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A brief review is presented of the theory of flexural edge waves, first predicted in 1960 by Yu K.
Konenkov using Kirchhoff plate theory. It is demonstrated that the flexural edge wave is also
predicted by Mindlin’s plate theory, and that the prediction agrees with measured data. It is noted
that the edge wave was erroneously presented as a new type of bending wave solution in a recently
published paper in this journal. @000 Acoustical Society of Amerid&0001-496600)01301-1

PACS numbers: 43.40.D)CBB]

The existence of a flexural wave guided by the free edgef the frequency and depends only on the Poisson’s ratio,
of a semi-infinite isotropic elastic thin plate was first demon-being slightly less than unity and equal to unity when the
strated by Konenkdvin 1960. The wave has properties Poisson’s ratio vanishes. As noted by Thurston and
analogous to a Rayleigh wave on an elastic half-space, iMcKenna® this equality reflects the fact that a flexural wave
that it decays exponentially with distance from the edgetraveling parallel to the edge of a thin plate of zero Poisson’s
This result was apparently not very widely known in West-ratio gives no bending moment or shear and hence automati-
ern scientific circles, not an uncommon situation in thecally satisfies the free edge conditions of the classical plate
1960’s and 1970’s, because it was rediscovered concurrentipeory.
and independently by Sinhaand by Thurston and The edge wave solution of the classical plate theory has
McKenna® both published in 1974 in “western” journals. been studied by many since then, for instance Refs. 8,9, and
The first author of this Letter was likewise ignorant of is discussed in at least two monographs The speed of the
Konenkov’s original contribution when he proved that theflexural edge wave was measured and agrees well with finite
edge wave also exists on anisotropic plétes. element calculationdand both the measured speed and the

In a recent articlein this journal, the now-classical re- FEM calculations are less than the values predicted by the
sult for the flexural edge wave was again presented as newirchhoff plate theory. An explicit expression can also be
The author cited a paper of McKene#al® but apparently obtained for the edge wave speed on an anisotropic thin
did not know the Thurston and McKenna papeamublished plate? The analog of a flexural Stoneley wave propagating
shortly after and in the same journal, and was also unawaralong the line of contact of two joined semi-infinite plates
of the sizeable literature on the subject. and decaying exponentially in the perpendicular direction

The propagation of flexural waves guided by the tip of ahas been studied by Zilbergleit and Susld%aKouzov
wedge or the free end of a ridge on a substrate was studied &t al'® have considered the more general configuration of a
some depth by various groups in the 1970’s. In 1974 Stha starlike nodal junction of thin plates.
using the classical plate theory, obtained an explicit expres- Two of the present authors have recently established the
sion for the speed of the flexural edge wave. At about theexistence of edge supported flexural waves on fluid loaded
same time, McKennat al® derived the dispersion relation thin plates'* However, submerged plates support such waves
for a flexural plate edge wave by taking the limit of a wedgeonly under very light fluid loading conditions: for instance,
with zero internal angle. Thurston and McKefnsubse- thin plates of aluminum, brass or Plexiglas will support edge
quently discussed in detail the existence and behavior of thiwaves in air, but not in watéf:
wave, and obtained the same wave speed as Sifte Previous studies of the flexural edge wave on a semi-
flexural edge wave speed was also derived from the modes affinite platein vacuohave used either the Kirchhoff plate
a thin plate of finite width by taking the limit in which the theory or some far more sophisticated analysis based on the
width becomes infinité. full equations, e.g., FEM. We now demonstrate that the es-

The classical Kirchhoff plate theory predicts a speed forsential characteristics of the edge wave are captured by the
the edge wave which is in constant proportion to the flexuraMindlin plate theory® without much additional effort be-
wave speed. The constant of proportionality is independentond that required for the Kirchhoff theory. To the best of
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our knowledge, the edge wave has not been previously ana» may be chosen according to different criteria, but nor-
lyzed in the context of Mindlin plate theory. The Mindlin mally, o?<1.1
theory for flexural waves incorporates shear-deformation and  Now let the plate occupy- °<x<w, y=0 with a free
rotary-inertia, two effects that are absent from the classicabdge ony=0. We consider the time harmonansatz of
Kirchhoff theory. According to Mindlin’s theory the dis- frequencyw:
placement at X,y,z) is u=zy(x,t) +w(x,t)e,, where x
='(x,y) is the 2-D p05|t|op on thg central plane of the plate, w(x,t)=Rg (V,+V,)e 1],
z is the transverse coordinate, with-0 the center plane of ()
the plate andb= (#y,¢,) is the in-plane vector of rotations. _ ot

The equations of motion in the absence of external load- (%) =Re(B1VV1+B,VV,—€,XVVj)e 1“7,
ing are

whereV,, V, andV; are given by’

IM . IM g ph® 9%y, @
oy X" o 2’ .
x oy 12 ot Vi(x)=A&VEKY o123 ®)
IMyy  IM, ph® %y,
—+ (2)  The three bulk wave numbeks, k, andk; and the numbers

—2t-Q,= ,
X % 12 ot 1 and B, follow by direct substitution into Eq$1)—(4) and

are given b
0, QP o

:ph_7 (3)

x o o2 K+K2=k2+K2, K2KE=kK2KE—K?, K2=a?k2K2/K,
where p is the density andh the thickness. The moments (7)
My, My, andM,,, and the shear force3, andQ,, are ,8j=—1+k§/k?, =12,

Iy (Wy A9 rwx
M D(W+ 3y My—D ay +v ﬁX where
1 Ay Iy ) oW )
Myy=5D(1-7) WJFW Qx=auh| -+, ksza\/pm, kp=w\(1—v?)plE, ki=w\hp/D. (8)
4
By applying the boundary conditions appropriate to a
Qy=a? Mh iy, free edge: vanishing shear force, bending moment and twist-

ing moment, that is, Qy(x,00=0, M(x,0)=0, and
whereD=Eh3/12(1— v?) is the bending stiffness; is Pois- M,,(x,0)=0, respectively, three equations are obtained for
son’s ratio,u is the shear modulus, ae=2(1+v)u isthe  A;, j=1,2,3. Setting the resulting determinant to zero,
Young’s modulus. The shear modulus is modified by theyields, after some simplification, the following dispersion re-
factor «? in order to better approximate the shear forces, andation for the wave numbeg of the edge wave:
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FIG. 1. The dimensionless speeé k, /¢ according to
Mindlin plate theory plotted against the dimensionless
frequency kgh=wh/cg. The free parameters are
v=0.39, a=cr/cy. The value akzrh=0 is given by
Eq. (10).
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FIG. 2. The edge wave speedelative to the Rayleigh
wave speedcg according to Mindlin theory(solid
curve and the Kirchhoff theory(dashed curve The
circles represent data from Lagasse and OlifRaf. 9.
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Letk?>k3, thenk, is the analog of the classical flexural where ky=ks/a is the wave number of bulk transverse
wave numberk; in the Mindlin theory. The speed of the waves, i.e..k;=w/ct where cy=+/u/p. The form of Eq.
flexural edge wave relative to the Mindlin flexural wave is (11) is precisely the same as the equation for the Rayleigh
c=k;/&. Numerical experimentation shows that there is al-wave on the surface of a half-space, except that the longitu-
ways a root of the dispersion relation fos 1, with equality  dinal wave numbekp in Eq. (11) is the wave number ac-
again whenv=0. The fact thatc=1 for »=0 is a conse- cording to membrane theory; see E@). This has speed
quence of the fact that the flexural wave automatically satisg ,— \[E/[(1— 1?)p] as compared with the larger speed of a
fies the free edge conditions with no Poisson contractionk longitudinal waveg, = cp(1— v)/\1—2v. The mem-
effect. For nonzera the Poisson effect comes into play and brane Rayleigh wave speed is the same as the true Ray-

the edge wave solution has a small but nonzero componerﬂg‘;igh wave speed for a material withreplaced by the value

frot;n thg OtTetT tW,? Il/rllndlm platet_wa\;les, anld Its spEed .'Sv/(1+ v), leading to a slower speed. Hence, the high fre-
subsonic refative to the propagating Tiexural wave. For In'quency limit of the edge wave according to Mindlin’s theory
stance, Fig. 1 shows a plot ofversus frequency. It may be

verified by direct calculation that the root of E®) reduces Is the Raylelgh surface” wave t'ravellng. along thg narrow
to the value predicted by Thurston and McKehma the surface of a thin plate. The meaning and interpretation of this

limit as the dimensionless frequenkyh approaches zero is unclear since one should be cautious of using the high

that is frequency limit of Mindlin’s theory for purposes other than
' intended. The original goal of Mindlin was to obtain the high
frequency asymptote of the fundamental antisymmetric
=[—(1- - + -
c=[~(1-»(A=3n+2(1-») mode of a plate, which is itself the true Rayleigh wave speed
X (1—2v+21%)YY*  asksh—0. (100 cg if a is chosen ase=cg/cr. The occurrence of the

“membrane” Rayleigh wave as the asymptote is therefore
The high frequency limit of the edge wave is of interest.all the more interesting since it drops out in the limit inde-
It may be shown by taking the correct limits that at high pendent of the value ot.

frequencie<t is the unique positive solution of Finally, Fig. 2 compares the Mindlin edge wave speed
with the Kirchhoff edge wave speed, and also with measured
(262—K3)2— 44— k32— K2)Y¥?=0  askgh—=, data of Lagasse and OlingiThe speeds are normalized with

(11 respect to the Rayleigh wave speed. The Poisson’s ratio was
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chosen a3=0.39 so that the Kirchhoff curve agrees with a °C. Kauffmann, “A new bending wave solution for the classical plate

similar curve in Ref. 9, and=cg/cy. We note that a finite ~ equation,” J. Acoust. Soc. Anl04, 2220-22221998.

element computation by Lagasse and Oﬁnproduced a 6J. McKenna, G. D. Boyd, and R. N. Thurston, “Plate theory solution for

curve essentially overlying the Mindlin curve of Fig 2 guided flexural acoustic waves along the tip of a wedge, ” IEEE Trans.
L " 7' Sonics Ultrason21, 178—186(1974.
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Mindlin type predict that localized edge wave do not exist. modes on a rectangular ridge,” Lett. Appl. Eng. Si161(1974.
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wave is pred|cted by Mindlin plate theory A. A. Oliner, Ed.,Acoustic Surface Wave$opics Appl., Phys., Vol. 24
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