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Far-field analysis of the Malyuzhinets solution for plane and surface
waves diffraction by an impedance wedge
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Abstract

The basic problem of determining the far-field scattered from the edge of a wedge of exterior angle 2Φ with arbitrary
impedance conditions on either face is considered. An accurate solution in the form of a Sommerfeld integral obtained by
Malyuzhinets is evaluated forkr � 1. A fairly complete discussion of the far-field response is provided, including uniform
and non-uniform asymptotic approximations. The far-field is split into edge-diffracted, surface, and geometrical optics waves,
including multiply reflected components. The edge-diffracted field is defined by the diffraction coefficient, which we show
has a simple factorisation:D = u0(φ)u0(φ0)FΦ(φ, φ0), whereφ andφ0 are the source and observation directions,u0(φ) is
the value of the wave function at the edge for a plane wave of unit amplitude incident from the directionφ, andFΦ(φ, φ0)

involves only trigonometric functions. We demonstrate that the monostatic tip diffraction from a wedge of arbitrary angle
can be made to vanish by appropriate choice of the surface impedance. The unique value of impedance is always real, and
an explicit formula is given for its evaluation. New results are presented for the reflection and transmission of surface waves
on an impedance wedge, including simple approximations for an internal wedge with smallΦ. Finally, a complete uniform
description of the far-field is given in the format of the Uniform Asymptotic Theory of Diffraction. ©1999 Elsevier Science
B.V. All rights reserved.

1. Introduction

A two-dimensional time-harmonic scalar wave fieldu(r, φ) is excited in a wedge-shaped region 0< r < ∞,
|φ| ≤ Φ, Fig. 1, by a plane wave incident from the directionφ0,

uinc(r, φ) = U0 exp[−ikr cos(φ − φ0)]. (1)

Herek = ω/c andc is the wave speed, and the time dependance factor e−iωt is 1filomitted throughout. The field
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Fig. 1. The geometry.

satisfies the Helmholtz equation
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∂2u

∂φ2
+ k2u = 0, (2)

within the wedge-shaped region, and impedance boundary conditions of the form

1

r

∂u

∂φ
∓ ik sinθ±u = 0, (3)

on the wedge facesφ = ±Φ. The complex-valued anglesθ± are related to normalised surface impedances of the
wedge faces (the actual surface impedances areZ± = ρc/ sinθ±, ρc being the acoustic impedance, so that sinθ±
are really the normalised surface admittances, the inverse of impedance). For any physically passive boundary,
which is free of field sources, simple energy considerations imply that 0< Reθ± ≤ π/2, whereas Imθ± can be
arbitrary.

The functionu(r, φ) is a potential function which, depending on the sort of wave motion we are dealing with,
represents a certain physical quantity, e.g., the sound pressure or a component of the electromagnetic field. As such
it should meet specific conditions at the edge of the wedge so as to guarantee physically correct behaviour of the
wave field there. These edge conditions may be written as

|u(0, φ)| = C, lim
r→0

∣∣∣∣r ∂u∂r
∣∣∣∣ = 0, lim

r→0

∣∣∣∣ ∂u∂φ
∣∣∣∣ = 0, (4)

with C bounded and independent ofφ [1].
Far from the edge askr → +∞ the solution should recover the incident wave (1) and be free of any non-physical

contributions. The corresponding condition may be expressed as

lim
r→∞|u(r, φ)− ug(r, φ)| = 0, Im k > 0, (5)

whereug(r, φ) denotes the geometrical optics part of the field. The condition (5), or the so-called extinction
condition (see [1,2]), extends the commonly used radiation conditions to the case of a plane wave illuminating
scattering boundaries of infinite extent, by accounting for reflections of the incidence wave which are also incoming
waves. The requirement Imk > 0 in (5), implying that the medium filling the wedge-shaped domain has some
absorption, arbitrarily small at least, is necessary to exclude contributions of the form exp(−ikr)/

√
kr, a forbidden

counterpart of the edge diffracted field.
In order to include in our analysis a non-uniform excitation from an incoming surface wave we assume thatφ0 can

be a complex number with an arbitrary imaginary part and with real part satisfying the relation−Φ < Reφ0 < Φ.
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Fig. 2. The integration contours of the Sommerfeld integral.

In particular, puttingφ0 = Φ − θ+ with Im θ+ < 0 in (1) gives a surface wave travelling along the upper face of
the wedge towards its edge. Analogously, the substitutionφ0 = −Φ+ θ− with Im θ− < 0 transforms the excitation
(1) into an incoming surface wave propagating over the lower face of the wedge.

An elegant solution to the diffraction problem defined by Eqs. (1)–(5) has been deduced by Malyuzhinets in his
Doctor of Science Dissertation [1], and later described in a series of papers culminating in the concise solution
outlined in his 1958 paper [3]. The method of solution is discussed in detail in our companion review paper [4],
which contains all the pertinent references. In summary: the solution is expressed as a Sommerfeld integral over
the contourγ = γ+ ∪ γ−,

u(r, φ) = 1

2π i

∫
γ

e−ikr cosαS(α + φ)dα, (6)

whereγ+ is a loop in the upper half of the complexα-plane, beginning atπ/2+ i∞, ending at−3π/2+ i∞, with
Im α lying above an arbitrary minimum, such that no singularities of the integrand occur withinγ+ for all |φ| ≤ Φ.
The contourγ− is the image ofγ+ under inversion about the originα = 0 (Fig. 2).

The transform function

S(α) = U0
Ψ (α)

Ψ (φ0)
σ (α) (7)

is expressed in terms of trigonometric functions

σ(α) = ν cos(νφ0)

sin(να)− sin(νφ0)
, ν = π

2Φ
, (8)

and a transcendental function

Ψ (α)=ψΦ

(
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2
− θ+

)
ψΦ

(
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×ψΦ
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2
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)
. (9)

The latter is a particular solution to the system of difference equations

Ψ (α ±Φ)

Ψ (−α ±Φ)
= − sinα ± sinθ±

sinα ± sinθ±
, (10)

and can be expressed in terms of a special functionψΦ(α) introduced by Malyuzhinets [3]. Alternative but equivalent
solutions to the impedance wedge diffraction problem were later derived independently by Williams [5] and Senior
[6].
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The impedance wedge geometry is one of the canonical shapes of high-frequency diffraction theory. By evaluat-
ing the integral (6) forkr � 1, one may obtain asymptotic representations of the field scattered from an edge in an
impedance surface [3,7–10]. These can then be incorporated into various versions of the high-frequency diffraction
theory, including the geometrical theory of diffraction (GTD, [11]) and its uniform formulations – the uniform
asymptotic theory of diffraction (UAT, [12–14]), and the uniform geometrical theory of diffraction (UTD, [15]).
Accurate solutions to the canonical problems are also used in applied versions of the high-frequency diffraction the-
ory, aimed at solving engineering problems, like the physical theory of diffraction (PTD, [16]) and other techniques
utilising the concepts of incremental length diffraction coefficients [17–19], equivalent edge currents [20–23], and
elementary edge waves [24,25].

This paper provides a complete high-frequency analysis of the Malyuzhinets solution. We subsequently analyse
various components forming the far field response. Wherever possible the accurate formulas for the field compo-
nents are supplemented with simple approximations in order to facilitate quantitative understanding of the far-field
behaviour. In Section 2 the response from a wedge with locally reacting impedance boundary conditions on each
face is naturally split into geometrical optics, surface, and diffracted wave components. We demonstrate in Section
2.1 that the geometrical optics part involves reflections from the faces and may be described using reflection co-
efficients for the separate faces combined with ray tracing. Multiply reflected rays occur in the case of an internal
wedge, whenΦ < π/2.

Section 2.2 deals with the surface waves that arise from diffraction of the incident field at the edge. IfΦ < π/4,
these may also include multiply reflected components. Both plane and surface wave excitations are considered.
The equation of energy balance between incident, reflected and transmitted surface waves and the edge diffracted
volume wave is presented and the dependence of each component on the wedge angleΦ is numerically estimated.
We also give simple but surprisingly accurate approximations for the surface wave transmission and reflection
coefficients.

The edge diffracted waves, on the other hand, are generally more difficult to handle, because their amplitude
and phase depend upon complicated and non-intuitive functions. The diffracted field is particularly important in
shadow zones where no direct or multiply reflected wavefronts occur. Section 2.3 offers a simple way of viewing
the diffracted response, using only trigonometric functions as far as possible. We show that the edge diffraction
coefficient can be represented in a particularly simple and physically revealing form. Some consequences of the new
form are explored and discussed. Specifically, we analyse backscattering from an impedance wedge and demonstrate
that at particular observation angles the monostatic echowidth of the wedge can be made to vanish by appropriate
choice of its face impedances. The unique value of impedance is always real, and an explicit formula is given in
Section 2.3 for its evaluation.

The paper ends with a complete set of uniform asymptotic far-field expressions for the total field diffracted by
an impedance wedge (Section 3). In this part of our paper we follow an elegant approach described in [14] for a
particular case of perfectly reflecting wedge boundaries. This leads directly to asymptotic expansions of the far-field
as series in inverse powers ofkr, without having to evaluate the Malyuzhinets integral (6) when the poles of its
integrand approach the saddle points, or by first solving an associated problem for pulse excitation in the time
domain, as done in [26].

The asymptotic expressions of Section 3 are deduced in the format of UAT. There are alternative formats
for expressing the fields diffracted by wedges in a uniform manner, e.g., those of UTD. They are known to
correspond to the use of different procedures for evaluating integrals over steepest descent paths in the case
of a pole approaching a saddle point [27]. This produces superficially different asymptotic representations of
the far-field, which may utilise functions other than the Fresnel integral to describe the field in transition re-
gions (see, e.g., [7,8,28]). However, they are obviously equivalent formulations as long as accurate techniques
are employed for the asymptotic evaluation of the solution (for further discussion of the subject, see,
e.g., [27]).
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2. The structure of the far-field

The far-field representation of a solution expressed as the Sommerfeld integral (6) is constructed by deforming
the integration contourγ = γ+ ∪ γ− into a pair of contoursγ (±π) (Fig. 2) which are the steepest descent paths
(SDPs) associated with the exponent factor exp(−ikr cosα) [3]. The SDPs are

γ (±π) = {α : Reα = ±π − gd(Im α)}, (11)

with gd(x) = −π/2 + 2 arctan(ex). This produces a representation of the form

u(r, φ) = ug(r, φ)+ ud(r, φ)+ us(r, φ), (12)

where the contribution from integration over the SDPs is

ud(r, φ) = 1

2π i

∫
γ (π)∪γ (−π)

e−ikr cosαS(α + φ)dα. (13)

The other terms in (12) arise from residues at poles of the transform functionS(α) captured by the contour defor-
mation. Such poles are located in the regionΠRES enclosed by the SDPsγ (±π) to its left and right and by the
Sommerfeld contoursγ± at its top and bottom.

It is interesting to note that because of the specific structure of the integration contoursγ (±π) which are offset
by 2π from each other and are taken in opposite directions (Fig. 2), the integral in (13) cancels implying that

ud(r, φ) vanishes everywhere ifS(α) is 2π -periodic.

The conditions for such periodicity have been formulated in our previous paper [4]. They require that the wedge
semi-angleΦ must be a rational fraction ofπ , i.e.,Φ = π/(4m) with m = 1,2,3, . . . In the case of identical
faces of the wedge whenθ+ = θ−, S(α) is 2π -periodic for a broader variety of angles defined by the relations
Φ = π/(2q)with q being any integer. Thus, in these cases the wave fieldu(r, φ) diffracted by an impedance wedge
can be expressed without integration as a finite number of contributions all occurring from residues at the poles
residing withinΠRES.

Each component of the representation (12) has a clear physical meaning, in accord with the simple fact that far
from the edge of the wedge the total wave field should comprise the incoming plane wave plus a scattered wave
which in turn can be split into reflected ray-optic contributions, surface waves associated with the impedance faces
of the wedge, and a diffracted wave emanating from its edge. A successive discussion of these terms now follows.

2.1. The geometrical optics field

Evaluating the residues at poles ofσ(α + φ) yields the expression of the form [3]

ug(r, φ) = U0

+∞∑
n=−∞

(−1)nH(π − |δn(φ, φ0, Φ)|)Ψ [(−1)nφ0 + 2nΦ]

Ψ (φ0)
e−ikr cos [φ−(−1)nφ0−2nΦ], (14)

where

δn(φ, φ0, Φ) = φ − 2nΦ − (−1)n[gd(Im φ0)+ Reφ0],

andH(x) = 1 if x > 0, andH(x) = 0, if x < 0. The step functions in (14) are clearly non-zero only for those
poles ofσ(α+ φ) that are located inΠRES. This means that the total number of contributions toug(r, φ) is always
finite, although it may be rather large for smallΦ, because this latter parameter determines the spacing between the
poles. The smaller theΦ, the more members are involved in (14).



74 A.N. Norris, A.V. Osipov / Wave Motion 30 (1999) 69–89

The formula (14) allows for complex values ofφ0 and includes therefore the case of non-uniform excitation. If
the incoming field is a plane wave, thenφ0 is real andδn(φ, φ0, Φ) simplifies toφ − 2nΦ − (−1)nφ0.

Consider the physical interpretation of (14). The phase factors in (14) coincide with those appearing in the
geometrical optics representations of fields scattered by wedges with perfectly reflecting boundaries [29,30],
and clearly correspond to multiply reflected plane waves. In contrast, the amplitude factors in (14) appear to
be more complex to interpret, since in the framework of Malyuzhinets theory they are initially given by ra-
tios of the special functionsΨ (α). However, these ratios can be reduced to products of conventional planar
reflection coefficients [9,31,32]. By substitutingα → −φ0 ± Φ in Eqs. (10) satisfied byΨ (α), one gets the
relations

Ψ (±2Φ − φ0)

Ψ (φ0)
= −R±(Φ ∓ φ0), (15)

whereR±(χ) = (sinχ − sinθ±)/(sinχ + sinθ±) is the reflection coefficient for a plane wave incident at angleχ

upon a flat impedance surface. By repeatedly using the relations (15), each ratio of the auxiliary functions in (14)
is reduced to a product of the reflection coefficients of different arguments, according to the identities:

Ψ (α + 4nΦ)

Ψ (α)
=

n∏
j=1

R−(α − 3Φ + 4jΦ)R+(α −Φ + 4jΦ), n ≥ 1,

Ψ (α + 4nΦ)

Ψ (α)
= 1, n = 0, (16)

Ψ (α + 4nΦ)

Ψ (α)
=

−n∏
j=1

R+(−α − 3Φ + 4jΦ)R−(−α −Φ + 4jΦ), n ≤ −1,

Ψ (−α + 2Φ + 4nΦ)

Ψ (α)
= −R+(Φ − α)

n∏
j=1

R−(−α −Φ + 4jΦ)R+(−α +Φ + 4jΦ), n ≥ 0,

Ψ (−α + 2Φ + 4nΦ)

Ψ (α)
= −R−(Φ + α)

−n−1∏
j=1

R+(α −Φ + 4jΦ)R−(α +Φ + 4jΦ), n ≤ −1, (17)

whereα is an arbitrary complex parameter, whilen is an arbitrary integer.
Based upon (16) and (17) we conclude thatug(r, φ) is the geometrical optics part of the wave field. Each

term of (14) is a plane wave reflected by the wedge faces, except for the term withn = 0 which is an incident
wave. In the case of an external, or acute, wedge implying thatΦ > π/2, there always exist only three non-zero
contributions to (14), relevant to the direct and singly reflected waves. For smallΦ (a narrow wedge-shaped region or
an internal or obtuse wedge), further contributions may appear, representing multiply reflected images of the incident
wave.

2.2. The surface waves

Next, we consider the contributions to (12) from the functionΨ (α + φ). Note thatΨ (α) is a meromorphic
function of its argument [3,4], and its poles are simply those of the four Malyuzhinets functions appearing in (9).
SinceψΦ(α) has its poles atα = ±βpq whereβpq = (π/2)(2q − 1) + 2Φ(2p − 1) with p = 1,2,3, . . . , an
arbitrary positive integer andq = 2,4,6, . . . , even and positive [3], the following poles ofΨ (α + φ) may
fall within 5RES and may be captured 1fil in the course of deformation of the Sommerfeld contoursγ± onto the
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SDPsγ (±π):
αjm = −φ + (−3Φ + π + θ+ + 4mΦ), j = 1, m = 1,2, . . .

αjm = −φ + (Φ − π − θ+ − 4mΦ), j = 2, m = 1,2, . . .

αjm = −φ + (3Φ − π − θ− − 4mΦ), j = 3, m = 1,2, . . .

αjm = −φ + (−Φ + π + θ− + 4mΦ), j = 4, m = 1,2, . . . (18)

Herej labels the four families of poles ofΨ (α + φ).
In accordance with the form of (18) the residue contributions to the total field (12) may be represented as

us(r, φ) =
4∑
j=1

Mj∑
m=1

ujm(r, φ), (19)

where each memberujm(r, φ) arises from the poleα = αjm, andMj with j = 1,2,3,4 are integers equal to the
number of captured poles from thej th family. Their values are functions of the configuration parametersθ±, Φ,
andφ. Later we present explicit expressions for these quantities.

In the case of an external wedge,Φ > π/2, only the poles withm = 1 andj = 1 or j = 3 can be crossed. This
simplifies the representation (19) to

us(r, φ) = u+(r, φ)+ u−(r, φ), (20)

where

u±(r, φ) = U0A±(φ0)H [±φ −Φ − Reθ± − gd(Im θ±)exp[ikr cos(Φ ∓ φ + θ±)], (21)

and

A±(φ0) = − 2ν cos(νφ0) tanθ±
cos [ν(π + θ±)] ∓ sin(νφ0)

Ψ (±Φ ∓ π ∓ θ±)
Ψ (φ0)

. (22)

The Heaviside step functionH(x) in (21) accounts for the conditions required to capture the polesα = α11
andα = α31. Notice thatu+(r, φ) andu−(r, φ) vanish if Imθ+ > 0 and Imθ− > 0, respectively, because the
corresponding poles are not captured. This means that non-zero contributions to Eq. (20) may appear only when at
least one of the conditions Imθ± < 0 is met.

With Im θ± < 0 the expressions (21) describe a function that is concentrated near a corresponding boundary of
the wedge, decaying exponentially when the observation point moves in the normal direction outwards from the
face. These contributions also decrease as the distancer from the edge grows, except for the case of non-absorbing
boundaries, Reθ± = 0, in which case the functionsu±(r,±Φ) become purely oscillatory. It is obvious from the
analysis of the phase factors in (21) that these contributions can be interpreted as surface waves excited by an
incident wave at the edge of the wedge which then travel outwards from the edge along the faces. Note that the
conditions for exciting these waves are exactly those for the excitation of a surface wave by a line source placed at
a pointr = 0 on an impedance plane, although the amplitude coefficientsA±(φ0) differ.

Note that in deriving the expression (22) it was necessary to evaluate the residues of the transform function
S(α) at poles ofΨ (α). In order to avoid the appearance of derivatives of special Malyuzhinets functions we have
invoked the functional relations (10), thereby extracting the singularities in multiplicative factors which include
only trigonometric functions and can be differentiated explicitly.

Next, by using the functional property [3]:

ψΦ

(
α + π

2

)
ψΦ

(
α − π

2

)
= ψ2

Φ

(π
2

)
cos

(πα
4Φ

)
, (23)
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one may express the functionsΨ (±Φ ∓ π ∓ θ±) in (22) throughΨ (±Φ ∓ θ±). The latter function always has its
argument within the strip|Reα| ≤ Φ where by construction the functionΨ (α) is free of both zeros and poles [3,4].
This yields the formulas

A±(φ0)= −2ν sin
(νπ

2

)
ψ8
Φ

(π
2

)
cos(νφ0) tanθ± sin(νθ±)

× cos [(ν/2)(θ+ + θ−)] cos [(ν/2)(π + θ± − θ∓)]
Ψ (φ0)Ψ (±Φ ∓ θ±){ cos [ν(π + θ±)] ∓ sin(νφ0)} , (24)

which can be advantageous for numerical purposes.
Alternatively, the surface wave amplitudes can be written succinctly in terms of the normalised edge fieldu0

which is defined by the formula

u0(φ) = u(0, φ)

U0
, (25)

whereu(0, φ) is the tip value of the total field [3,4]:

lim
r→0

u(r, φ) = U0
ν cos(νφ0)

Ψ (φ0)
ψ4
Φ

(π
2

)
. (26)

By using Eqs. (25) and (26), one may rewrite (24) as follows:

A±(φ0)= −2

ν
sin

(νπ
2

)
tanθ±

cos [(ν/2)(θ+ + θ−)] cos [(ν/2)(π + θ± − θ∓)]
cos [ν(π + θ±)] ∓ sin(νφ0)

×u0(φ0)u0(±Φ ∓ θ±). (27)

This representation is remarkable in that it involves only trigonometric functions in addition to the edge fields.
Similar property also holds for the edge diffracted field and is discussed in Section 2.3. As one might expect, one
of the edge fields in (27) is evaluated for a complex angle of incidence, appropriate to a surface wave.

In the case of surface wave incidence, the total field is given by (12) withφ0 = ±Φ ∓ θ±, and consists of the
incident surface wave, the reflected and transmitted surface waves, and the edge diffracted wave. Correspondingly,
the excitation coefficientsA±(φ0)become the reflection and transmission coefficients. These arer++ = A+(Φ−θ+)
and t+− = A−(Φ − θ+) if the excitation comes from the faceφ = Φ, andr−− = A−(−Φ + θ−) and t−+ =
A+(−Φ + θ−) if the incident surface wave comes from the lower faceφ = −Φ. Simple algebraic manipulations
of (24) yield

r±± = νψ8
Φ

(π
2

)
tanθ± sin2(νθ±)

cos [(ν/2)(θ+ + θ−)] cos [(ν/2)(π + θ± − θ∓)]
Ψ 2(±Φ ∓ θ±) sin [(ν/2)(2θ± + π)]

, (28)

for the surface wave reflection coefficients, and

t−+ = −νψ8
Φ

(π
2

)
sin

(νπ
2

) tanθ+ sin(νθ−) sin(νθ+) cos [(ν/2)(θ+ + θ−)]
Ψ (Φ − θ+)Ψ (−Φ + θ−) cos [(ν/2)(π + θ+ + θ−)]

, (29)

t+− = −νψ8
Φ

(π
2

)
sin

(νπ
2

) tanθ− sin(νθ+) sin(νθ−) cos [ν2(θ+ + θ−)]
Ψ (−Φ + θ−)Ψ (Φ − θ+) cos [ν2(π + θ+ + θ−)]

, (30)

for the transmissions coefficients. Note thatt+− cotθ− = t−+ cotθ+, which is exactly what is required by reciprocity
because tanθ is the amplitude of the surface wave excited by a line source placed on an impedance plane withθ

being its Brewster angle. Also, in the case of equal impedancesθ+ = θ−, one hasr++ = r−− as expected from
symmetry considerations. Finally, we note that in the limiting case of a flat impedance surface, which means that
θ+ → θ− andΦ → π/2, Eqs. (28)–(30) giver±± → 0 andt±∓ → 1, as expected.
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Fig. 3. Reflections of a surface wave in the Sommerfeld branched space.

When the wedge angleΦ is less thanπ/4, further contributions withj = 2 andj = 4 may enter the representation
(19). The tendency is that the smaller the wedge angle, the more the poles (18) can fall within the areaΠRESand be
therefore crossed in the course of contour deformation. The number of captured poles can be explicitly expressed
through the wedge parameters as follows:

M1 = 1 + entire

{
1

4Φ
[−gd(Im θ+)− Reθ+ + φ −Φ]

}
,

M2 = entire

{
1

4Φ
[−gd(Im θ+)− Reθ+ − φ +Φ]

}
,

M3 = 1 + entire

{
1

4Φ
[−gd(Im θ−)− Reθ− − φ −Φ]

}
,

M4 = entire

{
1

4Φ
[−gd(Im θ−)− Reθ− + φ +Φ]

}
, (31)

where entire(x) denotes the biggest integer not greater thanx.
The interested reader may find further formulas for contributions of such type as well as a more detailed discussion

of this topic in [33]. Here we would like to just emphasize the physical interpretation of these contributions as multiply
reflected surface waves. In order to make it apparent, consider in (19) the termsujm(r, φ) with j = 1 andm ≥ 1.
Their phase factors are exp{ikr cos [Φ − φ + θ+ + 4Φ(m − 1)]} and that withm = 1 describes a surface wave
running in the directionφ = Φ. Consequently, the one withm = 2 may be interpreted as a wave which propagates
along the directionφ = 5Φ on an attached sheet of a Sommerfeld branched space (Fig. 3) [34,35]. Thus, one may
conclude that anmth term is a non-uniform wave directed toφ = Φ + 4(m − 1)Φ. Though these directions are
outside the physical region of space|φ| ≤ Φ, such contributions appear in the field as a result of reflections of the
initial surface wave between the wedge faces.

Analogously, the contributions withj = 2 have exp{ikr cos [−3Φ−φ−θ+ −4Φ(m−1)]} as their phase factors.
This allows us to associate them with another set of reflections of the same initial surface wave, propagating in the
directionsφ = Φ − 4mΦ, also outside the physical part of space (Fig. 3). If the initial surface wave propagates
along the lower face of the wedge, the non-zero contributions to (19) are those withj = 3 andj = 4. They can
similarly be interpreted as multiple reflections guided in the directionsφ = −Φ ± 4mΦ.

In general, an incident surface wave, say the one incoming along the upper faceφ = Φ of the wedge, converts at
its edge into a cylindrical wave radiated outside the wedge, a reflected surface wave, propagating backward along
the upper face, and a transmitted surface wave, travelling forward along the lower faceφ = −Φ. In the case of a
narrow internal wedge, the multiply reflected components may also occur. Assuming that the energy fluxEi of the
incident surface wave is normalised to unity and there is no energy dissipation in the faces (Reθ+ = Reθ− = 0),
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Fig. 4. The energy redistribution for surface wave excitation of an impedance wedge.

one finds the equation governing the energy balance for the conversion process in the far zonekr � 1 to be as
follows:

1 = |r++|2 + tanθ+ cotθ−|t+−|2 + tanθ+
i

π

∫ Φ

−Φ
|D(φ,Φ − θ+)|2 dφ, (32)

where the members in the right-hand side of the identity are the energy fluxesEr, Et, andEd associated with the
reflected, transmitted, and radiated waves, respectively.D(φ,Φ − θ+) is the amplitude of the edge diffracted field
whenkr → ∞. It is given by the diffraction coefficientD(φ, φ0) with φ0 = Φ − θ+, which is more precisely
defined in Section 2.3. Note that the multiply reflected surface waves are not present in (32), since they vanish
exponentially askr → ∞ and, therefore, do not contribute to the far field.

Fig. 4 shows these energies as functions of the wedge angleΦ, with the proviso that the impedances of the faces
are the same andθ+ = θ− = −i. The curves “SR”, “ST”, and “SD” indicate the amounts of reflected surface,
transmitted surface, and radiated spatial energies, respectively. The sum of the reflected and transmitted surface
wave energies is the curve “R+T”. The total of this latter and the radiated spatial energy equals unity, the energy of
the incident surface wave.

For small values ofΦ, approximatelyΦ < π/5, the values ofEr andEt oscillate strongly, even though their sum
Es = Er +Et, that is, the total energy flux associated with both the reflected and transmitted surface waves, remains
a smooth function tending to unity asΦ approaches zero. In fact, by explicitly making the approximationEs ≡ 1, the
formulae for the reflection and transmission coefficients give simple but surprisingly accurate estimatesEr ≈ cos2β
andEt ≈ sin2β with β = νπ/2, which is valid ifΦ ≤ π/2 and−∞ < Im θ± < −2. For−2 ≤ Im θ± < 0 these
can be improved by definingβ as follows:

tan2β = tan2
(νπ

2

)
tan

[
ν
(π

2
+ θ

)]
tan

[
ν
(π

2
− θ

)]
. (33)

In contrast with the surface energy, the radiated energyEd achieves its maximum whenΦ = π and the wedge
becomes an impedance half plane. The total energy fluxEs +Ed, as it might be expected from the energy balance
(32), is invariant as the wedge angle changes, and always equals the energy fluxEi of the incident wave, which is
unity.

Finally, we note that the total field at the edge for an incident surface wave of unit amplitude isu0(±Φ ∓ θ±), as
it follows from definition (25). Based on the approximationEs = 1 and the preceding discussion, and also using
the representations (28)–(30) and assuming identical impedances with Reθ = 0, one may obtain the estimate

|u0(±Φ ∓ θ)| ≈ ν1/2| cotθ |1/2. (34)

Referring to Fig. 4, we expect (34) to be accurate for wedge angleΦ smaller thanπ/2.
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2.3. The edge diffracted field

2.3.1. The diffraction coefficient
The diffraction integral (13) can be evaluated asymptotically forkr � 1, yielding the far-field asymptotic

expression

ud(r, φ) = D(φ, φ0)
ei(kr+π/4)
√

2πkr
{1 + O[(kr)−1]}, (35)

whereD, the diffraction coefficient, follows from the saddle point contributions to the integral atα = ±π as

D(φ, φ0) = S(φ − π)− S(φ + π), (36)

or, from Eq. (7) and (8)

D(φ, φ0) = U0
ν cos(νφ0)

Ψ (φ0)

[
Ψ (φ − π)

sinν(φ − π)− sin(νφ0)
− Ψ (φ + π)

sinν(φ + π)− sin(νφ0)

]
. (37)

Using the property (23), we have

Ψ (φ ± π)= ψ8
Φ(π/2)

Ψ (φ)
cos

[ν
2
(φ +Φ ± θ+)

]
cos

[ν
2
(φ +Φ ± π ∓ θ+)

]
× cos

[ν
2
(φ −Φ ± θ−)

]
cos

[ν
2
(φ −Φ ± π ∓ θ−)

]
, (38)

or with a bit of simplification,

Ψ (φ ± π)= ψ8
Φ(π/2)

4Ψ (φ)

{
cos

[
ν
(π

2
− θ+

)]
− sin

[
ν
(
φ ± π

2

)]}
×
{

cos
[
ν
(π

2
− θ−

)]
+ sin

[
ν
(
φ ± π

2

)]}
. (39)

Substituting these into (37) yields, after some further algebra,

D(φ, φ0)=U0
ν

4
tan

(νπ
2

)
ψ8
Φ

(π
2

) cos(νφ)

Ψ (φ)

cos(νφ0)

Ψ (φ0)

×
{

1 + sin(νφ)+ sin(νφ0)− 2 cos(νπ/2) cos
[
ν(π/2 − θ+)

]
cos[ν(φ + φ0)] + cos(νπ)

×sin(νφ)+ sin(νφ0)+ 2 cos(νπ/2) cos
[
ν(π/2 − θ−)

]
cos[ν(φ − φ0)] − cos(νπ)

}
. (40)

Thus, using (25) and (26) we have the general result

D(φ, φ0) = U0 u0(φ) u0(φ0) FΦ(φ, φ0) , (41)

where

FΦ(φ, φ0)= 1

4ν
tan

(νπ
2

){
1 + sin(νφ)+ sin(νφ0)− 2 cos(νπ/2) cos

[
ν(π/2 − θ+)

]
cos[ν(φ + φ0)] + cos(νπ)

×sin(νφ)+ sin(νφ0)+ 2 cos(νπ/2) cos
[
ν(π/2 − θ−)

]
cos[ν(φ − φ0)] − cos(νπ)

}
. (42)
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If the faces are purely reactive, i.e., the impedances and hence the anglesθ± are all purely imaginary, then the
magnitude of the edge field has the simple form [4]:

|u0(φ)| = 2ν cos(νφ)[
cosh(ν|θ+|)− sin(νφ)

]1/2 [ cosh(ν|θ−|)+ sin(νφ)
]1/2 . (43)

Eqs. (41),(42) and (43) imply that themagnitudeof the diffraction coefficient for a wedge with purely reactive
faces can be found using trigonometric functions only. Determining the phase requires evaluating Malyuzhinets
functions, in general.

Eqs. (41) and (42) clearly show that the diffraction coefficient is unchanged when the source and observation
directions are reversed, i.e.,D(φ0, φ) = D(φ, φ0), as required by the principle of reciprocity. In general, the
diffracted response depends upon both the edge fieldu0 and the pattern functionFΦ . We have already discussed
the behaviour of the former [4], and therefore we now need to consider only the pattern functionFΦ .

2.3.2. The pattern functionFΦ
It is useful to consider some specific examples of the functionFΦ . For the rigid wedge(θ+ = θ− = 0), we have

u0(φ) = 2ν andFΦ = FR
Φ , where

FR
Φ(φ, φ0) = 1

4ν

[
sin(νπ)

cos(νπ)− cos [ν(φ − φ0)]
+ sin(νπ)

cos(νπ)+ cos [ν(φ + φ0)]

]
. (44)

This agrees with the well-known result for the rigid wedge, e.g. [14,29,30,36].
If the impedance is finite andθ+ = θ−, then

FΦ(φ, φ0) = FR
Φ(φ, φ0)+ sin(νπ){ cos2[ν(π/2 − θ±)] − cos2(νπ/2)}

2ν { cos(νπ)+ cos[ν(φ + φ0)]} { cos(νπ)− cos[ν(φ − φ0)]} . (45)

Thus,FΦ and hence the diffraction coefficient vanishes for acute anglesΦ = π/2n, n = 1,2,3, . . . , if both faces
have the same impedance. When the impedances are distinct the diffraction coefficient is zero for the subset of these
angles with evenn, i.e.,Φ = π/4, π/8, π/16, etc., and this is in line with the general property found in Section 2.

Other vertex angles of interest areπ/2 andπ , corresponding to a half plane and a screen, respectively,

Fπ/2(φ, φ0) = 1

2

sinθ+ − sinθ−
sinφ + sinφ0

, (46)

Fπ(φ, φ0)= 1

2
+
[

sin

(
φ

2

)
+ sin

(
φ0

2

)
−

√
2 cos

(
π

4
− θ+

2

)]

×sin(φ/2)+ sin(φ0/2)+ √
2 cos(π/4 − θ−/2)

cosφ + cosφ0
. (47)

The pattern function for a hard wedge (smallθ±) can be easily found. For instance, if the face impedances are
identical andθ± = θ , then (45) implies that

FΦ(φ, φ0) ≈ FR
Φ(φ, φ0)

[
1 + νθ sin(νπ)

cos(νπ)− sin(νφ) sin(νφ0)

]
. (48)

The case of a pressure-release wedge (u = 0 on either face) is relevant to the problem of anti-plane shear wave
diffraction in a clamped elastic wedge as well as electromagnetic diffraction of anE-polarised field by a perfectly
conducting wedge. This limit can be found by lettingθ± → ±i∞. It is evident from (43) that the edge field vanishes,
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while the pattern functionFΦ , which is given by (42), becomes infinite, but the product in (41) remains finite and
tends to the limit

D(φ, φ0) = νU0

[
sin(νπ)

cos(νπ)− cos [ν(φ − φ0)]
− sin(νπ)

cos(νπ)+ cos [ν(φ + φ0)]

]
. (49)

This can be established by inserting into (36) the transform function relevant to the wedge with Dirichlet boundary
conditions [29,36],

S(α) = U0
ν cos(νφ0)

sin(να)− sin(νφ0)
. (50)

The pattern functionFΦ(φ, φ0) has singularities at the angular combinations which satisfy cos(νπ)± cos [ν(φ±
φ0)] = 0. Those corresponding to the shadow and reflection boundaries for acute wedges withΦ > π/2(ν < 1)
occur at angles satisfying|φ − φ0| = π and|φ + φ0| = π/ν − π . For obtuse wedges withΦ < π/2(ν > 1) the
singularities are described as follows:

|φ − φ0| = π

ν
(ν̃ + 1 − ν) , |φ + φ0| = π

ν
(ν − ν̃) , (51)

whereν̃ = entire(ν) and odd, and

|φ − φ0| = π

ν
(ν − ν̃) , |φ + φ0| = π

ν
(ν̃ + 1 − ν) , (52)

if ν̃ is even. All of these singularities can be interpreted in terms of geometrical optics constructions (see Section
2.1), and will not be discussed further here.

Based on these findings, and referring to (41) and (43), we conclude that to a very good approximation, the
magnitude of the diffraction coefficient is

|D(φ, φ0)| ≈ U0Ω(φ)Ω(φ0)|FΦ(φ, φ0)|, (53)

where

Ω(φ) = ν cos(νφ)

| cos [(ν/2)(φ +Φ − θ+)] cos [(ν/2)(φ −Φ + θ−)]| .

This is precise for reactive faces, and it provides a lower (upper) bound estimate when the faces have the same
purely resistive impedance andΦ > π/2(Φ < π/2).

2.3.3. The backscattering diffraction coefficient
We conclude Section 2 with a brief discussion of the backscattering properties of an impedance wedge. The

backscattering diffraction coefficient results from (41) and (42) as

D(φ, φ) = U0u
2
0(φ)

2ν sin(νπ)
×
{

sin2
(νπ

2

)
−
[

sin(νφ)− cos
(νπ

2

)
cos

(
ν
(π

2
− θ+

))]

× sin(νφ)+ cos(νπ/2) cos(ν(π/2 − θ−))
sin2(νφ)− cos2(νπ/2)

}
. (54)

The monostatic backscattering echowidthσ normalised to the wavelengthλ is defined in dB through the limit of
the diffracted field [29]:

σ

λ
= lim
r→+∞10 lg10

(
kr

|ud(r, φ)|2
|U0|2

)
, (55)
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Fig. 5. The axial monostatic backscattering echowidth of an impedance wedge as a function of its vertex angleΦ.

Fig. 6. The monostatic backscattering echowidth of an impedance wedge withΦ = 7π/8 as a function of the observation angle.

which on account of (35) gives

σ

λ
= 20 lg10

∣∣∣∣D(φ, φ)√
2πU0

∣∣∣∣ . (56)

Figs. 5 and 6 illustrate computational results characterising some important features of the monostatic backscat-
tering echowidth of impedance wedges. Fig. 5 shows the echowidth in the axial direction (φ = 0 in (56)) as a
function of the vertex angleΦ for several values of the face impedances which we assume to be identical on both
faces of the wedge, thusθ+ = θ− = θ . The curves 1 and 2 correspond to the acoustically hard (θ = 0) and soft
(Im θ = ∞) wedge, respectively, and they mark the extreme lines so that all other curves relevant to the intermediate
values of the impedance with 0< |Imθ | < +∞ lie between them (curve 3,θ = −i).

An interesting exception is the case of entirely real Brewster angles, illustrated by the curves 4 and 5. Note
the presence of minima in those curves at the points defined by the relationΦ + θ = π . The cancellation of
the backscattering echowidth follows from the representation (54) of the diffraction coefficient. One can readily
check that the expression in parentheses vanishes whenΦ = π − θ andφ = 0. From the physical viewpoint
this means that a wedge with a real value of its face impedance becomes “invisible” in the axial direction if its
vertex angleΦ satisfies this constraint. As the imaginary part ofθ grows, the minimum quickly disappears (curve 6,
θ = 2π/5+0.3i). The numerical results given here for complex values of the Brewster anglesθ± remain unchanged
for complex conjugate quantities̄θ± because of the propertyD(φ, φ0, θ̄+, θ̄−) = D̄(φ, φ0, θ+, θ−) which is true as
long as other parameters, i.e.,φ, φ0, andΦ are real.
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Fig. 6 shows how the monostatic backscattering echowidth of an impedance wedge of vertex angleΦ = 7π/8 =
157.5◦ varies with the observation angleφ. All curves in the figure are symmetric about the bisecting lineφ = 0
because the material properties of the wedge faces are assumed to be the same. Generally, no such symmetry exists
whenθ+ 6= θ−. The maxima atφ = ±67.5◦ correspond to the directions of specular reflection. The only case
(curve 1) which remains bounded in those directions occurs when the normalised surface impedance is unity, or,
equivalently,θ = π/2, since in such an event the reflected wave vanishes at normal incidence. Curve 2 of Fig. 6,
plotted forθ = π/5, demonstrates that the phenomenon of the invisibility of an impedance wedge, mentioned
before in the context of the axial backscatteringφ = 0, may also take place at non-zero observation angles.

Simple analysis of the representation (54) shows that the zeros of the backscattering diffraction coefficient can
be found from the relation

sin2(νφ) = cos(νθ) cos [ν(π − θ)]. (57)

If θ is entirely real and such thatπ −Φ ≤ θ ≤ π/2, then the equation has real-valued solutions for the observation
angleφ such thatν|φ| ≤ arcsin [ cos(νπ/2)]. Curve 3 in Fig. 6 corresponds to the intermediate case whenθ =
π −Φ, and there exists only one root of the above equation in the interval|φ| ≤ Φ. The backscattering diffraction
coefficient loses this feature for smaller values of the Brewster angle (curve 4,θ = π/10), although the level of
the echowidth in a sector around the central planeφ = 0 is still less than the one associated with the wedge with
normalised surface impedance of unity (θ = π/2, curve 1). The echowidth of a wedge with hard (θ = 0, curve
5) or soft (Imθ = ∞, curve 6) faces does not display any zeros, and the gap between those two extreme curves is
monotonically filled with responses corresponding to finite values of the imaginary part ofθ (they are not shown in
Fig. 6).

The examples in Figs. 5 and 6 indicate that the backscatter vanishes at particular observation anglesφ for a given
wedge angleΦ and surface impedanceθ . Conversely, the “invisibility” condition (57) can be solved forθ in terms
of φ andΦ:

cos
[
ν
(
θ − π

2

)]
=
√

sin2(νφ)+ sin2
(νπ

2

)
. (58)

Forπ/2 ≤ Φ ≤ π , as|φ|goes from the forward directionφ = 0 to the boundary of the reflection zone|φ| = Φ−π/2,
Eq. (58) on the interval 0≤ Reθ ≤ π/2 has only one root

θ = π

2
− 1

ν
arccos

√
sin2(νφ)+ sin2

(νπ
2

)
, (59)

and the Brewster angleθ increases fromπ − Φ to π/2. The normalised surface admittance of the wedge faces is
therefore

sinθ = cos

[
1

ν
arccos

√
sin2(νφ)+ sin2

(νπ
2

)]
, (60)

which increases from cos(Φ − π/2) to 1. Within the reflection zone, as|φ| is increased further to its maximum
value|φ| = Φ, one gets two complex conjugate solutions of (58)

θ = π

2
± i

ν
arccosh

√
sin2(νφ)+ sin2

(νπ
2

)
, (61)

which, however, lead to the same value of the parameter

sinθ = cosh

[
1

ν
arccosh

√
sin2(νφ)+ sin2

(νπ
2

)]
. (62)
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This increases steadily with|φ| to the value cosh{ν−1arcsinh[ sin(νπ/2)]} for φ = ±Φ. In summary, the backscat-
tered edge diffraction in directionφ vanishes if the surface impedance is real and given by (60) if 0≤ |φ| ≤ Φ−π/2,
and by (62) ifΦ − π/2 ≤ |φ| ≤ Φ.

3. Full uniform asymptotic expansions of the far-field

The diffraction coefficientD(φ, φ0) plays a leading role in the far-field analysis of the diffraction by wedges. In
fact, knowledge of the diffraction coefficient is the only information necessary to construct complete asymptotic
representations of the scattered field forkr � 1. In this section we show how the representation (35), which includes
only a major term of asymptotic expansion of the diffracted field in inverse powers ofk and which as we saw above
becomes infinite at shadow boundaries of incident and reflected waves, can be developed into a full asymptotic
expansion of the total field which is bounded at all shadow boundaries and uniformly valid over the whole range of
values of observation and incidence angles.

We start by deriving the higher order terms of the non-uniform representation (35). For simplicity we restrict the
discussion to an exterior wedge, orΦ > π/2. Assuming that no poles of the integrand in (13) lie near the saddle
pointsα = ±π , the standard procedure for evaluating integrals over their steepest descent paths applies [30,37],
yielding an expansion of the form

ud(r, φ) ∼ eikr
+∞∑
n=0

(
i

kr

)n+1/2

An(φ, φ0) (63)

with the first term proportional to the diffraction coefficient,

A0(φ, φ0) = 1√
2π
D(φ, φ0). (64)

The higher-order coefficientsAn(φ, φ0) with n = 1,2, . . . , are explicitly expressed through the zero-order coeffi-
cient by means of the relations

An(φ, φ0) = Qn(φ)A0(φ, φ0), n = 1,2, . . . , (65)

whereQn(φ) are differential operators defined by

Q0 = 1,

Qn(φ) = (−1)n

2nn!

(
∂2

∂φ2
+ 1

4

)(
∂2

∂φ2
+ 9

4

)
. . .

(
∂2

∂φ2
+
(
n− 1

2

)2
)
. (66)

These relations guarantee that (63) with arbitraryA0(φ, φ0) asymptotically satisfies the Helmholtz equation as
kr → ∞.

The representation (63) cannot be used when the observation point approaches shadow boundaries of the incident
and reflected waves. Mathematically, this corresponds to the case in which certain poles of the integrand in (13)
are in close proximity of the saddle points, and the conventional procedure for evaluating the SDP integrals are
no longer applicable and should be appropriately corrected. Though such extensions of the saddle point technique
are available (see, e.g., [30,37]), they are difficult to apply in diffraction problems if one is interested in finding
a full uniform asymptotic expansion of the far-field rather than just the leading term. Here we adopt an elegant
approach described by Borovikov and Kinber [14] who considered the particular case of a wedge with Dirichlet or
Neumann boundary conditions. This allows us to avoid evaluating the integrals in (13) when the standard saddle
point procedure fails, and it generalises the analysis of Borovikov and Kinber [14] to the arbitrary impedance wedge.
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The algorithm for transforming the non-uniform expansion (63) into a uniform one is as follows. The discontinuous
step functions in the ray optical part of the solution, which is given by (14), are replaced by Fresnel integrals of
suitable arguments. It follows from its definition,

F(X) = e−iπ/4
√
π

∫ X

−∞
eis2ds, (67)

that the Fresnel integralF(X) is a smooth function of its argument. AsX → ±∞ it tends to the step function
H(X), which is evident from the asymptotic representation

F(X) ∼ H(X)+ eiX2−i3π/4

2πX

+∞∑
n=0

Γ (n+ 1
2)

(iX2)n
, (68)

with Γ (z) being the gamma function.
In order to recover the non-uniform formulas outside the immediate vicinity of the shadow boundary the argument

of a Fresnel integral in a uniform representation is chosen asX = √
k(sd − sgo) wheresd = r is the eikonal of the

edge-diffracted wave andsgo is the eikonal of the ray associated with a given shadow boundary. This latter eikonal
is given bysgo = −r cos(φ − φ0) for the incident plane wave and bysgo = −r cos(φ + φ0 ∓ 2Φ) for plane waves
reflected from upper and lower wedge faces. At the shadow boundarysd = sgo. Outside the shadow boundary the
sign of the square root function in the argument of the Fresnel integral is defined to be positive on the lit side and
negative on the shadowed side. Eq. (68) then ensures that the correct field structure is recovered at observation
points distant from the penumbra region.

One may check that eiksgoF
[√
k(sd − sgo)

]
exactly satisfies the Helmholtz equation by direct substitution into

(2). Correspondingly, the edge-diffracted term in the uniform representation independently satisfies the Helmholtz
equation. We assume that the edge-diffracted field is of the form of expansion (63) with coefficientsAn,n = 1,2, . . . ,
given by the recurrence relations (65). However, the zero-order coefficient differs fromA0(φ, φ0) of (64), but is
determined by requiring that the uniform and non-uniform representations reduce to each other outside the penumbra
region. This is achieved by expanding the Fresnel integral according to (68), and equating terms of order(kr)−1/2.

In what follows we distinguish four specific cases, in accordance with the structure of the ray optical field.
(a)The incident field illuminates only the lower face of the wedge(−Φ < φ0 < Φ−π ). In this case there are two

shadow boundaries atφ = φ0 + π andφ = π − 2Φ − φ0 associated with the incident wave and the wave reflected
from the lower face of the wedge. Applying the procedure described above leads to the far-field representation of
the form (12) with the geometric optic and diffracted contributions corrected as follows:

ug(r, φ)=U0F

[√
2kr cos

(
φ − φ0

2

)]
e−ikr cos(φ−φ0)

+U0R−(Φ + φ0)F

[√
2kr cos

(
φ + φ0 + 2Φ

2

)]
e−ikr cos(φ+φ0+2Φ), (69)

ud(r, φ) ∼ eikr
+∞∑
n=0

(
i

kr

)n+1/2

Bn(φ, φ0), (70)

B0(φ, φ0) = 1√
2π
D(φ, φ0)+ 1

2
√

2π cos((φ − φ0)/2)
+ R−(Φ + φ0)

2
√

2π cos((φ + φ0 + 2Φ)/2)
, (71)

Bn(φ, φ0) = Qn(φ)B0(φ, φ0), n = 1,2, . . . (72)

Here,R−(Φ + φ0) is the reflection coefficient introduced in (15).
One may verify that the two expressions (69) and (70) independently satisfy the Helmholtz equation. The zero-

order coefficientB0(φ, φ0) given by (71) is a bounded and analytic function ofφ at shadow boundariesφ = φ0 +π
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andφ = π − 2Φ − φ0 because the poles of the diffraction coefficientD(φ, φ0) at those points are cancelled by
other members of (71). The higher-order coefficientsBn(φ, φ0)with n = 1,2, . . . , defined by (72) are also analytic
at the shadow boundaries because they are obtained by differentiation of the analytical functionB0(φ, φ0). The
representation (12), combined with Eqs. (69),(70) and (71), is therefore valid for arbitrary location of the observation
point, provided that the excitation conforms with the requirement−Φ < φ0 < Φ − π . Away from the shadow
boundaries the Fresnel integrals in (69) can be replaced by their asymptotic representation (68), which converts the
uniform formulas into the non-uniform ones withug(r, φ) andud(r, φ) given by (14) and (63).

(b) Both faces of the wedge are illuminated by the incident field(Φ − π < φ0 < π −Φ). In this event there are
two shadow boundaries atφ = ±2Φ ∓π − φ0, associated with the fields reflected from the wedge faces, while the
direct wave is omnipresent. The geometrical optics part of (12) is then

ug(r, φ)=U0e−ikr cos(φ−φ0) + U0R+(Φ − φ0)F

[√
2kr cos

(
φ + φ0 − 2Φ

2

)]
e−ikr cos(φ+φ0−2Φ)

+U0R−(Φ + φ0)F

[√
2kr cos

(
φ + φ0 + 2Φ

2

)]
e−ikr cos(φ+φ0+2Φ). (73)

The expansion of the diffracted componentud(r, φ) is of the same form as in (70) and (72), except for the zero-order
coefficient

B0(φ, φ0) = 1√
2π
D(φ, φ0)+ R+(Φ − φ0)

2
√

2π cos((φ + φ0 − 2Φ)/2)
+ R−(Φ + φ0)

2
√

2π cos((φ + φ0 + 2Φ)/2)
, (74)

which in this case should be continuous atφ = ±2Φ ∓ π − φ0. Away from these directions the expressions (73)
and (74) reduce to the non-uniform formulas.

(c) The incident field illuminates the upper face of the wedge(π −Φ < φ0 < Φ). Now, instead of (69),(71),(73)
and (74), we have

ug(r, φ)=U0F

[√
2kr cos

(
φ − φ0

2

)]
e−ikr cos(φ−φ0)

+U0R+(Φ − φ0)F

[√
2kr cos

(
φ + φ0 − 2Φ

2

)]
e−ikr cos(φ+φ0−2Φ), (75)

B0(φ, φ0) = 1√
2π
D(φ, φ0)+ R+(Φ − φ0)

2
√

2π cos((φ + φ0 − 2Φ)/2)
+ 1

2
√

2π cos((φ − φ0)/2)
, (76)

which is uniformly valid outside the wedge, including the shadow boundariesφ = φ0 − π andφ = 2Φ − π − φ0.
(76) is consistent with (14) and (63) outside the penumbra regions (75).

(d) The intermediate case(φ0 ≈ ±π ∓Φ). The uniform formulas given above become inapplicable in this case
because they are not uniform as functions of the incidence angleφ0 and, therefore, do not provide a continuous
transition from case (a) to (b) and from (b) to (c). The required extension is given by the formulas

ug(r, φ)=U0F

[√
2kr cos

(
φ − φ0

2

)]
e−ikr cos(φ−φ0) + U0R+(Φ − φ0)F

[√
2kr cos

(
φ + φ0 − 2Φ

2

)]

×e−ikr cos(φ+φ0−2Φ) + U0R−(Φ + φ0)F

[√
2kr cos

(
φ + φ0 + 2Φ

2

)]
e−ikr cos(φ+φ0+2Φ), (77)

ud(r, φ0) ∼ U0 eikr
+∞∑
n=0

(
i

kr

)n+1/2

Cn(φ, φ0), (78)



A.N. Norris, A.V. Osipov / Wave Motion 30 (1999) 69–89 87

C0(φ, φ0)= 1√
2π
D(φ, φ0)+ 1

2
√

2π cos((φ − φ0)/2)
+ R+(Φ − φ0)

2
√

2π cos((φ + φ0 − 2Φ)/2)

+ R−(Φ + φ0)

2
√

2π cos((φ + φ0 + 2Φ)/2)
, (79)

Cn(φ, φ0) = Qn(φ)C0(φ, φ0), n = 1,2, . . . (80)

One may check thatC0(φ, φ0) is an analytic function ofφ at each of the four shadow boundariesφ = φ0 ± π ,
φ = ±2Φ ∓π − φ0, and so are the higher-order coefficientsCn(φ, φ0) with n = 1,2, . . . As the incident angleφ0
moves away from an immediate vicinity of the directionsφ0 = ±π ∓Φ, we may replace one of the three Fresnel
integrals in (77) with its asymptotic expansion (68), which transforms case (d) into one of the cases (a), (b), or (c).
When the observation point is sufficiently far from all shadow boundaries, further simplifications are achieved by
replacing all remaining Fresnel integrals in (77) with their asymptotic representations, which converts the formulas
(77),(78) and (79) into (14),(63),(64) and (65).

We note that the task of finding the correct representation for case (d) by means of traditional technique would
require the evaluation of the diffraction integral (13) in the limit as three poles simultaneously approach the saddle
point.

Other singularities of the transform functionS(α+φ) can occur close to the saddle points in the diffraction integral
(13). Specifically, these are the poles associated with the surface waves. When|θ±| � 1, some new transition regions
may exist near the wedge faces, which should be accounted for in the far-field representation. This case does not
produce any crucial difficulties and can be treated using conventional tools of diffraction theory (see, e.g., [32]).

We are now ready to consider how the field diffracted by an impedance wedge is distributed in space. Fig. 7
shows the angular distribution of the total field amplitude|u(r, φ)| at a distancer = 1.6λ from the edge of a wedge
with Φ = 7π/8 = 157.5◦, assuming the plane wave excitation (1) withU0 = 1 andφ0 = π/2. The solid line
corresponds to the limiting case of acoustically hard facesθ± = 0, whereas the dotted one relates to soft boundaries
with Im θ± → ∞. Clearly distinguished in the plot are the shadow region (−157.5◦ < φ < −90◦), the intermediate
region illuminated only by the incident wave (−90◦ < φ < 45◦), and the region where both incident and reflected
waves are present (45◦ < φ < 157.5◦). The oscillations in the curves within the intermediate zone arise from the
superposition of the incident and edge-diffracted fields. Forφ > 45◦ the wave reflected from the upper boundary
also contributes, resulting in stronger fluctuations of the total field.

The field diffracted by a wedge with face impedance equal to unity (θ± = π/2, the dashed line in Fig. 7) displays
relatively weak oscillations because of the small reflected amplitude. The diffracted component is also of lower
amplitude, which is evident by comparison of the curves in the intermediate zone.

Fig. 7. Total field due to plane wave excitation atkr = 10 from the edge of an impedance wedge.
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The dot–dashed curve (θ+ = 0 andθ− = −i) illustrates the case in which a surface wave propagates over the
shadowed face of the wedge. The surface wave may become the main contribution to the total field near a face with
finite impedance. As the observation point moves outward from the wedge face, the amplitude of the surface wave
rapidly decreases dropping below the level of the ordinary shadow field. This can be seen from the dot–dashed
curve, which almost coincides with other curves outside an immediate vicinity of the wedge face.

4. Conclusions

A complete analysis of the far-field diffraction by an arbitrarily angled wedge with arbitrary face impedance has
been presented. Both plane and surface wave excitation have been considered.

Scattering and radiation of an incident surface wave from the edge of an impedance wedge have been anal-
ysed using accurate representations for the transmission, reflection, and radiation coefficients. Simple approximate
formulas have been found which permit accurate estimates of the magnitudes of the surface wave reflection and
transmission coefficients.

A full asymptotic representation of the far-field diffracted by an impedance wedge has been deduced which
remains uniformly valid for arbitrary incidence and observation directions. Explicit formulae are given for the
uniformly asymptotic far-field of an exterior wedge(Φ > π/2).

The tip amplitudeu0 has been shown to be intimately involved in the far-field diffraction coefficientD(φ, φ0).
The only additional quantity required for the latter is a pattern function which comprises trigonometric functions
only. The remarkably simple factorisation,D(φ, φ0) = u0(φ)u0(φ0)FΦ(φ, φ0), derived here for the first time, is
convenient for approximating and bounding the diffraction from impedance boundaries, and leads to exact results
for purely reactive faces. The simplicity of the pattern function,FΦ , allows one to choose the surface impedance
to meet specific criteria. For example, the far-field backscatter for head-on incidence vanishes if both faces have
real impedance such thatθ = π −Φ. The concept of choosing the material properties to eliminate edge diffraction
generalises the common practice of impedance matching between two half spaces in order to eliminate reflection.
This is a new idea, which is made feasible by the explicit factorisation ofD.
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