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A three-dimensional framework is established for generating invariant stress config-
urations and associated shifts in the elastic compliance. Under these shifts the stress
throughout an elastic body is unaltered, while the compatibility equations for the
strain are automatically satisfied. The types of invariant stress fields and translations
of the compliance identified here generalize the results of Cherkaev, Lurie & Milton
(CLM) for planar elasticity. The key to the classification is the partitioning of the
fourth-order compliance tensor into symmetric and antisymmetric components. The
CLM theorem and its generalization are closely linked to the six-dimensional anti-
symmetric part of the compliance, and several examples are given of stress invariance
under shifts of these elements of the compliance tensor.
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1. Introduction

Stress invariance under arbitrary changes in elastic moduli is a relatively new but
significant concept. Cherkaev et al . (1992) demonstrated that the stress in a planar
elastic material is unchanged if one single combination of elastic moduli is allowed
to vary. The specific result of Cherkaev et al . (1992), known as the CLM theorem,
is that the stress and the traction are invariant to equal but opposite modifications
of the planar bulk and shear moduli by a linear shift λ. Cherkaev et al . (1992)
introduced the notion of equivalent elastic materials, which are characterized by an
arbitrary value of this free parameter. For instance, by considering the equivalent
class of materials with shifted compliances it is clear that even if the planar bulk
and shear moduli are spatially varying, the effective compliances of the equivalent
composite are simply shifted by λ and −λ. This has important implications for the
effective properties of planar composites. For instance, it means that the effective
Young’s modulus of a planar body with holes is independent of the Poisson’s ratio
of the material.
The CLM result was subsequently developed by many others (Thorpe & Jasiuk

1992; Dundurs & Markenscoff 1993; Jasiuk et al . 1994; Moran & Gosz 1994; Chen
1995a, b; Ostoja-Starzewski & Jasiuk 1995; Zheng & Hwang 1996, 1997; Dundurs &
Jasiuk 1997; He 1997, 1998). For instance, Dundurs & Markenscoff (1993) generalized
the CLM result to include equivalent materials with an affine (linear) shift in the
same modulus. The major thrust of these studies concern the implications for planar
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composites and the connection of the CLM theorem to previously known results in
two-dimensional elasticity. Thus, the fact that the effective properties of a planar two-
phase composite material depend upon only two non-dimensional combinations of
the moduli (the Dundurs constants) is closely related to the CLM theorem (Thorpe &
Jasiuk 1992; Dundurs & Markenscoff 1993). The CLM result has also been extended
to include other types of elastic effects, such as anisotropy (Moran & Gosz 1994;
He 1997), Cosserat elasticity (Ostoja-Starzewski & Jasiuk 1995) and piezoelectricity
(Chen 1995a, b).
The stress invariance effect has only been studied within the context of planar

elasticity, a subset of elasticity in which the stress and strain are two-dimensional
objects, the classic examples being the plane-strain and plane-stress problems. Planar
elasticity is closely related to, but not quite the same as, two-dimensional elasticity,
which is defined as states of stress that are everywhere independent of one coor-
dinate. In this paper we develop a three-dimensional framework for investigating
stress invariance. The idea is to find all possible variations in the elastic compliances
which do not effect the elastic compatibility equations. The general problem as stated
represents six second-order differential restraints on the possible 21 moduli. This dif-
ficulty has been resolved by restricting attention to smaller subspaces of moduli,
using the decomposition scheme of Backus (1970). The CLM theorem turns out to
be related to a single parameter shift in a six-dimensional subspace of the moduli:
those which are associated with the totally antisymmetric part of the elastic modu-
lus tensor. By varying other parameters in this subspace of compliances we deduce
generalizations of the CLM result, applicable to two-dimensional elasticity. Thus, the
three-dimensional theory presented here includes the CLM result as a special case.

2. Governing equations

The stress σ is a second-order symmetric tensor field, with components σij relative to
an orthonormal basis. The stress solves, or satisfies, the following traction boundary
value problem in three dimensions:†

σij,j = fi in V, (2.1)
σijnj = τi on S. (2.2)

The strain ε must be derivable as the symmetric part of a displacement gradient,
which implies that its components satisfy the six partial differential constraints, or
compatibility equations,

eikmejlnεmn,kl = 0, (2.3)

where eikm are the components of the third-order alternating tensor. The strain is
related to the stress by

εij = Cijklσkl, (2.4)

where Cijkl are the components of the fourth-order compliance tensor. Therefore,
substituting from the stress–strain relation (2.4),

eiprejqs(Crsklσkl),pq = 0. (2.5)

† Repeated lower case italic subscripts imply summation over 1, 2 and 3, unless indicated otherwise.
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We are interested in finding other possible elastic compliances under which the
same equations of equilibrium and compatibility are satisfied. Consider the different
compliance tensor

C ′
ijkl = Cijkl + C

(1)
ijkl, (2.6)

where the added moduli C(1)
ijkl are elasticity tensors, i.e. they satisfy the required

symmetries. The same stress state holds in the presence of these shifted moduli of
(2.6) if the stress satisfies

eiprejqs(C
(1)
rsklσkl),pq = 0. (2.7)

One set of permissible moduli is defined by the constraints

C
(1)
rsklσkl = 0, (2.8)

which is essentially a set of six equations constraining the 21 moduli. As such, it is
not very useful. For instance, it is not possible to deduce the CLM result for plane
stress from (2.8). Thus, by changing certain moduli, as the CLM result allows, the
stress solution remains unchanged, but the strain might be altered. Equation (2.8)
restricts the variation of the moduli to those which leave the strain unchanged.
These considerations indicate that there are two distinct types of invariance that

should be distinguished. The first is of the type established by CLM, in which an
arbitrary, although restricted, state of stress remains unchanged under the shift in
moduli. The possible variation in the moduli do not depend directly upon the stresses.
Alternatively, for a given state of stress, we can find particular changes in the moduli
for which the compatibility conditions do not change. The second type of invariance
is much broader than the first, because it allows that the class of moduli changes are
stress related. As an example of the second type of invariance, consider a hydrostatic
stress σ = −p0(x)I in an isotropic solid, implying ε = −(p0κ/3)I, where κ is the
bulk compliance. The compatibility conditions do not involve the shear compliance
and therefore remain unchanged for any value of this modulus. In this case the free
modulus does not appear in the compatibility relations.

3. Symmetric and antisymmetric tensors

(a) Definitions

An elasticity tensor, of which the compliance Cijkl is an example, is a fourth-order
tensor with the properties

Cijkl = Cklij , Cijkl = Cjikl. (3.1)

A fourth-order elasticity tensor with components Sijkl satisfying (3.1) is totally sym-
metric if in addition it has the property that

Sijkl = Sikjl. (3.2)

Similarly, an elasticity tensor Aijkl is called antisymmetric if

Aijkl +Aikjl +Ailkj = 0. (3.3)
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A totally symmetric tensor is unchanged under any permutation of the indices, and
hence we can create a totally symmetric tensor from any elasticity tensor by taking
the appropriate average over the indicial permutations (Backus 1970). The remain-
der is the antisymmetric part of the elasticity tensor. Any elasticity tensor can be
uniquely partitioned into the sum of symmetric and antisymmetric tensors: thus,

Cijkl = Sikjl +Aijkl, (3.4)

where

Sikjl = 1
3(Cijkl + Cikjl + Cilkj), Aikjl = 1

3(2Cijkl − Cikjl − Cilkj). (3.5)

The left member of equation (3.3) expresses the fact that the totally symmetric part
of an antisymmetric tensor must be zero.
As an example, the isotropic compliance tensor is

Cijkl =
1 + ν
E

Iijkl − ν

E
δijδkl, (3.6)

where Iijkl = 1
212(δikδjl+ δilδjk) is the fourth-order identity tensor and ν and E are

the Poisson’s ratio and Young’s modulus, respectively. For this case,

Sikjl =
1
3E
(δijδkl + δikδjl + δilδjk), Aikjl =

1 + 3ν
6E

(δikδjl + δilδjk − 2δijδkl).

(3.7)

(b) Properties of antisymmetric elasticity tensors

An arbitrary elasticity tensor satisfying (3.1) possesses at most 21 independent
elements, while the additional constraints of (3.2) imply that a symmetric elasticity
tensor has at most 15 constants, and conversely, an antisymmetric tensor may be
characterized by six or fewer constants. Backus (1970) demonstrated that for every
antisymmetric tensor Aikjl there is a unique second-order symmetric tensor Sij such
that

Aijkl = 1
3(2δijSkl + 2δklSij − δikSjl − δilSjk − δjkSil − δjlSik). (3.8)

The symmetric tensor Sij can be found in terms of Aijkl by contracting on the two
final indices, to give

Aijkk = 2
3(Sij + sδij), where s = Skk. (3.9)

Contracting on the remaining indices gives Aiikk = 8
3s, and hence

Sij = 3
2Aijkk − 3

8Akkllδij . (3.10)

We now demonstrate that the antisymmetric part of the tensor Cijkl can be rep-
resented in the alternative manner

Aijkl = −1
3(eikmejln + ejkmeiln)Mmn, (3.11)

where M is a symmetric second-order tensor. First, we note that Aijkl of equa-
tion (3.11) satisfies the relation (3.3) on account of the symmetry of Mij . Therefore,
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the right-hand side of (3.11) is indeed an antisymmetric tensor, and can be repre-
sented by a second-order symmetric tensor. On contracting the second pair of indices
in (3.11), we obtain

Aijkk = 2
3(Mij −mδij), m =Mkk, (3.12)

which can be solved for Mij :

Mij = 3
2Aijkk − 3

4Akkllδij . (3.13)

Alternatively, we can equate the right members of equations (3.9) and (3.12), to
obtain

M = S − sI ⇔ S = M − 1
2mI. (3.14)

This completes the proof of the representation (3.11), and gives the explicit con-
nection between S and M , either of which may be considered as basic. However,
there are reasons to view M as the more fundamental of the two, because it is
directly related to the inverse of the antisymmetric elasticity tensor, if it exists (see
Appendix A for details). We note that the relation (3.14)1 can also be expressed as

Mij = −eikmejlmSkl. (3.15)

We may express M and S in terms of the elements of the original elasticity tensor
Cijkl, using (3.5). First, define the second-order tensors formed by contracting Cijkl:

C
(1)
ij = Cijkk, C

(2)
ij = Cikjk. (3.16)

Then equations (3.5)2 and (3.12) imply

C(1) − C(2) = M −mI ⇔ M = C(1) − C(2) − 1
2([C

(1) − C(2)] · I)I. (3.17)

Hence,†

M =


c44 − c23 c36 − c45 c25 − c46
c36 − c45 c55 − c13 c14 − c56
c25 − c56 c14 − c56 c66 − c12


 . (3.18)

Let
a = c44 − c23, b = c55 − c13, c = c66 − c12,
d = c14 − c56, e = c25 − c46, f = c36 − c45,

then

M =


a f e
f b d
e d c


 , S =




1
2(a− b− c) f e

f 1
2(b− c− a) d

e d 1
2(c− a− b)


 . (3.19)

For example, the isotropic compliance of equation (3.6) gives

M =
1 + 3ν
2E

I

for isotropic materials.

† The Voigt notation for fourth-order elasticity tensors is used here: cIJ replaces Cijkl where I and
J take the values 1, 2, 3, 4, 5, 6, corresponding to the indicial pairs 11, 22, 33, 23, 13 and 12, respectively.
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It is useful to document the reverse relationship between the antisymmetric fourth-
order tensor and its symmetric second-order tensor. Thus, for a given second-order
symmetric tensor M with components given by (3.19), the antisymmetric elasticity
tensor A of equation (3.11) is

A = −1
3




0 2c 2b −2d 0 0
2c 0 2a 0 −2e 0
2b 2a 0 0 0 −2f

−2d 0 0 −a f e
0 −2e 0 f −b d
0 0 −2f e d −c



. (3.20)

In general, for any given symmetric second-order tensor π we define the antisym-
metric fourth-order elasticity tensor P (π) by

Pijkl(π) = −1
2(eikmejln + ejkmeiln)πmn. (3.21)

Thus, for instance, equation (3.11) is

A = 2
3P (M). (3.22)

By comparing the equivalent forms (3.8) and (3.11), and using (3.14), we deduce the
identity,

Pijkl(S − sI) = 1
2(2Sijδkl + 2Sklδij − Sikδjl − Silδjk − Sjkδil − Sjlδik), (3.23)

from which an explicit expansion of the antisymmetric operator P follows:

Pijkl(π) = 1
2(2πijδkl + 2πklδij − πikδjl − πilδjk − πjkδil − πjlδik

+ π(δikδjl + δilδjk − 2δijδkl)). (3.24)

We note the following identity: for any two symmetric second-order tensors, π and χ,

Pijkl(π)χkl = Pijkl(χ)πkl ⇔ P (π)χ = P (χ)π. (3.25)

The inverse of an antisymmetric elasticity tensor A is closely related to the inverse
of the fundamental matrix M according to the following.

Result 3.1. The inverse tensor P −1(π) exists iff π−1 exists, and has the explicit
form

P−1
ijkl(π) = (πikπjl + πilπjk − πijπkl)/(2 detπ). (3.26)

The proof of this identity is given in Appendix A.

Finally, we note that the elements of Cijkl occurring in the matrixM of (3.18) also
occur in six elements of the totally symmetric fourth-order tensor Sijkl, specifically

s23 s36 s25
s36 s13 s14
s25 s14 s12


 = 1

3


c23 + 2c44 c36 + 2c45 c25 + 246
c36 + 2c45 c13 + 2c55 c14 + 2c56
c25 + 2c56 c14 + 2c56 c12 + 2c66


 . (3.27)

It is important to bear this in mind when we consider shifts of the elements of M ,
subject to the constraint that the remaining components of the compliance tensor
are fixed.
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(c) Properties of totally symmetric elasticity tensors

Backus (1970) has shown that a totally symmetric elasticity tensor can be further
partitioned as

Sijkl = Hijkl + (δijHkl + δikHjl + δilHjk + δjkHil + δjlHik + δklHij)
+H(δijδkl + δikδjl + δilδjk). (3.28)

The symmetric second- and fourth-order tensors Hij and Hijkl are harmonic, that
is, contraction over any pair of indices yields zero: Hkk = Hijkk = 0. It can be shown
by using this property that

H = 7
15Qkk, Hij = Qij − 1

3δijQkk, (3.29)

where

Qij = 1
7Sijkk = 1

21(Cijkk + 2Cikjk), (3.30)

and Hijkl follows from equation (3.28). Note that Hij and Hijkl can have at most
five and nine independent elements, respectively, which, combined with the single
scalar H, implies that totally symmetric elasticity tensors have no more than 15
independent elements.

(d) The compatibility equations revisited

The compatibility conditions (2.3) may be expressed concisely, using the notation
of antisymmetric fourth-order tensors, as

Rot ε = 0. (3.31)

The operator Rot is a second-order differential expression acting on symmetric
second-order tensors:

Rot εij ≡ −eikmejlnεmn,kl. (3.32)

Referring to equations (3.21) and (3.25) we have

Rot εij = Pijkl(∇ ⊗ ∇)εkl = Pijkl,kl(ε), (3.33)

or

Rot ε = ∇∇ : P (ε). (3.34)

This form combined with equation (3.24) yields the explicit expansion of the com-
patibility relations:

Rot εij = δij(εkl,kl − ∇2ε) +∇2εij + ε,ij − εik,kj − εjk,ki

= 0, (3.35)

where ε = εkk. The compatibility conditions themselves are therefore closely related
to antisymmetric fourth-order elasticity tensors.
We are now ready to examine the possible shifts in compliances which leave the

compatibility equations unchanged.
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4. Compatible antisymmetric compliance tensors

(a) The compatibility equations

We first restrict our consideration to antisymmetric shifts in the compliance C(1)
ijkl as

defined in equation (2.7). Thus, let

C
(1)
ijkl = Aijkl, (4.1)

where Aijkl can be expressed in terms of either of the two second-order symmetric
tensors M or S, using equations (3.11) or (3.8), respectively. After some preliminary
investigation one finds that the representation using M is more advantageous. Thus,
substituting from (3.11), equation (2.7) becomes

−2
3(eiprejqs)(erkmesln)(σklMmn),pq = 0. (4.2)

This can be rewritten, using (3.21), as

−2
3 RotN = 0, (4.3)

where N is a symmetric second-order tensor (see (3.25)):

N = P (σ)M = P (M)σ. (4.4)

More explicit forms for N can be deduced: for instance, using (3.24),

N = mσ + σM − σ · M − M · σ + (σ : M − σm)I (4.5)

or

N = mΣ + (Σ : M)I − Σ · M − M · Σ, (4.6)

where

Σ = σ − 1
2σI ⇔ σ = Σ −ΣI, (4.7)

with σ = σkk and Σ = Σkk. The complete expansion of N follows from (4.5) as

N =M11


0 0 0
0 −σ33 σ23
0 σ23 −σ22


+M22


−σ33 0 σ13

0 0 0
σ13 0 −σ11




+M33


−σ22 σ12 0
σ12 −σ11 0
0 0 0


+M23


2σ23 −σ13 −σ12

−σ13 0 σ11
−σ12 σ11 0




+M13


 0 −σ23 σ22

−σ23 2σ13 −σ12
σ22 −σ12 0


+M12


 0 σ33 −σ23
σ33 0 −σ13

−σ23 −σ13 2σ12


 . (4.8)

A second form of the compatibility equation for antisymmetric shifts in the com-
pliance is obtained by using the representation (3.34) for Rot. This implies that (4.2)
is equivalent to

Dijkl,kl = 0, (4.9)
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where

D = 2
3P (N). (4.10)

The fourth-order tensor Dijkl may be interpreted as the antisymmetric part of the
fourth-order elasticity tensor (M ⊗ σ + σ ⊗ M), that is

Dijkl = 1
3(2σijMkl + 2σklMij − σikMjl − σilMjk − σjkMil − σjlMik). (4.11)

Alternatively, as an antisymmetric elasticity tensor, Dijkl can be represented by a
symmetric second-order tensor, R:

Dijkl = 1
3(2δijRkl + 2δklRij − δikRjl − δilRjk − δjkRil − δjlRik), (4.12)

where the second-order tensor can be found in the same manner as before, yielding

N = R − (R · I)I ⇔ R = N − 1
2(N · I)I. (4.13)

A third form of the compatibility equation is obtained by rewriting equation (4.2)
as

−2
3(eiprekmr)(ejqselns)(σklMmn),pq = 0. (4.14)

Then using the identity eiprekmr = δikδpm − δimδpk, we arrive at the compact form

(σijMkl + σklMij − σikMjl − σjkMil),kl = 0. (4.15)

This can also be deduced by substituting from equation (4.11) into equation (4.9).
Equation (4.15) is the most convenient form of the compatibility equation for

antisymmetric shifts in the compliance, and we now examine it in detail. We first
note that (4.15) may be expanded by direct differentiation of the final three terms,
and combined with the equilibrium relations (2.1), to yield

0 = (σijMkl),kl + σklMij,kl − (σikMjl,k + σjkMil,k),l
+ 2fkMij,k − fiMjk,k − fjMik,k + fk,kMij − fi,kMjk − fj,kMik. (4.16)

It will be assumed henceforth that there are no body forces acting, f = 0, so that
(4.16) reduces to

(σijMkl),kl + σklMij,kl − (σikMjl,k + σjkMil,k),l = 0. (4.17)

We now examine possible solutions for this set of equations, considered as equations
for the compliance shifts Mij . We denote these classes of solutions as compatible
moduli.

(b) Example 1

As a first example, consider a single non-zero element in M :

Mij =M33δi3δj3, (4.18)

for which the second-order symmetric tensor N is, from equation (4.8),

N =M33


−σ22 σ12 0
σ12 −σ11 0
0 0 0


 . (4.19)
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Therefore, only the in-plane stresses† σαβ will enter into subsequent equations for
this example.
The compatibility relations follow from equations (4.3) and (4.19) as

δiαδjβ(σαβM33),33 + δi3δj3(σαβM33),αβ − (δiαδj3 + δjαδi3)(σαβM33),β3 = 0. (4.20)

These represent six constraints, which may be separated into three sets of three, two
and one, respectively:

(σαβM33),33 = 0, (σαβM33),β3 = 0, (σαβM33),αβ = 0. (4.21)

The six equations in (4.21) are too general to make any definite statements about
the class of admissible functions for M33 and for σ. In order to make some headway,
we therefore assume that the in-plane stresses σαβ are self-equilibrated, i.e.

σ11,1 + σ12,2 = 0, σ21,1 + σ22,2 = 0. (4.22)

This is broader than an assumption of plane stress or plane strain. The conditions
(4.22) are satisfied if the two stresses σα3 are independent of x3, so that their con-
tributions to the in-plane equilibrium equations, σα3,3, are identically zero. Hence,
we are assuming only that

assumption 1: σα3 = qα(x1, x2), α = 1, 2. (4.23)

Under these circumstances equations (4.21) simplify to

(σαβM33),33 = 0, (σαβM33,β),3 = 0, σαβM33,αβ = 0. (4.24)

These imply, respectively, that

σαβM33 = gαβ(x1, x2) + x3hαβ(x1, x2), (4.25)
σαβM33,β = lα(x1, x2), (4.26)

M33 = a0(x3) + a1(x3)x1 + a2(x3)x2. (4.27)

Eliminating between these three equations, we deduce that

lα(x1, x2) =
[gαβ(x1, x2) + x3hαβ(x1, x2)]aβ(x3)
a0(x3) + a1(x3)x1 + a2(x3)x2

. (4.28)

The right-hand side of this must be independent of x3 for arbitrarily valued in-plane
stresses σαβ. This can be satisfied in either of two ways. First, if the parameters
satisfy

(a) a0 = b0f(x3), a1 = b1f(x3), a2 = b2f(x3), hαβ = 0, (4.29)

where b0, b1 and b2 are constants, or secondly, if

(b) a1 = 0, a2 = 0. (4.30)

We now discuss cases (a) and (b) individually.

† Lower case Greek subscripts indicate the restricted values 1 and 2 only.
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(i) Example 1(a): An extended CLM result

Redefining gαβ = (b0 + b1x1 + b2x2)Gαβ and f(x3) = 1/F (x3), the first solution,
(4.29), implies that the in-plane stresses and M33 are given by

(a) σαβ = Gαβ(x1, x2)F (x3), M33 = (b0 + b1x1 + b2x2)/F (x3). (4.31)

The constants b0, b1 and b2 and the function F may be arbitrary, the out-of-plane
stresses σ13, σ23 satisfy (4.23) and σ33 is unrestricted.
This example includes as a special case the CLM result as generalized by Dundurs

& Markenscoff (1993). Thus, when F ≡ const. and the only stresses of concern are
σαβ, we recover the result that planar bulk and shear compliances may be shifted
in an affine manner without affecting the stresses and without violating the strain
compatibility conditions. In order to prove this assertion, we must show that it yields
the Dundurs & Markenscoff (1993) result for isotropic planar situations: plane stress
and plane strain.
An arbitrary shift of the single compliance M33 may be effected by letting the two

compliances c12 and c66 vary as follows: (c12, c66) → (c′12, c
′
66), where

c′12 = c12 + 2λ, c′66 = c66 − λ. (4.32)

This implies that

M ′
33 =M33 + 3λ, (4.33)

while the element s12 = S1122 of the totally symmetric tensor remains unchanged
at s12 = 1

3(c12 + 2c66) (see equation (3.27)). We first consider the case of isotropic
plane stress, for which the in-plane stresses σαβ are the only ones present. Under
these circumstances the shifts in the plane stress bulk and shear compliances follow
from equations (4.32), (B 9) and (B 10) as

1
K(σ)′ =

1
K(σ) + 4λ,

1
µ′ =

1
µ

− 4λ. (4.34)

Under plane strain conditions, it follows from Appendix B and equation (B 7) specif-
ically that the isotropic plane strain moduli vary in the same manner, i.e.

1
K(ε)′ =

1
K(ε) + 4λ,

1
µ′ =

1
µ

− 4λ. (4.35)

Thus, the shift in M33 corresponds to equal and opposite shifts in the planar bulk
and shear compliances. The shift parameter λ may, according to equation (4.31), be
an affine function of the planar coordinates:

λ = b0 + b1x1 + b2x2. (4.36)

This is precisely the result of Dundurs & Markenscoff (1993), which generalized the
CLM theorem: that planar stress is invariant to this type of arbitrary affine shift in
compliance.
The consequences of this have been studied repeatedly and in detail, and there is

no need to reproduce the results here. One can appreciate the significance of the CLM
theorem by noting that, for instance, in isotropic plane stress, the Young’s modulus of
concern is E, where 1/E = 3s12, which is a constant (see equation (3.27)). Hence, the
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Young’s modulus E is unchanged under the λ shift. The in-plane Poisson’s ratio does
however, change, according to ν′ = −c′12/(3s12), or ν′ = ν − 2λE. This implies, for
example (Cherkaev et al . 1992), that the effective Young’s modulus of a thin plate
with holes and cracks is independent of the Poisson’s ratio of the plate material,
because no matter how we vary the latter, the ratio between the stress and E are
fixed, and hence the uniaxial strain averaged over the plate is also fixed.
The present three-dimensional analysis shows that there is an extended form of

the CLM theorem applicable to states of planar stress of the form (4.31) subject only
to the additional constraint (4.23) on two of the remaining three stress components.

(ii) Example 1(b)

In this case, from equation (4.30), the stress and compliances are such that

(b) σαβ = (Gαβ(x1, x2) + x3Hαβ(x1, x2))F (x3), M33 = b0/F (x3). (4.37)

This indicates that the CLM theorem extends to non-affine shifts of M33 for states
of planar stress that are affine in the third coordinate. Again, the two out-of-plane
stresses σ13 and σ23 must satisfy the constraint (4.23).

(c) Example 2

Let us first consider other possible shifts in the components of M , of affine form

Mij =M
(0)
ij +M (1)

ijkxk, (4.38)

where the second- and third-order tensors M (0) and M (1) are constants. The sym-
metry of M implies that M (0) is symmetric and M (1)

ijk = M
(1)
jik . Equation (4.17)

becomes, for this type of shift,

σij,klM
(0)
kl + σij,k(M

(1)
kll +M

(1)
lkl )− σik,lM

(1)
jlk − σjk,lM

(1)
ilk = 0. (4.39)

In order to make progress we assume that the stress is two dimensional: σ =
σ(x1, x2), and only consider out-of-plane elements of M , that is Mαβ = 0, or

Mij =Mi3δj3 +M3jδi3, Mij =Mji. (4.40)

Therefore, equation (4.39) becomes

σij,α(M
(1)
α33 +M

(1)
3α3)− δ3jσik,αM

(1)
3αk − δ3iσjk,αM

(1)
3αk = 0. (4.41)

This holds generally only if

M
(1)
3αk =M

(1)
α3k = 0. (4.42)

In summary, the affine shifts are limited to the diagonal elements of M , i.e. M33,
but Mα3 must be constant.
Based on these findings, we therefore examine in greater detail the constant off-

diagonal shift

Mij =M23(δi2δj3 + δi3δj2), (4.43)
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for which

N =M23


2σ23 −σ13 −σ12

−σ13 0 σ11
−σ12 σ11 0


 . (4.44)

In this case we make the assumptions (i) that all the stresses appearing in (4.44) are
independent of x3; and (ii) that M23 is constant. We then find that the components
(RotN)αβ vanish, while the remaining components are

(RotN)13 = −M23(σ11,1 + σ12,2),2, (4.45)
(RotN)23 =M23(σ11,1 + σ12,2),1, (4.46)
(RotN)33 = −2M23 (σ31,1 + σ32,2),2. (4.47)

The first two of these vanish by virtue of the equilibrium equations. However, we must
make the additional assumption that σ33 is also independent of x3 if (RotN)33 is to
vanish.
Note that in order to effect the shift (4.43), all of the stresses except σ22 must

be independent of the third direction. This is slightly different from the situation
for example 1, where constant and affine shifts of the diagonal element M33 can be
achieved when all stresses except σ33 have two-dimensional dependence.
In summary, by combining example 1 for M33 with example 2 for M23 and the

similar shift M13, it is clear that the CLM result may be generalized as follows.

Result 4.1. Any shift of the form M → M ′, where

M ′ = M +


0 0 α
0 0 β
α β λ


 , (4.48)

and the remaining components of the compliance are fixed, will leave two-dimensional
stress fields, σ(x1, x2), unchanged for arbitrary constants α, β and λ.

(d) Plane strain

It is useful to make the connection between the general three-dimensional shift
(4.48) and the CLM theorem for planar elasticity. In particular, we examine the rele-
vance of the former to plane strain. Thus, we consider translation of the compliances
from those of an orthotropic material to equivalent triclinic materials by shifting
Mi3 =M3i, i = 1, 2, 3. This generates a material with

c15 = c16 = c24 = c26 = c34 = c35 = c36 = c45 = 0, (4.49)

and the in-plane stress–strain relation follows from equation (B 6):


ε11ε22
ε12


 =




c11 − c213
c33

− c214
c44

c12 − c13c23
c33

−c14c46
c44

c12 − c13c23
c33

c22 − c223
c33

− c225
c55

−c25c56
c55

−c14c46
c44

−c25c56
c55

c66 − c246
c44

− c256
c55





 σ11
σ22
2σ12


 . (4.50)

Proc. R. Soc. Lond. A (1999)



4110 A. N. Norris

Now let cIJ represent the base compliances and c′IJ the shifted compliances, so
that

c′14 = 2a, c′56 = −a, (4.51)

c′25 = 2b, c′46 = −b, (4.52)

c′66 = c66 + c, c′12 = c12 − 2c, (4.53)

c′13 = c13, c′23 = c23, (4.54)

c′II = cII , I = 1, 2, . . . , 5 (no sum), (4.55)

with the remaining elements zero. The shifts in the compliances are chosen so that the
elements of the totally symmetric tensor Sijkl are unchanged (see equation (3.27)).
Thus,

M23 = 3a, M13 = 3b, M33 = c66 − c12 + 3c. (4.56)

Substituting cIJ → c′IJ in equation (4.50) and evaluating them according to the
above prescription, gives the effective in-plane compliance matrix

[C(eff)] = [C(0)] + [C(shift)], (4.57)

where

[C(0)] =


c11 c12 c16
c12 c22 c26
c16 c26 c66


 , (4.58)

and the shift of the compliance is

[C(shift)] =


−4a2/c44 −2c 2ab/c44

−2c −4b2/c55 2ab/c55
2ab/c44 2ab/c55 c− a2/c55 − b2/c44


 . (4.59)

The single compatibility equation for plane strain, (B 2), implies, using (4.59),

a2
(
σ11

c44

)
,22
+ b2

(
σ22

c55

)
,11

−
[(
a2

c55
+
b2

c44

)
σ12

]
,12

+ ab
[(
σ11

c44

)
,12

−
(
σ12

c44

)
,22
+

(
σ22

c55

)
,12

−
(
σ12

c55

)
,11

]

+ 1
2c(σ11,11 + σ22,22 + 2σ12,12) = 0. (4.60)

The term involving c is identically zero on account of the equilibrium equations. The
remainder can be analysed by introducing the Airy stress function

σ11 = φ,22, σ22 = φ,11, σ12 = −φ,12. (4.61)

Assume, for the sake of simplicity, that c44 and c55 are constants, then (4.60) becomes

b2

c55
φ,1111 +

a2

c44
φ,2222 +

(
a2

c55
+
b2

c44

)
φ,1122 +

2ab
c55
φ,1112 +

2ab
c44
φ,1222 = 0. (4.62)

This cannot be satisfied for arbitrary constants a, b, c44 and c55, and we therefore
conclude the following.
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Result 4.2. The stress invariant shifts associated with M13 and M23 are not
compatible with plane strain in general. In other words, the M13 and M23 shifts
leave the two-dimensional state of stress invariant, but they do not maintain a state
of plane strain.

This is not surprising when one considers that the invariance was based upon
the condition that the stress is everywhere maintained at a fixed value. The strain,
on the other hand, is not fixed and will generally vary, although it still satisfies the
compatibility conditions. In this case the variation in strain destroys the plane-strain
configuration. The deviation from plane strain can be seen from (B3), which gives
for the out-of-plane strains

ε13 = 2bσ22 − 2aσ12, ε23 = 2aσ11 − 2bσ12, ε33 = 0. (4.63)

(e) Example 3

Consider a constant shift of M , for which the basic equation (4.17) reduces to

Mklσij,kl = 0 ⇔ M : ∇∇σ = 0. (4.64)

We have already investigated solution pairs for (M ,σ) in rectangular coordinates,
now let us consider a cylindrical configuration. The operator M : ∇∇ takes the
following form in cylindrical coordinates, (r, θ, z) = (

√
x2

1 + x
2
2, arctan(x2/x1), x3):

Mklg,kl =Mrrg,rr +Mθθ

(
g,θθ

r2
+
g,r
r

)
+Mzzg,zz

+ 2Mrθ

(
g,rθ

r
− g,θ
r2

)
+ 2Mrzg,rz + 2Mθz

g,θz

r
. (4.65)

The previously obtained results for planar elasticity are immediately apparent from
this expression: let σ = σ(r, θ), then the stress is invariant to arbitrary changes of
Mzz, Mrz and Mθz.
Alternatively, consider a state of stress that is axially symmetric, that is, indepen-

dent of θ, σ = σ(r, z). Then equation (4.64) will be automatically satisfied by any
shifts in the moduliMrθ andMθz. Hence, axisymmetric states of stress are invariant
to changes in these components of M . Note that the set of admissible compliances
does not include Mθθ.

(f ) Comments

Finally, we comment on other admissible solutions to the general compatibility
conditions for the antisymmetric compliance. Equation (4.3) means that any addi-
tional compliances which are such that the second-order tensor N is constant or
affine will be compatible. More generally, any N of the following form will suffice:

N = 1
2(∇v + (∇v)T), (4.66)

where v represents an arbitrary vector field. By compatible we mean that the addi-
tional compliance does not effect the stress solution. Thus, exactly the same stress
will exist throughout the body, and the same tractions will exist on the surface of
the body.
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One possible set of compliances is generated by requiring that M is constrained
to vary with the stress such that

P (σ)M = 1
2(∇v + (∇v)T). (4.67)

Based upon equation (4.67) and the symmetry P−1
ijkl = P

−1
ijlk, we have

M = P −1(σ)∇v.

Substituting for P −1 from equation (3.26) gives the explicit expression for the general
form of the redundant M :

Mij =
1

2detσ
[σikσjl(vk,l + vl,k)− σijσklvk,l]. (4.68)

Consider the case of the single shift of the element M33 (example 1). The in-plane
stresses are self-equilibrated (see equation (4.22)) in this case, and can therefore
be represented by the Airy stress function φ. By comparing the right-hand side of
equation (4.67) with the explicit expression (4.19) for N = P (σ)M , and also using
equation (4.61), we see that the vector v can be identified as

v = −M33∇φ. (4.69)

This alternative view illustrates that the general stress-dependent shift can repro-
duce the constant or stress-independent shift if the vector v is chosen appropriately.
A much broader class of shifts is obtained by taking other choices for v. The con-
sequences of this freedom are not immediately evident but perhaps deserve further
study.

5. Compatibility for totally symmetric compliance tensors

We now consider totally symmetric shifts in the elasticity C(1)
ijkl. We have seen that

the original CLM result is concerned with the antisymmetric part of the compli-
ance, therefore it would be particularly interesting if there are analogous properties
associated with the symmetric part.
Referring to equation (3.28), it is clear that the simplest case is the scalar H, for

which C(1)
ijkl = δijδkl + δikδjl + δilδjk and C(1)σ = 2σ+ σI. Equation (2.7) therefore

becomes, after some simplification,

2Rotσ +∇∇σ − I∇2σ = 0. (5.1)

It is not obvious whether there are any general states of stress under which this set of
equations can be satisfied identically, apart from trivial examples, such as σ = const.
Next, consider the contribution from the harmonic second-order tensor Hij , for

which

C
(1)
ijkl = δijHkl + δikHjl + δilHjk + δjkHil + δjlHik + δklHij . (5.2)

In this case, equation (2.7) implies that

Rot(I(H : σ) + σH + 2σ · H + 2H · σ) = 0. (5.3)
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We then use the identity (3.35) for the tensor in equation (5.3), which gives the
expanded form of (5.3):

0 = δij [∇2(σH + 5σ : H)− (σHkl),kl − 4(σkmHml),kl]

− ∇2(σHij + 2σikHkj + 2σjkHki)− (σH + 5σ : H),ij
+ (σHik + 2σimHmk + 2Himσmk),kj + (σHjk + 2σjmHmk + 2Hjmσmk),ki.

(5.4)

It is not apparent from this rather complicated expression whether there are any
generic shifts and associated stress states corresponding to the harmonic tensor H.
Finally, the compatibility conditions for the nine-dimensional harmonic tensor

Hijkl of equation (3.28) becomes

eiprejqs(Hrsklσkl),pq = 0. (5.5)

This is essentially the same as the starting point, equation (2.5), except that Hijkl

contains fewer elements. However, based on the obvious generality of equation (5.5)
we will not pursue this line of investigation further here. This completes the exami-
nation of the admissibility of the various components of the elastic compliance Cijkl.

6. Conclusion

We have examined the possible invariance of the elastic stress field under changes, or
shifts, in the compliance tensor. Several individual parts of the fourth-order elasticity
tensor have been considered separately, following the partition scheme proposed by
Backus (1970). This partition is independent of the existence, or lack thereof, of
any underlying material symmetry in the material. We have found that the six-
dimensional antisymmetric part of the elastic compliance is associated with two-
dimensional and quasi-two-dimensional stress states. These include the previously
discussed planar states of stress for which the CLM theorem was originally obtained,
and subsequently generalized by Dundurs & Markenscoff (1993).
The present results illustrate clearly the position of the planar CLM theorem

within the three-dimensional theory of elasticity. They also provide the means to
generate more general states of stress invariance, with possible applications to esti-
mating the effective properties of composite materials.

Appendix A. The inverse of an antisymmetric elasticity tensor

We prove that the inverse of the fourth-order antisymmetric tensor P (π) of equa-
tion (3.21) is

P−1
ijkl(π) =

1
2 detπ

(πikπjl + πilπjk − πijπkl). (A 1)

We must verify that this satisfies the required relations for the inverse of an elasticity
tensor:

P−1
ijklPklmn = PijklP

−1
klmn = Iijkl. (A 2)
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Thus, from (3.21),

Pijpq
1

2 detπ
(πpkπql + πplπqk − πpqπkl) = π−1

ij πkl +
1

2detπ
Pijpq[πpkπql + πqkπpl],

(A 3)

where we have used eikmejlnπklπmn = 2(detπ)π−1
ij . In general, π can be expressed as

π =
∑

t

λte
(t) ⊗ e(t), (A 4)

where {e(1), e(2), e(3)} form an orthonormal triad, such that

eijk e
(t)
j e

(u)
k = estue

(s)
i , detπ = λ1λ2λ3. (A 5)

Thus,

Pijpq[πpkπql + πqkπpl] = −
∑
t,u,v

λtλuλvestuertve
(s)
i e

(r)
j (e(u)

k e
(v)
l + e(u)

l e
(v)
k ). (A 6)

Noting that

1
detπ

estuλtλuλv = estu
λv

λs
(no sum) (A 7)

and hence that λt does not appear in the right member of (A 6), we may therefore
use the identity

estuertv = δsrδuv − δsvδur (A 8)

to get

1
2 detπ

Pijpq[πpkπql + πqkπpl]

=
1
2

∑
s,u

(e(s)i e
(s)
l e

(u)
k e

(u)
j + e(s)j e

(s)
l e

(u)
k e

(u)
i )−

∑
s,u

λu

λs
e
(s)
i e

(s)
j e

(u)
k e

(u)
l . (A 9)

We can identify the first and second sums in the right member as Iijkl and π−1
ij πkl,

respectively. Hence, equation (A 3) is exactly the identity (A 2).
Finally, it is clear that the inverse of P does not exist if detπ vanishes. This

completes the proof of (A 1).

Appendix B. Two-dimensional elasticity, plane strain
and plane stress

Two-dimensional elastic configurations possess stress and strain that depend upon
two spatial coordinates, say x1 and x2. The displacement u = (u1, u2, u3) is also a
function of these two coordinates and is independent of x3. Thus, ε33 ≡ u3,3 = 0 and
ε13 = 1

2u3,1, ε23 = 1
2u3,2. We therefore have the two constraints

ε33 = 0, ε13,2 − ε23,1 = 0. (B 1)
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Of the six compatibility relations in equation (2.3), only one provides an additional
non-trivial condition:

2ε12,12 − ε11,22 − ε22,11 = 0. (B 2)

Two-dimensional elasticity therefore imposes three constraints on the strains: (B 1)
and (B 2).
We note that the out-of-plane strains are given by

ε13ε23
ε33


 =


c15 c25 c56
c14 c24 c46
c13 c23 c36





 σ11
σ22
2σ12


+


c55 c45 c35
c45 c44 c34
c35 c34 c33





2σ13
2σ23
σ33


 . (B 3)

The constraints (B 1) and (B 2) are not sufficient to express, for example, the out-
of-plane stresses σi3, i = 1, 2, 3, in terms of the in-plane stresses σαβ.
In plane strain configurations the displacement in the out-of-plane direction is

zero, u3 = 0, the in-plane displacements are independent of x3 and consequently

εi3 = 0, i = 1, 2, 3. (B 4)

These three conditions imply that the in-plane and out-of-plane stress components
are related by equations (B 3) and (B 4). The remaining stress–strain relations are

ε11ε22
ε12


 =


c11 c12 c16
c12 c22 c26
c16 c26 c66





 σ11
σ22
2σ12


+


c15 c14 c13
c25 c24 c23
c56 c46 c36





2σ13
2σ23
σ33


 . (B 5)

Eliminating the out-of-plane stresses, we obtain the in-plane stress–strain relations:

ε11ε22
ε12


 =


c11 c12 c16
c12 c22 c26
c16 c26 c66





 σ11
σ22
2σ12




−

c15 c14 c13
c25 c24 c23
c56 c46 c36





c55 c45 c35
c45 c44 c34
c35 c34 c33




−1 
c15 c25 c56
c14 c24 c46
c13 c23 c36





 σ11
σ22
2σ12


 . (B 6)

A plane-strain bulk modulus may be defined by application of the hydrostatic
stress σαβ = pδαβ, yielding εαα = p/K(ε). Hence, for an orthotropic material,

1
K(ε) = c11 + c22 + 2c12 − (c13 + c23)2

c33
. (B 7)

In the isotropic case the only non-zero compliances of relevance are

c11 =
1
E
, c12 = − ν

E
, c66 =

(1 + ν)
2E

, (B 8)

and c33 = c11, c13 = c23 = c12. The isotropic plane-strain bulk modulus is therefore

1
K(ε) =

2(1 + ν)(1− 2ν)
E

.

The plane-strain shear modulus is just the usual three-dimensional modulus:

µ = 1/(4c66). (B 9)
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In plane stress we have σi3 = 0, for i = 1, 2, 3, and therefore only Cαβγδ are
important. The isotropic plane-stress bulk modulus is defined by εαα = σαα/(2K(σ)),
and so

1/K(σ) = 2c11 + 2c12, (B 10)

or K(σ) = E/[2(1 − ν)]. The isotropic plane-stress shear modulus is again given by
equation (B 9), and is therefore the same as the usual shear modulus.
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