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A brief review is presented of the theory of flexural edge waves, first predicted in 1960 by Yu K.
Konenkov using Kirchhoff plate theory. It is demonstrated that the flexural edge wave is also
predicted by Mindlin’s plate theory, and that the prediction agrees with measured data. It is noted
that the edge wave was erroneously presented as a new type of bending wave solution in a recently
published paper in this journal. ©2000 Acoustical Society of America.@S0001-4966~00!01301-1#
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The existence of a flexural wave guided by the free e
of a semi-infinite isotropic elastic thin plate was first demo
strated by Konenkov1 in 1960. The wave has propertie
analogous to a Rayleigh wave on an elastic half-space
that it decays exponentially with distance from the ed
This result was apparently not very widely known in We
ern scientific circles, not an uncommon situation in t
1960’s and 1970’s, because it was rediscovered concurre
and independently by Sinha2 and by Thurston and
McKenna,3 both published in 1974 in ‘‘western’’ journals
The first author of this Letter was likewise ignorant
Konenkov’s original contribution when he proved that t
edge wave also exists on anisotropic plates.4

In a recent article5 in this journal, the now-classical re
sult for the flexural edge wave was again presented as n
The author cited a paper of McKennaet al.6 but apparently
did not know the Thurston and McKenna paper,3 published
shortly after and in the same journal, and was also unaw
of the sizeable literature on the subject.

The propagation of flexural waves guided by the tip o
wedge or the free end of a ridge on a substrate was studie
some depth by various groups in the 1970’s. In 1974 Sin2

using the classical plate theory, obtained an explicit exp
sion for the speed of the flexural edge wave. At about
same time, McKennaet al.6 derived the dispersion relatio
for a flexural plate edge wave by taking the limit of a wed
with zero internal angle. Thurston and McKenna3 subse-
quently discussed in detail the existence and behavior of
wave, and obtained the same wave speed as Sinha.2 The
flexural edge wave speed was also derived from the mode
a thin plate of finite width by taking the limit in which th
width becomes infinite.7

The classical Kirchhoff plate theory predicts a speed
the edge wave which is in constant proportion to the flexu
wave speed. The constant of proportionality is independ
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of the frequency and depends only on the Poisson’s ra
being slightly less than unity and equal to unity when t
Poisson’s ratio vanishes. As noted by Thurston a
McKenna,3 this equality reflects the fact that a flexural wa
traveling parallel to the edge of a thin plate of zero Poisso
ratio gives no bending moment or shear and hence autom
cally satisfies the free edge conditions of the classical p
theory.

The edge wave solution of the classical plate theory
been studied by many since then, for instance Refs. 8, 9,
is discussed in at least two monographs.10,11The speed of the
flexural edge wave was measured and agrees well with fi
element calculations,9 and both the measured speed and
FEM calculations are less than the values predicted by
Kirchhoff plate theory. An explicit expression can also
obtained for the edge wave speed on an anisotropic
plate.4 The analog of a flexural Stoneley wave propagat
along the line of contact of two joined semi-infinite plat
and decaying exponentially in the perpendicular direct
has been studied by Zilbergleit and Suslova.12 Kouzov
et al.13 have considered the more general configuration o
starlike nodal junction of thin plates.

Two of the present authors have recently established
existence of edge supported flexural waves on fluid loa
thin plates.14 However, submerged plates support such wa
only under very light fluid loading conditions: for instanc
thin plates of aluminum, brass or Plexiglas will support ed
waves in air, but not in water.14

Previous studies of the flexural edge wave on a se
infinite plate in vacuohave used either the Kirchhoff plat
theory or some far more sophisticated analysis based on
full equations, e.g., FEM. We now demonstrate that the
sential characteristics of the edge wave are captured by
Mindlin plate theory15 without much additional effort be-
yond that required for the Kirchhoff theory. To the best
17817(3)/1781/4/$17.00 © 2000 Acoustical Society of America
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our knowledge, the edge wave has not been previously
lyzed in the context of Mindlin plate theory. The Mindli
theory for flexural waves incorporates shear-deformation
rotary-inertia, two effects that are absent from the class
Kirchhoff theory. According to Mindlin’s theory the dis
placement at (x,y,z) is u5zc(x,t)1w(x,t)ez , where x
5(x,y) is the 2-D position on the central plane of the pla
z is the transverse coordinate, withz50 the center plane o
the plate andc5(cx ,cy) is the in-plane vector of rotations

The equations of motion in the absence of external lo
ing are
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where r is the density andh the thickness. The moment
Mx , M y , andMxy , and the shear forcesQx andQy , are

Mx5DS ]cx

]x
1n

]cy
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]x D , Qx5a2mhS ]w
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~4!
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]y
1cyD ,

whereD5Eh3/12(12n2) is the bending stiffness,n is Pois-
son’s ratio,m is the shear modulus, andE52(11n)m is the
Young’s modulus. The shear modulus is modified by
factora2 in order to better approximate the shear forces, a
1782 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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a may be chosen according to different criteria, but n
mally, a2<1.16

Now let the plate occupy2`,x,`, y>0 with a free
edge ony50. We consider the time harmonicansatzof
frequencyv:

w~x,t !5Re@~V11V2!e2 ivt#,
~5!

c~x,t !5Re@~b1“V11b2“V22ez3“V3!e2 ivt#,

whereV1 , V2 andV3 are given by15

Vj~x!5Aje
i jx2Aj22kj

2y, j 51,2,3. ~6!

The three bulk wave numbersk1 , k2 andk3 and the numbers
b1 andb2 follow by direct substitution into Eqs.~1!–~4! and
are given by

k1
21k2

25kS
21kP

2 , k1
2k2

25kS
2kP

2 2kf
4 , k3

25a2k1
2k2

2/kP
2 ,
~7!

b j5211kS
2/kj

2 , j 51,2,

where

kS5
v

a
Ar/m, kP5vA~12n2!r/E, kf

25vAhr/D. ~8!

By applying the boundary conditions appropriate to
free edge: vanishing shear force, bending moment and tw
ing moment, that is, Qy(x,0)50, M y(x,0)50, and
Mxy(x,0)50, respectively, three equations are obtained
Aj , j 51,2,3. Setting the resulting determinant to ze
yields, after some simplification, the following dispersion r
lation for the wave numberj of the edge wave:
ss
e

FIG. 1. The dimensionless speedc5k1 /j according to
Mindlin plate theory plotted against the dimensionle
frequency kRh5vh/cR . The free parameters ar
n50.39, a5cR /cT . The value atkRh50 is given by
Eq. ~10!.
1782Norris et al.: Letters to the Editor
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FIG. 2. The edge wave speedv relative to the Rayleigh
wave speedcR according to Mindlin theory~solid
curve! and the Kirchhoff theory~dashed curve!. The
circles represent data from Lagasse and Oliner~Ref. 9!.
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Let k1
2.k2

2, thenk1 is the analog of the classical flexur
wave numberkf in the Mindlin theory. The speed of th
flexural edge wave relative to the Mindlin flexural wave
c5k1 /j. Numerical experimentation shows that there is
ways a root of the dispersion relation forc<1, with equality
again whenn50. The fact thatc51 for n50 is a conse-
quence of the fact that the flexural wave automatically sa
fies the free edge conditions with no Poisson contrac
effect. For nonzeron the Poisson effect comes into play an
the edge wave solution has a small but nonzero compo
from the other two Mindlin plate waves, and its speed
subsonic relative to the propagating flexural wave. For
stance, Fig. 1 shows a plot ofc versus frequency. It may b
verified by direct calculation that the root of Eq.~9! reduces
to the value predicted by Thurston and McKenna3 in the
limit as the dimensionless frequencykSh approaches zero
that is,

c5@2~12n!~123n!12~12n!

3~122n12n2!1/2#1/4 askSh→0. ~10!

The high frequency limit of the edge wave is of intere
It may be shown by taking the correct limits that at hi
frequenciesj is the unique positive solution of

~2j22kT
2!224j2~j22kT

2!1/2~j22kP
2 !1/250 askSh→`,

~11!
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where kT5kS /a is the wave number of bulk transvers
waves, i.e.,kT5v/cT where cT5Am/r. The form of Eq.
~11! is precisely the same as the equation for the Rayle
wave on the surface of a half-space, except that the long
dinal wave numberkP in Eq. ~11! is the wave number ac
cording to membrane theory; see Eq.~8!. This has speed
cP5AE/@(12n2)r# as compared with the larger speed of
bulk longitudinal wave,cL5cP(12n)/A122n. The mem-
brane Rayleigh wave speedcR* is the same as the true Ray
leigh wave speed for a material withn replaced by the value
n/(11n), leading to a slower speed. Hence, the high f
quency limit of the edge wave according to Mindlin’s theo
is the Rayleigh ‘‘surface’’ wave traveling along the narro
surface of a thin plate. The meaning and interpretation of
is unclear since one should be cautious of using the h
frequency limit of Mindlin’s theory for purposes other tha
intended. The original goal of Mindlin was to obtain the hig
frequency asymptote of the fundamental antisymme
mode of a plate, which is itself the true Rayleigh wave spe
cR if a is chosen asa5cR /cT . The occurrence of the
‘‘membrane’’ Rayleigh wave as the asymptote is therefo
all the more interesting since it drops out in the limit ind
pendent of the value ofa.

Finally, Fig. 2 compares the Mindlin edge wave spe
with the Kirchhoff edge wave speed, and also with measu
data of Lagasse and Oliner.9 The speeds are normalized wit
respect to the Rayleigh wave speed. The Poisson’s ratio
1783Norris et al.: Letters to the Editor
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chosen asn50.39 so that the Kirchhoff curve agrees with
similar curve in Ref. 9, anda5cR /cT . We note that a finite
element computation by Lagasse and Oliner9 produced a
curve essentially overlying the Mindlin curve of Fig.
within the accuracy of the data read from Ref. 9.

Note added in proof.A referee pointed out that Ambar
tsumyan and Belubekyan17 came to a conclusion opposite
ours: that the more exact plate theories of Timoshenk
Mindlin type predict that localized edge wave do not exi
After examining their paper, we conclude that the analysis
Ambartsumyan and Belubekyan is in error, and that the e
wave is predicted by Mindlin plate theory.
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