

4 4 . 5 direction, semi-infinite inY with a free edge along the line
J W+2H W +D J W+ ha W Y=0, and with the principal directior inclined at an angle
4 2 #7Tp 0e[0,7/2] to the X axis. Expressions are required for the

Dxx ax2ay? Y gy iz = @
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4

D i +2H J 712 + ak
| S5y Cax Sy Cax) | “ay TSax
d 4 92
+Dy Cﬁ_Y+S(7_X) W+phﬁz—=0, (15)
while the bending moment is given by
a 2
My=—|(s?Dy+¢?D;) CoX STy +(s?D;+c?Dy)
X J ’ 4scD, i i
CW'FSR +4sc My SW Cﬂ
g X i + J w 16
Cov TSax ) | (16
and the Kirchhoff generalized shear force is
Vo ’ d d i, 9 2 5 d
Y=)® Sov “ax)\ oy Tax x| S5y
Jod ol oo
-Cc—g cl—H{s—s—-c—<| |[c—ots—C
FIG. 1. A square section of the orthotropic plate. The dotted lines represent axX aY X aY X
a principal direction of the material, which is parallel to thexis, and the 3
free edge lies alony=0. _D i N i _J D.-D,)
| Cay TSox ox S4P1~Dx
bending momentMy and the generalized Kirchhoff shear 9 2 9 9 \2
force Sﬁ_Y_CﬁX +SC(Dy—Dl) Cﬁ_Y+Sﬁ_X
Vy=Qy+IMyx/dX, (10 DD ( P )( ” w
. - +2(s*—c s—Qc—Cc—o|lc—+s— .
whereQy is the shear force arising from the shear strass ( )Dsy aY X\ TaY  TaX
(i.e., acting on the edge at=0 but in the direction normal 17)
to the plane of the plajavhich can be written as
My My Ill. EDGE WAVE SOLUTIONS
= . (11
Yoy o oX Following the approach of Konenkdwa solution of the
The free-edge boundary conditions for a Kirchhoff thin plate9°Verning equatiortl) is sought, of the form
stipulate that these quantities vanish along this e W=R[(Ae 71K¥ 4+ A, r2ko¥) gl (ekoX—wl)] (18)

Graff*®). These conditions can be obtained in terms of the

bending and twisting moments in the principal directiapg ~ Wheréw is the frequency ané is a suitable wave number
by considering a small triangular section of the plate. Omit-S€!€cted so that the parametelies in the range1). For
ting details, it is easily shown that exponential decay away from the free edge, the coefficients

v, and vy, must lie in the open right half plane. This repre-

My=s’M,+ czMy+ 2scM,y, (12 sents a flexural edge wave solution, i.e., where the energy is
o, confined to the vicinity ofY =0, propagating in the positive
Myx=(s"=C)M,y=sc(M,—M,), (13} X direction. Clearly, for a comprehensive study of the exis-
and also te_nce_ of such waves, the case of propagatior_1 in%ﬁé_ _
direction must also be examined. For convenience this is
Qy=-sQ+cQ, (14  most neatly incorporated by maintainings (1,) and in-

stead without loss of generality allowing the orientation

i s boen intoduced for breviy. Using the coordinaie1e 10 range ovet —m2:n2] (Fig. . This symmetry i
_ . o Y. 9 easily observed by changing & to sin(—6), andd/dX to
transformation for derivatives,

—dldX, in (15—(17); the governing equation and boundary

d d d d d d conditions remain unaltered.
X Cax Suy EY =Sox + Cy To simplify the subsequent analysis, it is convenient to
write

with Egs. (1), (5)—-(9), (10), (11), and (12—(14), the entire .
system is now rewritten in terms of derivatives parallel and V= TIEN, (19
perpendicular to the edge of the plate. Thus, the governinépr j € {1,2}, and thus boti\; and\, must lie in the open
equation becomes upper half plane. The edge wave now becomes
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W= (A, e oMY A gitkoraY) gi (¢koX—at) (20)
and substitution into Eq5) yields the auxiliary equations:

Dy(shj—c)*+2H(s\;—c)?(c\+5)?+Dy(C\j+5s)*

R .
— ?=0, je{l,2, (21
where
phw?
= k_g' (22

This is a quartic polynomial in\, with real coefficients,
which can be rewritten in the form

aN*+ b N3 +aN2+ b\ +| ag— ;)zo, (23
with

a,=s'D,+c*Dy+2s%c’H, (24)

b;=4sd —s?D,+c?Dy+H(s*~c?)], (25)

a,=6s2c}(Dy+Dy—2H) +2H, (26)

by=4sd —c?D,+s?D,—H(s*~c?)], (27)

ag=c'D,+s'D,+2s%c?H. (29

As stated, the edge wave must decay asc and so the two

rootsA, and\, must have positive imaginary parts; the two
remaining roots of(23) are therefore their complex conju-

gates\} and\3 . Hence(29) may be cast as
a(N=A)(N=AT)(A=N2)(A=A3)=0 (29)

from which it can be deduced that the constant term is

R
az— zz=ag|\ |\ o)2 (30

§4

Now, the inequalities in3), (4) can be employed to show

that
a;=s'D,+¢*D,+2s%c’H>s"D, +¢*D, + 2s%c?2D, >

s*D,+¢*Dy—25%c?\D,D, = (s?\D,—c2\D,)?=0
(31

and similarly

az>(c2\D,—s%D,)?=0 (32)

for all values of the parameters. Therefore, the right'han%umerically'
side of (30) is greater than zero and rearranging gives the '

bound
§4>E. (33
az
It is thus convenient to choodg so that
R=az=c'Dy+s'D,+2s°c?H, (34)

speed 14 is a direct consequence of the positivity of the
strain energy in the plate.

Now, on using Eqs(16) and (17), and applying the
boundary conditiondMy=0 and V=0 along the lineY
=0, it can be shown that

2
,Zl A[D,s%(s\j—¢)2+Dyc?(c\+5)2

+2Hsc(shj—c)(c\j+s)+D,]=0, (35

and
2
J_Zl Aj[Dys(s\j— C)Z(S)\j —2c)+Dyc(chj+ S)Z(C)\j +25)

+2H(s\j—c)(C\j+s)(se\j+s*—c?)—D;\]=0.
(36)

The unknown quantitieg\; and A, can be then eliminated
between these last two equations to give the dispersion rela-
tion:

F(N1,A)=F(Ny,N\p)
in which

F(N1,M2)=[D,s*(S\;—C)?+Dyc?(C\ 1 +5)?

(37

+2Hsc(shy—C)(Ch1+S)+ D]
X[DyS(S\2—C)?(Sh,—2¢) + DyC(Ch,+5)?
X (Chy+2S)+2H(SNo—C)(CA,r+S)

X (SCh,+52—¢2)— D\ ,]. (38

The roots\j, j=1,2 of the polynomial21) can be substi-
tuted into (38) so that it is a single equation for the wave
numberé. In the cases treated in earlier literature, beth
and y, were found to be positive real. This corresponds to
positive imaginary values of; andX\,, but is impossible in
general, since setting=iL, with Le R*, and taking the
imaginary part of Eq(21) yields

s D,s?—Dyc?+H(c?—s?)]L?

=sd D,c?—D,s?—H(c?—s?)], (39

from which it is clear that two distinct real positive values of
L cannot exist except in cases where both sides of this equa-
tion are zero, which are discussed in the following section. In
general, therefore, edge waves must exhibit oscillation as
well as decay in the& direction, and Eq(37) must be solved
this is performed in Sec. V.

At the beginning of this section the angle of orientation,
0, between the free edgé=0 and the principal direction of
orthotropyy=0 was taken ovef—/2,7/2] in order to ac-
count for all possible edge wave solutions. It is now conve-
nient to relate the form of the edge wave for negative values
of 6 (or left traveling wavepto that for positived (right
traveling wavep and thereby restrict attention henceforth,
without loss of generality, t@e[0,7/2]. If the angled is

thereby ensuring thate (1,,0). Note that this particular value replaced by— 6 in the auxiliary equatiori23) then the coef-

of kg is the wave number of a plane wave traveling in ¥e

ficients a;, j=1,2,3 remain the same while; and b,

direction, and the positivity of the normalized wave phasechange their signs. Therefore, the four roots are related to the

J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002

Thompson et al.: Edge waves on orthotropic plates 1759



TABLE |. Coefficient values in each of the special cases. note that, in each case, due to the inequalit®s the fol-
lowing relations hold:

Case a; a, as b
i D 2D D D, a;>0, az;>0, a,—2b>0, a;a;>b? (43
" Dy 2H D Dy An example of casév) could be, for instance, a fiber rein-
y D 21 Dy D: forced plate with identical fibers aligned in bothand
iv (H+D)/2 3D-H (H+D)/2 (D—H)/2+D, p 9 y

directions. Clearlyg=*n/4 are also lines of symmetry, and
so the plate can be viewed as orthotropic with principal axes
former roots; these are now\*, —A% in the upper half X andY when 6=m/4. Frqm Table I it is seen that, in this
plane and—\;, —\, in the lower half plane. From this it fotated frame, the effectivél value isa,/2=(3D—H) and

can be concluded that the change of sign of the orientatiof/® Pending stifinessesa{ and as) are Dx=Dy=(H
angle yields a change in sign in the real part)f, j , )

=1,2, while the imaginary parthe decay rate in th¥ di- Equation(41) may be solved to give the values bf
rection remains the same. With the changedthe disper- and\; in terms of the as yet unknown parameteihus,

sion relation(37) becomes 1”1/2}
A= 1-—=|| |, 44
AN Ao o= AN Al (40) I~ 23, & “9

whereF is given in Eq.(38). This is just the conjugate equa- which immediately yields the relations

tion to Eq.(37) and so yields the sameal root &, if one a

exists. In conclusion, left and right propagating edge waves  \2+)\3=— b (45)
a

2

—a,+(—1)l|a5—4aa,

have the same phase speed, and decay with identical expo- 1

nents in the directiory perpendicular to the edge. However, gnd

inspection of Eqs(35 and(36) reveals thay;, j=1,2 are

changed to their complex conjugateséshanges sign, and )\2)\2:%(1_ i) (46)
for left traveling waves the oscillatory behaviorYrfor each 12 &

of the two exponents iV (20) is exactly out of phase with Now, since\; and \, must lie in the upper half plane, it

that for right traveling waves. follows that either\? and\3 are real and negative, ¢by
Eq. (44)], they are complex conjugates. In either case, we
IV. SPECIAL CASES have

As well as allowing the possibility of real values ¢f )\izre“ﬁ,
andy,, the vanishing of both sides of E(B9) gives rise to . . .
four special cases in which an analytical solution is easily/®’ SOme positiver and ¢ e[ —,0). Again using the fact
obtained. It is noted that, in view of the inequaliti&s, the thath, andh, must lie in the upper half plane, this leads to
terms of Eq.(23) which are of order zero, two, and four in A= rel(#2+m
are strictly positive; hence meaningful simplification occurs
only when the coefficients of2 and \, b, andb,, are si- and
multaneously zero. By inspection of E9), it is evident = Jre 1912,
that there are four cases to consider, namely:

. Consequently, it is clear frort46) that
@) Dy=Dy=H=D (say,

(i)  6=0; Nh,=—agla;V1—1/&% (47)
E:c)) g::g —D (say, 6=l4 In view of this, along with Eq(45), the dispersion relation
X y ' .

(42) reduces to
Of the above,(i) is that of isotropy, as investigated by 1
Konenkov! Thurston and McKenn#etc., (i) and (iii) are a,az +Vajaz(a,—2b) \/1— —5—b?=0. (49
essentially equivalent and were discussed by N8rasd 3
(iv) appears to be new. In each case, &) is reduced to  Possible roots fog are now easily obtained; factoring the

1
7

the form guadratic in(48) yields
1 \/—
a\+ahi+ag 1—?> =0, (41) -1 ~(—2b)* (8;—2b)*+4b*
. i . §4 2\/a1a3
and the dispersion relatia37) becomes . o .
) 5 and since the left-hand side is positive, we must choose the

Nolaghi+b][a\5+(a;—b)] “ +” sign to obtain a solution. Thus, the unique root s

—Nj[a;\2+b][a\ 2+ (a,— b)]. (42) the positive value which satisfies

: 1 1

For each of the abovg-mentloned cases, _the values of =1- " [(a,—2b)— \(a,— 2b)2+4b%]2. (49
a,, a,, az, andb are given in Table I. It is important to & a;83
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TABLE Il. Material parametersmodulii units are GPr

Reinforcing fibers E, E, 120 Gy,
Glass 54.2 18.1 0.250 8.96
Boron 208 20.8 0.300 6.95
Graphite 208 5.21 0.250 2.59
Bidirectional glass 54.2 54.2 0.250 8.96

Finally, note that a necessary and sufficient condition fo

pure imaginary values of; and\, in these cases is obtained
by substituting(49) into Eq. (44); the resulting inequality is
(ay,—2b)[—a,+6b+2(a,—2b)?+4b?]>0.

Using the fact thah,>2b, it is straightforward to show that
A1 and )\, lie at distinct points on the imaginary axis pro-

vided that
a,>— b, (50)

otherwise the solution will exhibit oscillation away from the
free edge. Note that, sineg is greater than 2, the inequal-
ity (50) can only be violated ib is negative. In addition, a
repeated root may arigee., \;=X\,; this occurs when

(51)
In this case, it can be expected that a solution of the form
W=(A;+A,Y)e 7ko¥gl(Xko~ o)

a.z: - %b

holds instead of the standard edge wave an&B8z It is

f(&)=F(N1,h2) = F(N2.\y),

possesses a zero. The bisector algorithm was then employed
to find a value of¢ for which

f(&)] <1072

This was carried out for four sets of parameters, representing
epoxy resin plates with a variety of reinforcing fibgsee
Table 1l). The first three sets of data are taken from Ndtris,

r

and the fourth is included to illustrate special céisg dis-
cussed in Sec. IV. In each example, precisely one valug of
was found in the interva{l,®); these results are shown in
Fig. 2. The ordinate of this figure is &/which is the edge
wave phase speed normalized with respect to the wave speed
of flexural waves propagating along the direction, i.e.,
wlky. Note the proximity of the solutions tg=1 when
0~0, 72, and also that the plot for bidirectional glass is
symmetric abou¥=n/4 as expected sinde,=D, here. To
reveal theabsolutemagnitudes of the wave speedséagar-

ies, Fig. 2 is replotted for the nondimensional propagation
speedc, in the various medidFig. 3), where

( R 1/41 w1/2<ph)1/4
Ch= = ,

D,/ & ko |Dy
i.e., this is the phase speed relative to that for a plane flexural
wave traveling in thex direction. As one might intuitively
expect, the magnitude in the change @f with angle of
inclination appears to be directly related to the valuekf

important to note, however, that in general the parameters-E,| (and, consequentiyD,—D,|), with materials exhibit-

required to satisfy Eq51) will not occur.

V. NUMERICAL SOLUTIONS AND CONCLUDING
REMARKS

Numerical solutions of Eq21) and (37) were obtained

ing stronger orthotropy experiencing greater changes in

phase speed. Thus, for graphite fibers, WEjVE, around

40, ¢, varies from unity to less than 0.4 @sncreases tar/2.
Values ofvy; and y, associated with Figs. 2 and 3 were

also computed; all three plates with unidirectional fiber sup-

port exhibited similar behavior in this respect. Plots of the

by using a linear search to locate an interval in which thereal and imaginary part o, and y, for boron fibers are

function shown in Figs. 4 and 5. The real parts of bath and v,
1 = T T T - e
0.9 | \'\.\ // i
.\ /‘l
\ /
.\.\. ././
\‘\.\ e - / FIG. 2. Phase speed of edge waves in
1 \ /' . . . .
F 08 \ / B the respective media normalized with
A 7 respect to flexural waves propagating
N // in the X direction, i.e., parallel to the
\ J plate edge.
07 - . ya R
'\'\\ s ’ Glass
T —— . o . Boron -------
Graphite --—-
Glass (bd) -
0.6 1 [ 1
0 /8 /4 3x/8 w/2
0

J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002

Thompson et al.: Edge waves on orthotropic plates 1761



1.3 T T T

1.2 Boron ------- -
Graphite ~—--—
L1 F Glass (bd) - o

FIG. 3. Phase speed of edge waves in
the respective media normalized with
respect to flexural waves propagating
in the principalx direction.

Cn

0.6 | S T i

04 LT e e ]

0.3 ! L ]
0 /8 w/4 3m/8 /2

show a clear maximum, indicating the point of strongest deated with complex values of; and y, can be gained by
cay for their respective exponent term\i(18), though the  considering the flexural displacement with nondimensional
maxima do not occur at quite the same angle of inclinationarguments, defined as

Note also that the occurrences Bfy,)=3(vy,)=0 agree

2
with the results of Sec. IV. Different behavior was observed ~ Aj 14
in the values ofy; andy, for bidirectional glass fibers, Figs. W=n (A1+A2)121 Al+A, XL~ ¥ (Dx/R)TY]
6 and 7, as might be expected. Here, the curves are symmet-
ric about #=m/4, and bothR(y,) and 9R(y,) exhibit . s
maxima at this angle. In this casg(vy,)=J(y,)=0 for 6 XexfliE(Dy /R X —lawt] . (52

e{0,7/4,7/2}, again agreeing with the results of Sec. IV. In

all cases, the weakest decay is observed at the limit valugdere, the spatial coordinates have been normalized with re-

6=0 and@=/2, since the curves faR(y,) and9R(y,) both  spect to the wave number of flexural waves in ihdirec-

exhibit minima here. This is to be expected, since, wheriion, i.e.,

0~0, m/2, the wave number is close =1, i.e., the value

for straight crested flexural waves. >”<:(
Further understanding of the oscillatory behavior associ-

phe?| ¥4
Dx) %

20

1.6 |

FIG. 4. Values of the decay coeffi-
cientsi(y;) for boron/epoxy.

12

0.8

04
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FIG. 5. Values of the oscillation coef-
ficientsJ(y;) for boron/epoxy.

0 /8 /4 3n/8 w/2
0
and of the null lines from the direction normal to the free edge,
) (phw2 1/4 Y, is given by
= Y.
= :
X . ¢~arctar6— WZ)),
A contour plot of the functiotW can then be produced, for a ¢

given value of the(arbitrary constantA;+A, and for any  where ¢ is measured positive counterclockwise looking
fixed time. This consistésee Fig. 8 of a regular pattern of down onto the plate as in Fig. 8. Thus in the limit cage®
lobes of alternating sign, separated by “null” lines on which and #= /2, the null lines are perpendicular to the edge, since
W=0. In all of these cases investigated herein it is foundj(y,)=0 here. In general the null lines are inclined to the
that R(y1)>NR(y,) (alsoA;/A,<0.3), so the behavior of edge, though one should note that despite efforts by the au-
the wave is almost completely determined by the relativethors no obvious relation betweemand the principal direc-
sizes ofR(y,) andJ(ys,), i.e., tions could be ascertained. This is borne out by a plo# of
~ L2 oy against the inclination angle given in Fig. 9. For the mate-
W=~R{Az exil (D, /R) (i £X—7,Y) ~i wt]}. rials with unidirectional fiber support$>0, since J(7,)
By explicitly separating real and imaginary parts, it is easy to<0, so the null lines tilt away from the direction of propa-
show that an accurate estimate for the angle of deviatipn, gation. For bidirectional glass fiber support, howewgr;0

R(y) o9 F b FIG. 6. Values of the decay coeffi-
cients 9(;) for bidirectional glass/
epoxy.

0.6 -
03 J
L 1 1 1
0 /8 /4 3m/8 /2
4
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FIG. 7. Values of the oscillation coef-
ficients J(1y;) for bidirectional glass/
epoxy.

0 /8 /4 3n/8 /2

for 0<¢<ml4, and <0 for 7/4<0<m/2. Due to the incli- the special cases discussed in Sec. IV and in previous litera-

nation of the null lines, a straight line perpendicular to theture, in general a unique edge wave solution exists for every

edge(in the Y direction will pass alternately through regions set of material parameters and inclination angle. The wave

in which W is positive and negative, thereby giving rise to generally exhibits both oscillation and decay away from the

the oscillations shown in earlier figures. free edge; the oscillation arising due to the “tilting” of the
To summarize, numerical evidence suggests that, as f@olution pattern which occurs whete (0,7/2) (see Figs. 8

20

FIG. 8. Contour plot of the nondimen-
sional flexural displacemenfv at time
t=0, for boron/epoxy in the case
6=l4, with A;+A,=1. Positive val-
ues of W oceur in regions with lighter

shading; dark shading indicateg/
<0.

0F

“\\
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FIG. 9. Deviation anglep of the null
lines from the direction normal to the
free edge(measured positive counter-
clockwise.

—7/10 L I
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and 9 and the discussion in the preceding paragrdpiige
waves propagating in the negatiedirection travel with the

/2
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