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This paper is concerned with an investigation into the existence of waves propagating along a free
edge of an orthotropic plate, where the edge is inclined at arbitrary angle to a principal direction of
the material. After deriving the governing equation and edge conditions, an edge wave ansatz is
substituted into this system to reduce it to a set of algebraic equations for the edge wave wave
number and wave vector. These are solved numerically for several typical composite materials
although analytic expressions can be obtained in the case of special values of the material
parameters and inclination angle. It is found that a unique edge wave solution, which generally
exhibits oscillation as well as decay away from the free edge, exists in all cases, and its wave speed
is independent of its direction of propagation along the plate. ©2002 Acoustical Society of
America. @DOI: 10.1121/1.1506686#

PACS numbers: 43.20.Gp, 43.20.Jr, 43.40.Dx@JGH#
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I. INTRODUCTION

This paper is concerned with the existence of ed
waves propagating on the free edge of a thin elastic pl
Such flexural waves are localized about the edge, i.e., h
exponential decay in the direction normal to the free ed
and therefore their energy vector is directed along the ed
These solutions show similarity with other localized wav
such as Rayleigh waves in elasticity, beach waves in w
wave theory, etc. The existence of edge waves along the
edge of a homogeneous and isotropic semi-infinite thin pl
modeled using Kirchhoff theory, was first noted b
Konenkov1 in 1960. Published in a Russian journal, this r
sult was little known in the West until it was independen
rediscovered by Thurston and McKenna2 and by Sinha3 in
articles published in 1974. Indeed, it was also ‘‘predicted’’
De La Rue4 in 1972, and surprisingly, continues to this d
to be commonly overlooked by researchers~see, e.g., a re
cent paper by Kauffmann5!. Konenkov and these other au
thors established that, for isotropic plates, precisely one e
wave solution exists for all values of the two free paramete
namely the bending stiffness and Poisson’s ratio. The e
wave speed is found to be proportional to and slightly l
than the speed of flexural~one-dimensional! waves on a plate
of infinite extent.

Edge waves are not unique to isotropic Kirchhoff th
plates; Thurston, Boyd, and McKenna6 and Krylov7 have
independently looked for guided elastic modes on the tip o
slender wedge, and work by Norris8 in 1994 demonstrated
the existence of edge waves in orthotropic Kirchhoff plat
More recently Norris, Krylov, and Abrahams9 investigated
the propagation of edge waves on thick plates, and did

a!Electronic mail: i.d.abrahams@ma.man.ac.uk
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by generalizing the model to incorporate Mindlin pla
theory. Their results were consistent with that found
Konenkov, as were those of Lagasse10 and Burridge and
Sabina,11,12 who employed finite element modeling to exam
ine the existence of localized waves on the edge of a th
elastic structure employing full three-dimensional elastic
Experiments in 1976 by Lagasse and Oliner13 have demon-
strated the existence of the edge wave with wave spee
predicted by theory, although the behavior of the wave sp
at higher frequencies is better modeled using the impro
theories, such as Mindlin plate theory.9 Various authors have
concerned themselves with the existence of edge wa
along fluid-loaded structures: Krylov14 has an approximate
approach to such problems~for plates of wedge shaped cros
section submerged in water! employing a ray theory analysi
in the limit of high frequency. His results do not prove th
such wave can propagate without loss, but there is so
experimental support for their existence15 even if they do
radiate a small amount of energy in the direction perpend
lar to the edge. Only recent work by Abrahams and Norri16

has established rigorously that unattenuated edge waves
exist, within a limited frequency window, on thin elast
plates composed of a range of typical materials, from alu
num to Plexiglas™, submerged in air.

The presence or absence of edge waves on thin ela
structures can be of great importance in the field of non
structive evaluation~NDE! of material components. Ultra
sonic elastic waves are regularly employed in NDE to exa
ine an engineering specimen, such as a rotor blade o
aerojet aircraft, and from measurement of the scattered fi
any imperfections or inclusions in the body can be foun
This is an inverse problem, determining the shape, size
nature~e.g., inclusion, void, crack, change of phase, etc.! of
defects from the overall measured far field. It is helpful, f
12(5)/1756/10/$19.00 © 2002 Acoustical Society of America
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the development of efficient inverse routines, to have kno
edge of forward problems; that is, the scattering signat
produced by a wide variety of common material inhomog
neities. For cracks on thin structures this scattering signa
can be greatly altered by the existence or nonexistenc
flexural edge waves, especially in the shadow zone where
specular field is absent and so the edge wave may be sig
cantly more energetic than the diffracted wave shed from
crack edges. In the context of NDE the authors17 are cur-
rently investigating the forward problem of the diffraction
flexural waves by a semi-infinite crack in a fiber reinforc
thin plate, modeled using orthotropic Kirchhoff thin pla
theory. This is an important problem to study because of
now widespread use of fiber reinforced and/or laminated
terials in industrial applications. These offer extreme
strong and light materials but inspection of critical comp
nents is still required because of the possibility of delami
tion, fiber debonding, or other modes of fracture.

For the above-mentioned diffraction problem17 a crack
can, in the general case, be inclined at arbitrary angle to
principal axes of orthotropy. In view of the relevance of ed
waves to energy radiation in such models, a precursor s
is needed to establish the existence or nonexistence of
waves alonginclined edges. Norris8 proved existence of a
unique edge wave on an orthotropic plate, but this resu
only given for the case in which the free edge is parallel t
principal direction of the material. Thus, in this article, th
possibility of edge waves in anisotropic Kirchhoff thin plat
when the free edge is inclined at general angle to a princ
direction is investigated. In Sec. II, the governing equat
and edge conditions governing such a system are deri
where the notation employed by Timoshenko a
Woinowsky-Krieger18 is loosely followed. An edge wave an
satz~of the form employed by Konenkov! is substituted into
the system, in Sec. III, and from this a set of algebraic eq
tions is obtained for the edge wave wave number and w
vector. These equations are a generalization of those fo
by Norris,8 and in general do not permit analytic solution
For several special values of the material parameters
inclination angle, explicit solutions are readily obtainab
and these are discussed in Sec. IV. Finally, numerical s
tions to the general system of equations are given in Sec
along with some concluding remarks. In particular, it will b
shown that a single edge wave solution is found to exis
all cases considered; however, in general, it possesses o
lation as well as decay in the direction orthogonal to the f
edge, unlike solutions in previous literature, all of whi
exhibit pure decay.

II. DERIVATION OF EQUATIONS

The classical equations of plate flexure for an orthot
pic, homogeneous thin plate are studied in detail
Timoshenko,18 and summarized by Norris.8 Employing the
latter author’s notation, and taking the principal axes
orthotropy, or fiber direction~s!, as x and y, the governing
equation for flexural~transverse! displacementsW is

Dx

]4W

]x4 12H
]4W

]x2]y2 1Dy

]4W

]y4 1rh
]2W

]t2 50, ~1!
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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wherer is the plate density,h is the plate thickness,t denotes
time, and the bending stiffnesses in thex, y directions are
Dx , Dy , respectively. Further H5D112Dxy , where
Dx , Dy , D1, andDxy can be written as

Dx5
h3

12

E1

12n12n21
, Dy5

n21

n12
Dx ,

D15n21Dx , Dxy5
h3

12
G12,

and

n21E15n12E2 .

Here, the suffixes 1 and 2 refer to thex and y directions,
respectively, soE1 is the Young modulus in thex direction,
G12 is the shear modulus in thex–y plane, andn12 is the
Poisson ratio for transverse strain in they direction caused by
stress in thex direction, with similar definitions forE2 and
n21. Note that the condition of positive definiteness of stra
energy density means that the material parameters must
isfy the following conditions:

Dx.0, Dy.0, Dxy.0, DxDy.D1
2. ~2!

Note that the third inequality gives

H.D1 , ~3!

while the final inequality reveals that

ADxDy.D1.2ADxDy, ~4!

whereD1 takes negative values whenn12 andn21 are nega-
tive. It is noted that the bending momentsMx andM y arising
from distributions of in-plane normal stressessx and sy ,
and the twisting momentMxy and shear forces per un
length Qx , Qy arising from the shear stresses in the pla
can be written in terms of the transverse displacement,
spectively, as

Mx52S Dx

]2W

]x2 1D1

]2W

]y2 D , ~5!

M y52S Dy

]2W

]y2 1D1

]2W

]x2 D , ~6!

Mxy52M yx52Dxy

]2W

]x]y
, ~7!

Qx52
]

]x S Dx

]2W

]x2 1H
]2W

]y2 D , ~8!

and

Qy52
]

]y S Dy

]2W

]y2 1H
]2W

]x2 D . ~9!

As mentioned in Sec. I, a semi-infinite plate is cons
ered where the free-edge is inclined at arbitrary angle to
principal axes of orthotropy. Thus, as shown in Fig. 1, co
dinatesX, Yare chosen such that the plate is infinite in theX
direction, semi-infinite inY with a free edge along the line
Y50, and with the principal directionx inclined at an angle
uP@0,p/2# to the X axis. Expressions are required for th
1757Thompson et al.: Edge waves on orthotropic plates
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bending momentMY and the generalized Kirchhoff shea
force

VY5QY1]MYX /]X, ~10!

whereQY is the shear force arising from the shear stresstYZ

~i.e., acting on the edge atY50 but in the direction norma
to the plane of the plate! which can be written as

QY5
]MY

]Y
1

]MYX

]X
. ~11!

The free-edge boundary conditions for a Kirchhoff thin pla
stipulate that these quantities vanish along this edge~see
Graff19!. These conditions can be obtained in terms of
bending and twisting moments in the principal directionsx,y
by considering a small triangular section of the plate. Om
ting details, it is easily shown that

MY5s2Mx1c2M y12scMxy , ~12!

MYX5~s22c2!Mxy2sc~Mx2M y!, ~13!

and also

QY52sQx1cQy , ~14!

where here and henceforth the notationc5cosu and s
5sinu has been introduced for brevity. Using the coordin
transformation for derivatives,

]

]x
5c

]

]X
2s

]

]Y
,

]

]y
5s

]

]X
1c

]

]Y
,

with Eqs. ~1!, ~5!–~9!, ~10!, ~11!, and ~12!–~14!, the entire
system is now rewritten in terms of derivatives parallel a
perpendicular to the edge of the plate. Thus, the govern
equation becomes

FIG. 1. A square section of the orthotropic plate. The dotted lines repre
a principal direction of the material, which is parallel to thex axis, and the
free edge lies alongY50.
1758 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
e

-

e

d
g

FDxS s
]

]Y
2c

]

]XD 4

12HS s
]

]Y
2c

]

]XD 2S c
]

]Y
1s

]

]XD 2

1DyS c
]

]Y
1s

]

]XD 4GW1rh
]2W

]t2 50, ~15!

while the bending moment is given by

MY52F ~s2Dx1c2D1!S c
]

]X
2s

]

]YD 2

1~s2D11c2Dy!

3S c
]

]Y
1s

]

]XD 2

14scDxyS s
]

]Y
2c

]

]XD
3S c

]

]Y
1s

]

]XD GW, ~16!

and the Kirchhoff generalized shear force is

VY5H sF2HS s
]

]Y
2c

]

]XD S c
]

]Y
1s

]

]XD 2

2DxS s
]

]Y

2c
]

]XD 3G1cF2HS s
]

]Y
2c

]

]XD 2S c
]

]Y
1s

]

]XD
2DyS c

]

]Y
1s

]

]XD 3G2
]

]XFsc~D12Dx!

3S s
]

]Y
2c

]

]XD 2

1sc~Dy2D1!S c
]

]Y
1s

]

]XD 2

12(s22c2)DxyS s
]

]Y
2c

]

]XD S c
]

]Y
1s

]

]XD G J W.

~17!

III. EDGE WAVE SOLUTIONS

Following the approach of Konenkov,1 a solution of the
governing equation~1! is sought, of the form

W5R@~A1e2g1k0Y1A2e2g2k0Y!ei ~jk0X2vt !#, ~18!

wherev is the frequency andk0 is a suitable wave numbe
selected so that the parameterj lies in the range~1,̀ !. For
exponential decay away from the free edge, the coefficie
g1 andg2 must lie in the open right half plane. This repr
sents a flexural edge wave solution, i.e., where the energ
confined to the vicinity ofY50, propagating in the positive
X direction. Clearly, for a comprehensive study of the ex
tence of such waves, the case of propagation in the2X
direction must also be examined. For convenience this
most neatly incorporated by maintainingjP~1,̀ ! and in-
stead without loss of generality allowing the orientati
angleu to range over@2p/2,p/2# ~Fig. 1!. This symmetry is
easily observed by changing sin~u! to sin~2u!, and]/]X to
2]/]X, in ~15!–~17!; the governing equation and bounda
conditions remain unaltered.

To simplify the subsequent analysis, it is convenient
write

g j52 i jl j , ~19!

for j P$1,2%, and thus bothl1 and l2 must lie in the open
upper half plane. The edge wave now becomes

nt
Thompson et al.: Edge waves on orthotropic plates
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W5~A1ei jk0l1Y1A2ei jk0l2Y!ei ~jk0X2vt ! ~20!

and substitution into Eq.~15! yields the auxiliary equations

Dx~sl j2c!412H~sl j2c!2~cl j1s!21Dy~cl j1s!4

2
R

j4 50, j P$1,2%, ~21!

where

R5
rhv2

k0
4 . ~22!

This is a quartic polynomial inl, with real coefficients,
which can be rewritten in the form

a1l41b1l31a2l21b2l1S a32
R

j4D50, ~23!

with

a15s4Dx1c4Dy12s2c2H, ~24!

b154sc@2s2Dx1c2Dy1H~s22c2!#, ~25!

a256s2c2~Dx1Dy22H !12H, ~26!

b254sc@2c2Dx1s2Dy2H~s22c2!#, ~27!

a35c4Dx1s4Dy12s2c2H. ~28!

As stated, the edge wave must decay asY→` and so the two
rootsl1 andl2 must have positive imaginary parts; the tw
remaining roots of~23! are therefore their complex conju
gatesl1* andl2* . Hence~29! may be cast as

a1~l2l1!~l2l1* !~l2l2!~l2l2* !50 ~29!

from which it can be deduced that the constant term is

a32
R

j4 5a1ul1u2ul2u2. ~30!

Now, the inequalities in~3!, ~4! can be employed to show
that

a15s4Dx1c4Dy12s2c2H.s4Dx1c4Dy12s2c22D1.

s4Dx1c4Dy22s2c2ADxDy5~s2ADx2c2ADy!2>0
~31!

and similarly

a3.~c2ADx2s2ADy!2>0 ~32!

for all values of the parameters. Therefore, the right-ha
side of ~30! is greater than zero and rearranging gives
bound

j4.
R

a3
. ~33!

It is thus convenient to choosek0 so that

R5a35c4Dx1s4Dy12s2c2H, ~34!

thereby ensuring thatjP~1,̀ !. Note that this particular value
of k0 is the wave number of a plane wave traveling in theX
direction, and the positivity of the normalized wave pha
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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speed 1/j is a direct consequence of the positivity of th
strain energy in the plate.

Now, on using Eqs.~16! and ~17!, and applying the
boundary conditionsMY50 and VY50 along the lineY
50, it can be shown that

(
j 51

2

Aj@Dxs
2~sl j2c!21Dyc

2~cl j1s!2

12Hsc~sl j2c!~cl j1s!1D1#50, ~35!

and

(
j 51

2

Aj@Dxs~sl j2c!2~sl j22c!1Dyc~cl j1s!2~cl j12s!

12H~sl j2c!~cl j1s!~scl j1s22c2!2D1l j #50.

~36!

The unknown quantitiesA1 and A2 can be then eliminated
between these last two equations to give the dispersion r
tion:

F~l1 ,l2!5F~l2 ,l1! ~37!

in which

F~l1 ,l2![@Dxs
2~sl12c!21Dyc

2~cl11s!2

12Hsc~sl12c!~cl11s!1D1#

3@Dxs~sl22c!2~sl222c!1Dyc~cl21s!2

3~cl212s!12H~sl22c!~cl21s!

3~scl21s22c2!2D1l2#. ~38!

The roots,l j , j 51,2 of the polynomial~21! can be substi-
tuted into ~38! so that it is a single equation for the wav
numberj. In the cases treated in earlier literature, bothg1

and g2 were found to be positive real. This corresponds
positive imaginary values ofl1 andl2, but is impossible in
general, since settingl5 iL , with LPR1, and taking the
imaginary part of Eq.~21! yields

sc@Dxs
22Dyc

21H~c22s2!#L2

5sc@Dxc
22Dys

22H~c22s2!#, ~39!

from which it is clear that two distinct real positive values
L cannot exist except in cases where both sides of this e
tion are zero, which are discussed in the following section
general, therefore, edge waves must exhibit oscillation
well as decay in theY direction, and Eq.~37! must be solved
numerically; this is performed in Sec. V.

At the beginning of this section the angle of orientatio
u, between the free edgeY50 and the principal direction o
orthotropyy50 was taken over@2p/2,p/2# in order to ac-
count for all possible edge wave solutions. It is now conv
nient to relate the form of the edge wave for negative val
of u ~or left traveling waves! to that for positiveu ~right
traveling waves! and thereby restrict attention hencefort
without loss of generality, touP@0,p/2#. If the angleu is
replaced by2u in the auxiliary equation~23! then the coef-
ficients aj , j 51,2,3 remain the same whileb1 and b2

change their signs. Therefore, the four roots are related to
1759Thompson et al.: Edge waves on orthotropic plates
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former roots; these are now2l1* , 2l2* in the upper half
plane and2l1 , 2l2 in the lower half plane. From this i
can be concluded that the change of sign of the orienta
angle yields a change in sign in the real part ofl j , j
51,2, while the imaginary part~the decay rate in theY di-
rection! remains the same. With the changedl j the disper-
sion relation~37! becomes

F~2l1* ,2l2* !uu→2u5F~2l2* ,2l1* !uu→2u, ~40!

whereF is given in Eq.~38!. This is just the conjugate equa
tion to Eq. ~37! and so yields the samereal root j, if one
exists. In conclusion, left and right propagating edge wa
have the same phase speed, and decay with identical e
nents in the directionY perpendicular to the edge. Howeve
inspection of Eqs.~35! and ~36! reveals thatAj , j 51,2 are
changed to their complex conjugates asu changes sign, and
for left traveling waves the oscillatory behavior inY for each
of the two exponents inW ~20! is exactly out of phase with
that for right traveling waves.

IV. SPECIAL CASES

As well as allowing the possibility of real values ofg1

andg2, the vanishing of both sides of Eq.~39! gives rise to
four special cases in which an analytical solution is ea
obtained. It is noted that, in view of the inequalities~2!, the
terms of Eq.~23! which are of order zero, two, and four inl
are strictly positive; hence meaningful simplification occu
only when the coefficients ofl3 and l, b1 and b2, are si-
multaneously zero. By inspection of Eq.~39!, it is evident
that there are four cases to consider, namely:

~i! Dx5Dy5H5D ~say!;
~ii ! u50;
~iii ! u5p/2;
~iv! Dx5Dy5D ~say!, u5p/4.

Of the above,~i! is that of isotropy, as investigated b
Konenkov,1 Thurston and McKenna,2 etc., ~ii ! and ~iii ! are
essentially equivalent and were discussed by Norris,8 and
~iv! appears to be new. In each case, Eq.~23! is reduced to
the form

a1l j
41a2l j

21a3S 12
1

j4D50, ~41!

and the dispersion relation~37! becomes

l2@a1l1
21b#@a1l2

21~a22b!#

5l1@a1l2
21b#@a1l1

21~a22b!#. ~42!

For each of the above-mentioned cases, the values
a1 , a2 , a3, and b are given in Table I. It is important to

TABLE I. Coefficient values in each of the special cases.

Case a1 a2 a3 b

i D 2D D D1

ii Dy 2H Dx D1

iii Dx 2H Dy D1

iv (H1D)/2 3D2H (H1D)/2 (D2H)/21D1
1760 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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note that, in each case, due to the inequalities~2!, the fol-
lowing relations hold:

a1.0, a3.0, a222b.0, a1a3.b2. ~43!

An example of case~iv! could be, for instance, a fiber rein
forced plate with identical fibers aligned in bothx and y
directions. Clearly,u56p/4 are also lines of symmetry, an
so the plate can be viewed as orthotropic with principal a
X and Y when u5p/4. From Table I it is seen that, in thi
rotated frame, the effectiveH value isa2/25(3D2H) and
the bending stiffnesses (a1 and a3) are DX5DY5(H
1D)/2.

Equation~41! may be solved to give the values ofl1

andl2 in terms of the as yet unknown parameterj. Thus,

l j
25

1

2a1
F2a21~21! jFa2

224a1a3S 12
1

j4D G1/2G , ~44!

which immediately yields the relations

l1
21l2

252
a2

a1
, ~45!

and

l1
2l2

25
a3

a1
S 12

1

j4D . ~46!

Now, sincel1 and l2 must lie in the upper half plane, i
follows that eitherl1

2 and l2
2 are real and negative, or@by

Eq. ~44!#, they are complex conjugates. In either case,
have

l1
25reif,

for some positiver and fP@2p,0). Again using the fact
that l1 andl2 must lie in the upper half plane, this leads

l15Arei ~f/21p!,

and

l25Are2 if/2.

Consequently, it is clear from~46! that

l1l252Aa3 /a1A121/j4. ~47!

In view of this, along with Eq.~45!, the dispersion relation
~42! reduces to

a1a3S 12
1

j4D1Aa1a3~a222b!A12
1

j42b250. ~48!

Possible roots forj are now easily obtained; factoring th
quadratic in~48! yields

A12
1

j4
5

2~a222b!6A~a222b!214b2

2Aa1a3

,

and since the left-hand side is positive, we must choose
‘‘ 1’’ sign to obtain a solution. Thus, the unique root forj is
the positive value which satisfies

1

j4 512
1

4a1a3
@~a222b!2A~a222b!214b2#2. ~49!
Thompson et al.: Edge waves on orthotropic plates



fo
d

t
-

e

m

te

th

oyed

ting

s,

of
n

peed

is

ion

ural

in

e
p-

he
Finally, note that a necessary and sufficient condition
pure imaginary values ofl1 andl2 in these cases is obtaine
by substituting~49! into Eq. ~44!; the resulting inequality is

~a222b!@2a216b12A~a222b!214b2#.0.

Using the fact thata2.2b, it is straightforward to show tha
l1 and l2 lie at distinct points on the imaginary axis pro
vided that

a2.2 2
3b, ~50!

otherwise the solution will exhibit oscillation away from th
free edge. Note that, sincea2 is greater than 2b, the inequal-
ity ~50! can only be violated ifb is negative. In addition, a
repeated root may arise~i.e., l15l2; this occurs when

a252 2
3b. ~51!

In this case, it can be expected that a solution of the for

W5~A11A2Y!e2g1k0Yei ~jXk02vt !

holds instead of the standard edge wave ansatz~18!. It is
important to note, however, that in general the parame
required to satisfy Eq.~51! will not occur.

V. NUMERICAL SOLUTIONS AND CONCLUDING
REMARKS

Numerical solutions of Eq.~21! and ~37! were obtained
by using a linear search to locate an interval in which
function

TABLE II. Material parameters~modulii units are GPa!.

Reinforcing fibers E1 E2 n12 G12

Glass 54.2 18.1 0.250 8.96
Boron 208 20.8 0.300 6.95
Graphite 208 5.21 0.250 2.59
Bidirectional glass 54.2 54.2 0.250 8.96
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f ~j!5F~l1 ,l2!2F~l2 ,l1!,

possesses a zero. The bisector algorithm was then empl
to find a value ofj for which

u f ~j!u,10212.

This was carried out for four sets of parameters, represen
epoxy resin plates with a variety of reinforcing fibers~see
Table II!. The first three sets of data are taken from Norri8

and the fourth is included to illustrate special case~iv! dis-
cussed in Sec. IV. In each example, precisely one valuej
was found in the interval~1,̀ !; these results are shown i
Fig. 2. The ordinate of this figure is 1/j, which is the edge
wave phase speed normalized with respect to the wave s
of flexural waves propagating along theX direction, i.e.,
v/k0. Note the proximity of the solutions toj51 when
u'0, p/2, and also that the plot for bidirectional glass
symmetric aboutu5p/4 as expected sinceDx5Dy here. To
reveal theabsolutemagnitudes of the wave speeds asu var-
ies, Fig. 2 is replotted for the nondimensional propagat
speedcn in the various media~Fig. 3!, where

cn5S R

Dx
D 1/41

j
5

v1/2

k0j S rh

Dx
D 1/4

,

i.e., this is the phase speed relative to that for a plane flex
wave traveling in thex direction. As one might intuitively
expect, the magnitude in the change ofcn with angle of
inclination appears to be directly related to the value ofuE1

2E2u ~and, consequentlyuDx2Dyu), with materials exhibit-
ing stronger orthotropy experiencing greater changes
phase speed. Thus, for graphite fibers, withE1 /E2 around
40,cn varies from unity to less than 0.4 asu increases top/2.

Values ofg1 andg2 associated with Figs. 2 and 3 wer
also computed; all three plates with unidirectional fiber su
port exhibited similar behavior in this respect. Plots of t
real and imaginary part ofg1 and g2 for boron fibers are
shown in Figs. 4 and 5. The real parts of bothg1 and g2
in
h
g

FIG. 2. Phase speed of edge waves
the respective media normalized wit
respect to flexural waves propagatin
in the X direction, i.e., parallel to the
plate edge.
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h
g

FIG. 3. Phase speed of edge waves
the respective media normalized wit
respect to flexural waves propagatin
in the principalx direction.
de
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lu

e
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nal

re-
show a clear maximum, indicating the point of strongest
cay for their respective exponent term inW ~18!, though the
maxima do not occur at quite the same angle of inclinati
Note also that the occurrences ofI(g1)5I(g2)50 agree
with the results of Sec. IV. Different behavior was observ
in the values ofg1 andg2 for bidirectional glass fibers, Figs
6 and 7, as might be expected. Here, the curves are sym
ric about u5p/4, and both R(g1) and R(g2) exhibit
maxima at this angle. In this case,I(g1)5I(g2)50 for u
P$0,p/4,p/2%, again agreeing with the results of Sec. IV.
all cases, the weakest decay is observed at the limit va
u50 andu5p/2, since the curves forR(g1) andR(g2) both
exhibit minima here. This is to be expected, since, wh
u'0, p/2, the wave number is close toj51, i.e., the value
for straight crested flexural waves.

Further understanding of the oscillatory behavior asso
1762 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
-

.

d

et-

es

n
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ated with complex values ofg1 and g2 can be gained by
considering the flexural displacement with nondimensio
arguments, defined as

Ŵ5RH ~A11A2!(
j 51

2 S Aj

A11A2
Dexp@2g j~Dx /R!1/4Ŷ#

3exp@ i j~Dx /R!1/4X̂2 ivt#J . ~52!

Here, the spatial coordinates have been normalized with
spect to the wave number of flexural waves in thex direc-
tion, i.e.,

X̂5S rhv2

Dx
D 1/4

X,
-
FIG. 4. Values of the decay coeffi
cientsR(g j ) for boron/epoxy.
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FIG. 5. Values of the oscillation coef-
ficientsI(g j ) for boron/epoxy.
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and

Ŷ5S rhv2

Dx
D 1/4

Y.

A contour plot of the functionŴ can then be produced, for
given value of the~arbitrary! constantA11A2 and for any
fixed time. This consists~see Fig. 8! of a regular pattern of
lobes of alternating sign, separated by ‘‘null’’ lines on whic
Ŵ50. In all of these cases investigated herein it is fou
that R(g1)@R(g2) ~also A1 /A2,0.3), so the behavior o
the wave is almost completely determined by the relat
sizes ofR(g2) andI(g2), i.e.,

Ŵ'R$A2 exp@~Dx /R!1/4~ i jX̂2g2Ŷ!2 ivt#%.

By explicitly separating real and imaginary parts, it is easy
show that an accurate estimate for the angle of deviationf,
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
d

e

o

of the null lines from the direction normal to the free edg
Ŷ, is given by

f'arctanS 2
I~g2!

j D ,

where f is measured positive counterclockwise lookin
down onto the plate as in Fig. 8. Thus in the limit casesu50
andu5p/2, the null lines are perpendicular to the edge, sin
I(g2)50 here. In general the null lines are inclined to t
edge, though one should note that despite efforts by the
thors no obvious relation betweenf and the principal direc-
tions could be ascertained. This is borne out by a plot of
against the inclination angleu given in Fig. 9. For the mate
rials with unidirectional fiber support,f.0, since I(g2)
,0, so the null lines tilt away from the direction of propa
gation. For bidirectional glass fiber support, however,f.0
-
FIG. 6. Values of the decay coeffi
cients R(g j ) for bidirectional glass/
epoxy.
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FIG. 7. Values of the oscillation coef-
ficients I(g j ) for bidirectional glass/
epoxy.
he
s
to

f

era-
ery
ave
the
e

for 0,f,p/4, andf,0 for p/4,u,p/2. Due to the incli-
nation of the null lines, a straight line perpendicular to t
edge~in theŶ direction! will pass alternately through region
in which Ŵ is positive and negative, thereby giving rise
the oscillations shown in earlier figures.

To summarize, numerical evidence suggests that, as
1764 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
or

the special cases discussed in Sec. IV and in previous lit
ture, in general a unique edge wave solution exists for ev
set of material parameters and inclination angle. The w
generally exhibits both oscillation and decay away from
free edge; the oscillation arising due to the ‘‘tilting’’ of th
solution pattern which occurs whenuP~0,p/2! ~see Figs. 8
-
FIG. 8. Contour plot of the nondimen
sional flexural displacementŴ at time
t50, for boron/epoxy in the case
u5p/4, with A11A251. Positive val-
ues ofŴ occur in regions with lighter
shading; dark shading indicatesŴ
,0.
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FIG. 9. Deviation anglef of the null
lines from the direction normal to the
free edge~measured positive counter
clockwise!.
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and 9 and the discussion in the preceding paragraph!. Edge
waves propagating in the negativeX direction travel with the
same speed as their counterparts with phase vector poin
in the positiveX direction; however, their oscillatory behav
ior in the orthogonal directionY is p out of phase. That is, in
Eq. ~18!, whenX is changed to2X, the complex conjugate
of the expression in parentheses is taken. A final impor
point to note concerns the values of the parameters for w
edge waves have pure decay in theY direction. Norris’s pre-
vious article8 might lead a reader to hold the mistaken im
pression that, foru50, p/2 @i.e., cases~ii ! and ~iii ! of Sec.
IV #, all parameter values will lead toI(g j )50, j 51,2. This
is not true, and by inspection of his Eq.~7!, or equivalently
~45!, g j , j 51,2, certainly cannot be positive real whenH
~or a2) is less than or equal to zero. However, there are a
positive values ofH for which theY behavior is oscillatory.
This can be deduced from the inequality~50!, which, from
Table I, implies that pure decay away from the edge occu
and only if

H.2
D1

3
~53!

or equivalently

Dxy.2
2D1

3
, ~54!

and so forD1,0 this yields a window of positive values o
H andDxy for which this condition is violated.
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