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Summary

The particles in an elastic plate are permitted to move by a surface diffusion process subject
to the constraint that the total free energy does not increase. The static equilibrium, the quasi-
static linear stability, and the quasi-static nonlinear evolution of the surface are examined under
different loading conditions: tensile/compressive or flexural. The equilibrium configurations
are such that the surface value of the chemical potential is constant, and their shapes depend
upon the relative magnitude of elastic to surface energies. A linear stability analysis indicates
that antisymmetric perturbations to the surface profile of a flat plate are most unstable for tensile
loading and symmetric perturbations display the greatest instability under flexure. A new model
for nonlinear non-equilibrium mechanics of thin plates is described and analysed. The main
feature is that the elastic energy at the surface is approximated by that of an equivalent thin plate
in a state of uniaxial stress, even as the profile changes. Nonlinear evolution of a perturbed flat
plate is illustrated by numerical solution. A crevice gradually develops in the plate, eventually
leading to rapid rupture and breakage. Scaling analysis near the ultimate rupture indicates a
simple spatial and temporal dependence.

1. Introduction

The competition between the stabilizing effects of surface tension (energy) and the destabilizing
effect of stress driven diffusion of surface particles has been proposed as a mechanism for the
early stages of stress corrosion cracking and surface roughening (1). The diffusion causes material
rearrangement in which atoms search for surface sites of lower chemical potential, away from stress
concentrations. This effect has been shown to be unstable to linear perturbation (2, 3, 4), indicating
that flat strained surfaces are inherently unstable, and the instability is independent of the sign of the
stress: compressive or tensile. The consequent nonlinear evolution of stressed elastic half-spaces
has been examined by several authors (5, 6, 7). For example, Yang and Srolovitz (5) showed that
the surface instability creates a groove which steadily sharpens as it deepens. The rate of growth
of the groove increases until it appears to diverge. Based upon an extensive series of numerical
studies, Yang and Srolovitz were able to show that the critical groove depth at which the growth
rate diverges is in excellent agreement with linear fracture mechanics. In fact, they reproduced the
Griffith fracture criterion on the basis of surface diffusion alone, with no adjustable parameters.
Experimental evidence for the stress-driven surface instability has been forthcoming, and it has
been used to explain effects in diverse material configurations such as helium crystals (8), polymer
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gels and crystals (9), and solid—solid interfaces. The instability can be caused by ion infiltration
into the solid leading to large misfit strains, and also under conditions of anodic dissolution (10).
Thus, Tappin et al. (9) observed periodic surface structure on Zr3Al crystals undergoing anodic
dissolution in electropolishing. They ascribed the formation of the surface morphology to absorbed
H; and consequent misfit strains near the surface, which are relaxed by surface diffusion. The fact
that the phenomenon is observed in a variety of material systems indicates that it can be an important
mechanism for the early growth of surface structure. However, it is doubtful that it can be used to
explain the late stages of, for instance, fatigue or corrosion-assisted cracking, or other phenomena
for which dislocations are the dominant mechanism (11, 12).

In this paper we consider thin elastic plates which can change under the stress-driven diffusion
of surface particles. We first consider the elastic stability and compare the results obtained with
those for a half-space, in the limit of infinite thickness. We demonstrate that the condition for thin-
plate stability is quite different from that for thick plates, and it can be understood in terms of a
uniaxial stress approximation. In the second part of the paper the nonlinear equilibrium and non-
equilibrium of thin plates is examined using the uniaxial approximation. This simplifies the problem
considerably and permits semi-analytic solutions. In particular, we examine the late behaviour
of a notch as it traverses the entire plate, similar to the half-space groove observed by Yang and
Srolovitz (5) but susceptible to analytic description. Both tensile/compressive and flexural loadings
are considered. We begin with the general formulation of surface diffusion under applied stress.

2. The surface growth equation

Consider an elastic body V with traction-free surface S, under some state of applied loading. We
will later examine in detail the example of a plate of infinite extent in two directions, in which case
the surface comprises the top and bottom plate faces. The general phenomenon of surface instability
is governed by the reduction in the total free energy,

E=E-W, ey

comprising the work of applied loads, W, and the stored energy £ made up of bulk elastic and
surface energies:

E = Eelastic + Esurface Eejastic = / dv U, Esurface = / ds Vs (2)
Vv S

where U and y are the volumetric and surface energy densities, respectively. If the surface is
changing, with normal velocity ¢ (positive is out of the material) then the rates of change of these
energies are

d Eelasti dE
elastic _ / dscU, surface _ / ds yek. 3)
dt S dt S
Here, « is the sum of the principal surface curvatures.* Thus, the total free energy satisfies
d&
— = / dScu, where u = U — y«, “)
dt S

and p is known as the surface chemical potential. It is identically the energy required to add one
volumetric unit” of material to the surface: U represents the additional energy required to coherently

* Curvature is such that, for example, a solid sphere of radius a has k = —2/a.
T The chemical potential is usually defined as the energy per atom or the energy per mole, in which case p is multiplied
by the atomic or molar volume, as the case may be.
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match the new solid to the strained surface, and (—y«) is the energy associated with creating new
surface area. The precise form of the chemical potential is obtained by performing a material
variation of the surface, and it is possible to represent p in different ways, for example, by means
of the Eshelby tensors for the bulk and for the surface (13).

The change in the surface shape is assumed to be caused solely by the relative movement of
particles, with total mass remaining the same. Assuming a constant density pg, this implies that

d

= dV,oo:/dSpoc=0. (®)]
tJy S

(The assumption of constant density is consistent with the use of Lagrangian (or material)
coordinates and with conservation of volume in these coordinates.) The mass conservation identity
(5) is automatically satisfied if ¢ is of the form (14)

¢ = —div,q, ©6)

where divs denotes the surface divergence operator, and q is a surface flux vector. Substitution into

(4), and integration by parts (subject to appropriate boundary conditions) implies that
e _ / dSq-V @)
dr s q- Vsi.

A physically realistic process will reduce the free energy, and this is guaranteed by (7) if the surface
flux is proportional to the gradient of the chemical potential:

q=—DoVsu, Dy >0, (8)
which implies that

d& 2

— =—Dg | dS(Vsu)” <0. )]

dt S

Generally, the energy will always decrease under rearrangement for any Dy in the form of a
positive definite second-rank surface tensor; however, here we restrict attention to isotropic surface
diffusion.* Equations (6) and (8) give the surface velocity as

c=DoVZp. (10)

This is the central equation governing the surface growth. It is nonlinear because of the presence
of the surface curvature in u, and non-local because it involves determining the local variation in
the strain energy, U. The appearance of U requires solving a separate static elastic problem for the
stress and strain, o;; and €;;, which depends upon the global nature of the structure. For the sake of
simplicity we take U as that of a linearly elastic material,

U = joijeij, (1)

where o0;; and ¢;; are linearly related to one another. The elasticity problem is then linear but it
involves a changing domain, and therein lies the greatest complication.

* Dy may be identified physically as (15) Dy = Dsng2/(kT), where Dy is a surface diffusivity, ng the surface number
density of atoms capable of diffusing, €2 is the volume of a single atom, and k7 is the temperature normalized by Boltzmann’s
constant.
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2.1 Linear stability analysis

A first attempt at understanding (10) is to linearize about an initial state, which we take as a flat
surface for simplicity. Let i (Xy, ¢) be the time dependent perturbation to the surface, representing
the increment in the thickness normal to the original flat surface, where x; lies on the flat surface.
Thus, within the linear approximation, x = Vih, and ¢ = dh/0dt, where V| represents the gradient
operator on the fixed, flat surface. The strain energy term U is linearized about its initial state by

assuming that the total stress and strain are the sum of initial values a( ) and el.(;}), plus those arising
M
+€;

©) + 6(1 (0) 0
(Y

;7 is in equilibrium with zero traction on the flat surface, but 1t is not necessarily homogeneous
within the body. We include this possibility to allow for the important case of a beam in flexure,
which we analyse later.

The perturbed surface stress and strains can be evaluated using the condition that the modified
surface is traction free. Linearizing the zero traction condition a(/ 'n j = 0 about the unperturbed

flat configuration implies the following traction condition:

from the surface perturbation. Thus o;; = =0} ) and €j = where the initial stress

ol(jo) ;0) + 01(11) S.O) i(g) ho+ [n(o).Vai(]p)]nS-O) h=0 on the unperturbed surface. (12)

Here, h o, « = 1, 2, denotes the components of the surface gradient of 4. The first term in (12)
vanishes because the initial stress is traction free on the surface, that is, cr(jo) 50) 0. The final term

can be simplified using the equilibrium equations, O’l(] )] =0, to give [n(o).Val.(]Q)]ng.O) = —ol.(;))a so
that the perturbed stress satisfies
al(/l) §0) ( ,.(2) h)’a on the unperturbed surface. (13)

(1

The perturbed strain € ) is therefore a linear functional of &, obtained by solving the boundary-value

problem defined by (1 3) supplemented by the equlllbrlum equations O’ = 0 within the body. In

general, this solution represents the surface values of ei D asa non-local surface operator acting on
h, the precise form of which depends on the geometry of the body and its surface. It is interesting
to note that if the initial stress is homogeneous (constant) on the surface then the non-zero stresses
indicated in equation (13) are tangential or shear stresses only.
The perturbed surface energy is
5U=5U1 + 48U, 14)

M

where U] is the linear change associated with o D and € , which follows from (11) as

(0) 1 _ (0) 1
sU, =0, € =€;0; (15)

The second term §U, arises from the possible variability of the initial stress and strain near the
surface:
$U, = hnO.VU = h el.(;.)) n<0).%ff). (16)

The linearized growth equation is then
dh/dt = Do V1 (o] O (” +he(0) n©. vc“” y V2h). a7

Before analysing the specific implications of this equation, it is evident from (17) that the linear
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stability of a surface depends on three factors: the surface energy y, the surface stress al.(;)), and the
normal derivative of the initial stress. The first two are well known and have been considered many
times before in the literature, see for example, (14). The curvature term is local and always acts as
a stabilizing influence, whereas the stress term is non-local but leads to instability. It is also clear
that the effect of the stress term Ul.@el.(}) is independent of the sign of the initial stress ‘71((')) since
the perturbed strain is linearly proportional to this via the boundary condition (13). The appearance
of the normal derivative of the initial stress in the linear growth equation (17) is significant, but has
not been previously considered in the literature. We note that it is a local effect which can be either
destabilizing or stabilizing, depending as n®. VU@ is positive or negative, respectively, where
U© is the initial strain energy.

It remains to represent the perturbed surface strain el-(?) in terms of the perturbation /, which
depends upon the global static elasticity problem. The case of a plate in a state of plane strain is

considered in detail next.

3. Stability of a plate in plane strain
3.1 Unilateral perturbations

The plate has initial thickness 2a with centre plane x3 = 0 and extends to infinity in the (xg, x2)-
plane. We consider plane-strain deformation in the (x1, x3)-plane, both for the initial state of stress
and for the perturbation. We first assume that the perturbation in thickness is confined to the side
x3 = a, and is such that the deformed plate has thickness 2a + h, where A is sinusoidal in x; of
wavenumber k:

h = ho(t) sinkx;. (18)

The driving force of the perturbation on x3 = a is the uniaxial in-surface stress:
o = 008118} 19
Oij (x1,a) = 00 81 jls (19)

where oy is the value of the in-surface stress. This is assumed constant, independent of x; and .
However, the initial stress is not necessarily independent of x3 as one goes into the material. We
consider the possibility that it may vary as*

95,
9ij 0o

5 (x1, x3) = — 81,1, (20)
X3

x3=a b

where b is a constant, positive or negative although zero is precluded as being unphysical.

Note that only the surface value of eﬂ)

value problem for elg}) is

is required in the growth equation (17). The boundary-

05(31)(361,61, t) = o9 kho(t) cos kxy, (1)
o3 (x1,—a, 1) =0, (22)

supplemented by the equilibrium equations. The solution to this plane strain boundary-value

* If the initial stress has only the single component 01((1)) (x1, x3) which is independent of x1, then o1 = oq (1 +x3/b) is
consistent with the compatibility equation Vza“ =0.



288 ANDREW N. NORRIS

problem can be found using the Airy stress function method (16), and we omit the details. The
main result is

ey, xa. 1) = =2 kn : + : 23
6]] (XI, ast)__E_ ()C[,t) ka ka i ( )
p tanh ka + ? COth ka — ﬂ
COS a S a

where E), is the plane-strain modulus, E, = E/(1 — v2), with E and v the Young’s modulus and
Poisson’s ratio, respectively. The variation in the strain energy is thus

SU =2U h(xy, 1) [% —k f(ka)} , 24)

where U = 002/(2Ep) and

1 1
f&) = 3 + e (25)
h —_— hé& —

tanh & 4 cosh” £ coth &

sinh? &

The growth equation (17) now reduces to a simple ordinary differential equation for Ao (7):

dhy ol K2

ala DO[E—O(k3f(ka) -5 yk* [ ho(r) . (26)

dr »

The solution is of the form hg(z) = ho(0) exp(nt), where the growth rate of the perturbation
depends upon the sign of the quantity

_ Doy 43 _
n= p k[A(f(ka) kb) kai|, 27

and A is a non-dimensional ratio of strain energy to surface tension,

2
croa

A= : (28)
vE p
The perturbation (18) is stable (unstable) if n < O (> 0), where n = n(A, a/b, ka) is given by

(27). Some understanding of the regions of stability can be obtained from the asymptotic properties

of f(§):

206+ £+ 0(EY, £,
f) = (29)
2+ 0(ge™), £ 1.

If a/b < 2 it follows that there is a range of k beginning at 0 for which the perturbation is unstable
for any value of A. Thus, a/b = 2 presents a critical value demarcating configurations* which
always exhibit instability (a/b < 2) from those which display instability only if A exceeds a

* A referee suggests the helpful terminology ‘large flexure’ for a/b > 2, and ‘small flexure’ for a/b < 2.
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Table 1 The asymptotic values of kpa, kmaxa and nmax for large and small A, assuming that
a/b <2

ALL | AK]T | A1
a/b=0|a/b=1

koa V2A VA 2A

kmaxa VA IA A
a* 1 27
W Nmax A? I A? 16 A4

positive value, A., which depends upon a/b (> 2). This result can be understood in terms of
energy accountancy: if the energy near the stress-free surface increases rapidly enough in the normal
direction (a/b > 2), then it is more difficult to lower the total free energy of the system by means of
perturbing the surface, regardless of the surface tension y. Conversely, rearrangement of particles
near the surface is more likely if the strain energy decreases in the normal direction near the surface
(a/b < 2).

In summary, the perturbation (18) is stable for all wavenumbers if a/b > 2 and A < A.. For
a/b = 2 the critical value is A, &~ 15/8, from equation (29), and as a/b — oo the critical value
tends to Ac = a/b > 1. Fora/b > 2 and A > A, there is a range of ka for which n > 0.
Conversely, if a/b < 2 then for any value of A there is a unique positive value of ka at which 7
achieves a positive maximum.

Let us now examine in detail the case when destabilization is possible for any A, that is, —o0 <
a/b < 2. First, there is a positive value of ka at which 7 is zero, say koa = &g, where & is the root
of A(f(§) —a/(b§)) = &. The surface perturbation is stable (n < 0) if k exceeds this value and
unstable (n > 0) otherwise. The maximal instability occurs when the growth rate is largest, which
occurs at the wavenumber kmaxd = &max, 0 < &max < €0, at which A(£3 £ (&) — (a/b)&?) — &*
achieves a maximum. There are two distinct types of behaviour, depending as A is small or large,
which can be understood from the asymptotic form of f (&) in (29). For small A we consider the
two cases of b = 0o (no normal variation in the surface stress) and b = a (flexure) to obtain the
results in Table 1.

Figure 1 shows the ratio kmax/ ko versus A for a/b = 0. The ratio as plotted takes the asymptotic
values of 1/,/2 for A < % and % for A > 2-5, respectively. Hence, Fig. 1 indicates that the

asymptotic approximations of Table 1 are adequate for A < % or A > 2-5.
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Fig. 1 The ratio kmax/ko versus A for a/b = 0, indicating that the asymptotic estimates of Table 1 are
reasonable outside the range % <A <25

3.2 Half-space and thin-plate limits

The present results contain the limit of an elastic half-space as the special case of finite kb for

A — o0:

n = Doy 023 2 ! k* for a half-space (30)

— —_—— — ra a _S a .
0 vEp kb

The further limit 1/kb — O recovers the well-known results for the maximally unstable
wavenumber of a uniformly stressed half-space (3), which are given by the right-hand column in
Table 1, or equivalently,

302 27Dyo
2vE,” ™ T 16y7E}

kmax = uniformly stressed half-space. 31

For finite kb, the influence of b is to stabilize if & > 0 and destabilize for » < 0. For small
but negative values of b such that k|b| < 1 the half-space acts like a thin plate of semi-thickness
(—2b); see equation (33) below. That is, the non-uniformly stressed half-space with strain energy
decreasing in the normal direction (b < 0) has the same stability properties as a plate witha = —2b
in a state of uniform uniaxial stress. Conversely, n < 0 for all k if

1 c702 .

— > —— & half-space unconditionally stable. (32)

b YE,

The values of kg, kmax and nmax for the plate of semi-thickness a are, of course, independent of

a in the half-space limit; see (31). However, Table 1 indicates that these parameters are strongly



ELASTIC PLATES 291

dependent upon a and b for thin plates, A < 1. The thin-plate limit follows from (27) and (29)1, as

213
k> 2 1

We find for instance that

o 1, Doot 1, a/b=0,
kmax = 7OE X Nmax = 2—E0,2 X for thin plates. (34)
Varte - 1/y2. “rE g ab=1,

These are to be compared with the well-known results for the homogeneously stressed half-space,
given in (31). Comparison of the thin-plate (TP) parameters for a/b = 0 against those for the
half-space (HS), yields

(TP) (TP)

max 2 Nmax 16 (35)
HS) — 1> HS) — 2°
kr(nax) 3A2 nr(nax) 27A

We see that the relative magnitudes depend upon the non-dimensional parameter A, which is a
measure of the elastic strain energy per unit area of the plate surface (~ 002a / E ) versus the surface
energy (tension) per unit area (y).

3.3 Symmetric and antisymmetric perturbations

The previous analysis assumed that one side of the plate is perturbed while the other remains
unchanged. However, the existence of the two sides x3 = 1-a means that other types of perturbation
involving simultaneous deformation of the two faces may be more or less stable than the unilateral
perturbation. We consider the two special cases in which the plate deforms in such a manner that
the additional material on the two sides is either the same, or the opposite. Let i(x1, t), given by
(18), denote the additional material on x3 = +a, then the symmetric (antisymmetric) perturbation
is defined by the addition of & (—#) on the opposite side, x3 = —a.

At the same time, we consider two physically significant states of initial stress: tensile and flexural
loading, defined as follows.

95 ©
Tensile loading: al.(;)) (x1, £a) = 09 8;181, L (xy, x3) =0.
3 x3==ta
(36)
90 ©
o ©0) _ ij _ 9%
Flexuralloadmg. O‘i/. (xl,:i:a) —:i:0‘08i15j1, 3 (xl,x3) =+— 5,‘15j1.
: X3 a
x3==a

The ‘tensile’ stress occurs under a state of uniaxial loading, and it may be either compressive or
tensile, although we call it tensile for simplicity. The results reported here are independent of
the sign of the initial stress: they depend only on the magnitude of the strain energy and its local
variation. The flexural stress state is characteristic of a plate in bending with an internal stress which
is approximately uniaxial, zero at the centre and varying linearly with x3 such that

Moa
oy = TO’ where I = %a3. 37
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Here, M is the effective moment in the x,-direction acting on the cross-section —a < x3 < a

The stability of the symmetric and antisymmetric perturbations under the tensile and flexural
initial loadings can be analysed by linearly superposing the previous results for the unilateral
perturbation. The details of the procedure are not of interest except to note that the contribution
to the growth equation from the stress variability (1/b # 0) is evaluated only on the side at which
the growth is being analysed. However, for both parities, symmetric and antisymmetric, the two
faces grow so as to maintain parity, within the linear approximation of course. Thus, we find that
the growth rates are

[A2fs(8) —£]. tensile load, symmetric perturbation,
Doy [A2fa(8) —£]. tensile, antisymmetric,
n=—3"5§ X (38)
a [A(2fa) —1/E) — €],  flexural, symmetric,
[A(2fs(E) — 1/8) — &], flexural, antisymmetric,
where § = ka and f5(§) and fa(§) partition f(§) = fs(§) + fa(§) as
1 1
fs(§)=—57 fA(“E):—é- (39)

tanh & + cothé —

cosh? & sinh?

Using the asymptotic properties of fs and f4 (that is, fs =~ 1/2£, and f4 ~ 3/(2£) as
E —> 0; fs, fa = lasé — oo, and fs < f4 for0 < & < o0) it is clear that some of
these configurations are more unstable than others for fixed values of A. Thus, for tensile loading,
the antisymmetric perturbation is more unstable than the symmetric perturbation. Conversely,
the symmetric perturbation is the more unstable of the two for flexural loading. In fact, since
2fs(€) — 1/ = %f;‘ + O(&?) for £ — 0, it follows that the antisymmetric perturbation of the
flexurally loaded plate is linearly stable for all ka unless A exceeds approximately %

Finally, we note that in the thin-plate limit & <« 1, the growth rates for tensile and flexural
symmetric perturbations follow from (38) as

F2 k2
0 4 . . .
Dy —vyk™ |, tensile, symmetric, thin plate,

n= (40)

- yk4:| , flexural, symmetric, thin plate.

The remainder of the paper discusses thin plates with large variations in thickness but which
maintain symmetric profiles. The two predictions of (40) will serve as a check on the nonlinear
theory.

4. Symmetric equilibrium configurations of thin plates
4.1 The uniaxial stress approximation

We now consider plates which are far from flat, and examine the possible equilibrium shapes of
such plates under the combined influence of surface tension and elastic energy. When the former
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effect is the only one present then the most favorable configuration of a material is well known to
be spherical, the shape that minimizes surface area for a given volume. If we restrict the class of
shapes to ones which are symmetric about the plane x3 = 0 and that extend to infinity in both x;
and x; then the flat plate is another equilibrium solution. We consider the analogous configurations
of this type under the simultaneous influence of elastic energy and surface tension. That is, we
look for surfaces symmetric about x3 = O that extend to infinity in the other directions, and for
simplicity, are also independent of the x»>-coordinate. The search is therefore for uni-dimensional
surfaces which are periodic in the x;-direction (The unit period is introduced only to reduce the
problem to one on a finite domain, and the length of a period has nothing in common with the
length of the periodic perturbations in section 3.) One reason why we restrict attention to plates that
maintain their symmetry about the centre line is because these can still be treated using a relatively
simple uniaxial stress theory: either membrane (tensile/compressive) or flexural, which will be
explained below. Antisymmetric deformation leads to nonlinear mixing of these two simple modes
of deformation, and will not be treated further here.

The equilibrium configurations that we will determine below do not have any particular stability
properties. In fact, they will generally be linearly unstable to time dependent perturbation. However,
if the diffusion process is relatively slow they can maintain their shape for a long time.

The equilibrium conditions are twofold. First, the absence of surface motion implies that the
chemical potential u must be constant, so that there is no motivation for surface diffusion (see (6)):

w = o on the surface. “1

The second equilibrium condition is the usual elastic one: that the stress be divergence free within
the body and give zero traction on the surface. In general, this requires solving a two-dimensional
elasticity boundary-value problem, and then evaluating the strain energy U on the surface. For the
remainder of the paper we take the simplifying step of replacing the strain energy by the equivalent
strain energy as predicted by simple beam theory of elasticity. Two different types of loading are
considered: tensile and flexural. Both of these lead to approximately uniaxial stress distributions
for thin plates, so the present theory can be considered a thin-plate approximation.

The surface is defined by the rectangular material coordinates x| = x and x3 = Fa(x, ). The
strain energy at the surface is a function of the plate semi-thickness a(x, ¢) only, that is,

U =U(a) atthe surface. 42)

The function U (a) can be found by noting that the surface strain energy is U = 012] (a,t)/QQEp),
where o11(a, t) is the value of the uniaxial stress at the surface. This is easily estimated for either
tensile or flexural initial loading using ‘strength of materials’ concepts. Let Fy be the effective
force acting across any section in the x-direction, then 011 = Fy/2a, and oy is actually constant
across the section. Let My be the effective bending moment in flexural loading, then o1 varies
linearly across the symmetric section, and according to (37), o11(a, t) = 3My/ (24?). Elimination
of 0121 (a, t) leads to the following expressions:

FOZ/(SEpaz) in tension,
U(a) = (43)

9M§/(8El,a4) in flexure.
Equation (43) is a direct consequence of the uniaxial approximation for the stress and it permits

us to eliminate the stress as a variable. We have thus circumvented the problem of solving the static
elasticity problem on a variable domain, and it remains to enforce (41).
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4.2 Equilibrium shapes
The assumed symmetry about x3 = 0 means that only the upper surface at x3 = a needs to be
considered. Based upon the assumptions for the elastic energy, the chemical potential of (4) can be
replaced by a function of a: B
Mzﬁ(a5a,¢\’7t) = U(Cl) _VK, (44)
where the curvature is 32
k=a. /(14 @x)?)’". (45)

The surface equilibrium condition (41) therefore becomes
U(a) — yk = po. (46)
Note that the curvature can be rewritten as

d 1

da T+ a0

(47)
and hence (46) may be integrated to give

daU(a) +

a
14 14
——— — U =
/al VT+@.7 VT+@7|,,

for arbitrary aj.

The function U(a) is a monotonically decreasing function of a, and hence the strain energy is
maximal at the thinnest section and minimal at the widest section of the plate. However, Ula) is
always positive, and since the term (—y«) must also be positive at the widest section™ it follows
that the constant chemical potential is positive:

— Modi (48)

o > 0. 49)

Another way of looking at it is that there must be a point of inflection, at which x = 0 and hence
1o equals the (necessarily positive) strain energy at the point of inflection.

Let us choose the lower limit of integration in (48) to be the value at the thinnest section, at which
the slope is zero, that is, a y = 0 at a = ay, so that (48) becomes

/ da @) + — (50)

\/ﬁ = uola —ay) +y.
1 X

Similarly, let a> be the maximum semi-thickness, so that 0 < a; < a < a». Then, equating a with
the thickest section specifically, that is, a = a», equation (50) implies that

as _
/ daU(a) = po (a2 — ai). (51)

ap

Hence, the independent parameters which define the problem may be taken as the minimum and

* This implicitly assumes that the section is a c! continuously varying function of x, as opposed to C0 with possible
piecewise smooth slope.
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maximum thicknesses, in terms of which the constant chemical potential is the thickness averaged
value of the strain energy:

1 CHE
Mo = / daU(a). (52)
az —dap ap

Also, equation (50) provides an ordinary differential equation for the surface profile,
1

da 1 2
— =41, (53)
dx [(1 - G@)’ }

where G (a) is

G(a):%/ada[l._/(a)—,uo]z%{/adalj(a)—(a_al)/azdal_](a)}. (54)
a

aj a —aj ap

Note that the function G satisfies
G(a;)) =0, G(ap) =0, and G(a) >0fora; <a<ay. (55)

Hence, for a given value of the surface tension there is a limit on the range of possible a; and a, for
which equilibrium profiles exist. Specifically, (53) implies that the maximum value of G (a) cannot
exceed unity. From its definition in (54), and using the identity (52), we see that the maximum value
of G occurs at the point of inflection of the surface, where k = 0 and a = ag such that

Ulap) = Ho- (56)

It is not possible to evaluate ap and G (ap) in general; however, for the two cases of concern, in (43),
we can determine all the necessary parameters.

Let o be the value of the surface stress at the point of inflection a = ayg, thatis oy = Fy/(2agp) for
tension, and op = 3Myp/ (2a(2)) for flexure. Define the non-dimensional parameter Ag, by analogy
with the non-dimensional parameters for the flat plate in (28),

2
oja
Ag = 0% 57)
vE,
It then follows from the identity (56) that for either type of loading we have
2
Ao = Hodo 58
14
This is a useful parameter with which to represent G (a) and other quantities; thus
Tension : a} = ajas, G(a) = Aow
2aay
3(ar — A _
Flexure : ag: M, G(@a) = 20 aj +a2—2a+(%+%_%> (Cli 01)3 .
1/Cll —l/(,lz 4(1() 1 a; a 1/“] _1/612
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Fig. 2 The two sets of curves show (i) the values of ag/a versus ap /a; for tensile (T) and flexural (F) loading,
from equations (59), and (ii) the maximum permissible values of A allowed under the constraint (60)

The constraint
G(ap) < 1 (60)

can now be evaluated for each type of loading. For the plate in tension, equation (60) implies that

: i
wef[2) @) T
aq aj

Figure 2 shows plots of the maximum possible values of A¢. For a given value of ay/ay, there is a
range of Ao, bounded above by the curves in Fig. 2, for which symmetric equilibrium configurations
exist. Figure 2 also shows ag/a; versus as/a; for the two types of loading. This indicates where
the point of inflection lies relative to a; and a,, and a = ay is also the point on the surface at which
the strain energy equals .

4.3 Examples of plates in equilibrium

The equilibrium shapes can be determined from (53) by quadrature. Only one sign of the right
member needs to be considered, the solution for the other follows by symmetry arguments. Thus,
let x = 0 ata = ay, the ‘neck’ of the plate, then we evaluate x as a function of a:

1
a 1 -2
X = da 72—1 y ap<a<a. (62)
/;1 |:(1 — G(a)) :| :

The integral has integrable singularities at the two limits a; and ap, but they can be rendered
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Fig. 3 The equilibrium shapes for tensile loading. The curves show the upper and lower surfaces of three
periods of the basic shape. (a) ay/a; = 2, Ag = 1-6484; (b) ap/a; = 5, Ag = 0-2927; (¢) ap/a; = 10,
Ao = 0-1353. In each case A is chosen to make G(ag) = 0-1
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Fig. 4 The equilibrium shapes under tensile loading for the same parameters as in Fig. 3, except that Ag is
chosen to make G(ag) = 1, the maximum permissible value, that is, they are 10 times the values in Fig. 3. (a)
ap/ay =2, Ag = 16:4836; (b) ay/a; =5, Ag = 29268; (c) ap/a; = 10, Ag = 1:3526
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Fig. 5 The equilibrium shapes for tension (top) and flexure (lower) for the same values of ap/a; = 5 and
Ag =03

numerically harmless by parametrizing a and x in terms of 6 as follows:

a(@):%(az+a1)+%(az—al)sine, —%ngeg%n’
‘ 1 12 1 1

x(@):/ do c059|: -1 ’ “lr<o<in, (63)
-7 (1 — Ao g(®)cos?0)

where
1 (a2 —a1)?G(a)

0) = —
8 Ao 4(a2 —a)(a —ay)

(64)

a=a(0)

It may be readily verified that the function g(0) is positive and bounded away from zero for 6 €
[—%n, %71]. In particular it is non-zero at 6 = :I:%rr, and hence the integral in (63) can be easily
computed.

Some examples of the equilibrium shapes are displayed in Figs 3 to 5. These are based upon the
equations for a and x in (63), where x is found by expressing it as an ordinary differential equation
for x(9) and then using a Runge—Kutta routine. The shapes in Fig. 3 represent small values of Ao,
relative to the critical value defined by the constraint (60), whereas the shapes in Fig. 4 are at the
critical value. At this value of Ag the slope becomes vertical at the point of inflection ag, and the
vertical slope is apparent in Fig. 4. The maximum slope is smaller for the lower values of A in
Fig. 3. Also, we note that the length in the x-direction becomes larger the smaller the value of Ag.
This scaling follows from the explicit appearance of Ag in (63); the function g(#) is independent of
Ao, and in the limit of small A we therefore have

do

1 0
0) = — :
=I5 /_;n J25®)

—%gegg, for Ao < 1. (65)
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For instance, for the tension loading we find that (65) can be solved in closed form as

4 a a4 (7T 0 . |ao T T
0)=—(——-1)(—= El—4+-,i/—-1), —=<0< -, for A 1,
20 == (G ) s T Wa 2 2 0<
(66)
where E is the incomplete elliptic integral of the second kind (17). In general, the length in the

x-direction scales as Aal/z, and we will use this scaling in the subsequent analysis.

Finally, Fig. 5 compares the equilibrium shapes under tensile and flexural loading. In general,
numerical experiments indicate that the shapes do not differ much, whether the loading is tensile or
flexural.

5. Nonlinear evolution of symmetric configurations
5.1 The governing equation

We now turn to the nonlinear evolution of a plate from an initially perturbed configuration, relative
to a flat state. Only symmetric systems are considered, and we again assume that the elastic strain
energy is given by the simplified uni-dimensional static solutions of (43) for the two distinct types
of loading.

We consider a plate of finite extent: 0 < x < [ where [ is the length of a specimen, or the
length of the unit cell for an infinitely long but periodic system. Arclength on the surface satisfies
ds/dx = (1+ (a, )12 and therefore, the rate of change in the surface height is related to ¢ via
the kinematic relation

dafdr = (14 @0?)c. (67)

Referring to equations (10) and (45), the evolution equation for a becomes

9 9 1 3 /-
Y _p [ (U(@-(Lﬂ, 0<x<[, 0<t,  (68)

=D)y— | —/—=—
ot ox | /1+ (a’x)2 d9x 1+ (a’x)2)3/2

supplemented by initial data for a(x, 7). A linear stability analysis of this equation, witha = ap+h
and & given by (18), yields the growth rates of (40), in agreement with the theory for finite ka in the
thin-plate limit.

The total free energy of the plate system follows from (1) with

1 a 02
Eelastic = f dxf dz ZA’ Esurface = /ds 2y. (69)
0 —a Ep

The stress o11(z, t) is independent of z and equal to Fy/(2a) for tension, but depends upon z for
flexural loading, according to o171 = Moz/I with I = %a3. The factor of 2 in Egyrface arises from
the two surfaces. The work done by the applied end loads is

W =F, [u] for tension, W = M [wx] for flexure, (70)

where [u] = u(l,t) — u(0,1t) is the difference in the horizontal displacement between the two
ends, and [w’ x] is the corresponding jump in the rotation, defined by the derivative of the transverse
deflection w. Using

l 1
)= [axen.  [wa= [ dvu.. an
0 0
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combined with the relations €11 = Fo/(2aEp) for tension and w yx = Moy/(E 1) for flexure, and
expressing ds in (69); in terms of x, we finally arrive at an expression for the free energy:

1 a
8:/ dx(/ dvU(v)+2y,/1+(a,x)2>. (72)

0 —a
The expression (72) is useful because we will evaluate the free energy later and demonstrate that it

does actually decrease with time.
Define the non-dimensional variables X, T and A by

T

x=10X, = —,
Doy

a = apA, (73)

where ap now represents a typical thickness, for example, the initial semi-thickness. The present
theory is essentially a thin-plate approximation, since we are using thin-plate solutions for the strain
energy, and it is appropriate to define a thinness parameter:

€ =ap/l. (74)

The governing equation (68) can be expressed in terms of the non-dimensional variables by using
a x = €A y, etc. Substituting for U (a) from equation (43), we obtain

o4 _ 9 ! 9 (Ao Axx 0<X<I1 0<T
a7 = oy 72 9% \ ne2am 352 )| sash U<,
oT X (1 +€2(A,X)2) X \2¢”A (1 +€2(A,X)2)
(75)
where m is an integer,
2 in tension,
m= (76)
4 in flexure,
and A is a non-dimensional ratio of strain to surface energy:
2
oja
Ag = 020 (77)
VEp

Here, oy is the stress at a = ag according to the thin-plate elasticity theory, and we note that Ag is the
same non-dimensional parameter that persistently occurs (see (28) and (57)). The non-dimensional
chemical potential and free energy follow from (4),, (43) and (72) as

A A
7 62[2 °__ XX } where i = 21 (78)

A" (14 e2(Ax)2?)? v

and

1
_ Ao - &
= dX |1+ €2(Ax)? — ——— |, h = —. 7
& /o < €“(Ax) o D ml) where £ 31 (79)
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5.2 Thin-plate approximation

In order to be consistent with the thin-plate theory we should limit the application of the uniaxial
approximation to plates with small surface slopes, or equivalently to ones for which the horizontal
length scale for variation in thickness far exceeds the thickness itself. Hence, € < 1. At the same
time, the analysis of the previous section indicated that the length in the x-direction scales with
1/4/Ap when Ag is small, see (65) and (66). Hence, to be fully consistent ,/Ag should be of the
same order as €, and their ratio is of order unity. In summary, we assume the scalings

€ K 1, Ao K 1, A= 0(1), (80)
where A is a rescaled O (1) version of Ag:
A= Ao/ (81)
Consequently, (75) can be replaced by its leading-order approximation in €:

9A 92 ( X 9ZA

T = ﬁ‘m) 0<X<L 0<T. ®2

This is the governing evolution equation for thin plates. The associated chemical potential is of
order €2, from equation (78),

=l (83)
n = 2 AM XX |-
The corresponding non-dimensional free energy follows from (79), after adding a constant,
. e ! 9A\? »
E=— dX|\ =) —————— |, (84)
2 Jo 0X (m —1)Am—1
and the rate of change of the free energy is therefore, using (9) and (83),
dé 2 ! [ r A\
—:—E—/dX———— . (85)
dT 2 Jo ax\24m 9x2

5.3 Numerical examples and analysis

It does not appear to be feasible to obtain closed-form solutions to the canonical evolution equation
(82), so we resort to numerical methods. We consider the domain 0 < X < 1, and assume periodic
boundary conditions, that is A(X, T') and its derivatives with respect to X are the same at X = 0
and X = 1. Equation (82) is solved numerically on a spatial grid (X;, 7,,), with X; = jAX,
j=12,3,..., N where Xy = 1, and T,, = nAT, using a semi-implicit scheme for each time
step. Thus, the values A;% (~ A(X, T;)) are marched forward in time according to the scheme, for
n—-n+1,

AT
n+1 n+1 n+1 n+1 n+1 n+1
A’ +2( )4(AJ.+2—4A/.+1+6AJ. — 44T+ ATT)
AT AT
n n n n n n n n n

(86)
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where f /” = A/ [2(A’/1.)’”]. The differencing for the linear fourth-order operator is semi-implicit,
removing the constraint of a very small time step. The size of the time step is selected to comply
with the Lax stability criterion for the linear second-order differencing scheme.

An analysis of the linearized version of equation (82) for A near unity,

AT +mrlA xx +Axxxx =0, 8&7)
with A(X, T) = 1 + A exp{vT + i K X} implies that
v=(mr— K)K?. (88)

The quantity v is clearly the non-dimensional analog of 7 as given by equation (40). The most
unstable wavenumber is K = (m1/2)!/? with linear exponential growth v = m?A2 /4.

For example, Fig. 6 illustrates the time evolution of a unit period of a plate for the initial profile
A(x,0) = 1 + 8 sin(2x), with A = 87%/m and § = —0-3. The progression to zero thickness
speeds up steadily, and consequently, in order to show the ultimate behaviour the curves in Fig. 6
do not represent equal time steps. The actual rate of thinning is clear from Fig. 7 which shows the
minimum thickness as a function of time step. Note that the time steps were different in the two
simulations, because it takes far longer for the tensile notch to develop. It is clear that the thinning
occurs first relatively slowly, until the notch is well defined. Then, as T — T, where T is the time
at which A vanishes, the thinning progresses rapidly, and is highly localized near the point of final
failure at X = X,.

We also checked that the total free energy, € of (84), is a monotonically decreasing function.
In fact, its decrease is similar to that for the thickness: first slow, then becoming more rapid as
T — T, Also, the numerical results indicate that £ approaches a finite value for
tension/compression, but that it tends to negative infinity for flexure.

We can gain some insight into the behaviour indicated in Figs 6 and 7 by a scaling argument valid
for the inner region where the rapid thinning occurs as T — T,. Thus, let X — X, = (Tyx — T)%y,
A(X,T) = (T, — T)PLY F(y). Then requiring that all three terms in (84) contribute implies that
o =1/4and B = 1/[(2(m + 1)]. By the further choice of y = 1/(m + 1) we obtain an equation
for F' which is independent of A. In summary, the scaling yields

AX, Ty AV () P D p(x - X1 —=T)Y), X —> X., T—T.,
(89)
where the function F(y) satisfies an ordinary differential equation,

1
F////_l L —i—XF/—L:O, —00 < y < oo. (90)
2\ Fm 4 2m+ 1)

The solutions of (90) should be symmetric in y, and therefore only 0 < y < 00 needs to be
considered. This requires four conditions, two of which are, from symmetry, F'(0) = 0 and
F"’(0) = 0. The other two are obtained by requiring that for large (X — X) the solution become
independent of 7. This is a consequence of the observation that far from the thinning region the
thickness is essentially constant. Assuming a power law scaling: F(y) ~ y?,y — oo, implies that
p mustbe p =2/(m + 1). Therefore the remaining pair of conditions are that

2
lim y"tVFG)y=p,  lim y" VD EGy) = ———p 1)
y—>00 y—>00 m-+ 1
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(b)

0 02 04 06 0-8 1

Fig. 6 The evolution of a plate under (a) tension/compression and (b) flexure. The initial and subsequent
shapes are depicted
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Fig. 7 The evolution of the minimum thickness for the simulations of Figure 6: (a) tension/compression and
(b) flexure
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Fig. 8 A comparison of the numerically computed minimum thickness for tension/compression (solid curve)
with the inner scaling according to equation (92)

for some p > 0.
Regardless of the precise nature of the F' functions, the scaling (89) indicates that the minimum
thickness of the notch behaves like

=

(T« —T) in tension
minimum thickness ~ asT — T,. 92)

(T* — T)']_O in flexure

Figure 8 shows the minimum thickness for tension/compression loading versus (T* — T), where T,
is estimated by extrapolation from curves like those in Fig. 7. The agreement in Fig. 8 indicates
that the inner scaling does indeed take over at late times.

The scaling argument implies that the change in the total free energy is caused by the thinning
region alone, and it can therefore be estimated from (89). Thus, equation (84) gives

E = 1 2,2/tm+1) (T* _ T)(3—m>/4(m+1) I,, T — T, 93)

S]]

where the constant I, is

% 1
In = /m dy [(F')2 - W} 9

while the rate of change of the free energy is, using (85),

dé 2 -
== _%Az/(mﬂ) (T* _ T) (Sm+1)/4(m~+1) J,. T —T,, (95)
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oo 1 /72
- [l 5]

Comparing equations (94) and (96) implies the identity

where

3—m

S dmtn ™ ©7)

I
and hence I, > 0, I4 < 0 because J,, > 0. It is interesting to note that the energy for the plate
in tensile loading decays to zero, while the energy of the flexurally loaded plate tends to negative
infinity, that is,

1
. €2 (T* — T)ﬁ in tension
E~ asT — T,. (98)
_1
—€*(T, —T) ™ in flexure

Of course, the energy cannot decrease indefinitely for the plate in flexure. The safety net is provided
by the constraint that the above estimates are for the leading-order asymptotic theory, for which the
energy of the system is 0(62). Hence, the estimates of (95), for example, are valid as long as &
remains of order €2, but they fail once € becomes O (¢) or larger.

6. Discussion

The equilibrium and evolution equations for thin plates were derived from the general theory for
elastic solids under the simplifying approximation of uniaxial stress. This essentially eliminated
stress from the problem and rephrased the mechanics entirely in terms of the thickness as the
fundamental parameter. In retrospect, one can recast the theory for thin elastic plates in a relatively
simple form. Thus, the free energy follows from (72) as

l
£ =/ dx V(a, a,x), (99)
0
where V follows from (43) and (72) as
F2
_4E(1),a +2y /1 + (ay)? in tension,
V(a, a,x) = (100)

2

My +2y /14 (ay)? infl
4Epa3 )/ a,x 1n nexure.

The two conditions that mass be conserved and that the free energy be non-increasing, that is,

! d&
dx a = constant and — <0, (101)
0 dt

are then sufficient to determine the form of the growth law. Thus, mass is maintained if the normal
velocity is the surface derivative of a function:

c = —0q/0s. (102)
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Fig. 9 The thin-plate stability criterion can be understood by means of this simplistic perturbation combined
with the uniaxial approximation

The free energy is then a monotonically decreasing quantity if the function ¢ satisfies

a <8V a aVv

o— | — — — > Dy > 0. (103)
as

=-D
i da  0x day

Using (67), this leads directly to the evolution equation in the form

da 0 1 a (dV 9 AV
=Doa— ——— |, 0<x<I, 0<y, (104)
X

at /1+(a’x)28_x da  dx aa x

which is identical to (68).

As a final point we note that the uniaxial theory also permits a relatively simple stability argument.
Consider the perturbed plate in Fig. 9. As the thickness changes the stress maintains a constant
resultant force

ox) = ———. (105)
a
For simplicity we take §(x) as piecewise linear with average zero of one period of length A:

sy [1_ 2] 2 “ A
xX)=|=——||x| — =||segn(x —— <x< =
27 a g[8 2 2

The change in free energy per unit period is thus

a2 o2 h?
AE=-"0 4y, 106
2a 28, T 37 (106)

This yields a critical wavenumber at which AE vanishes, A = (4/09)(6ay E p)l/ 2. The more
detailed analysis for a sinusoidal perturbation yields, in the appropriate thin-plate limit, from (40), a
wavelength Apax = 27/ kmax equal to 27 /0p) 2ay E p)l/ 2, which differs by about 10 per cent from
the simple estimate based upon Fig. 9.

7. Conclusions

Starting from the linear stability analysis of a plate of finite thickness relative to the wavelength
of the perturbation, we have shown that the limit of a thin plate exhibits quite different behaviour
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than a thick plate, or a half-space. The fundamental difference is that the whole structure—the
thin plate —supports the stress and the variations in the stress. This observation permits a simple
uniaxial approximation which allows us to eliminate the stress in favour of the plate thickness as
the fundamental variable. It simplifies considerably the nonlinear equilibrium and non-equilibrium
mechanics of thin plates.

We have derived for the first time equilibrium shapes of thin plates for either tensile/compression
or flexural loading. These are characterized by surfaces with constant chemical potential. The
nonlinear evolution of thin plates under stress-driven surface diffusion has also been analysed for
the first time. Two distinct regimes were found, similar to the observations of Yang and Srolovitz
(5) for the plane-strain half-space problem. First, there is a steady but slow growth of an initial
surface disturbance. The thinning subsequently speeds up, reaching zero thickness in finite time.
The behaviour near the ultimate breakage of the plate can be described by an inner scaling which
predicts a universal power law for the thickness as a function of time before ‘failure’. The numerical
and analytical results also indicate that flexural loading leads to a more rapid and a more catastrophic
failure.

Thin-plate configurations are of fundamental significance in modern technology, particularly in
small structural components. The results presented for equilibrium configurations indicate that
certain shapes are preferable for avoiding or delaying diffusion-driven instability, and could have
implications in the design of nano-scale devices. The quasi-static evolution to failure can also
be modelled by the simple uniaxial theory presented here. This provides some understanding of
stress-driven instability leading to fracturing, and it may serve as a starting point for analysing more
complex configurations.
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