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The existence of flexural waves confined to the free edge of a fluid-loaded plate
is established theoretically. Whereas analogous in vacuo edge waves exist for all
parameter values, submerged plates are shown herein to support such waves only
under very light fluid-loading conditions. For example, thin plates of aluminium,
brass or Plexiglas will not support edge waves in water, although edge waves are
permissible for each of these materials in air. The analysis is based on classical thin-
plate theory and employs the Wiener—Hopf technique to derive the dispersion relation
for the edge-wave wavenumber as a function of frequency. In the limit of zero fluid
loading the dispersion relation predicts the well-known result of Konenkov for edge
waves on thin plates in vacuo.
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1. Introduction

Thin elastic plates in vacuo with a free edge support flexural edge waves with wave
speed proportional to and slightly less than the speed of flexural waves on a plate of
infinite extent. This phenomenon was predicted independently by Konenkov (1960),
Thurston & McKenna (1974) and Sinha (1974), all using the classical theory of
thin-plate flexural motion. Subsequent experiments demonstrated the existence of
the edge wave (Lagasse & Oliner 1976) with wave speed as predicted by theory,
although the behaviour of the wave speed at higher frequencies is better modelled
using a refined theory, such as the Mindlin plate theory (Norris et al. 2000). The edge
wave is similar to a Rayleigh wave in that it decays exponentially with distance from
the free edge, and wave energy is confined to the vicinity of the edge and propagates
parallel to the edge. The speed of the edge wave is only marginally less than the
flexural wave speed with a constant of proportionality that tends to unity as the
Poisson’s ratio vanishes. The edge wave is also predicted by more ‘exact’ analyses
(finite-element method), and is also present in anisotropic thin plates (Norris 1994).

All of these studies, theoretical and experimental, ignored the influence of fluid
loading. In practical situations, flexural plate motion almost always occurs in the
presence of an exterior fluid (Cannell 1976), except in extraordinary circumstances,
such as structures in outer space! The purpose of this paper is to examine whether
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1560 I. D. Abrahams and A. N. Norris

Figure 1. The dimensionless Cartesian coordinate system (2.12) showing the thin
elastic plate occupying = > 0, and the direction of propagation of the edge wave.

unattenuated edge waves can exist in the presence of a fluid, or whether the envelop-
ing fluid radiates energy in a direction perpendicular to the edge. To answer this
question most easily we restrict our study to the thin-plate theory for an isotropic
material in an inviscid fluid. The problem is defined in §2 and solved in §3. The
nature of the acoustic far-field is examined in §4, while the existence of edge waves
is discussed in § 5, and illustrated by numerical examples for practical material com-
binations. Concluding remarks are offered in § 6.

2. Formulation of the eigenvalue problem

(a) The physical problem

As mentioned above, the model under consideration is composed of a thin elastic
plate of semi-infinite extent immersed in a compressible fluid (see figure 1). Defining
Cartesian coordinates (&, ¢, 2), then the plate occupies the region & > 0, —oco < § <
oo, £ = 0, and the deflections on it are governed (see, for example, Junger & Feit
1986) by

2 97\ 02
D( == + == | &+ pph— = —p|T, 2.1

(aa/\:z 8?32) pp 8152 p|— ( )
where (&, ,t) is the displacement in the 2-direction and p|T is the pressure jump,

lim [p(#, 9, +&.7) — p(&, §, e, D),
E—>
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Edge waves on elastic plates 1561

across the plate. The latter loading is exerted by the fluid, which occupies the infinite
region exterior to the plate. This fluid is taken as inviscid and compressible, and it
undergoes small motions about its stationary ambient state and so can be described
in terms of a velocity potential, ¢, defined from the velocity field

9 9 o
_ (%’a_g’£>¢' (2.2)

Hence, the pressure can be expressed as

p = — . 23
p=—pis (2.3)

The potential itself satisfies

2 9?6 99 109%

— e Tt = Ss— 2.4
o2 992 022 2 9i2’ (24)
and the plate displacement is related to the velocity potential through
o 9¢
ow _9¢ (2.5)
ot 0z

In (2.1), the constants are pp, the plate density, and D, the plate bending stiffness,
which may be written in terms of Poisson’s ratio, v, and Young’s modulus, E, for
the solid material as well as the plate thickness h, namely:
Eh3
D= —— . 2.6

12(1 — 12) (26)
The fluid is characterized by its speed of sound ¢ and its density p¢. The plate is free
on the edge x = 0; that is, there are no applied forces or moments, and so (Graff
1975) the deflection must satisfy the edge constraints:

O*w O*w .

_6@2 + V_aQQ - 07 r = 07 (27)
83 83 )
W+(27V)W:O7 z =0. (28)

A travelling-wave solution is sought in which the wave propagates without atten-
uation in the g-direction, and its energy is confined to the vicinity of the plate edge.
That is, disturbances in the plate decay to zero as & — oo,

w(Z,9,t) — 0, & — oo, (2.9)
and also in the fluid

b—0, V—0, |22+ 2% — cc. (2.10)

Therefore, the model is essentially an eigenvalue problem, where the positive real
wavenumber for waves propagating in the g-direction is sought for zero forcing.
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(b) Non-dimensional parameters

Before solving the above system, it is useful to non-dimensionalize. If a bend-
ing wave propagates along the plate (2.1) with angular frequency w, the in vacuo
displacements have wavenumber

1/4
pphw?
= . 2.11
P ( x ) (2.11)

Thus, p~! is an appropriate length-scale and w™! is a suitable time-scale to scale
the boundary-value problem upon

T = I, Yy =g, z = Zu, t = tw, (2.12)
and the dependent variables are scaled according to

w = g, ¢=é(“§>, p=ﬁ< “2). (2.13)

w?ps

We now seek travelling-wave solutions of the form
b(z,y, 2, t) = Re{t(x, 2) explikug — iwt]} = Re{y(, 2) expliky — it]}, (2.14)
w(a, y,t) = Re{n(x) expliky — i)}, (2.15)

where the reduced dependent variables ¥(z, z), n(x) can, respectively, by substitu-
tion, be shown to satisfy

0%y 0%

— ==+ ki -k =0 2.16

633'2 + 622 +( 0 )Ilp ) ( )
for (z,z) exterior to the plate from (2.4), in which k¢ is the dimensionless fluid
wavenumber

ko = w/pc, (2.17)
and
{ <% - k2> - 1}”(9”) = —ir[y(x,0+) = ¢(x,0-)], =>0, (2.18)
from (2.1), where
= b ooy (2.19)

"T DT Th

is a dimensionless fluid-loading parameter. Note that this quantity 7 depends on
frequency and on the thickness of the plate. It will later be shown to be useful to
define a frequency-independent non-dimensional fluid-loading parameter e, where

1/2
=P\ (2.20)
c \ 12(1 —v2)p

This parameter is also independent of the plate thickness. In terms of €, it may be
shown that

7 =¢/ko, (2.21)
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Edge waves on elastic plates 1563

and

ko = yw/we, (2.22)

where the coincidence frequency w. = 27 f., at which the acoustic wavenumber equals
that for in vacuo bending waves on the plate (kg = 1) is given by
_ _pec

= . 2.23
pphe ( )

C

The free-edge constraints for the plate (2.7), (2.8) along x = 0 may now be
expressed as

d277

1)~ Kn(0) =0, (224
3
o) - e -0 =0, (2:25)

where the quantities specified here, i.e. n(z) and its first three derivatives, must
remain bounded at the tip x = 0. Plate deflection and fluid potential are related, via
(2.5) and continuity of normal velocity across z = 0, by

oY o

n(x) = 15(% 0+) = 5,

and it is noted that v(z,z) is continuous across z = 0, x < 0, but has a jump
determined by (2.18) on x > 0, i.e. across the plate. Therefore, symmetry in the
governing equations implies that 1 is an odd function of z, so, for simplicity, attention
may be restricted to z > 0, with the boundary conditions

P(x,0) =0, x <0, (2.27)

(x,0—), z>0, (2.26)

{ (dd—; — k2>2 1} n(x) = =2irep(z,0), x> 0. (2.28)

The eigenvalue problem is now fully specified. Real positive values of k are sought
that lead to non-trivial values of ¥ (x, ), n(x), where ¥(z, z) satisfies (2.16) in z > 0,
(2.27) on & < 0, z = 0, and tends to zero as |22+ 22| — o0, (2.10). Furthermore, n(z)
is given by (2.28), with edge constraints (2.24), (2.25) (in which 7(0) and dn(0)/dz
are bounded), and the displacement vanishes as & — oo. Finally, ¢ and 7 are related
by (2.26), and from this the edge constraints on 1 can easily be shown to enforce
regular behaviour on 1, namely:

Y(x,z) = i(zn(O) + xz%(O)) +o(|z? + 2%)), |2® + 2% — 0. (2.29)

3. Solution of the eigenvalue problem
(a) Wiener—-Hopf analysis

The analysis begins by defining the half-range Fourier transforms of a function ¢(x)
as

T (a) = /000 B(x)e' ™ du, (3.1)

0
P (o) = /_ B(x)e' ™ du, (3.2)
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LR

Figure 2. The complex a-plane showing the location of the branch points of y(a) at +i/k*> — kg
(denoted by black dots), the direction of the branch cuts, and the zeros of K(«) at o,
j =1,2,3,4 and a;*, k = 1,3. The strip of analyticity in which the Wiener-Hopf equation
(3.17) is defined is shown as D, as well as the overlapping regions DY,

where &1 (a) + &~ () is the usual full-range Fourier transform and « is a complex
number in some region of the complex plane, usually containing the real line. The
inverse is

(z) = — / T8 () + 0 (a)le—i® day, (3.3)

:% .

in which integration is along the real line in the complex a-plane. Of course, ¢(z)
must be such that the integrals exist, i.e. ¢(z) tends to zero sufficiently rapidly as
x — oo, and is integrable at the origin. The superscripts + and — in (3.1) and
(3.2) denote the fact that such integrals (see Noble 1988) are analytic in the upper
and lower halves of the a-plane, respectively, denoted by D+ and D~. These regions
overlap in a strip, D, enclosing the real line (as shown in figure 2). In what follows,
k, ko and 7 (or €) are treated as fixed constants.
Applying a full-range Fourier transform to the governing equation (2.16), where

U(a,z) = / Y(z,2)e " da, €D, (3.4)
and assuming the integrals thus obtained exist, gives
4w 2 2 2
F(a,z) + (k§ — k" — o)W (,2) =0, z=0. (3.5)
z
This is easily solved to yield
V(o 2) = Ala)e™ " @? 4 B(a)e(@)? (3.6)

where
v(@) = (o + k> — kg)'/? (3.7)

is made a single-valued function of « by introducing branch cuts from +ioco to +i(k? —
k2)'/2 in the upper/lower half-planes. Now, the branch points move onto the real
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Edge waves on elastic plates 1565

line if ky > k, which would negate the assumption in (3.3) that the inverse path can
be taken along the real line. Indeed, as will be shown later, it is required that the
finite width strip, D of figure 2, be free of singularities in order for a real eigenvalue
k to exist. Therefore, one constraint is

k> k‘()7 (38)
and if the Riemann surface of v(«) is chosen such that
7(0) = (k? — k§)'/2, (3.9)

then the first term on the right-hand side of (3.6) tends to zero as z — oo for each
real a value, while the second term diverges. Thus, the requirement of vanishing ¢
in the far-field yields

B(a) =0, (3.10)
and so, on z = 0, the relationship
-1
7t (a,0) + ¥ (a,0) = ﬁ[ﬂpj(a, 0) + ¥, (a,0)] = A(«) (3.11)
v(a

holds, in which the subscript denotes differentiation with respect to z.
Turning to the boundary conditions, equation (2.27) reveals that

¥~ (a,0) = 0, (3.12)

whereas a half-range transform on (2.28), employing the edge constraints (2.24),
(2.25), yields

[(c«2 + k2)2 — 1A% (a) = =2i7¥ " (o, 0) + [ia(a2 +(2 - I/)k2)770 — (a2 + Vk2)771],

(3.13)
in which
=00, m=320) (3.149)
Mo = 1Y), m =\ :
and
A+(a) = / n(2)e ™ da. (3.15)
0
From continuity of normal velocity, (2.26),
AT (a) = i¥} (a,0), (3.16)

and so (3.13) and (3.12) may be employed to reduce the relationship (3.11) to one
involving just ¥+ («,0) and ¥ (a, 0):

(@)K (a)¥* (a,0) = =¥ (,0)
[a(a? + (2 = v)k?)no + (o + vk?)in]

— . 1
S , a€D (3.17)
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This is the Wiener-Hopf functional equation, defined in a strip of finite width enclos-
ing the real line of the a-plane, and

2T
v(@)[(a? + k)2 =1
As mentioned above, the line of real o must be free of singularities. Therefore, K («)

must be zero and pole free for real a values. The denominator of the second term of
K () has zeros at

K(a)=1— (3.18)

o =i+ D)Y2 oy =ik —1)Y2 (3.19)
both of which lie in the upper half-plane if and only if
k>1, (3.20)
and, similarly, has zeros at
a3 = —ap = —i(k2 + DY2, oy = —ay = —i(k? - 1)V/2, (3.21)

in the lower half-plane. To ascertain the presence of zeros of K («) on the real line, it
is useful to look for intersections of the curve (a?+k?)? —1 with 27/v(«). The former
is an even function that is strictly monotonic increasing in « > 0, and, similarly, the
latter is even and strictly monotonic decreasing in « = 0 (recall that k > ko so that
~v(a) is real and positive on Im(«) = 0). Thus, K («) will not have a real zero if and
only if
4 27 27

kY —1> 0 - T (3.22)
and this gives a third (along with (3.8), (3.20)) constraint that k& must satisfy. For
convenience, let k¢ denote the single positive zero of K (0) (in terms of wavenumber
k), that is, the fluid-loaded flexural wavenumber that exists at all frequencies and
satisfies

2¢
ko (ki — k§)*/2

then the three constraints on k£ may be combined into the single one

k > k. (3.24)

kf —1 =0, k> max(1,k), (3.23)

For small 7 and kg < 1, it is easily shown that K («), with branch-cuts of vy(«) as
shown in figure 2, has simple zeros at

T

¥ 3.25
ot 2(k2 + D)V2 (k2 + 1)V/2’ (3:25)

T
T~ ag — 3.26
(671 (6%} 2(k‘2+1)1/2(k’8+1)1/27 ( )

. iT
Qg ~ Qg — 2(k‘2 —1)1/2(1—]{:8)1/2 (327)

in the upper half of the a-plane, and at

az = —aj, ayt = —ai", ay = —a) (3.28)
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in the lower half-plane. On the other Riemann sheet of the branch-cut function
v(a) there are four more zeros, making a total of ten, and these are located at aj*,
oyt = —a5*, of, o = —ai, where

iT
2(k? —1)1/2(1 — k3)1/?’

272
* . 2 2
af ~iVkE — k2 — TN et ko < 1. (3.30)

As kg increases through the value unity, the picture changes somewhat. The zeros
at af, a7, plus their images at o3, o3, remain on the ‘physical’ Riemann surface, but
the zeros ascribed the subscript 2 coalesce at ky = 1, and then both take locations on
the ‘non-physical’ Riemann sheet. The latter is also true for the zeros with subscript
4. On the other hand, of and ag also pass through the branch-point at &y = 1 but
move onto the physical Riemann sheet when kg exceeds 1. For notational convenience
it is appropriate to switch labels on o3 and af as they pass from/to the complex
plane, respectively, as kg increases in value through unity. Hence, for small 7 and
1 < ko < k, the definition (3.27) is replaced by

272
* « /1.2 2

AL ~ o + ko < 1, (3.29)

and ditto for aj.

The above asymptotic expressions (3.27), (3.31) for i are clearly invalid as ko
approaches unity. For completeness, the asymptotic form valid in this vicinity is now
given. Writing kg as

E2=1+71%, p=0(Q1), -0, (3.32)
a little effort reveals that
af ~ivk? — 1 r2/3g, (3.33)
in which x is the real positive root of
23 —pr?—1=0. (3.34)
Hence, at kg = 1, the quantity p = 0 and so = = 1, which gives
af ~ivk2 -1 r2/3, (3.35)
As p — —oo, that is the value of kg is below unity, the root of (3.34) behaves as
x e~ +/—1/p, (3.36)
which may be written, using (3.32), as
z~ T3V R2, (3.37)

Substituting this into (3.33) and expanding in 7 recovers expression (3.27). Similarly,
for ky > 1, the parameter p is taken to tend to +o0, from which we deduce that the
positive real root x (3.34) is

x~p=(kE—1)/7%3. (3.38)
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Figure 3. An indented choice of branch cuts that leads to just four zeros of K ()
on the chosen Riemann surface, at o, j = 1,2, 3,4.

Hence, in this limit, (3.33) yields

o ~ivk? — k2, (3.39)

which is the leading-order term in (3.31). The next order (O(72)) could have been
obtained by keeping higher-order terms in the root equation (3.34).

Note that, with the definitions employed above, a3 and its conjugate aj always
lie on the imaginary axis between branch points at +i/k? — k3, for all 0 < ko < k.
Thus, if the branch cuts are indented, as shown in figure 3 (which puts the zeros
ai*, ai* onto the other Riemann surface), then K («) has exactly four zeros in the
cut plane at the locations shown, o, ¢ =1,2,3,4, V7 >0, k > 1, 0 < kg < k. Note
also in figure 2 how the strip D has width bounded by the points a3, aj.

It is now necessary to solve the Wiener—Hopf equation (3.17), and to achieve this
(Noble 1988) it is necessary to decompose K («) into the product

K(a) = Kt (a)K ™ (), (3.40)

where KT («) is free of singularities and zeros, and asymptotes to a constant as
|a| — oo, in DT (see figure 2), whereas K~ («) is free of singularities and zeros in
D~ and tends to a constant value at infinity in this lower region. Without loss of
generality, the relation

Kt (a)=K (-a), acD", (3.41)

can be imposed because K(«) is even in «, and using the standard product decom-
position form (see, for example, Abrahams 1981),

Ki(a):exp{i—lfoo wdg} :exp{i_?“/omwdg}, (3.42)

2ni ) (-« i 2 —a?

in which « lies above the contour of integration for K*(a) and below for K~ (a).
If either factor is required on the real line, then the contour of the doubly infinite
integral is deformed down for KT («) or indented upwards for K~ (). Note that
v(a) was not incorporated in K (a) (i.e. in the coefficient multiplying ¥+ in (3.17)),
because the present form of K(«) tends to unity as « — +oo in D, hence ensuring
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convergence of the integrals in (3.42). Thus, v(«) must be factorized too, and this
is achieved almost by inspection to yield (recalling the cut locations as shown in
figure 2)

v (a) = (a+ ivk2 — k2)Y 2e7im/4) (3.43)

where the phase factors are added to ensure that

Ya) =7"(a)y (@) and 7" (a) =7 (~a). (3.44)
Substituting (3.40) and (3.44) into (3.17) gives

-1
+ + + -
Y (@) KT ()P (,0) = —————V_ («,0
@k @ @
2 2 2 2y
+(2-v)k + + vk
B I T IR o T RS
7 (@K™ (a)[(a? + k2)? — 1]
which, by inspection, has a left-hand side free of singularities in the upper half-plane,
D+. The right-hand side is free of singularities in the lower half-plane, D™, except
for simple poles due to the denominator of the forcing term, i.e. (a? + k?)2 — 1 =0
or when a = a3 = —a1, @ = ay = —as. These are easily moved to the left-hand side
by the rearrangement

2
’Y+(C()K+( !174—@0 Zfa] 770+9aj)77
=1

at a
- o0 - e
-y e solen, (3.46)
where -
1) = PR T ot o) (3.47

(@) K+ (@) (a? + k2)’ g(er) = (K (@)ala? + k2)

are chosen in order to suppress the two poles in the lower half-plane on the right-hand
side. Note that in the above expressions, the relations (3.41), (3.44), etc., have been
employed so as to work in terms of af, a3, rather than a3 and «j. So, the left-hand
side of (3.46) is now analytic in D' and the right-hand side is analytic in D, and,
hence, both sides give analytic continuations of a from D into the whole complex
plane. Therefore, both sides are equal to an entire function, E(«) say. To determine
this function, it is necessary to examine the large asymptotic behaviour of both sides
of (3.46) in their respective half-planes of analyticity. First, K= («) tend to unity
and v* (o) = O(a'/?) as |a| — oo in D* by observation of (3.42), (3.43). Second,
the local behaviour of (x, z) around the edge of the plate (2.29) determines the
large-|a| behaviour of ¥*(a, 0), ¥, (a,0). From the relations discussed in eqn (1.74)

z

of Noble (1988) it is deduced that
7 (a,0) = o(a™?), |a| = o0, aecDT, (3.48)
7 (,0) = O(a™), Ja| =00, acD. (3.49)

Proc. R. Soc. Lond. A (2000)
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Therefore, both sides of equation (3.46) tend to zero in respective overlapping half-
planes, and, by invoking Liouville’s theorem, it is found that the entire function
E(a) =0.

The solution of the eigen-boundary-value problem is now obtained from

Ala) = ¥(a,0) = 7 (a,0) = 1 Z /oy Zé"js )m - (350)

by employing (3.6), (3.10) and the inverse Fourier transform
1 [ .
Wz, z) = —/ ¥ (o, 0)e10m=7(@)Z g, (3.51)
2 J_
This form (3.50) is suitable for the region < 0, where deformation of the integration

path into the upper half-plane, wrapping the contour around the upper branch cut,
is expedient. For x > 0 it is more useful to employ the expression

B _ 7 (0)K(a )[( +k2 flaj)m + glag)m
¥ (o, 0) = A(a) — 27} Z 0 (3.52)

— {[(a? + k2)2 — a+ ’

where the singularities in the lower half-plane can now be seen explicitly in the
denominator, i.e. a branch cut of y(«) in the lower half-plane and simple poles at
a = af, o) (and af* if the cut is not indented). From this, and (2.26), it is easily
deduced that the plate displacement is given by

—i

—/ (@)W (a,0)e " da, x> 0. (3.53)

n(x) = o

(b) The edge-wave dispersion relation

The final matter to attend to is to establish the values of £ for which the above
solutions are valid. So far, the only restrictions on k are those given by (3.8), (3.20)
and (3.22), but are there any other requirements which have not, as yet, been satis-
fied? Well, an issue that remains to be checked is the requirement that A*(«), the
half-range Fourier transform of n(z) (3.15), is analytic in D*. The value of this can
be determined explicitly from relation (3.13),

=217 (a, 0) + [ia(@® + (2 — v)kH)no — (? + vk?)ny]
{(a® + k%)2 — 1} ’
where ¥ (v, 0) is known from (3.50). As is apparent, this has poles in the upper half-

plane, D, at a = a1, as unless the numerator is chosen to vanish at these points.
This gives the two conditions

aj(af + (2= v)k)no + (oF + vk?)in = 270" (;,0), j=1,2, (3.55)

At (@) = (3.54)

which may be written in terms of the quantities, f(«), g(«), given in (3.47):

j=1,2.

)

[+( -)K*( .)] f( + )
~f(a)mo + glag)m = = 7zczzoz]? + :2]) Z - gj+ g‘kak -

(3.56)

Proc. R. Soc. Lond. A (2000)



Edge waves on elastic plates 1571

Hence, if

M) = S T I @K @

(3.57)

then a further simplification yields the matrix form:

"h(cn)f(ch) N h(aq) f(a) + f(an) h(ay)g(ar) n h(ay)g(az) g(m)—l

2001 a1 + Q2 2001 o1 + oo

Lh(cmf(al) J Meaf(an) o hlaa)glar) | hlez)g(as)

oy + Qo 2009 a1 + Qo 2009

| I—

—g(az)

Clearly, this system has a non-trivial solution if and only if

[[h(%) +2e0]f(0n) | h(al)f(az)][h(az)g(%) 4 [h(en) = 2@2]9(@2)]

201 o1+ g o1 + Qg 200
[ [hlen) = 2aq]g(en) | h(ar)glaz) [ h(az)flen) | [haz) + 200 f(a2) ]
201 + a1 + s o1 + as + 20 =0,
(3.59)

and then the edge constants may be expressed as

0 = (Bt o g
j_z(o) = { [h(a1) zzféﬂf(%) n h(;;if(;f) }C, (3.61)

in terms of an arbitrary parameter C'. Equation (3.59) is a dispersion relation from
which is deduced the real positive value of k, should one or more exist, for given
values of kg and 7. The solution of the eigenvalue-Wiener—Hopf problem is now
complete. Should a real value of k satisfy (3.59), then there is a non-trivial non-
attenuating fluid-coupled plate wave (2.14), (2.15) with cross-sectional form given
by (3.51), (3.53) and (3.50). The following section examines a few features of this
cross-sectional behaviour of the edge wave, i.e. ¢(z,2) and n(z), and the solution
(3.59) is the subject of discussion in §5.

4. The wave field far from the plate edge

For completeness, the field of the edge wave far from the edge will now be determined,
including the form of the plate deflection as * — oo. To do this, it is convenient to
deform the Fourier inverse integral contour of the integral representation of i (z, 2)
in (3.51), that is,

o0

1 .
Y(x,z) = %/ 7 (o, 0)eior=7(@)Z (g, (4.1)

— 00

into its steepest-descent path. It is taken here that a real edge-wave wavenumber k,
satisfying (3.59), exists for a given set of dimensionless parameters v, ky and 7 (see
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(2.11), (2.17) and (2.19) for their relation to the physical quantities describing the
plate and fluid). So, the inverse path, originally along the real line, is deformed up
or down for x < 0 or x > 0, respectively. In particular, the steepest-descent path will
easily be deduced after making the transformation

o= —iyk? —kZcos(, (4.2)

in which (¢ is chosen to traverse the path ico + /2 to —ico 4+ 7/2 as « goes from —oo
to co. With this branch then

v(a) = VK2 — kZsin¢, (4.3)

in order to satisfy the Riemann sheet requirement that v(0) = /k2 — k2 at ¢ = 7/2.
Writing the physical variables in polar form,

r=rcosf, z=rsinf, 0<L0<m, (4.4)

allows the exponent in the integrand of (3.51) to be expressed as

—iax —y(a)z = —r v k2 — k2 cos(¢ — 0), (4.5)

and, clearly, the steepest-descent path as r — oo (fixed (/k? — kZ) lies along the
contour +ico + 0 — ( — —ioco + 0, which, in the a-plane, is a hyperbolic path with
turning point at @ = —i,/k? — k2 cos § and asymptotes F6 — /2.

For 6 > w/2, or x < 0, deformation of the integral contour into a hyperbolic path
in the upper half of the a-plane can be performed without crossing any singularities
of ¥(«,0), because this is equivalent to T (c,0) (3.50). Standard steepest-descent
analysis yields

1/4

2 1.2 _
P(x,z) ~ Msinmp —ivk2 — k2 cos 6,0 e—h/k?—kocosé)7 4.6
V2mr 0

for 8 > 7/2, where ¥(«, 0) is written in (3.50). When 6 < 7/2, this expression (4.6)

is still valid, with ¥(«, 0),
a=—ivk?—kZcosb,

deduced from (3.52) as long as no singularities are crossed in the contour deformation.
As 0 is decreased to 0, the steepest-descent contour is wrapped closer and closer
around the lower branch cut, and will eventually cross first one and then another of
the poles of ¥(«,0) arising from the zeros of K («). The pole at o (see (3.28) and
figure 2) lies between 0 and —i,/k? — k2 and will contribute to ¢ (z, z) when

V2 — k2 cos 0 > +iaj = —ia (4.7)

or

0 < COS_1 <\/%7k.2> = 94- (48)
— o

Similarly, the two roots at o, a3* contribute if they are passed during deformation,

and this occurs if and only if

0 < 11€|:COS_1 <\/k»12#7k2>i| = 937 (49)
- M0

*k
3
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i.e. the images of o, a5* in the (-plane lie to the right of the line Re(¢) = 0. It is
a straightforward matter to deduce the residue at both these pole locations, and so,
omitting this detail, the expression for the far-field form of ¢ (z,2) in 0 < 6 < 7/2 is

2 1.2\1/4 i
1#(% Z) ~ % sin 9!17(*1 VEk2 — k’g CcoS 970)6_T\/ k2—kg cos @
wr

B IAZ H(94 B Q)G_T’/kg_kg cos(64—0)
- 1A§ H(93 - Q)G_T’/kg_k?’ cos(0; —0)

— A5 H(B — 0)e VR cos(057—0) (4.10)
as r — 00, in which H(z) is the Heaviside function. Here, A}, etc., are defined by
Aj= Jim {(a— a})¥(0,0), (4.11)
Az = lim {(a - a3)¥(a,0)}, 4 A" = lim {(a—a3")¥(a,0)}, (4.12)
a—aj a—ag
and
cosfz = ia; , cos 05" = oy (4.13)

k2 — k? VEE =K}

Note that this asymptotic result is not valid for observation angles, @, close to 03,
0. At these values the integrals have a pole in the vicinity of the saddle point, and
so a uniform result over all 7 < # < 0 can be obtained, if required, via the use of
Fresnel integrals (Noble 1988). As we do not use (4.10) further in this article, it is
not necessary to perform this operation here.

The final issue for this section is to estimate the deflection of the plate far from
the edge. For this, the integral expression (3.53) is employed after deformation into
its steepest-descent path. This path, consistent with what is discussed above when
6 = 0, starts at —ioo, passes along the left-hand side of the lower branch cut (figure 2),
around the branch point, and then to —ioco on the right-hand side of the cut. As
found for v (z, z) for small enough 6, the poles at o}, aj, a3* are crossed during
deformation, and will therefore contribute towards the total deflection n(x). Just for
the moment, taking the steepest-descent integral contribution of n(z), called 7(x)
say, and applying transformation (4.2), yields

fi(z) = M /100 sin? CW(—iv/k? — k2 cos ¢, 0)e *VF =hieosC e (4.14)

27

—ioco
The dominant contribution from the integrand comes from near ¢ = 0 for large =z,
and so

i 2 - 2 2 o 2 2,,2
n(x) ~ Mﬂp(—i VE2 — k2,0)e = Vk* =k / v2e VR RG24y (4.15)

2
or, on evaluation,
i(k? — k)"

() ~ = (i VR k2,00 VR 4 oo, (4.16)
T
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The residue terms at o3, a3*, o) must be added to this in order to obtain the full
displacement term. After some algebra it is found that

n(z) ~ f(z) — AL VEk2 — k2 sin g ge™oVE kg costa
714; MSan* —EMCOSG;
. A§* [k2 _ kO sin eg*e—x\/kQ—kg cos€§*7 T — 00, (4.17)

where A3, etc., are given in (4.11), (4.12).

The far-field fluid potential and plate displacement terms, as can be seen from
(4.10), contain exponentially decaying contributions as long as 6, and the real part
of 65 (or 03*, which is its complex conjugate) lie between 0 and 7/2. This is indeed
the case in view of discussions regarding o3, etc., in § 3. The first term in (4.10) has a
further decay factor 0(7'_1/ %), which is due to cylindrical spreading of this edge-wave
contribution, and its counterpart in the plate deflection, namely 7(z), has a more
rapid algebraic decay factor O(z~3/2). The pair of terms resulting from the zeros
at aj, a3* have exponents that are complex. Therefore, they oscillate with radial
distance, r, as well as decaying. This is of no consequence as 9 (x, z) and n(x) still
decay to 0 as (22 +y2)1/2 — 00, as expected. In conclusion, if the integral expressions
of Y(z, 2), n(x) ((3.51) and (3.53)) are free of zeros on the real line, then they decay
to 0 in all directions away from the edge. Therefore, all the energy of the edge wave is
confined to the vicinity of the edge and propagates along the edge, in the y-direction.

5. Existence of real eigen-wavenumbers
(a) The dispersion relation for k

Substantial, but straightforward, manipulation allows the full dispersion relation
(3.59) to be written in the simplified form

<1 i 4(VE2+ 1+ \E/Qk2 - 1)4K12K22> (Jl;(i)l - \/7;_2(@1)
iy ( L L)( 3 (k) N r2 (k) ) N K1K2(267'+(k)7'_(k) )

K? VEZFT VR -1 VEZ 14+ VE2 =)
where
= VE2+ k)P (V2 + 1+ VE2 — kD)V2KH (o), (5.2)
= VE2 = 1P (V2 =1+ V2 — kD)V2K (), (5.3)
and

ro (k) =1+ (1 —v)k>. (5.4)

It should be stressed that expression (5.1) is exact and so holds for all values of the
plate and fluid parameters, i.e. € (or 7), v and ko.

The first point to ensure is that the dispersion relation (5.1) reduces to that for
the in vacuo plate edge wave when fluid loading, €, vanishes. Setting e = 0 in (5.1)
yields

1+ 1 —v)k?)? (1-(1-v)k?)? (5.5)
VEZ+1 -1 '
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This has a single positive root for 0 < v < 1/2 at k = ky, where

o (Lo3vr20—2v s 0 1/4
B B+ v)(1—v)? ’
in agreement with the value found previously by Konenkov (1960) and by Thurston

& McKenna (1974). In this case, the plate deflection is given by (from (3.53)) the
integral

(5.6)

2

n(x) 27r /oo Z C(] Mo + 9(041)771) ol da, (57)

a+ aj

Jj=1

which can be determined explicitly as
n(@) = {1 = L= )k)e ™ 4 (14 1= 0)k)eVFT) (58)
and the relationships (3.60) and (3.61) reduce to
m = —(k* = 1), (5.9)

after employing the dispersion relation (5.5).

The question may be asked: are there any real values of k that satisfy (5.1) for
non-zero €? Indeed, perhaps there always exists such a root for all €, as is found to
be the case for the usual fluid-loaded flexural wave k¢ that solves (3.23) (Abrahams
1981). To disprove the latter suggestion, it is possible to reduce (5.1) to a simple
form when € — oo. From the definition of the kernel functions (3.18), clearly

—2€
v(@)ko[(a? + k2)? — 1]’

K(a) ~ € — 00, (5.10)

for fixed «, and so

o) V2
K™ (a) @) (et o) (e ek (5.11)

in a bounded region of D*. Hence, substituting this into (5.2), (5.3) and (5.4) yields

e/(2ko)
VE2+1+VEZ =1

Ky~ Ky~

(5.12)

which simplifies (5.1) down to
8(Vk2+1+ k2 —1)=0. (5.13)

Note that this relation is not only independent of €, as it should of course be, but
also free of kg and v. It only involves the wavenumber £, and it is clear that no real
roots (k > 1) of this equation exist.

To summarize: for € = 0 there is a unique real k root of the dispersion relation,
but no such root exists when ¢ — oo. Therefore, it seems likely that a window of
values of € around € = 0 yields a real edge-wave wavenumber. Without significant
effort it appears that little progress can be made analytically to deduce the roots
of this equation, except under these limiting cases of zero fluid loading, and asymp-
totically as the fluid loading becomes very large. We turn, therefore, to numerical
‘experimentation’ to elucidate the existence of roots under finite fluid loading.
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Figure 4. Plot of edge-wave wavenumber, k (i.e. the positive real root of the dispersion relation
(5.1)), against 7 = €/ko for values of the dimensionless fluid wavenumber ko = 0.8 (2.17) and
Poisson’s ratio v = 0.334. The upper curve is the wavenumber solution £ and the lower curve
is k.

(b) Numerical solution and discussion

It is a simple enough matter to evaluate (5.1) numerically for given e and ko,
and then march through real k values satisfying (3.24) to see if it vanishes. Note
that all terms in the above relation contain even powers of k (as indeed they must
from symmetry in y), and so if a positive root of (3.59) is found, then there is a
corresponding root at —k.

Numerical studies reveal that for each value of v (0 < v < 0.5) and ko (ko < 1)
there is a finite range of values, from zero up to some mazimum, of € that permit
real k solutions of (5.1). In practice it is found that such e values are always small;
for example, figure 4 illustrates the real edge-wave wavenumbers, k, for kg = 0.8,
v = 0.334 against 7 = €¢/kq. The top curve is that for k, and the bottom curve is k,
the plate fluid-loaded wavenumber. As discussed in § 3, the wavenumber root k£ must
lie above k¢, otherwise no unattenuated edge waves can exist. Clearly, as € increases,
the two curves converge and meet at around e = 0.0363. This is the fluid-loading
value above which real edge-wave wavenumbers cannot exist. Figure 4 is typical of
the variations of k with e found for all ky (< 1), v values.

Note, when kg > 1, numerical experiment reveals a small window of values that
allow real k. These real k roots occur for kg very slightly above unity and for remark-
ably small fluid loading e. For example, kg = 1.001 and € = 0.000 01 yields a k value
between 1.0015 and 1.0016. As kg increases further, the maximum e decreases rapidly.
The authors have found few parameter values of physical relevance (one such is dis-
cussed below) that fit into this small window. It is concluded that, while it may be
viewed as somewhat surprising to find that an unattenuated edge wave can exist
which propagates in a system, and at a frequency, at which flexural waves would be
supersonic (although the edge wave itself is still subsonic), this is not found to be of
great practical significance in everyday applications.

Having established that edge waves can propagate without energy loss along the
free edge of a thin elastic plate immersed in an inviscid fluid, it is important to check
on the physical relevance of such a result. To do this, three plates of differing material
properties are examined. The properties of the three materials are listed in table 1.
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Table 1. Plate material parameters

(The values for brass and Plexiglas are taken from Krylov (1998). This article provides the
longitudinal and shear wave speeds, C) and C}, respectively, in terms of which v = 0.5 +
0.5/(1 —C}/C?) and E = 2(1+v)p,CE)

aluminium  brass  Plexiglas

pp (10° kgm™) 2.80 8.60 1.18
E (10" Nm™?) 7.40 10.45 0.585
v 0.330 0.343  0.334

Table 2. The non-dimensional fluid-loading parameter €

aluminium  brass  Plexiglas

air 0.0020 0.0005 0.0021

water 0.3902 0.0866 0.4016

Table 3. Coincidence frequency

(The coincidence frequency f. = we/(27) (Hz) for a plate of thickness 1 cm.)

aluminium  brass  Plexiglas

air 1103 1618 2541

water 20963 30766 48324

Two fluids are considered, with typical ambient densities and sound speeds:
air, pr=12kgm™3, ¢=330ms ' (5.14)
water, pr = 1000 kgm™3 c¢=1439ms" . (5.15)

The values of the fluid-loading parameter € are listed in table 2 for the various
combinations of solid and fluid. We consider the three plate materials in turn.

For aluminium plates the values of the fluid-loading parameter e given in table 2
are quite disparate for air and water, 0.002 and 0.392, respectively. The associated
values of the coincidence frequency f. for plates of thickness h = 1 cm are given in
table 3. The coincidence frequency is inversely proportional to thickness, see (2.23),
and kg = /f/fe, where f = w/(27) is the frequency of the waves in cycles per
second (Hz). Hence, the dimensionless quantity ko depends upon frequency and plate
thickness as

0.30117, for aluminium in air,

ko ~ (fh)Y/? x (5.16)

0.069 07, for aluminium in water,

where f x h is the frequency of vibration times plate thickness, measured in metres
per second. It transpires that this value of ko for aluminium in air (with e = 0.002)
yields a real root of (5.1) for all f x h between about 0.004 ms~—! and 10.95 m s~ 1.
That is, for a plate of thickness, h, say 2.5 mm, greater than a frequency of 1.6 Hz
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Figure 5. Plot of the real wavenumber, k, versus frequency, f,
for an aluminium plate in air with h = 2.5 mm.
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Figure 6. Plot of the real wavenumber, k, versus frequency, f, for a brass plate in air with
h = 2 cm. Note that 809 Hz is the coincidence frequency at which the fluid wavenumber equals
the wavenumber flexural waves on the plate in vacuo.

and less than 4380 Hz, as shown in figure 5. Note that, for this thickness of plate,
coincidence frequency in air occurs at f. ~ 4410 Hz. It is also worth remarking that
it is unclear from figure 5 that the lower bound on frequency is a positive number
greater than zero. The asymptote of the curve looks like it could tend to the abscissal
However, a non-zero lower bound is confirmed in later discussion (see figure 7). Note
that the above results are not the same for underwater situations. Then, no real roots
of the dispersion relation (5.1) can be found for this set of parameters for any choice
of f x h. As discussed above, if the fluid loading is too large, then the edge-wave
mode is cut off, and this is found to be true in this case.
Turning to brass plates, it is found that

0.248 61, in air,

ko ~ (fh)'/?
0~ (FR) 75X 005701 in water.

(5.17)

Once again, no unattenuated edge waves exist for a brass plate in water. However,
for air, the edge wave propagates without loss as long as f x h lies between about
0.00026 ms~! and 16.26 m s~!, which corresponds to f ~ 0.013-813 Hz for a 2 cm
thick plate. The plot of k versus f is given in figure 6 for this value of h. Note
that the coincidence frequency occurs at f. =~ 809 Hz for h = 2 ¢m, and so figure 6
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Figure 7. The maximum possible value of fluid loading, €, as a function of frequency, ko, for
v = 0.33. Alternatively, for each €, the edge wave cuts off at the frequencies indicated by the
curve.

demonstrates that real k eigenvalues occur at values of kg marginally greater than
unity. This is not commonly found to be the case (and does not occur for aluminium
or Plexiglas plates).

Finally, for Plexiglas plates we have

0.198 37, in air,

ko ~ (fh)'/?
o~ (fh) % 0.04549, in water.

(5.18)

As found before, the plate of Plexiglas construction in air has subsonic unattenuated
edge waves for a wide range of values of f x h (bounded above by fxh < 25.5ms™1).
For example, a plate of thickness h = 2 cm has a non-dimensionalized edge-wave
wavenumber of k ~ 1.003796 at frequency 1 KHz. As found before, in water the
unattenuated edge waves on Plexiglas are found to be cut off for all values of f x h.

It is apparent from the numerical results that the edge wave exists only for con-
figurations with very small non-dimensional fluid loading €. It is natural to enquire
whether there is an upper bound on € above which the edge wave cannot exist at
any frequency. A search was made by varying ko and finding the value of € at which
k = k¢, that is, for example, for kg = 0.8 and v = 0.334 the point of intersection
of the curves in figure 4. The graph of € versus kg in figure 7 for v = 0.33 indicates
that the upper bound for this value of Poisson’s ratio is € ~ 0.0462 and it occurs
at kg =~ 0.59, or f = 0.35f.. The three plate materials considered all have approxi-
mately the same Poisson’s ratio, close to v ~ 0.33. Hence, referring to the values of €
in table 2, they should all exhibit edge waves in air because € < 0.046 for each plate
material, but none permit edge waves in water because € > 0.046 in each case. This
agrees with the specific numerical findings for the three materials above.

The upper bound on € of course depends upon the value of v. It tends to zero
as v — 0, and increases for values of v greater than the value 0.33 considered in
figure 7. However, it does not increase much beyond the small value 0.0462. We
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suggest that the order of magnitude of this limiting fluid-loading value probably
scales as v* for the following reason. Referring to (3.23) for the fluid-loaded plate
wavenumber k¢, it follows that k¢ achieves a minimum value of k¢ min as a function
of ko at ko = kf min/\/2, Where k¢ iy satisfies

4e
-

f,min

k?,min -1 =0. (519)
Now, for light fluid loading it can be expected that the fluid-coupled plate wavenum-

ber, k¢, is not too far in value from the in vacuo edge-wave wavenumber k. of (5.6).
Hence,

€= (ké - 1)k\2//4 ~ (k?,min - 1)]<“f2,rnin/4' (520)

The in vacuo wavenumber depends only upon v, and so expanding the right member
in (5.20) gives a rough idea that edge waves exist as long as € is less than about

e= =t + 000, (5.21)

Hence, for small € the minimum fluid-loaded wavenumber, of (5.19), becomes
ktmin = 1+ €+ O(€%), (5.22)

and it occurs at kg = 1/v/2+0(e), or f = 0.5f.+O(¢). So, to summarize, the in vacuo
edge-wave wavenumber k, and the fluid-loaded plate wavenumber are comparable if
e = O(v*), and the wavenumbers are closest at ko ~ 0.7. This scaling suggests that,
as v — 0, the range of possible ¢ under which edge waves exist will shrink rapidly.

Finally, it is interesting to find that the range of permissible fluid loading is deter-
mined by the Poisson’s ratio of the plate material alone, and not by any other material
parameter. This is, in a sense, a consequence of the fact that the edge wave in vacuo
is really a Poisson effect (Thurston & McKenna 1974). Thus, the flexural wave in
materials with zero Poisson’s ratio automatically satisfies the free edge conditions,
and is then not strictly an edge wave because it does not decay with distance from
the edge. Conversely, the edge wave exists because of the Poisson effect when v is
Non-zero.

6. Conclusions

This project was originally started in order to answer the question ‘do edge waves
propagate without attenuation along the edge of a thin elastic plate under fluid
loading?’. It was certainly not clear to the authors at the outset what the answer
was going to be. On the one hand, straight-crested (i.e. two-dimensional) flexural
waves are unattenuated by the presence of an embedding fluid, but, on the other,
edges are known to be efficient scatterers of acoustical/vibrational energy. For the
edge wave to persist, it is necessary for the acoustic field in the fluid to decay to
zero as one moves radially outwards in any direction perpendicular to the plate
edge. From expression (4.10), this occurs as long as the wavenumber k is real and
greater than ko, and 604, 03, 05 are real. Further, the plate deflection must also
decay to zero at large distances from the plate edge, i.e. the energy from the edge
wave must not be transferred into the creation of flexural waves propagating in the
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direction orthogonal to the edge. The above question can now be answered defini-
tively: this article has shown, by analytical means, that flexural edge waves can exist
under limited but practical combinations of plate material and exterior fluid. These
conditions are restricted to very light fluid loading: air on metal for instance. In
none of the examples considered is it possible for the edge wave to exist in water.
Nevertheless, the existence of the edge wave in air could have interesting ramifica-
tions. It means that edge waves can propagate on thin plates without radiating any
of their energy into the surrounding fluid, and, consequently, the structural vibra-
tional energy can persist for relatively long periods (attenuated only by mechanical
damping). This phenomenon could very well play a role in the acoustical proper-
ties of many common structures in air, e.g. percussion instruments such as cymbals.
Structures composed of thin plates or shells that, in vacuo, resonate at certain fre-
quencies, may, when immersed in a fluid, demonstrate zero radiation damping at
these frequencies. One example is the musical saw (Scott & Woodhouse 1992), which
has a standing wave, or trapped mode, along the saw’s length due to imposed cur-
vature (in fact around a point of inflection). It is interesting to speculate on the
possibility of zero radiation damping for this structure for sufficiently light fluid
loading!

As a final point to note, although the existence of the edge wave on submerged
thin plates has been established herein by theoretical means, it remains to be demon-
strated in practice. Perhaps somewhat surprisingly, this is in direct contrast to
results in the literature for wedge acoustic waves, that is, waves propagating along
the tip of a wedge-shaped elastic body submerged in a fluid. This model problem
has been investigated by experimentalists (see, for example, Chamuel 1996), but is
only amenable to theoretical study via asymptotic or numerical, rather than exact,
approaches. Thus, the work of Krylov (1998), Hladky-Hennion et al. (1997) and oth-
ers on travelling edge waves on wedges in water presume, but do not prove, their
existence in such circumstances. Indeed, the present study would suggest that for
wedges of shallow angle it is most unlikely to find edge waves propagating with-
out attenuation. Krylov’s (1998) approach, which employs an approximation based
on ray theory for slender wedges, does not take into account the diffraction effects
(in a direction perpendicular to the edge) of the semi-infinite body on the edge-
wave energy, and so is unlikely to be able to predict cut-off of real propagating
wavenumbers as fluid loading increases. The authors believe that the observations
made in this paper add to existing theoretical studies in this regard, and would wel-
come further experimental investigations both to compare with the predictions of the
present theory and to determine cut-off values for unattenuated fluid-loaded wedge
waves.
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