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Summary
The particles in an elastic plate are permitted to move by a surface diffusion process subject
to the constraint that the total free energy does not increase. The static equilibrium, the quasi-
static linear stability, and the quasi-static nonlinear evolution of the surface are examined under
different loading conditions: tensile/compressive or #exural. The equilibrium con"gurations
are such that the surface value of the chemical potential is constant, and their shapes depend
upon the relative magnitude of elastic to surface energies. A linear stability analysis indicates
that antisymmetric perturbations to the surface pro"le of a #at plate are most unstable for tensile
loading and symmetric perturbations display the greatest instability under #exure. A new model
for nonlinear non-equilibrium mechanics of thin plates is described and analysed. The main
feature is that the elastic energy at the surface is approximated by that of an equivalent thin plate
in a state of uniaxial stress, even as the pro"le changes. Nonlinear evolution of a perturbed #at
plate is illustrated by numerical solution. A crevice gradually develops in the plate, eventually
leading to rapid rupture and breakage. Scaling analysis near the ultimate rupture indicates a
simple spatial and temporal dependence.

1. Introduction

The competition between the stabilizing effects of surface tension (energy) and the destabilizing
effect of stress driven diffusion of surface particles has been proposed as a mechanism for the
early stages of stress corrosion cracking and surface roughening (1). The diffusion causes material
rearrangement in which atoms search for surface sites of lower chemical potential, away from stress
concentrations. This effect has been shown to be unstable to linear perturbation (2, 3, 4), indicating
that #at strained surfaces are inherently unstable, and the instability is independent of the sign of the
stress: compressive or tensile. The consequent nonlinear evolution of stressed elastic half-spaces
has been examined by several authors (5, 6, 7). For example, Yang and Srolovitz (5) showed that
the surface instability creates a groove which steadily sharpens as it deepens. The rate of growth
of the groove increases until it appears to diverge. Based upon an extensive series of numerical
studies, Yang and Srolovitz were able to show that the critical groove depth at which the growth
rate diverges is in excellent agreement with linear fracture mechanics. In fact, they reproduced the
Grif"th fracture criterion on the basis of surface diffusion alone, with no adjustable parameters.
Experimental evidence for the stress-driven surface instability has been forthcoming, and it has

been used to explain effects in diverse material con"gurations such as helium crystals (8), polymer

� 〈norris@norris.rutgers.edu〉
Q. Jl Mech. appl. Math. (1999) 52 (2), 283�309 c© Oxford University Press 1999



284 ANDREW N. NORRIS

gels and crystals (9), and solid�solid interfaces. The instability can be caused by ion in"ltration
into the solid leading to large mis"t strains, and also under conditions of anodic dissolution (10).
Thus, Tappin et al. (9) observed periodic surface structure on Zr3Al crystals undergoing anodic
dissolution in electropolishing. They ascribed the formation of the surface morphology to absorbed
H2 and consequent mis"t strains near the surface, which are relaxed by surface diffusion. The fact
that the phenomenon is observed in a variety of material systems indicates that it can be an important
mechanism for the early growth of surface structure. However, it is doubtful that it can be used to
explain the late stages of, for instance, fatigue or corrosion-assisted cracking, or other phenomena
for which dislocations are the dominant mechanism (11, 12).
In this paper we consider thin elastic plates which can change under the stress-driven diffusion

of surface particles. We "rst consider the elastic stability and compare the results obtained with
those for a half-space, in the limit of in"nite thickness. We demonstrate that the condition for thin-
plate stability is quite different from that for thick plates, and it can be understood in terms of a
uniaxial stress approximation. In the second part of the paper the nonlinear equilibrium and non-
equilibrium of thin plates is examined using the uniaxial approximation. This simpli"es the problem
considerably and permits semi-analytic solutions. In particular, we examine the late behaviour
of a notch as it traverses the entire plate, similar to the half-space groove observed by Yang and
Srolovitz (5) but susceptible to analytic description. Both tensile/compressive and #exural loadings
are considered. We begin with the general formulation of surface diffusion under applied stress.

2. The surface growth equation
Consider an elastic body V with traction-free surface S, under some state of applied loading. We
will later examine in detail the example of a plate of in"nite extent in two directions, in which case
the surface comprises the top and bottom plate faces. The general phenomenon of surface instability
is governed by the reduction in the total free energy,

E = E −W, (1)

comprising the work of applied loads, W , and the stored energy E made up of bulk elastic and
surface energies:

E ≡ Eelastic + Esurface, Eelastic =
∫
V
dV U, Esurface =

∫
S
dS γ, (2)

where U and γ are the volumetric and surface energy densities, respectively. If the surface is
changing, with normal velocity c (positive is out of the material) then the rates of change of these
energies are

dEelastic
dt

=
∫
S
dS cU,

dEsurface
dt

= −
∫
S
dS γ cκ. (3)

Here, κ is the sum of the principal surface curvatures.∗ Thus, the total free energy satis"es
dE
dt
=
∫
S
dS cµ, where µ ≡ U − γ κ, (4)

and µ is known as the surface chemical potential. It is identically the energy required to add one
volumetric unit� of material to the surface: U represents the additional energy required to coherently

∗ Curvature is such that, for example, a solid sphere of radius a has κ = −2/a.
� The chemical potential is usually de"ned as the energy per atom or the energy per mole, in which case µ is multiplied

by the atomic or molar volume, as the case may be.
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match the new solid to the strained surface, and (−γ κ) is the energy associated with creating new
surface area. The precise form of the chemical potential is obtained by performing a material
variation of the surface, and it is possible to represent µ in different ways, for example, by means
of the Eshelby tensors for the bulk and for the surface (13).
The change in the surface shape is assumed to be caused solely by the relative movement of

particles, with total mass remaining the same. Assuming a constant density ρ0, this implies that

d

dt

∫
V
dV ρ0 =

∫
S
dS ρ0c = 0. (5)

(The assumption of constant density is consistent with the use of Lagrangian (or material)
coordinates and with conservation of volume in these coordinates.) The mass conservation identity
(5) is automatically satis"ed if c is of the form (14)

c = −divsq, (6)

where divs denotes the surface divergence operator, and q is a surface #ux vector. Substitution into
(4), and integration by parts (subject to appropriate boundary conditions) implies that

dE
dt
=
∫
S
dS q · ∇sµ. (7)

A physically realistic process will reduce the free energy, and this is guaranteed by (7) if the surface
#ux is proportional to the gradient of the chemical potential:

q = −D0∇sµ, D0 > 0, (8)

which implies that
dE
dt
= −D0

∫
S
dS
(∇sµ)2 6 0. (9)

Generally, the energy will always decrease under rearrangement for any D0 in the form of a
positive de"nite second-rank surface tensor; however, here we restrict attention to isotropic surface
diffusion.∗ Equations (6) and (8) give the surface velocity as

c = D0∇2s µ . (10)

This is the central equation governing the surface growth. It is nonlinear because of the presence
of the surface curvature in µ, and non-local because it involves determining the local variation in
the strain energy, U . The appearance of U requires solving a separate static elastic problem for the
stress and strain, σi j and εi j , which depends upon the global nature of the structure. For the sake of
simplicity we take U as that of a linearly elastic material,

U = 1
2σi jεi j , (11)

where σi j and εi j are linearly related to one another. The elasticity problem is then linear but it
involves a changing domain, and therein lies the greatest complication.

∗ D0 may be identi"ed physically as (15) D0 = DsnsÄ/(kT ), where Ds is a surface diffusivity, ns the surface number
density of atoms capable of diffusing,Ä is the volume of a single atom, and kT is the temperature normalized by Boltzmann's
constant.
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2.1 Linear stability analysis

A "rst attempt at understanding (10) is to linearize about an initial state, which we take as a #at
surface for simplicity. Let h(xs, t) be the time dependent perturbation to the surface, representing
the increment in the thickness normal to the original #at surface, where xs lies on the #at surface.
Thus, within the linear approximation, κ = ∇2⊥h, and c = ∂h/∂t , where ∇⊥ represents the gradient
operator on the "xed, #at surface. The strain energy term U is linearized about its initial state by
assuming that the total stress and strain are the sum of initial values σ

(0)
i j and ε

(0)
i j , plus those arising

from the surface perturbation. Thus σi j = σ
(0)
i j + σ

(1)
i j and εi j = ε

(0)
i j + ε

(1)
i j , where the initial stress

σ
(0)
i j is in equilibrium with zero traction on the #at surface, but it is not necessarily homogeneous
within the body. We include this possibility to allow for the important case of a beam in #exure,
which we analyse later.
The perturbed surface stress and strains can be evaluated using the condition that the modi"ed

surface is traction free. Linearizing the zero traction condition σ
(0)
i j n j = 0 about the unperturbed

#at con"guration implies the following traction condition:

σ
(0)
i j n

(0)
j + σ

(1)
i j n

(0)
j − σ

(0)
iα h,α +

[
n(0).∇σ

(0)
i j

]
n(0)
j h = 0 on the unperturbed surface. (12)

Here, h,α , α = 1, 2, denotes the components of the surface gradient of h. The "rst term in (12)
vanishes because the initial stress is traction free on the surface, that is, σ (0)

i j n
(0)
j = 0. The "nal term

can be simpli"ed using the equilibrium equations, σ (0)
i j, j = 0, to give

[
n(0).∇σ

(0)
i j

]
n(0)
j = −σ

(0)
iα,α so

that the perturbed stress satis"es

σ
(1)
i j n

(0)
j =

(
σ

(0)
iα h

)
,α

on the unperturbed surface. (13)

The perturbed strain ε
(1)
i j is therefore a linear functional of h, obtained by solving the boundary-value

problem de"ned by (13), supplemented by the equilibrium equations σ
(1)
i j, j = 0 within the body. In

general, this solution represents the surface values of ε
(1)
i j as a non-local surface operator acting on

h, the precise form of which depends on the geometry of the body and its surface. It is interesting
to note that if the initial stress is homogeneous (constant) on the surface then the non-zero stresses
indicated in equation (13) are tangential or shear stresses only.
The perturbed surface energy is

δU = δU1 + δU2, (14)

where U1 is the linear change associated with σ
(1)
i j and ε

(1)
i j , which follows from (11) as

δU1 = σ
(0)
i j ε

(1)
i j = ε

(0)
i j σ

(1)
i j . (15)

The second term δU2 arises from the possible variability of the initial stress and strain near the
surface:

δU2 = h n(0).∇U = h ε
(0)
i j n

(0).∇σ
(0)
i j . (16)

The linearized growth equation is then

∂h/∂t = D0 ∇2⊥
(
σ

(0)
i j ε

(1)
i j + h ε

(0)
i j n

(0).∇σ
(0)
i j − γ ∇2⊥h

)
. (17)

Before analysing the speci"c implications of this equation, it is evident from (17) that the linear
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stability of a surface depends on three factors: the surface energy γ , the surface stress σ
(0)
i j , and the

normal derivative of the initial stress. The "rst two are well known and have been considered many
times before in the literature, see for example, (14). The curvature term is local and always acts as
a stabilizing in#uence, whereas the stress term is non-local but leads to instability. It is also clear
that the effect of the stress term σ

(0)
i j ε

(1)
i j is independent of the sign of the initial stress σ

(0)
i j since

the perturbed strain is linearly proportional to this via the boundary condition (13). The appearance
of the normal derivative of the initial stress in the linear growth equation (17) is signi"cant, but has
not been previously considered in the literature. We note that it is a local effect which can be either
destabilizing or stabilizing, depending as n(0).∇U (0) is positive or negative, respectively, where
U (0) is the initial strain energy.
It remains to represent the perturbed surface strain ε

(1)
i j in terms of the perturbation h, which

depends upon the global static elasticity problem. The case of a plate in a state of plane strain is
considered in detail next.

3. Stability of a plate in plane strain

3.1 Unilateral perturbations

The plate has initial thickness 2a with centre plane x3 = 0 and extends to in"nity in the (x1, x2)-
plane. We consider plane-strain deformation in the (x1, x3)-plane, both for the initial state of stress
and for the perturbation. We "rst assume that the perturbation in thickness is con"ned to the side
x3 = a, and is such that the deformed plate has thickness 2a + h, where h is sinusoidal in x1 of
wavenumber k:

h = h0(t) sin kx1. (18)

The driving force of the perturbation on x3 = a is the uniaxial in-surface stress:

σ
(0)
i j (x1, a) = σ0 δi1δ j1, (19)

where σ0 is the value of the in-surface stress. This is assumed constant, independent of x1 and t .
However, the initial stress is not necessarily independent of x3 as one goes into the material. We
consider the possibility that it may vary as∗

∂σ
(0)
i j

∂x3
(x1, x3)

∣∣∣∣
x3=a
= σ0

b
δi1δ j1, (20)

where b is a constant, positive or negative although zero is precluded as being unphysical.
Note that only the surface value of ε

(1)
11 is required in the growth equation (17). The boundary-

value problem for ε(1)
i j is

σ
(1)
i3 (x1, a, t) = σ0 kh0(t) cos kx1, (21)

σ
(1)
i3 (x1,−a, t) = 0, (22)

supplemented by the equilibrium equations. The solution to this plane strain boundary-value

∗ If the initial stress has only the single component σ (0)
11 (x1, x3) which is independent of x1, then σ11 = σ0 (1+ x3/b) is

consistent with the compatibility equation ∇2σ11 = 0.
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problem can be found using the Airy stress function method (16), and we omit the details. The
main result is

ε
(1)
11 (x1,±a, t) = − σ0

Ep
kh(x1, t)

 1

tanh ka + ka

cosh2 ka

± 1

coth ka − ka

sinh2 ka

 , (23)

where Ep is the plane-strain modulus, Ep = E/(1 − ν2), with E and ν the Young's modulus and
Poisson's ratio, respectively. The variation in the strain energy is thus

δU = 2U h(x1, t)

[
1

b
− k f (ka)

]
, (24)

where U = σ 20 /(2Ep) and

f (ξ) = 1

tanh ξ + ξ

cosh2 ξ

+ 1

coth ξ − ξ

sinh2 ξ

. (25)

The growth equation (17) now reduces to a simple ordinary differential equation for h0(t):

dh0
dt
= D0

[
σ 20

Ep

(
k3 f (ka)− k2

b

)− γ k4
]
h0(t) . (26)

The solution is of the form h0(t) = h0(0) exp(ηt), where the growth rate of the perturbation
depends upon the sign of the quantity

η = D0γ

a
k3
[
3
(
f (ka)− 1

kb

)− ka], (27)

and 3 is a non-dimensional ratio of strain energy to surface tension,

3 = σ 20 a

γ Ep
. (28)

The perturbation (18) is stable (unstable) if η < 0 (> 0), where η = η(3, a/b, ka) is given by
(27). Some understanding of the regions of stability can be obtained from the asymptotic properties
of f (ξ):

f (ξ) =
 2/ξ + 8

15ξ + O(ξ3), ξ ¿ 1,

2+ O
(
ξe−2ξ

)
, ξ À 1.

(29)

If a/b < 2 it follows that there is a range of k beginning at 0 for which the perturbation is unstable
for any value of 3. Thus, a/b = 2 presents a critical value demarcating con"gurations∗ which
always exhibit instability (a/b < 2) from those which display instability only if 3 exceeds a

∗ A referee suggests the helpful terminology `large #exure' for a/b > 2, and `small #exure' for a/b < 2.
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Table 1 The asymptotic values of k0a, kmaxa and ηmax for large and small 3, assuming that
a/b < 2

3¿ 1 3¿ 1 3À 1
a/b = 0 a/b = 1

k0a
√
23

√
3 23

kmaxa
√

3

√
1
23

3
23

a4

D0γ
ηmax 32 1

43
2 27

163
4

positive value, 3c, which depends upon a/b (> 2). This result can be understood in terms of
energy accountancy: if the energy near the stress-free surface increases rapidly enough in the normal
direction (a/b > 2), then it is more dif"cult to lower the total free energy of the system by means of
perturbing the surface, regardless of the surface tension γ . Conversely, rearrangement of particles
near the surface is more likely if the strain energy decreases in the normal direction near the surface
(a/b < 2).
In summary, the perturbation (18) is stable for all wavenumbers if a/b > 2 and 3 6 3c. For

a/b = 2 the critical value is 3c ≈ 15/8, from equation (29), and as a/b → ∞ the critical value
tends to 3c ≈ a/b À 1. For a/b > 2 and 3 > 3c there is a range of ka for which η > 0.
Conversely, if a/b < 2 then for any value of 3 there is a unique positive value of ka at which η

achieves a positive maximum.
Let us now examine in detail the case when destabilization is possible for any 3, that is, −∞ <

a/b < 2. First, there is a positive value of ka at which η is zero, say k0a = ξ0, where ξ0 is the root
of 3( f (ξ) − a/(bξ)) = ξ . The surface perturbation is stable (η < 0) if k exceeds this value and
unstable (η > 0) otherwise. The maximal instability occurs when the growth rate is largest, which
occurs at the wavenumber kmaxa = ξmax, 0 < ξmax < ξ0, at which 3

(
ξ3 f (ξ) − (a/b)ξ2

) − ξ4

achieves a maximum. There are two distinct types of behaviour, depending as 3 is small or large,
which can be understood from the asymptotic form of f (ξ) in (29). For small 3 we consider the
two cases of b = ∞ (no normal variation in the surface stress) and b = a (#exure) to obtain the
results in Table 1.
Figure 1 shows the ratio kmax/k0 versus 3 for a/b = 0. The ratio as plotted takes the asymptotic

values of 1/
√
2 for 3 < 1

2 and
3
4 for 3 > 2.5, respectively. Hence, Fig. 1 indicates that the

asymptotic approximations of Table 1 are adequate for 3 < 1
2 or 3 > 2.5.
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Fig. 1 The ratio kmax/k0 versus 3 for a/b = 0, indicating that the asymptotic estimates of Table 1 are
reasonable outside the range 12 < 3 < 2.5

3.2 Half-space and thin-plate limits

The present results contain the limit of an elastic half-space as the special case of "nite kb for
3→∞:

η = D0γ

[
σ 20 k

3

γ Ep

(
2− 1

kb

)
− k4

]
for a half-space. (30)

The further limit 1/kb → 0 recovers the well-known results for the maximally unstable
wavenumber of a uniformly stressed half-space (3), which are given by the right-hand column in
Table 1, or equivalently,

kmax =
3σ 20
2γ Ep

, ηmax =
27D0σ 80
16γ 3E4p

uniformly stressed half-space. (31)

For "nite kb, the in#uence of b is to stabilize if b > 0 and destabilize for b < 0. For small
but negative values of b such that k|b| ¿ 1 the half-space acts like a thin plate of semi-thickness
(−2b); see equation (33) below. That is, the non-uniformly stressed half-space with strain energy
decreasing in the normal direction (b < 0) has the same stability properties as a plate with a = −2b
in a state of uniform uniaxial stress. Conversely, η < 0 for all k if

1

b
>

σ 20

γ Ep
⇔ half-space unconditionally stable. (32)

The values of k0, kmax and ηmax for the plate of semi-thickness a are, of course, independent of
a in the half-space limit; see (31). However, Table 1 indicates that these parameters are strongly
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dependent upon a and b for thin plates, 3¿ 1. The thin-plate limit follows from (27) and (29)1, as

η = D0γ

[
σ 20 k

3

γ Ep

( 2
ka
− 1

kb

)− k4] for a thin plate. (33)

We "nd for instance that

kmax = σ0√
aγ Ep

×
 1,1/√2, ηmax =

D0σ 40
a2γ E2p

×

1, a/b = 0,
1
4 , a/b = 1,

for thin plates. (34)

These are to be compared with the well-known results for the homogeneously stressed half-space,
given in (31). Comparison of the thin-plate (TP) parameters for a/b = 0 against those for the
half-space (HS), yields

k(TP)
max

k(HS)
max

= 2

33
1
2

,
η

(TP)
max

η
(HS)
max

= 16

2732
. (35)

We see that the relative magnitudes depend upon the non-dimensional parameter 3, which is a
measure of the elastic strain energy per unit area of the plate surface (≈ σ 20 a/Ep) versus the surface
energy (tension) per unit area (γ ).

3.3 Symmetric and antisymmetric perturbations

The previous analysis assumed that one side of the plate is perturbed while the other remains
unchanged. However, the existence of the two sides x3 = ±a means that other types of perturbation
involving simultaneous deformation of the two faces may be more or less stable than the unilateral
perturbation. We consider the two special cases in which the plate deforms in such a manner that
the additional material on the two sides is either the same, or the opposite. Let h(x1, t), given by
(18), denote the additional material on x3 = +a, then the symmetric (antisymmetric) perturbation
is de"ned by the addition of h (−h) on the opposite side, x3 = −a.
At the same time, we consider two physically signi"cant states of initial stress: tensile and #exural

loading, de"ned as follows.

Tensile loading: σ
(0)
i j (x1,±a) = σ0 δi1δ j1,

∂σ
(0)
i j

∂x3
(x1, x3)

∣∣∣∣∣
x3=±a

= 0.

Flexural loading: σ
(0)
i j (x1,±a) = ±σ0 δi1δ j1,

∂σ
(0)
i j

∂x3
(x1, x3)

∣∣∣∣∣
x3=±a

= ±σ0

a
δi1δ j1.

(36)

The `tensile' stress occurs under a state of uniaxial loading, and it may be either compressive or
tensile, although we call it tensile for simplicity. The results reported here are independent of
the sign of the initial stress: they depend only on the magnitude of the strain energy and its local
variation. The #exural stress state is characteristic of a plate in bending with an internal stress which
is approximately uniaxial, zero at the centre and varying linearly with x3 such that

σ0 = M0a

I
, where I = 2

3a
3 . (37)
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Here, M0 is the effective moment in the x2-direction acting on the cross-section −a 6 x3 6 a.
The stability of the symmetric and antisymmetric perturbations under the tensile and #exural

initial loadings can be analysed by linearly superposing the previous results for the unilateral
perturbation. The details of the procedure are not of interest except to note that the contribution
to the growth equation from the stress variability (1/b 6= 0) is evaluated only on the side at which
the growth is being analysed. However, for both parities, symmetric and antisymmetric, the two
faces grow so as to maintain parity, within the linear approximation of course. Thus, we "nd that
the growth rates are

η = D0γ

a4
ξ3 ×



[
32 fS(ξ)− ξ

]
, tensile load , symmetric perturbation,[

32 f A(ξ)− ξ
]
, tensile, antisymmetric,[

3
(
2 f A(ξ)− 1/ξ)− ξ

]
, #exural, symmetric,[

3
(
2 fS(ξ)− 1/ξ)− ξ

]
, #exural, antisymmetric,

(38)

where ξ = ka and fS(ξ) and f A(ξ) partition f (ξ) = fS(ξ)+ f A(ξ) as

fS(ξ) = 1

tanh ξ + ξ

cosh2 ξ

, f A(ξ) = 1

coth ξ − ξ

sinh2 ξ

. (39)

Using the asymptotic properties of fS and f A (that is, fS ≈ 1/2ξ , and f A ≈ 3/(2ξ) as
ξ → 0; fS, f A → 1 as ξ → ∞, and fS < f A for 0 < ξ < ∞) it is clear that some of
these con"gurations are more unstable than others for "xed values of 3. Thus, for tensile loading,
the antisymmetric perturbation is more unstable than the symmetric perturbation. Conversely,
the symmetric perturbation is the more unstable of the two for #exural loading. In fact, since
2 fS(ξ) − 1/ξ = 2

3ξ + O(ξ2) for ξ → 0, it follows that the antisymmetric perturbation of the
#exurally loaded plate is linearly stable for all ka unless 3 exceeds approximately 3

2 .
Finally, we note that in the thin-plate limit ξ ¿ 1, the growth rates for tensile and #exural

symmetric perturbations follow from (38) as

η =


D0

[
F20 k

2

4Epa3
− γ k4

]
, tensile, symmetric, thin plate,

D0

[
9M2

0k
2

2Epa5
− γ k4

]
, #exural, symmetric, thin plate.

(40)

The remainder of the paper discusses thin plates with large variations in thickness but which
maintain symmetric pro"les. The two predictions of (40) will serve as a check on the nonlinear
theory.

4. Symmetric equilibrium con"gurations of thin plates

4.1 The uniaxial stress approximation

We now consider plates which are far from #at, and examine the possible equilibrium shapes of
such plates under the combined in#uence of surface tension and elastic energy. When the former
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effect is the only one present then the most favorable con"guration of a material is well known to
be spherical, the shape that minimizes surface area for a given volume. If we restrict the class of
shapes to ones which are symmetric about the plane x3 = 0 and that extend to in"nity in both x1
and x2 then the #at plate is another equilibrium solution. We consider the analogous con"gurations
of this type under the simultaneous in#uence of elastic energy and surface tension. That is, we
look for surfaces symmetric about x3 = 0 that extend to in"nity in the other directions, and for
simplicity, are also independent of the x2-coordinate. The search is therefore for uni-dimensional
surfaces which are periodic in the x1-direction (The unit period is introduced only to reduce the
problem to one on a "nite domain, and the length of a period has nothing in common with the
length of the periodic perturbations in section 3.) One reason why we restrict attention to plates that
maintain their symmetry about the centre line is because these can still be treated using a relatively
simple uniaxial stress theory: either membrane (tensile/compressive) or #exural, which will be
explained below. Antisymmetric deformation leads to nonlinear mixing of these two simple modes
of deformation, and will not be treated further here.
The equilibrium con"gurations that we will determine below do not have any particular stability

properties. In fact, they will generally be linearly unstable to time dependent perturbation. However,
if the diffusion process is relatively slow they can maintain their shape for a long time.
The equilibrium conditions are twofold. First, the absence of surface motion implies that the

chemical potential µ must be constant, so that there is no motivation for surface diffusion (see (6)):

µ = µ0 on the surface. (41)

The second equilibrium condition is the usual elastic one: that the stress be divergence free within
the body and give zero traction on the surface. In general, this requires solving a two-dimensional
elasticity boundary-value problem, and then evaluating the strain energy U on the surface. For the
remainder of the paper we take the simplifying step of replacing the strain energy by the equivalent
strain energy as predicted by simple beam theory of elasticity. Two different types of loading are
considered: tensile and #exural. Both of these lead to approximately uniaxial stress distributions
for thin plates, so the present theory can be considered a thin-plate approximation.
The surface is de"ned by the rectangular material coordinates x1 ≡ x and x3 = ±a(x, t). The

strain energy at the surface is a function of the plate semi-thickness a(x, t) only, that is,

U = Ū (a) at the surface. (42)

The function Ū (a) can be found by noting that the surface strain energy is U = σ 211(a, t)/(2Ep),
where σ11(a, t) is the value of the uniaxial stress at the surface. This is easily estimated for either
tensile or #exural initial loading using `strength of materials' concepts. Let F0 be the effective
force acting across any section in the x-direction, then σ11 = F0/2a, and σ11 is actually constant
across the section. Let M0 be the effective bending moment in #exural loading, then σ11 varies
linearly across the symmetric section, and according to (37), σ11(a, t) = 3M0/(2a2). Elimination
of σ 211(a, t) leads to the following expressions:

Ū (a) =
 F20 /(8Epa2) in tension,

9M2
0/(8Epa4) in #exure.

(43)

Equation (43) is a direct consequence of the uniaxial approximation for the stress and it permits
us to eliminate the stress as a variable. We have thus circumvented the problem of solving the static
elasticity problem on a variable domain, and it remains to enforce (41).
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4.2 Equilibrium shapes

The assumed symmetry about x3 = 0 means that only the upper surface at x3 = a needs to be
considered. Based upon the assumptions for the elastic energy, the chemical potential of (4) can be
replaced by a function of a:

µ = µ̄(a, a,x , t) ≡ Ū (a)− γ κ, (44)

where the curvature is
κ = a,xx /

(
1+ (a,x )

2)3/2. (45)

The surface equilibrium condition (41) therefore becomes

Ū (a)− γ κ = µ0. (46)

Note that the curvature can be rewritten as

κ = − d

da

1√
1+ (a,x )2

, (47)

and hence (46) may be integrated to give∫ a

a1
da Ū (a)+ γ√

1+ (a,x )2
− µ0a = γ√

1+ (a,x )2

∣∣∣∣∣
a=a1
− µ0a1 (48)

for arbitrary a1.
The function Ū (a) is a monotonically decreasing function of a, and hence the strain energy is

maximal at the thinnest section and minimal at the widest section of the plate. However, Ū (a) is
always positive, and since the term (−γ κ) must also be positive at the widest section∗ it follows
that the constant chemical potential is positive:

µ0 > 0. (49)

Another way of looking at it is that there must be a point of in#ection, at which κ = 0 and hence
µ0 equals the (necessarily positive) strain energy at the point of in#ection.
Let us choose the lower limit of integration in (48) to be the value at the thinnest section, at which

the slope is zero, that is, a,x = 0 at a = a1, so that (48) becomes∫ a

a1
da Ū (a)+ γ√

1+ (a,x )2
= µ0(a − a1)+ γ. (50)

Similarly, let a2 be the maximum semi-thickness, so that 0 < a1 6 a 6 a2. Then, equating a with
the thickest section speci"cally, that is, a = a2, equation (50) implies that∫ a2

a1
da Ū (a) = µ0 (a2 − a1). (51)

Hence, the independent parameters which de"ne the problem may be taken as the minimum and

∗ This implicitly assumes that the section is a C1 continuously varying function of x , as opposed to C0 with possible
piecewise smooth slope.
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maximum thicknesses, in terms of which the constant chemical potential is the thickness averaged
value of the strain energy:

µ0 = 1

a2 − a1

∫ a2

a1
da Ū (a). (52)

Also, equation (50) provides an ordinary differential equation for the surface pro"le,

da

dx
= ±

[
1(

1− G(a)
)2 − 1]

1
2

, (53)

where G(a) is

G(a) = 1

γ

∫ a

a1
da
[
Ū (a)− µ0

] = 1

γ

{∫ a

a1
da Ū (a)− ( a − a1

a2 − a1
) ∫ a2

a1
da Ū (a)

}
. (54)

Note that the function G satis"es

G(a1) = 0, G(a2) = 0, and G(a) > 0 for a1 < a < a2 . (55)

Hence, for a given value of the surface tension there is a limit on the range of possible a1 and a2 for
which equilibrium pro"les exist. Speci"cally, (53) implies that the maximum value of G(a) cannot
exceed unity. From its de"nition in (54), and using the identity (52), we see that the maximum value
of G occurs at the point of in#ection of the surface, where κ = 0 and a = a0 such that

Ū (a0) = µ0. (56)

It is not possible to evaluate a0 and G(a0) in general; however, for the two cases of concern, in (43),
we can determine all the necessary parameters.
Let σ0 be the value of the surface stress at the point of in#ection a = a0, that is σ0 = F0/(2a0) for

tension, and σ0 = 3M0/(2a20) for #exure. De"ne the non-dimensional parameter 30, by analogy
with the non-dimensional parameters for the #at plate in (28),

30 =
σ 20 a0
γ Ep

. (57)

It then follows from the identity (56) that for either type of loading we have

30 = 2µ0a0
γ

. (58)

This is a useful parameter with which to represent G(a) and other quantities; thus

Tension : a20 = a1a2, G(a) = 30
(a2 − a)(a − a1)

2aa0
,

Flexure : a40 =
3(a2 − a1)
1/a31 − 1/a32

, G(a) = 30

4a0

[
a1 + a2 − 2a +

(
1
a31
+ 1

a32
− 2

a3

)
(a2 − a1)
1/a31 − 1/a32

]
.

(59)
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Fig. 2 The two sets of curves show (i) the values of a0/a1 versus a2/a1 for tensile (T) and #exural (F) loading,
from equations (59), and (ii) the maximum permissible values of 30 allowed under the constraint (60)

The constraint
G(a0) < 1 (60)

can now be evaluated for each type of loading. For the plate in tension, equation (60) implies that

30 < 2

/[(
a2
a1

) 1
4

−
(
a1
a2

) 1
4
]2

. (61)

Figure 2 shows plots of the maximum possible values of 30. For a given value of a2/a1, there is a
range of30, bounded above by the curves in Fig. 2, for which symmetric equilibrium con"gurations
exist. Figure 2 also shows a0/a1 versus a2/a1 for the two types of loading. This indicates where
the point of in#ection lies relative to a1 and a2, and a = a0 is also the point on the surface at which
the strain energy equals µ0.

4.3 Examples of plates in equilibrium

The equilibrium shapes can be determined from (53) by quadrature. Only one sign of the right
member needs to be considered, the solution for the other follows by symmetry arguments. Thus,
let x = 0 at a = a1, the `neck' of the plate, then we evaluate x as a function of a:

x =
∫ a

a1
da

[
1(

1− G(a)
)2 − 1]−

1
2

, a1 6 a 6 a2 . (62)

The integral has integrable singularities at the two limits a1 and a2, but they can be rendered
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Fig. 3 The equilibrium shapes for tensile loading. The curves show the upper and lower surfaces of three
periods of the basic shape. (a) a2/a1 = 2, 30 = 1.6484; (b) a2/a1 = 5, 30 = 0.2927; (c) a2/a1 = 10,
30 = 0.1353. In each case 30 is chosen to make G(a0) = 0.1
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Fig. 4 The equilibrium shapes under tensile loading for the same parameters as in Fig. 3, except that 30 is
chosen to make G(a0) = 1, the maximum permissible value, that is, they are 10 times the values in Fig. 3. (a)
a2/a1 = 2, 30 = 16.4836; (b) a2/a1 = 5, 30 = 2.9268; (c) a2/a1 = 10, 30 = 1.3526
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Fig. 5 The equilibrium shapes for tension (top) and #exure (lower) for the same values of a2/a1 = 5 and
30 = 0.3

numerically harmless by parametrizing a and x in terms of θ as follows:

a(θ)= 1
2 (a2 + a1)+ 1

2 (a2 − a1) sin θ, − 12π 6 θ 6 1
2π,

x(θ)=
∫ θ

− 12π
dθ cos θ

[
1(

1−30 g(θ) cos2 θ
)2 − 1]−

1
2

, − 12π 6 θ 6 1
2π , (63)

where

g(θ) ≡ 1

30

(a2 − a1)2 G(a)

4(a2 − a)(a − a1)

∣∣∣∣∣
a=a(θ)

. (64)

It may be readily veri"ed that the function g(θ) is positive and bounded away from zero for θ ∈
[− 12π, 1

2π ]. In particular it is non-zero at θ = ± 12π , and hence the integral in (63) can be easily
computed.
Some examples of the equilibrium shapes are displayed in Figs 3 to 5. These are based upon the

equations for a and x in (63), where x is found by expressing it as an ordinary differential equation
for x(θ) and then using a Runge�Kutta routine. The shapes in Fig. 3 represent small values of 30,
relative to the critical value de"ned by the constraint (60), whereas the shapes in Fig. 4 are at the
critical value. At this value of 30 the slope becomes vertical at the point of in#ection a0, and the
vertical slope is apparent in Fig. 4. The maximum slope is smaller for the lower values of 30 in
Fig. 3. Also, we note that the length in the x-direction becomes larger the smaller the value of 30.
This scaling follows from the explicit appearance of30 in (63); the function g(θ) is independent of
30, and in the limit of small 30 we therefore have

x(θ) = 1√
30

∫ θ

− 12π
dθ√
2g(θ)

, −π

2
6 θ 6 π

2
, for 30 ¿ 1. (65)
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For instance, for the tension loading we "nd that (65) can be solved in closed form as

x(θ) = 4√
30

(a2
a1
− 1) (a2

a1

)1/4
E

(
π

4
+ θ

2
, i

√
a2
a1
− 1

)
, −π

2
6 θ 6 π

2
, for 30 ¿ 1,

(66)
where E is the incomplete elliptic integral of the second kind (17). In general, the length in the
x-direction scales as 3

−1/2
0 , and we will use this scaling in the subsequent analysis.

Finally, Fig. 5 compares the equilibrium shapes under tensile and #exural loading. In general,
numerical experiments indicate that the shapes do not differ much, whether the loading is tensile or
#exural.

5. Nonlinear evolution of symmetric con"gurations

5.1 The governing equation

We now turn to the nonlinear evolution of a plate from an initially perturbed con"guration, relative
to a #at state. Only symmetric systems are considered, and we again assume that the elastic strain
energy is given by the simpli"ed uni-dimensional static solutions of (43) for the two distinct types
of loading.
We consider a plate of "nite extent: 0 6 x 6 l where l is the length of a specimen, or the

length of the unit cell for an in"nitely long but periodic system. Arclength on the surface satis"es
ds/dx = (1 + (a,x )

2)1/2, and therefore, the rate of change in the surface height is related to c via
the kinematic relation

∂a/∂t = (1+ (a,x )
2)1/2 c . (67)

Referring to equations (10) and (45), the evolution equation for a becomes

∂a

∂t
= D0

∂

∂x

[
1√

1+ (a,x )2

∂

∂x

(
Ū (a)− γ a,xx(

1+ (a,x )2
)3/2)], 0 6 x 6 l, 0 < t, (68)

supplemented by initial data for a(x, t). A linear stability analysis of this equation, with a = a0+h
and h given by (18), yields the growth rates of (40), in agreement with the theory for "nite ka in the
thin-plate limit.
The total free energy of the plate system follows from (1) with

Eelastic =
∫ l

0
dx
∫ a

−a
dz

σ 211

2Ep
, Esurface =

∫
ds 2γ. (69)

The stress σ11(z, t) is independent of z and equal to F0/(2a) for tension, but depends upon z for
#exural loading, according to σ11 = M0z/I with I = 2

3a
3. The factor of 2 in Esurface arises from

the two surfaces. The work done by the applied end loads is

W = F0
[
u
]
for tension, W = M0

[
w,x

]
for #exure, (70)

where
[
u
] = u(l, t) − u(0, t) is the difference in the horizontal displacement between the two

ends, and
[
w,x

]
is the corresponding jump in the rotation, de"ned by the derivative of the transverse

de#ection w. Using [
u
] = ∫ l

0
dx ε11,

[
w,x

] = ∫ l

0
dx w,xx , (71)
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combined with the relations ε11 = F0/(2aEp) for tension and w,xx = M0/(Ep I ) for #exure, and
expressing ds in (69)2 in terms of x , we "nally arrive at an expression for the free energy:

E =
∫ l

0
dx

(∫ a

−a
dvŪ (v)+ 2γ

√
1+ (a,x )2

)
. (72)

The expression (72) is useful because we will evaluate the free energy later and demonstrate that it
does actually decrease with time.
De"ne the non-dimensional variables X , T and A by

x = l X, t = l4 T

D0γ
, a = a0A, (73)

where a0 now represents a typical thickness, for example, the initial semi-thickness. The present
theory is essentially a thin-plate approximation, since we are using thin-plate solutions for the strain
energy, and it is appropriate to de"ne a thinness parameter:

ε ≡ a0/ l. (74)

The governing equation (68) can be expressed in terms of the non-dimensional variables by using
a,x = εA,X , etc. Substituting for Ū (a) from equation (43), we obtain

∂A

∂T
= ∂

∂X

[
1(

1+ ε2(A,X )2
)1/2 ∂

∂X

(
30

2ε2Am
− A,XX(

1+ ε2(A,X )2
)3/2)], 0 6 X 6 1, 0 < T,

(75)
where m is an integer,

m =
 2 in tension,

4 in #exure,
(76)

and 30 is a non-dimensional ratio of strain to surface energy:

30 =
σ 20 a0
γ Ep

. (77)

Here, σ0 is the stress at a = a0 according to the thin-plate elasticity theory, and we note that30 is the
same non-dimensional parameter that persistently occurs (see (28) and (57)). The non-dimensional
chemical potential and free energy follow from (4)2, (43) and (72) as

µ̄ = ε2
[

30

2ε2Am
− A,XX(

1+ ε2(A,X )2
)3/2 ], where µ̄ = a0µ

γ
, (78)

and

Ē =
∫ 1

0
dX

(√
1+ ε2(A,X )2 − 30

2(m − 1)Am−1
)

, where Ē = E
2γ l

. (79)
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5.2 Thin-plate approximation

In order to be consistent with the thin-plate theory we should limit the application of the uniaxial
approximation to plates with small surface slopes, or equivalently to ones for which the horizontal
length scale for variation in thickness far exceeds the thickness itself. Hence, ε ¿ 1. At the same
time, the analysis of the previous section indicated that the length in the x-direction scales with
1/
√

30 when 30 is small, see (65) and (66). Hence, to be fully consistent
√

30 should be of the
same order as ε, and their ratio is of order unity. In summary, we assume the scalings

ε ¿ 1, 30 ¿ 1, λ = O(1), (80)

where λ is a rescaled O(1) version of 30:

λ ≡ 30/ε
2. (81)

Consequently, (75) can be replaced by its leading-order approximation in ε:

∂A

∂T
= ∂2

∂X2

(
λ

2Am
− ∂2A

∂X2

)
, 0 6 X 6 1, 0 < T . (82)

This is the governing evolution equation for thin plates. The associated chemical potential is of
order ε2, from equation (78),

µ̄ = ε2
[

λ

2Am
− A,XX

]
. (83)

The corresponding non-dimensional free energy follows from (79), after adding a constant,

Ē = ε2

2

∫ 1

0
dX

[(
∂A

∂X

)2
− λ

(m − 1)Am−1
]

, (84)

and the rate of change of the free energy is therefore, using (9) and (83),

dĒ
dT
= −ε2

2

∫ 1

0
dX

[
∂

∂X

(
λ

2Am
− ∂2A

∂X2

)]2
. (85)

5.3 Numerical examples and analysis

It does not appear to be feasible to obtain closed-form solutions to the canonical evolution equation
(82), so we resort to numerical methods. We consider the domain 0 6 X 6 1, and assume periodic
boundary conditions, that is A(X, T ) and its derivatives with respect to X are the same at X = 0
and X = 1. Equation (82) is solved numerically on a spatial grid (X j , Tn), with X j = j1X ,
j = 1, 2, 3, . . . , N where XN = 1, and Tn = n1T , using a semi-implicit scheme for each time
step. Thus, the values Anj (≈ A(X j , Tn)) are marched forward in time according to the scheme, for
n→ n + 1,

An+1j + 1T

2(1X)4

(
An+1j+2 − 4An+1j+1 + 6An+1j − 4An+1j−1 + An+1j−2

)
= Anj −

1T

2(1X)4

(
Anj+2 − 4Anj+1 + 6Anj − 4Anj−1 + Anj−2

)+ 1T

(1X)2

(
f nj+1 − 2 f nj + f nj−1

)
,

(86)
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where f nj = λ/[2(Anj )
m]. The differencing for the linear fourth-order operator is semi-implicit,

removing the constraint of a very small time step. The size of the time step is selected to comply
with the Lax stability criterion for the linear second-order differencing scheme.
An analysis of the linearized version of equation (82) for A near unity,

A,T + mλA,XX + A,XXXX = 0 , (87)

with A(X, T ) = 1+ Ã exp{νT + i K X} implies that
ν = (mλ− K 2)K 2 . (88)

The quantity ν is clearly the non-dimensional analog of η as given by equation (40). The most
unstable wavenumber is K = (mλ/2)1/2 with linear exponential growth ν = m2λ2/4.
For example, Fig. 6 illustrates the time evolution of a unit period of a plate for the initial pro"le

A(x, 0) = 1 + δ sin(2πx), with λ = 8π2/m and δ = −0.3. The progression to zero thickness
speeds up steadily, and consequently, in order to show the ultimate behaviour the curves in Fig. 6
do not represent equal time steps. The actual rate of thinning is clear from Fig. 7 which shows the
minimum thickness as a function of time step. Note that the time steps were different in the two
simulations, because it takes far longer for the tensile notch to develop. It is clear that the thinning
occurs "rst relatively slowly, until the notch is well de"ned. Then, as T → T∗, where T∗ is the time
at which A vanishes, the thinning progresses rapidly, and is highly localized near the point of "nal
failure at X = X∗.
We also checked that the total free energy, Ē of (84), is a monotonically decreasing function.

In fact, its decrease is similar to that for the thickness: "rst slow, then becoming more rapid as
T → T∗. Also, the numerical results indicate that Ē approaches a "nite value for
tension/compression, but that it tends to negative in"nity for #exure.
We can gain some insight into the behaviour indicated in Figs 6 and 7 by a scaling argument valid

for the inner region where the rapid thinning occurs as T → T∗. Thus, let X − X∗ = (T∗ − T )α y,
A(X, T ) = (T∗ − T )βλγ F(y). Then requiring that all three terms in (84) contribute implies that
α = 1/4 and β = 1/[(2(m + 1)]. By the further choice of γ = 1/(m + 1) we obtain an equation
for F which is independent of λ. In summary, the scaling yields

A(X, T ) ≈ λ1/(m+1)
(
T∗ − T

)1/2(m+1)
F
(
(X − X∗)(T∗ − T )−1/4

)
, X → X∗ , T → T∗ ,

(89)
where the function F(y) satis"es an ordinary differential equation,

F ′′′′ − 1
2

(
1

Fm

)′′
+ y

4
F ′ − F

2(m + 1) = 0 , −∞ 6 y 6∞. (90)

The solutions of (90) should be symmetric in y, and therefore only 0 6 y < ∞ needs to be
considered. This requires four conditions, two of which are, from symmetry, F ′(0) = 0 and
F ′′′(0) = 0. The other two are obtained by requiring that for large (X − X∗) the solution become
independent of T . This is a consequence of the observation that far from the thinning region the
thickness is essentially constant. Assuming a power law scaling: F(y) ∼ y p, y →∞, implies that
p must be p = 2/(m + 1). Therefore the remaining pair of conditions are that

lim
y→∞ y−2/(m+1) F(y) = ρ , lim

y→∞ y(m−1)/(m+1) F ′(y) = 2

m + 1 ρ (91)
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Fig. 6 The evolution of a plate under (a) tension/compression and (b) #exure. The initial and subsequent
shapes are depicted
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Fig. 7 The evolution of the minimum thickness for the simulations of Figure 6: (a) tension/compression and
(b) #exure
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Fig. 8 A comparison of the numerically computed minimum thickness for tension/compression (solid curve)
with the inner scaling according to equation (92)

for some ρ > 0.
Regardless of the precise nature of the F functions, the scaling (89) indicates that the minimum

thickness of the notch behaves like

minimum thickness ∼


(
T∗ − T

) 1
6 in tension

(
T∗ − T

) 1
10 in #exure

as T → T∗ . (92)

Figure 8 shows the minimum thickness for tension/compression loading versus
(
T∗ − T

)
, where T∗

is estimated by extrapolation from curves like those in Fig. 7. The agreement in Fig. 8 indicates
that the inner scaling does indeed take over at late times.
The scaling argument implies that the change in the total free energy is caused by the thinning

region alone, and it can therefore be estimated from (89). Thus, equation (84) gives

Ē = 1
2 ε2 λ2/(m+1)

(
T∗ − T

)(3−m)/4(m+1)
Im, T → T∗, (93)

where the constant Im is

Im =
∫ ∞
−∞

dy

[(
F ′
)2 − 1

(m − 1)Fm−1
]
, (94)

while the rate of change of the free energy is, using (85),

dĒ
dT
= −ε2

2
λ2/(m+1)

(
T∗ − T

)−(5m+1)/4(m+1)
Jm, T → T∗, (95)



ELASTIC PLATES 307

where

Jm =
∫ ∞
−∞

dy

[(
F ′′ − 1

2Fm

)′]2
. (96)

Comparing equations (94) and (96) implies the identity

Jm = 3− m
4(m + 1) Im , (97)

and hence I2 > 0, I4 < 0 because Jm > 0. It is interesting to note that the energy for the plate
in tensile loading decays to zero, while the energy of the #exurally loaded plate tends to negative
in"nity, that is,

Ē ∼


ε2
(
T∗ − T

) 1
12 in tension

−ε2
(
T∗ − T

)− 1
20 in #exure

as T → T∗ . (98)

Of course, the energy cannot decrease inde"nitely for the plate in #exure. The safety net is provided
by the constraint that the above estimates are for the leading-order asymptotic theory, for which the
energy of the system is O(ε2). Hence, the estimates of (95), for example, are valid as long as Ē
remains of order ε2, but they fail once Ē becomes O(ε) or larger.

6. Discussion

The equilibrium and evolution equations for thin plates were derived from the general theory for
elastic solids under the simplifying approximation of uniaxial stress. This essentially eliminated
stress from the problem and rephrased the mechanics entirely in terms of the thickness as the
fundamental parameter. In retrospect, one can recast the theory for thin elastic plates in a relatively
simple form. Thus, the free energy follows from (72) as

E =
∫ l

0
dx V

(
a, a,x

)
, (99)

where V follows from (43) and (72) as

V
(
a, a,x

) =

− F20
4Epa

+ 2γ
√
1+ (a,x )2 in tension,

− 3M2
0

4Epa3
+ 2γ

√
1+ (a,x )2 in #exure.

(100)

The two conditions that mass be conserved and that the free energy be non-increasing, that is,∫ l

0
dx a = constant and

dE
dt
6 0 , (101)

are then suf"cient to determine the form of the growth law. Thus, mass is maintained if the normal
velocity is the surface derivative of a function:

c = −∂q/∂s. (102)
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Fig. 9 The thin-plate stability criterion can be understood by means of this simplistic perturbation combined
with the uniaxial approximation

The free energy is then a monotonically decreasing quantity if the function q satis"es

q = −D0 ∂

∂s

(
∂V

∂a
− ∂

∂x

∂V

∂a,x

)
, D0 > 0. (103)

Using (67), this leads directly to the evolution equation in the form

∂a

∂t
= D0

∂

∂x

[
1√

1+ (a,x )2

∂

∂x

(
∂V

∂a
− ∂

∂x

∂V

∂a,x

)]
, 0 6 x 6 l, 0 < t, (104)

which is identical to (68).
As a "nal point we note that the uniaxial theory also permits a relatively simple stability argument.

Consider the perturbed plate in Fig. 9. As the thickness changes the stress maintains a constant
resultant force

σ(x) = 2a σ0

2a + 2δ(x) . (105)

For simplicity we take δ(x) as piecewise linear with average zero of one period of length λ:

δ(x) =
[
h

2
− 2h

λ

∣∣∣∣|x | − λ

4

∣∣∣∣] sgn(x), −λ

2
6 x 6 λ

2
.

The change in free energy per unit period is thus

1E = −λh2

12a

σ 20

2Ep
+ 4h

2

λ
γ . (106)

This yields a critical wavenumber at which 1E vanishes, λ = (4/σ0)(6aγ Ep)
1/2. The more

detailed analysis for a sinusoidal perturbation yields, in the appropriate thin-plate limit, from (40), a
wavelength λmax ≡ 2π/kmax equal to (2π/σ0)(2aγ Ep)

1/2, which differs by about 10 per cent from
the simple estimate based upon Fig. 9.

7. Conclusions

Starting from the linear stability analysis of a plate of "nite thickness relative to the wavelength
of the perturbation, we have shown that the limit of a thin plate exhibits quite different behaviour
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than a thick plate, or a half-space. The fundamental difference is that the whole structure�the
thin plate�supports the stress and the variations in the stress. This observation permits a simple
uniaxial approximation which allows us to eliminate the stress in favour of the plate thickness as
the fundamental variable. It simpli"es considerably the nonlinear equilibrium and non-equilibrium
mechanics of thin plates.
We have derived for the "rst time equilibrium shapes of thin plates for either tensile/compression

or #exural loading. These are characterized by surfaces with constant chemical potential. The
nonlinear evolution of thin plates under stress-driven surface diffusion has also been analysed for
the "rst time. Two distinct regimes were found, similar to the observations of Yang and Srolovitz
(5) for the plane-strain half-space problem. First, there is a steady but slow growth of an initial
surface disturbance. The thinning subsequently speeds up, reaching zero thickness in "nite time.
The behaviour near the ultimate breakage of the plate can be described by an inner scaling which
predicts a universal power law for the thickness as a function of time before `failure'. The numerical
and analytical results also indicate that #exural loading leads to a more rapid and a more catastrophic
failure.
Thin-plate con"gurations are of fundamental signi"cance in modern technology, particularly in

small structural components. The results presented for equilibrium con"gurations indicate that
certain shapes are preferable for avoiding or delaying diffusion-driven instability, and could have
implications in the design of nano-scale devices. The quasi-static evolution to failure can also
be modelled by the simple uniaxial theory presented here. This provides some understanding of
stress-driven instability leading to fracturing, and it may serve as a starting point for analysing more
complex con"gurations.
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