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Abstract

The basic problem of determining the far-field scattered from the edge of a wedge of exterior @ngiehZarbitrary
impedance conditions on either face is considered. An accurate solution in the form of a Sommerfeld integral obtained by
Malyuzhinets is evaluated fdr > 1. A fairly complete discussion of the far-field response is provided, including uniform
and non-uniform asymptotic approximations. The far-field is split into edge-diffracted, surface, and geometrical optics waves,
including multiply reflected components. The edge-diffracted field is defined by the diffraction coefficient, which we show
has a simple factorisatio® = ug(¢)uo(do) Fo (¢, o), Wwherep andgg are the source and observation directiongg) is
the value of the wave function at the edge for a plane wave of unit amplitude incident from the diggctiothFp (¢, Po)
involves only trigonometric functions. We demonstrate that the monostatic tip diffraction from a wedge of arbitrary angle
can be made to vanish by appropriate choice of the surface impedance. The unique value of impedance is always real, and
an explicit formula is given for its evaluation. New results are presented for the reflection and transmission of surface waves
on an impedance wedge, including simple approximations for an internal wedge withdsniétially, a complete uniform
description of the far-field is given in the format of the Uniform Asymptotic Theory of Diffraction. ©1999 Elsevier Science
B.V. All rights reserved.

1. Introduction

A two-dimensional time-harmonic scalar wave fial@, ¢) is excited in a wedge-shaped region<0r < oo,
lp| < @, Fig. 1, by a plane wave incident from the directip

uine(r, ¢) = Uo exp[—ikr cox¢ — ¢o)]. (1)
Herek = w/c andc is the wave speed, and the time dependance factéf & 1filomitted throughout. The field
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Fig. 1. The geometry.

satisfies the Helmholtz equation

82u  1du 1 9%
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within the wedge-shaped region, and impedance boundary conditions of the form
10u
= T iksinbiu =0, 3
-6 FlksSIinfi+u ( )

on the wedge faceg = +£@. The complex-valued angl®s. are related to normalised surface impedances of the
wedge faces (the actual surface impedance&are- pc/ sinf, pc being the acoustic impedance, so thatésin

are really the normalised surface admittances, the inverse of impedance). For any physically passive boundary,
which is free of field sources, simple energy considerations imply thatRe6,. < x/2, whereas Inf. can be
arbitrary.

The functionu(r, ¢) is a potential function which, depending on the sort of wave motion we are dealing with,
represents a certain physical quantity, e.g., the sound pressure or a component of the electromagnetic field. As such
it should meet specific conditions at the edge of the wedge so as to guarantee physically correct behaviour of the
wave field there. These edge conditions may be written as

=0, lim

r—0

ou
r—
P

lu(0, §)| = C, |im0

u
@\ =0 )

with C bounded and independent®{1].
Far from the edge @3- — +oo the solution should recover the incident wave (1) and be free of any non-physical
contributions. The corresponding condition may be expressed as

rli_)moo|u(r, ) —ug(r, )| =0, Imk >0, (5)

whereug(r, ¢) denotes the geometrical optics part of the field. The condition (5), or the so-called extinction
condition (see [1,2]), extends the commonly used radiation conditions to the case of a plane wave illuminating
scattering boundaries of infinite extent, by accounting for reflections of the incidence wave which are also incoming
waves. The requirement lin> 0 in (5), implying that the medium filling the wedge-shaped domain has some
absorption, arbitrarily small at least, is necessary to exclude contributions of the fo¢mikxyy v/kr, a forbidden
counterpart of the edge diffracted field.

In order to include in our analysis a non-uniform excitation from an incoming surface wave we assupgetrat
be a complex number with an arbitrary imaginary part and with real part satisfying the relabion Re¢g < @.
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Fig. 2. The integration contours of the Sommerfeld integral.

In particular, puttingpp = @ — 64 with Im6,. < 0 in (1) gives a surface wave travelling along the upper face of
the wedge towards its edge. Analogously, the substityiiog —® + 6_ with Im 6_ < 0 transforms the excitation
(2) into an incoming surface wave propagating over the lower face of the wedge.

An elegant solution to the diffraction problem defined by Egs. (1)-(5) has been deduced by Malyuzhinets in his
Doctor of Science Dissertation [1], and later described in a series of papers culminating in the concise solution
outlined in his 1958 paper [3]. The method of solution is discussed in detail in our companion review paper [4],
which contains all the pertinent references. In summary: the solution is expressed as a Sommerfeld integral over
the contoury =y U y_,

u(r, ¢) = z—jlri/e—”” COSY §(or + ¢b) dav, (6)
Y

wherey;. is a loop in the upper half of the complexplane, beginning at /2 + ico, ending at-37 /2 + ico, with
Im « lying above an arbitrary minimum, such that no singularities of the integrand occur withor all |¢| < ®.
The contoury_ is the image of/,. under inversion about the origin= 0 (Fig. 2).

The transform function

v ()
S(a) = U o(a) 7
W (o) ")
is expressed in terms of trigonometric functions
v covep) b1
= N — _’ 8
o(@) sin(va) — sin(veo) Y 20 (®)
and a transcendental function
W (@) = o (a+¢>+z—9+)w¢ <a+¢> _£+9+)
2 2
T b4
xt/qu(ot—(D—E—i—éL)w(p(a—@—i-E—6L). 9)
The latter is a particular solution to the system of difference equations
V(+®d) —sina+ sinGi’ (10)

U(—a+®)  sina =+ sinfi

and can be expressed in terms of a special funetip() introduced by Malyuzhinets [3]. Alternative but equivalent
solutions to the impedance wedge diffraction problem were later derived independently by Williams [5] and Senior

[6].
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The impedance wedge geometry is one of the canonical shapes of high-frequency diffraction theory. By evaluat-
ing the integral (6) fokr > 1, one may obtain asymptotic representations of the field scattered from an edge in an
impedance surface [3,7-10]. These can then be incorporated into various versions of the high-frequency diffraction
theory, including the geometrical theory of diffraction (GTD, [11]) and its uniform formulations — the uniform
asymptotic theory of diffraction (UAT, [12—14]), and the uniform geometrical theory of diffraction (UTD, [15]).
Accurate solutions to the canonical problems are also used in applied versions of the high-frequency diffraction the-
ory, aimed at solving engineering problems, like the physical theory of diffraction (PTD, [16]) and other techniques
utilising the concepts of incremental length diffraction coefficients [17-19], equivalent edge currents [20-23], and
elementary edge waves [24,25].

This paper provides a complete high-frequency analysis of the Malyuzhinets solution. We subsequently analyse
various components forming the far field response. Wherever possible the accurate formulas for the field compo-
nents are supplemented with simple approximations in order to facilitate quantitative understanding of the far-field
behaviour. In Section 2 the response from a wedge with locally reacting impedance boundary conditions on each
face is naturally split into geometrical optics, surface, and diffracted wave components. We demonstrate in Section
2.1 that the geometrical optics part involves reflections from the faces and may be described using reflection co-
efficients for the separate faces combined with ray tracing. Multiply reflected rays occur in the case of an internal
wedge, whed < 7/2.

Section 2.2 deals with the surface waves that arise from diffraction of the incident field at the eblge 74,
these may also include multiply reflected components. Both plane and surface wave excitations are considered.
The equation of energy balance between incident, reflected and transmitted surface waves and the edge diffracted
volume wave is presented and the dependence of each component on the wedgdeiamgimerically estimated.

We also give simple but surprisingly accurate approximations for the surface wave transmission and reflection
coefficients.

The edge diffracted waves, on the other hand, are generally more difficult to handle, because their amplitude
and phase depend upon complicated and non-intuitive functions. The diffracted field is particularly important in
shadow zones where no direct or multiply reflected wavefronts occur. Section 2.3 offers a simple way of viewing
the diffracted response, using only trigopnometric functions as far as possible. We show that the edge diffraction
coefficient can be represented in a particularly simple and physically revealing form. Some consequences of the new
form are explored and discussed. Specifically, we analyse backscattering from an impedance wedge and demonstrate
that at particular observation angles the monostatic echowidth of the wedge can be made to vanish by appropriate
choice of its face impedances. The unique value of impedance is always real, and an explicit formula is given in
Section 2.3 for its evaluation.

The paper ends with a complete set of uniform asymptotic far-field expressions for the total field diffracted by
an impedance wedge (Section 3). In this part of our paper we follow an elegant approach described in [14] for a
particular case of perfectly reflecting wedge boundaries. This leads directly to asymptotic expansions of the far-field
as series in inverse powers bf, without having to evaluate the Malyuzhinets integral (6) when the poles of its
integrand approach the saddle points, or by first solving an associated problem for pulse excitation in the time
domain, as done in [26].

The asymptotic expressions of Section 3 are deduced in the format of UAT. There are alternative formats
for expressing the fields diffracted by wedges in a uniform manner, e.g., those of UTD. They are known to
correspond to the use of different procedures for evaluating integrals over steepest descent paths in the case
of a pole approaching a saddle point [27]. This produces superficially different asymptotic representations of
the far-field, which may utilise functions other than the Fresnel integral to describe the field in transition re-
gions (see, e.g., [7,8,28]). However, they are obviously equivalent formulations as long as accurate techniques
are employed for the asymptotic evaluation of the solution (for further discussion of the subject, see,

e.g., [27]).
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2. The structure of the far-field

The far-field representation of a solution expressed as the Sommerfeld integral (6) is constructed by deforming
the integration contouy = y; U y_ into a pair of contoury (+7) (Fig. 2) which are the steepest descent paths
(SDPs) associated with the exponent factor(expr cosx) [3]. The SDPs are

y(£r) = {o: Rea = 7 — gd(Im )}, (12)
with gd(x) = —n/2 + 2 arctarge®). This produces a representation of the form

M(l", ¢) = Mg(r» ¢)+Md(}’, ¢)+u5(r, ¢)7 (12)

where the contribution from integration over the SDPs is

ug(r, ) = i/ g ikreose gy 4 ¢) do. (13)
2701 Jy (yuy ()
The other terms in (12) arise from residues at poles of the transform furtigrcaptured by the contour defor-
mation. Such poles are located in the regiBRES enclosed by the SDPs(+x) to its left and right and by the
Sommerfeld contourgy. at its top and bottom.
It is interesting to note that because of the specific structure of the integration coptetrs which are offset
by 2z from each other and are taken in opposite directions (Fig. 2), the integral in (13) cancels implying that

uq(r, ) vanishes everywhere ib(«x) is 2r-periodic

The conditions for such periodicity have been formulated in our previous paper [4]. They require that the wedge
semi-angle® must be a rational fraction of, i.e.,® = 7=/(4m) withm = 1,2, 3,... In the case of identical

faces of the wedge wheth, = 6_, S(«) is 2r-periodic for a broader variety of angles defined by the relations

® = 1/(2g) with ¢ being any integer. Thus, in these cases the wavedigld) diffracted by an impedance wedge

can be expressed without integration as a finite number of contributions all occurring from residues at the poles
residing within/TRES,

Each component of the representation (12) has a clear physical meaning, in accord with the simple fact that far
from the edge of the wedge the total wave field should comprise the incoming plane wave plus a scattered wave
which in turn can be split into reflected ray-optic contributions, surface waves associated with the impedance faces
of the wedge, and a diffracted wave emanating from its edge. A successive discussion of these terms now follows.

2.1. The geometrical optics field

Evaluating the residues at polesaof + ¢) yields the expression of the form [3]

+00 n
ug(r, ¢) = Uo Z (—D"H( — [8,(, do, D)) W[(—ll)p?q(;o;" 2nP] e ikr COS@—(—l)"¢O—2n¢]’ (14)

where
8 (¢, 0, @) = ¢ — 2n® — (=1)"[gd(Im ¢o) + Rego],

andH(x) = 1if x > 0, andH(x) = 0, if x < 0. The step functions in (14) are clearly non-zero only for those
poles ofo (« + ¢) that are located i RES. This means that the total number of contributions ¢, ¢) is always

finite, although it may be rather large for smal] because this latter parameter determines the spacing between the
poles. The smaller thé, the more members are involved in (14).
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The formula (14) allows for complex values ¢ and includes therefore the case of non-uniform excitation. If
the incoming field is a plane wave, theg is real ands, (¢, ¢o, @) simplifies top — 2nd — (—1)"¢p.

Consider the physical interpretation of (14). The phase factors in (14) coincide with those appearing in the
geometrical optics representations of fields scattered by wedges with perfectly reflecting boundaries [29,30],
and clearly correspond to multiply reflected plane waves. In contrast, the amplitude factors in (14) appear to
be more complex to interpret, since in the framework of Malyuzhinets theory they are initially given by ra-
tios of the special functiong’ («). However, these ratios can be reduced to products of conventional planar
reflection coefficients [9,31,32]. By substituting —~ —¢o = @ in Egs. (10) satisfied by (@), one gets the
relations

¥ (£20 — ¢o)
— = —R. (D s 15
V(o0 +(@ F ¢0) (15)

whereR.(x) = (sinx — siné1)/(siny + sinéy) is the reflection coefficient for a plane wave incident at angle
upon a flat impedance surface. By repeatedly using the relations (15), each ratio of the auxiliary functions in (14)
is reduced to a product of the reflection coefficients of different arguments, according to the identities:

U(a+4nd) &

@I 0P _[]R-(« — 30+ 4j0)Role — D +4jd), n =1,
¥ (@) i

1/ dnd

vatao) o 4o
¥ (a)

W(a+4d) ; j

T @ [[Ri(—a =30 +4j®)R_(—a — @ +4j®), n<-1,

j=1

U(—a + 2@ + 4nd)
¥ ()

n
= —Ry(® — a)HR,(—a — @ +4jP)Ry(—a+ P +4jd), n>0,

j=1
(- 20 + 4nd —n-1
( a+w( )+ "P) _ _R_(®+a) [T Ri@—@+4j®)R_(a+ & +4j®), n<-1, (17)
o
j=1

whereqx is an arbitrary complex parameter, whilés an arbitrary integer.

Based upon (16) and (17) we conclude thgtr, ¢) is the geometrical optics part of the wave field. Each
term of (14) is a plane wave reflected by the wedge faces, except for the term witB which is an incident
wave. In the case of an external, or acute, wedge implying&hat /2, there always exist only three non-zero
contributions to (14), relevant to the direct and singly reflected waves. For@éntatarrow wedge-shaped region or
an internal or obtuse wedge), further contributions may appear, representing multiply reflected images of the incident
wave.

2.2. The surface waves

Next, we consider the contributions to (12) from the functibi + ¢). Note that¥ («) is a meromorphic
function of its argument [3,4], and its poles are simply those of the four Malyuzhinets functions appearing in (9).
Sincey s (o) has its poles a¥ = +8,, whereg,, = (7/2)(2q — 1) +20(2p — 1) with p =1,2,3,..., an
arbitrary positive integer ang = 2,4,6, ..., even and positive [3], the following poles @f(«¢ + ¢) may
fall within TTRES and may be captured 1fil in the course of deformation of the Sommerfeld contounsto the
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SDPsy (£m):
Ajm=—¢+ (-3 +nm+0L+4m®), j=1 m=12...
Ajm=—¢+ (@ —m -0y —4mP), j=2, m=12 ...
Ajm =—¢+@BP —7m—0_—4m®), j=3 m=12,...
djm ==+ (P +nm+0_+4mP), j=4 m=12 ... (18)

Here j labels the four families of poles @ (« + ¢).
In accordance with the form of (18) the residue contributions to the total field (12) may be represented as

4 M;

us(r, @) = Y Y ujm(r, ), (19)

Jj=1lm=1

where each membex;,, (r, ¢) arises from the pole = «;,, andM; with j = 1, 2, 3, 4 are integers equal to the
number of captured poles from thi¢h family. Their values are functions of the configuration parameter,
ande¢. Later we present explicit expressions for these quantities.

In the case of an external wedge,> 7/2, only the poles witam = 1 andj = 1 or j = 3 can be crossed. This
simplifies the representation (19) to

MS(rv ¢) :M+(r, ¢)+u—(rv ¢)7 (20)
where

usr(r, ) = UpAr(¢po)H[Lp — @ — RebL — gd(Im 61 )explikr co® F ¢ + 64)], (22)
and

B 2v coqv¢p) tanb+ U(£d Fm F64)
cos p(rr + 6+)] F sin(veo) (o)

The Heaviside step functiof (x) in (21) accounts for the conditions required to capture the pwles o1

anda = «3;. Notice thatu, (r, ¢) andu_(r, ¢) vanish if Imo,. > 0 and Imd_ > O, respectively, because the
corresponding poles are not captured. This means that non-zero contributions to Eq. (20) may appear only when at
least one of the conditions lth. < 0 is met.

With Im 61 < O the expressions (21) describe a function that is concentrated near a corresponding boundary of
the wedge, decaying exponentially when the observation point moves in the normal direction outwards from the
face. These contributions also decrease as the distdno® the edge grows, except for the case of non-absorbing
boundaries, Ré. = 0, in which case the functions. (r, =&) become purely oscillatory. It is obvious from the
analysis of the phase factors in (21) that these contributions can be interpreted as surface waves excited by an
incident wave at the edge of the wedge which then travel outwards from the edge along the faces. Note that the
conditions for exciting these waves are exactly those for the excitation of a surface wave by a line source placed at
a pointr = 0 on an impedance plane, although the amplitude coefficientgo) differ.

Note that in deriving the expression (22) it was necessary to evaluate the residues of the transform function
S(a) at poles of¥ («). In order to avoid the appearance of derivatives of special Malyuzhinets functions we have
invoked the functional relations (10), thereby extracting the singularities in multiplicative factors which include
only trigonometric functions and can be differentiated explicitly.

Next, by using the functional property [3]:

o o 2o - ) = (3) eos(22) @

A+(¢o) = (22)
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one may express the functiods+® F 7 F 61) in (22) through (=@ F 61). The latter function always has its
argument within the strifRex| < @ where by construction the functiah(«) is free of both zeros and poles [3,4].
This yields the formulas
. v T .
AL (¢ho) = —2v sin (7) w8 (E) CoS(veho) tanb. sin(vo..)
o €08 [(v/2)(04 +6-)]cos[(v/2)(m + O+ — 0%)]

W (po)¥ (£ F 02){cosp(r + 01)] F sin(veo)}’

which can be advantageous for numerical purposes.

Alternatively, the surface wave amplitudes can be written succinctly in terms of the normalised edge field
which is defined by the formula

(24)

Os
uo(@) = ”(Uo‘b), (25)
whereu (0, ¢) is the tip value of the total field [3,4]:
. _ v COSvep) | 4 T
Jimu(r, ¢) = Vo—pes "=V (2) (26)

By using Egs. (25) and (26), one may rewrite (24) as follows:

_ 2 (v c0s [v/2) (B4 +6-)]cOS [(v/2) (7 + b1 — 0]
Ax(90) = v sin ( 2 ) tané.. CoS p(rr + 6+)] F sin(vgo)
xuo(po)uo(£P F 0+). (27)

This representation is remarkable in that it involves only trigonometric functions in addition to the edge fields.
Similar property also holds for the edge diffracted field and is discussed in Section 2.3. As one might expect, one
of the edge fields in (27) is evaluated for a complex angle of incidence, appropriate to a surface wave.

In the case of surface wave incidence, the total field is given by (12)d¢wits +& F 6, and consists of the
incident surface wave, the reflected and transmitted surface waves, and the edge diffracted wave. Correspondingly,
the excitation coefficienta 1 (¢o) become the reflection and transmission coefficients. Thesgare A (P —04)
andry_ = A_(® — 6,) if the excitation comes from the fage = &, andr__ = A_(—® +6_) andr_, =
AL (—® + 0_) if the incident surface wave comes from the lower fgce: —@. Simple algebraic manipulations
of (24) yield

T cos [(v/2) (64 +6-)]cos [(v/2) (7 + O+ — b5)]

— 8 i
re = vi () taneu sir o) VLD F 0u) SN [(v/2) 202 + )] (28)
for the surface wave reflection coefficients, and
8 (TN i (VT tano, sin(vo_) sin(vy) cos[(v/2) (04 + 6-)]
f+ ="V (2) sin ( 2 ) U(® — 0¥ (—B +6_)cos[(v/2)(x + 05 +6)] (29)
8 (TN wn (VT tan6_ sin(vé.) sin(vf_) cos [5 (64 + 6-)]
=g (2> sin ( 2 ) U(—® + 6 )W (D — ;) COSB(n + 65 +6.)] (30)

for the transmissions coefficients. Note that cotd_ = r_ cotd., which is exactly what is required by reciprocity
because tafi is the amplitude of the surface wave excited by a line source placed on an impedance plahe with
being its Brewster angle. Also, in the case of equal impedafices 6_, one has,; = r__ as expected from
symmetry considerations. Finally, we note that in the limiting case of a flat impedance surface, which means that
0+ — 0_and® — x/2, Egs. (28)—(30) giver+ — 0 andri+ — 1, as expected.
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Fig. 3. Reflections of a surface wave in the Sommerfeld branched space.

When the wedge angte is less thamr /4, further contributions with = 2 andj = 4 may enter the representation
(19). The tendency is that the smaller the wedge angle, the more the poles (18) can fall within fi8%taad be
therefore crossed in the course of contour deformation. The number of captured poles can be explicitly expressed
through the wedge parameters as follows:

M =1+ entire{%[—gd(lm 0+) —RebL + ¢ — @]} ,
. 1
Mj = entlre{ﬁ[—gd(lm 0+) —Reb; — ¢ + @]} ,
. 1
M3z =1+ entlre{E[—gd(lm 0_) —Reb_ — ¢ — ¢]} ,

My = entire{ %[—gd(lm 6_) — Reb_ + ¢ + <D]} , (31)

where entiréx) denotes the biggest integer not greater than

The interested reader may find further formulas for contributions of such type as well as a more detailed discussion
ofthistopicin[33]. Here we would like to just emphasize the physical interpretation of these contributions as multiply
reflected surface waves. In order to make it apparent, consider in (19) theitggiase) with j = 1 andm > 1.
Their phase factors are efipr cos[@ — ¢ + 64 + 4@ (m — 1)]} and that withm = 1 describes a surface wave
running in the directiop = &. Consequently, the one with = 2 may be interpreted as a wave which propagates
along the directiop = 5& on an attached sheet of a Sommerfeld branched space (Fig. 3) [34,35]. Thus, one may
conclude that amth term is a non-uniform wave directed go= @ + 4(m — 1)®. Though these directions are
outside the physical region of spalgg < @, such contributions appear in the field as a result of reflections of the
initial surface wave between the wedge faces.

Analogously, the contributions with= 2 have exfikr cos[-3® — ¢ — 0+ —4® (m — 1)]} as their phase factors.
This allows us to associate them with another set of reflections of the same initial surface wave, propagating in the
directions¢p = ® — 4m®, also outside the physical part of space (Fig. 3). If the initial surface wave propagates
along the lower face of the wedge, the non-zero contributions to (19) are thos¢ witB andj = 4. They can
similarly be interpreted as multiple reflections guided in the directiprs—® + 4m®.

In general, an incident surface wave, say the one incoming along the upper£adeof the wedge, converts at
its edge into a cylindrical wave radiated outside the wedge, a reflected surface wave, propagating backward along
the upper face, and a transmitted surface wave, travelling forward along the lower face®. In the case of a
narrow internal wedge, the multiply reflected components may also occur. Assuming that the enefgyfithe
incident surface wave is normalised to unity and there is no energy dissipation in the faées£Re6_ = 0),
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Fig. 4. The energy redistribution for surface wave excitation of an impedance wedge.

one finds the equation governing the energy balance for the conversion process in the far zorieto be as
follows:

H ]
|

1=|ry4|?+tano, cot9,|t+,|2+tan9+—/ |D(¢, @ — 6,)|%do, (32)
TJ-o

where the members in the right-hand side of the identity are the energy filixé%, and Eq associated with the
reflected, transmitted, and radiated waves, respectilgly, @ — 6,) is the amplitude of the edge diffracted field
whenkr — oo. It is given by the diffraction coefficienb (¢, ¢o) with ¢po = @ — 6., which is more precisely
defined in Section 2.3. Note that the multiply reflected surface waves are not present in (32), since they vanish
exponentially agr — oo and, therefore, do not contribute to the far field.

Fig. 4 shows these energies as functions of the wedge d@nglath the proviso that the impedances of the faces
are the same an@l, = 6_ = —i. The curves “SR”, “ST”, and “SD” indicate the amounts of reflected surface,
transmitted surface, and radiated spatial energies, respectively. The sum of the reflected and transmitted surface
wave energies is the curve “R+T". The total of this latter and the radiated spatial energy equals unity, the energy of
the incident surface wave.

For small values o, approximately® < x/5, the values oE, andE; oscillate strongly, even though their sum
Es = E; + Ei, thatis, the total energy flux associated with both the reflected and transmitted surface waves, remains
a smooth function tending to unity @sapproaches zero. In fact, by explicitly making the approximafige:= 1, the
formulae for the reflection and transmission coefficients give simple but surprisingly accurate estinrates<
andEy ~ sin’g with 8 = vrr/2, which is valid if® < 7/2 and—oo < Im6+ < —2. For—2 < Im#6. < 0 these
can be improved by defining as follows:

v
tar’8 = tarf (777) tan [v (% + 9)] tan [u (% - 9)] . (33)

In contrast with the surface energy, the radiated enéiggchieves its maximum wheh = 7 and the wedge
becomes an impedance half plane. The total energyHlux Eq, as it might be expected from the energy balance
(32), is invariant as the wedge angle changes, and always equals the enegydfuRke incident wave, which is
unity.

Finally, we note that the total field at the edge for an incident surface wave of unit amplitugleti® = 6-), as
it follows from definition (25). Based on the approximatifig = 1 and the preceding discussion, and also using
the representations (28)—(30) and assuming identical impedances wita-Reone may obtain the estimate

luo(+®@ F 0)| ~ v¥/?| cots| /2. (34)

Referring to Fig. 4, we expect (34) to be accurate for wedge abgimaller thanr /2.
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2.3. The edge diffracted field

2.3.1. The diffraction coefficient
The diffraction integral (13) can be evaluated asymptoticallyiiors> 1, yielding the far-field asymptotic
expression

i (kr4-m/4)

=D 1+ O[(kr)~t 35
ud(r, @) (@, ¢0) N {1+ O[kr)~"1}, (35)
whereD, the diffraction coefficient, follows from the saddle point contributions to the integakattr as
D(¢.¢0) = S(p —m) — S(¢p + ), (36)
or, from Eq. (7) and (8)
. vcodveo) V(p—m) _ V(p+m)
D@90 ==y 5) [Sinv(cﬁ —7) — sin(vgo)  SiNv(¢ + 1) — Sin(v¢o)} ' 5D
Using the property (23), we have
_YE@/2) v v
wipEm =g cos[E @+@+ 9+)] cos[E G+®+7F 9+)]
1% v
xcos[§(¢—¢j:0_)] cos[§(¢—¢j:n :Fe_)], (38)

or with a bit of simplification,

P(p L) = *”if’;j? foos[v (2 —0.)] - sin[v (s 2)]]

ooy (3 -] sn[o(023)]) =

Substituting these into (37) yields, after some further algebra,

o VIT\ g (T COSv¢g) COLveho)
D(¢. do) = Uo, tan (7) Vo (E) V(@) W(o)

5 {1 N sin(v) + sin(veo) — 2 cogvr/2) cos[v(r/2 — 6,)]

cos[v(¢ + ¢o)] + cos (vrr)

sin(ve) + sin(veo) + 2 cos (v /2) cos[v(r/2—6-)]
X : (40)
cos[v(¢ — ¢o)] — cosvr)
Thus, using (25) and (26) we have the general result
D(¢, po) = Uouo(¢) uo(¢o) Fo (¢, ¢o), (41)
where
1 VI sin(vg) + sin(vgo) — 2 cogvr/2) cos[v(m/2 — 64)]
Fo(@. ¢o) =7 tan (7) {1 + cos[v(¢ + ¢o)] + cos (vrr)
5 sin(ve) + sin(vgo) + 2 cos (v /2) cos[v(r/2—6-)] . 42)

cos[v(¢ — ¢o)] — cogvmr)
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If the faces are purely reactive, i.e., the impedances and hence the @nglesall purely imaginary, then the
magnitude of the edge field has the simple form [4]:

2v coqvo)
[ coshiv|64]) — sin(vqb)]l/2 [ coshw|6_|) + sin(v)]

Egs. (41),(42) and (43) imply that thrmagnitudeof the diffraction coefficient for a wedge with purely reactive
faces can be found using trigopnometric functions only. Determining the phase requires evaluating Malyuzhinets
functions, in general.

Egs. (41) and (42) clearly show that the diffraction coefficient is unchanged when the source and observation
directions are reversed, i.eD(¢o, ) = D(¢, ¢o), as required by the principle of reciprocity. In general, the
diffracted response depends upon both the edge:ftelhd the pattern functiofiy. We have already discussed
the behaviour of the former [4], and therefore we now need to consider only the pattern furgtion

luo(p)| =

- (43)

2.3.2. The pattern functiofg
Itis useful to consider some specific examples of the fundlignFor the rigid wedge&d, = 6_ = 0), we have
uo(¢) = 2v andFyp = FY, where

R _ i [ sin(vr) sin(vr) ]
Fo(#.90 =2, | costvm) — cosb@ — g0l T costvm) + cosb + g0l ) 49
This agrees with the well-known result for the rigid wedge, e.g. [14,29,30,36].
If the impedance is finite angl, = 6_, then
Fo (6. o) = FE(G. d0) + sin(vrr){ coS[v(rr/2 — 6+)] — co(vrr/2)} (45)

2v {cogvr) 4 cos[v(¢ + ¢o)]} { cosvm) — cos[v(¢ — ¢o)]}

Thus, Fg and hence the diffraction coefficient vanishes for acute amjlesn/2n, n =1, 2,3, ..., if both faces
have the same impedance. When the impedances are distinct the diffraction coefficient is zero for the subset of these
angles with even, i.e.,® = 7 /4, /8, /16, etc., and this is in line with the general property found in Section 2.
Other vertex angles of interest at¢2 andr, corresponding to a half plane and a screen, respectively,
1sin6y — sing_

Frp2(¢, ¢0) = 2 sing + singo (46)

Fr (¢, o) = % + [Sin <§) + sin (%0) - «/Ecos(% - %)}
 Sin@/2) + sin(¢o/2) + V2cogm/4—6-/2)
COS¢ + COS¢o '

The pattern function for a hard wedge (sntal) can be easily found. For instance, if the face impedances are
identical and. = 6, then (45) implies that

(47)

(48)

Fo (¢, ¢o) ~ F§(¢, $0) |:1+ V6 sin(vrr) i| .

coqvm) — sin(ve) sin(veo)
The case of a pressure-release wedge- (0 on either face) is relevant to the problem of anti-plane shear wave

diffraction in a clamped elastic wedge as well as electromagnetic diffraction Btfolarised field by a perfectly
conducting wedge. This limit can be found by letting— +ioco. Itis evident from (43) that the edge field vanishes,
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while the pattern functior’y, which is given by (42), becomes infinite, but the product in (41) remains finite and
tends to the limit

D(¢, ¢o) = vUo [ (49)

sin(vr) 3 sin(vr) i|
cogvmr) — cos (¢ — ¢o)]  cosvm) +cosp(¢p + do)] |

This can be established by inserting into (36) the transform function relevant to the wedge with Dirichlet boundary
conditions [29,36],

v COgveo)
sin(va) — sin(ve)

S(a) = Up (50)

The pattern functioy (¢, ¢o) has singularities at the angular combinations which satisfyvegst cos (¢ £
¢0)] = 0. Those corresponding to the shadow and reflection boundaries for acute wedgéswitty2(v < 1)
occur at angles satisfying — ¢o| = 7 and|¢ + ¢o| = /v — . For obtuse wedges witlh < 7/2(v > 1) the
singularities are described as follows:

|¢—¢o|=%(f)+1—v>, |¢+¢o|=%(v—ﬂ>, (51)
whereb = entirg(v) and odd, and
|¢—¢o|=§<v—ﬁ>, |¢+¢o|=%<a+1—v>, (52)

if ¥ is even. All of these singularities can be interpreted in terms of geometrical optics constructions (see Section
2.1), and will not be discussed further here.

Based on these findings, and referring to (41) and (43), we conclude that to a very good approximation, the
magnitude of the diffraction coefficient is

[D(¢, po)| =~ UoS2(¢)$2(d0) | Fo (¢, P0), (53)
where
Q) = v coSve)

|cos[(v/2)(¢ + ® — 6,)]cos[(v/2) (¢ — @ + 6]

This is precise for reactive faces, and it provides a lower (upper) bound estimate when the faces have the same
purely resistive impedance add > 7 /2(® < 7/2).

2.3.3. The backscattering diffraction coefficient
We conclude Section 2 with a brief discussion of the backscattering properties of an impedance wedge. The
backscattering diffraction coefficient results from (41) and (42) as

D(¢,¢) = % x {sin2 (%) - [Sin(vd)) - cos(%) cos (v (% - 9+))]

" sin(vg) + covr/2) cogv (/2 — 6_)) }

54
sif(vg) — coR(v/2) (54)

The monostatic backscattering echowidtimormalised to the wavelengghis defined in & through the limit of
the diffracted field [29]:

(55)

lug(r, §)I?
|Uol?

o .
X = r~|I>Toolo |g10 (k}"
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Fig. 5. The axial monostatic backscattering echowidth of an impedance wedge as a function of its vertéx angle
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Fig. 6. The monostatic backscattering echowidth of an impedance wedgewtfin /8 as a function of the observation angle.

which on account of (35) gives

o D(¢, ¢)
— =20l — . 56
X Gio \/ZUO ( )

Figs. 5 and 6 illustrate computational results characterising some important features of the monostatic backscat-
tering echowidth of impedance wedges. Fig. 5 shows the echowidth in the axial direttienQ(in (56)) as a
function of the vertex anglé for several values of the face impedances which we assume to be identical on both
faces of the wedge, thys. = 6_ = 6. The curves 1 and 2 correspond to the acoustically iargd Q) and soft
(Im6 = oco) wedge, respectively, and they mark the extreme lines so that all other curves relevant to the intermediate
values of the impedance with© |Imé| < +oo lie between them (curve 8,= —i).

An interesting exception is the case of entirely real Brewster angles, illustrated by the curves 4 and 5. Note
the presence of minima in those curves at the points defined by the retatip® = 7. The cancellation of
the backscattering echowidth follows from the representation (54) of the diffraction coefficient. One can readily
check that the expression in parentheses vanishes whenz — 6 and¢ = 0. From the physical viewpoint
this means that a wedge with a real value of its face impedance becomes “invisible” in the axial direction if its
vertex anglep satisfies this constraint. As the imaginary par gfrows, the minimum quickly disappears (curve 6,

0 = 27 /5+0.3i). The numerical results given here for complex values of the Brewster ghgiemain unchanged
for complex conjugate quantitiés. because of the properfy(¢, ¢o, 6., 0_) = D(¢, ¢o, 64, 6_) which is true as
long as other parameters, i.¢.,¢0, and® are real.
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Fig. 6 shows how the monostatic backscattering echowidth of an impedance wedge of vertax angle/8 =
157.5° varies with the observation angte All curves in the figure are symmetric about the bisecting éine 0
because the material properties of the wedge faces are assumed to be the same. Generally, no such symmetry exists
when6, # 6_. The maxima atp = +£67.5° correspond to the directions of specular reflection. The only case
(curve 1) which remains bounded in those directions occurs when the normalised surface impedance is unity, or,
equivalentlyd = 7 /2, since in such an event the reflected wave vanishes at normal incidence. Curve 2 of Fig. 6,
plotted for6 = n/5, demonstrates that the phenomenon of the invisibility of an impedance wedge, mentioned
before in the context of the axial backscattering: 0, may also take place at non-zero observation angles.

Simple analysis of the representation (54) shows that the zeros of the backscattering diffraction coefficient can
be found from the relation

si’(vp) = cogh) cosp(r — 6)]. (57)

If 6 is entirely real and such that— @ < 6 < 7/2, then the equation has real-valued solutions for the observation
angle¢ such thatv|¢| < arcsin[cosvr/2)]. Curve 3 in Fig. 6 corresponds to the intermediate case when
7 — @, and there exists only one root of the above equation in the intgfval @. The backscattering diffraction
coefficient loses this feature for smaller values of the Brewster angle (cutve=4z/10), although the level of
the echowidth in a sector around the central plane 0 is still less than the one associated with the wedge with
normalised surface impedance of unity£ 7 /2, curve 1). The echowidth of a wedge with haéd=€ O, curve
5) or soft (Im0 = oo, curve 6) faces does not display any zeros, and the gap between those two extreme curves is
monotonically filled with responses corresponding to finite values of the imaginary gatredy are not shown in
Fig. 6).

The examples in Figs. 5 and 6 indicate that the backscatter vanishes at particular observatiahfanglgs/en
wedge angl@ and surface impedanée Conversely, the “invisibility” condition (57) can be solved foin terms
of ¢ and®:

cos [v (9 — %)] - \/ Si?(vg) + sir? (%) (58)

Forr/2 < & < m,as|¢|goesfromthe forward directiah = 0tothe boundary ofthe reflection zojgg = @ —7/2,
Eq. (58) on the interval 8&: Red < 7 /2 has only one root

r 1 . ] VT
0= 3 ;arccoi/slnz(vdﬂ + sin? (7) 59)

and the Brewster angkincreases fromr — @ to /2. The normalised surface admittance of the wedge faces is
therefore

. 1 . .
sind = cos [;arccoi/smz(wﬁ) + sir? (%)] , (60)

which increases from c6® — 7 /2) to 1. Within the reflection zone, a| is increased further to its maximum
value|¢| = @, one gets two complex conjugate solutions of (58)

T

[ . 5 (VT
=5+ ;arccosli/smz(vqb) + sir? <7> (61)

which, however, lead to the same value of the parameter

sind = cosh Farccosr{/sinz(vqb) + sin? (E)] ) (62)
v 2
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This increases steadily with| to the value coskw—arcsinh[sirivr/2)]} for ¢ = +®. In summary, the backscat-
tered edge diffraction in directiafvanishes if the surface impedance is real and given by (60xif®| < & —x /2,
and by (62) ifé — /2 < |¢p| < D.

3. Full uniform asymptotic expansions of the far-field

The diffraction coefficienD (¢, ¢o) plays a leading role in the far-field analysis of the diffraction by wedges. In
fact, knowledge of the diffraction coefficient is the only information necessary to construct complete asymptotic
representations of the scattered fielddors> 1. In this section we show how the representation (35), which includes
only a major term of asymptotic expansion of the diffracted field in inverse powéramd which as we saw above
becomes infinite at shadow boundaries of incident and reflected waves, can be developed into a full asymptotic
expansion of the total field which is bounded at all shadow boundaries and uniformly valid over the whole range of
values of observation and incidence angles.

We start by deriving the higher order terms of the non-uniform representation (35). For simplicity we restrict the
discussion to an exterior wedge, &@r> /2. Assuming that no poles of the integrand in (13) lie near the saddle
pointse = £, the standard procedure for evaluating integrals over their steepest descent paths applies [30,37],
yielding an expansion of the form

-t i n+1/2
ug(r, ) ~ €3 (ﬁ) An(®. $0) (63)
n=0

with the first term proportional to the diffraction coefficient,

1
Ao(o, = ——D(¢, ¢0). 64
0(#, ¢o) NG (¢, ¢0) (64)

The higher-order coefficients, (¢, ¢o) withn = 1, 2, ..., are explicitly expressed through the zero-order coeffi-
cient by means of the relations

An(9, ¢0) = Qu(d)Ao(d, o), n=12,..., (65)
whereQ, (¢) are differential operators defined by

Qo=1,

(D" (92 1\[d® 9 32 1)\2
Q)= (T&*Z)(W*Z)"' 372+<n—§> . (66)

These relations guarantee that (63) with arbitragf¢, ¢o) asymptotically satisfies the Helmholtz equation as
kr — oo.

The representation (63) cannot be used when the observation point approaches shadow boundaries of the incident
and reflected waves. Mathematically, this corresponds to the case in which certain poles of the integrand in (13)
are in close proximity of the saddle points, and the conventional procedure for evaluating the SDP integrals are
no longer applicable and should be appropriately corrected. Though such extensions of the saddle point technique
are available (see, e.g., [30,37]), they are difficult to apply in diffraction problems if one is interested in finding
a full uniform asymptotic expansion of the far-field rather than just the leading term. Here we adopt an elegant
approach described by Borovikov and Kinber [14] who considered the particular case of a wedge with Dirichlet or
Neumann boundary conditions. This allows us to avoid evaluating the integrals in (13) when the standard saddle
point procedure fails, and it generalises the analysis of Borovikov and Kinber [14] to the arbitrary impedance wedge.
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The algorithm for transforming the non-uniform expansion (63) into a uniform one is as follows. The discontinuous
step functions in the ray optical part of the solution, which is given by (14), are replaced by Fresnel integrals of
suitable arguments. It follows from its definition,

e-in/4 X
F(X) = ﬁ/ e ds, (67)

that the Fresnel integrdf (X) is a smooth function of its argument. A8 — +oo it tends to the step function
H (X), which is evident from the asymptotic representation

eiXZ—i3n/4+°°F(n + %)

POO~ HOO + = Y =

: (68)

with " (z) being the gamma function.

In order to recover the non-uniform formulas outside the immediate vicinity of the shadow boundary the argument
of a Fresnel integral in a uniform representation is chosex as, /k(sq — sgo) Wheresq = r is the eikonal of the
edge-diffracted wave ang, is the eikonal of the ray associated with a given shadow boundary. This latter eikonal
is given bysgo = —r c0S(¢p — ¢o) for the incident plane wave and By, = —r cog¢ + ¢o F 29) for plane waves
reflected from upper and lower wedge faces. At the shadow bousglasysyo. Outside the shadow boundary the
sign of the square root function in the argument of the Fresnel integral is defined to be positive on the lit side and
negative on the shadowed side. Eq. (68) then ensures that the correct field structure is recovered at observation
points distant from the penumbra region.

One may check thatfge F [ [k(sq — sgo)] exactly satisfies the Helmholtz equation by direct substitution into
(2). Correspondingly, the edge-diffracted term in the uniform representation independently satisfies the Helmholtz
equation. We assume that the edge-diffracted field is of the form of expansion (63) with coeffigients 1, 2, . . .,
given by the recurrence relations (65). However, the zero-order coefficient differsAfgéim ¢o) of (64), but is
determined by requiring that the uniform and non-uniform representations reduce to each other outside the penumbra
region. This is achieved by expanding the Fresnel integral according to (68), and equating terms @f-oprdér.

In what follows we distinguish four specific cases, in accordance with the structure of the ray optical field.

(a) The incident field illuminates only the lower face of the wedge < ¢o < @ — 7). In this case there are two
shadow boundaries at= ¢g + 7 andg = 7= — 2@ — ¢g associated with the incident wave and the wave reflected
from the lower face of the wedge. Applying the procedure described above leads to the far-field representation of
the form (12) with the geometric optic and diffracted contributions corrected as follows:

ug(r, ) = UoF |:\/ 2kr cos (M)} g ikr cosp—go)

2
+UoR_(® + ¢o) F [ 2kr cos (W)} g lkr costptdo+20) (69)
" +00 i n+1/2
ug(r, ¢) ~ € rnZ:;) (;) B, (¢, ¢0), (70)
1 1 R_(® + ¢0)
B , = ——D(¢, + + s 71
0090 = D 0t o cost (6 — g0/ | 2v/2% cos (6 + g0 + 20)/2) (D

Here,R_(® + ¢p) is the reflection coefficient introduced in (15).
One may verify that the two expressions (69) and (70) independently satisfy the Helmholtz equation. The zero-
order coefficienBg(¢, ¢o) given by (71) is a bounded and analytic functioait shadow boundarigs= ¢o+ 7
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and¢ = m — 2® — ¢g because the poles of the diffraction coefficiéhtp, ¢g) at those points are cancelled by
other members of (71). The higher-order coefficiaB)t&p, ¢o) withn =1, 2, ..., defined by (72) are also analytic
at the shadow boundaries because they are obtained by differentiation of the analytical fBgGtipgo). The
representation (12), combined with Eqgs. (69),(70) and (71), is therefore valid for arbitrary location of the observation
point, provided that the excitation conforms with the requiremedt < ¢g < ® — n. Away from the shadow
boundaries the Fresnel integrals in (69) can be replaced by their asymptotic representation (68), which converts the
uniform formulas into the non-uniform ones witly(r, ¢) anduq(r, ¢) given by (14) and (63).

(b) Both faces of the wedge are illuminated by the incident {i@éld- = < ¢g < 7 — @). In this event there are
two shadow boundaries at= +2® F & — ¢o, associated with the fields reflected from the wedge faces, while the
direct wave is omnipresent. The geometrical optics part of (12) is then

2

29 ;
+UoR_(® + ¢o) F [ 2kr cos <w>} g ikr coSg+o+20) (73)

. — 20 .
ug(r, ) = Uge K C088=00) 4 [JoR, (& — ¢o) F [ 2kr cOS (—¢ + o ):| g kr cosptgo—20)

2

The expansion of the diffracted componegtr, ¢) is of the same form as in (70) and (72), except for the zero-order
coefficient

Bo(¢, ¢o) = LD(¢ b0) + R+(® — ¢0) R_(® + ¢0)
: Vor 2/27 coS(¢ + o — 20)/2)  2v/27 CO($ + o + 26)/2)

which in this case should be continuouspat 2@ F m — ¢o. Away from these directions the expressions (73)
and (74) reduce to the non-uniform formulas.

(c) The incident field illuminates the upper face of the wedge @ < ¢g < @). Now, instead of (69),(71),(73)
and (74), we have

(74)

ug(r, @) = UoF |:\/ 2kr cos (m>:| g ikr cosp—¢o)

2
+UoR (P — ¢o) F [ 2kr cos <W)} g 1kr coSP+go—2¢) (75)
1 Ry(® — ¢o) 1
Bo(¢, ¢0) = ——=D(¢, ¢o) + + , 76
o o) = D 0 cos(6 + 90— 20)/2) | 227 o (& — d0)/2) (70)

which is uniformly valid outside the wedge, including the shadow boundariespg — = and¢ = 2@ — & — ¢o.
(76) is consistent with (14) and (63) outside the penumbra regions (75).

(d) The intermediate cadeo ~ +7 F @). The uniform formulas given above become inapplicable in this case
because they are not uniform as functions of the incidence anghad, therefore, do not provide a continuous
transition from case (a) to (b) and from (b) to (c). The required extension is given by the formulas

ug(r, ¢) = UoF |:\/ 2kr cos <¢ _2¢0>:| g ikr cos¢—¢o) + UgR+(® — do) F |: kr COS ((b + ¢o — 2<D>:|

2
Xeiikr COS(p+po—29) + UgR_(® + ¢o) F |: 2kr COS (¢ + ¢o+ 29 >i| efikr cos¢+po+2P) (77)
2 9
1> i n+1/2
Md(rv ¢0) ~ UO eler (k_r> Cil (¢7 ¢0)7 (78)

n=0
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Co(d. $0) = ——D(@. do) + ! + R (@ — do)
' V21 ’ 227 cod(p — $0)/2)  24/2m cos(¢ + o — 2P)/2)
R_(® + ¢0)
+ : 79
221 coS(¢p + ¢po + 29)/2) (79)

One may check thafo(¢, ¢o) is an analytic function op at each of the four shadow boundarigs= ¢g + 7,

¢ = £2® F 1 — ¢po, and so are the higher-order coefficie@ts¢, ¢o) withn = 1, 2, ... As the incident angleég

moves away from an immediate vicinity of the directiafts= +7 F @, we may replace one of the three Fresnel
integrals in (77) with its asymptotic expansion (68), which transforms case (d) into one of the cases (a), (b), or (c).
When the observation point is sufficiently far from all shadow boundaries, further simplifications are achieved by
replacing all remaining Fresnel integrals in (77) with their asymptotic representations, which converts the formulas
(77),(78) and (79) into (14),(63),(64) and (65).

We note that the task of finding the correct representation for case (d) by means of traditional technique would
require the evaluation of the diffraction integral (13) in the limit as three poles simultaneously approach the saddle
point.

Other singularities of the transform functi§w +¢) can occur close to the saddle points in the diffraction integral
(13). Specifically, these are the poles associated with the surface waves|ddhenl, some new transition regions
may exist near the wedge faces, which should be accounted for in the far-field representation. This case does not
produce any crucial difficulties and can be treated using conventional tools of diffraction theory (see, e.g., [32]).

We are now ready to consider how the field diffracted by an impedance wedge is distributed in space. Fig. 7
shows the angular distribution of the total field amplityide, ¢)| at a distance = 1.6x from the edge of a wedge
with @ = 77 /8 = 157.5°, assuming the plane wave excitation (1) with = 1 and¢p = /2. The solid line
corresponds to the limiting case of acoustically hard fa@ges 0, whereas the dotted one relates to soft boundaries
with Im 6. — oo. Clearly distinguished in the plot are the shadow regieh§7.5° < ¢ < —90°), the intermediate
region illuminated only by the incident wave-90° < ¢ < 45°), and the region where both incident and reflected
waves are present (45< ¢ < 157.5°). The oscillations in the curves within the intermediate zone arise from the
superposition of the incident and edge-diffracted fields.d-or 45° the wave reflected from the upper boundary
also contributes, resulting in stronger fluctuations of the total field.

The field diffracted by a wedge with face impedance equal to uity= /2, the dashed line in Fig. 7) displays
relatively weak oscillations because of the small reflected amplitude. The diffracted component is also of lower
amplitude, which is evident by comparison of the curves in the intermediate zone.
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Fig. 7. Total field due to plane wave excitationkat= 10 from the edge of an impedance wedge.
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The dot—-dashed curvé( = 0 andd_ = —i) illustrates the case in which a surface wave propagates over the
shadowed face of the wedge. The surface wave may become the main contribution to the total field near a face with
finite impedance. As the observation point moves outward from the wedge face, the amplitude of the surface wave
rapidly decreases dropping below the level of the ordinary shadow field. This can be seen from the dot—dashed
curve, which almost coincides with other curves outside an immediate vicinity of the wedge face.

4. Conclusions

A complete analysis of the far-field diffraction by an arbitrarily angled wedge with arbitrary face impedance has
been presented. Both plane and surface wave excitation have been considered.

Scattering and radiation of an incident surface wave from the edge of an impedance wedge have been anal-
ysed using accurate representations for the transmission, reflection, and radiation coefficients. Simple approximate
formulas have been found which permit accurate estimates of the magnitudes of the surface wave reflection and
transmission coefficients.

A full asymptotic representation of the far-field diffracted by an impedance wedge has been deduced which
remains uniformly valid for arbitrary incidence and observation directions. Explicit formulae are given for the
uniformly asymptotic far-field of an exterior wedgé > 7/2).

The tip amplituda:p has been shown to be intimately involved in the far-field diffraction coeffidi&(at, ¢o).

The only additional quantity required for the latter is a pattern function which comprises trigonometric functions
only. The remarkably simple factorisatioR(¢, ¢o) = uo(d)uo(do) Fo (¢, ¢o), derived here for the first time, is
convenient for approximating and bounding the diffraction from impedance boundaries, and leads to exact results
for purely reactive faces. The simplicity of the pattern functifs, allows one to choose the surface impedance

to meet specific criteria. For example, the far-field backscatter for head-on incidence vanishes if both faces have
real impedance such thét= 7 — @. The concept of choosing the material properties to eliminate edge diffraction
generalises the common practice of impedance matching between two half spaces in order to eliminate reflection.
This is a new idea, which is made feasible by the explicit factorisatiad. of
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