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A general solution is developed which describes the acoustic and dynamic structural
response generated at the junction of two curved plates subject to unilateral fluid
loading. The plates are modelled by two-dimensional thin-shell theory, and the solu-
tion is found by applying the Wiener–Hopf technique to the dual integral equations
for the unknown pressure on the plates. A simple method is presented for evaluating
the Wiener–Hopf split functions in semi-analytic form. The general solution is found
by expressing the pressure transform in terms of a polynomial function whose coef-
ficients are determined by the conditions at the joint. Here we consider welded and
clamped junctions, either of which requires four unknown coefficients to be deter-
mined. Several limiting cases are examined including the practically important ones
where either one or both plates are flat. Various diffraction coefficients associated
with the fluid–structure interaction are studied and numerical predictions are pre-
sented for the magnitudes of the diffracted acoustic and structural waves. Energy
partition among the various wave types is also investigated. It is found that even
the small curvature effects considered here can lead to significant coupling between
flexural and longitudinal structural waves.

Keywords: structural acoustics; Wiener–Hopf technique; acoustic diffraction;
flexural wave; elastic shells

1. Introduction

We consider two curved plates, or shells, loaded by a compressible fluid on one side
and joined together so that their tangent is continuous along the line of contact. Each
shell may have distinct inertial, extensional and flexural characteristics, in addition
to the curvature, which can also be discontinuous at the junction. For simplicity we
limit this study to the two-dimensional configuration of figure 1. Our objective is a
description of the diffraction from the junction, whereby different wave species are
generated and scattered into the fluid and the plates. The types of wave interaction
include conversion from acoustic to flexural, extensional and acoustic, and the reverse
mechanisms. The excitation is an incident structural wave (flexural or longitudinal)
or an acoustic plane wave. This paper presents a systematic analytical procedure for
their investigation, and provides quantitative predictions of the interactions.

The elastic shells are modelled by two-dimensional thin-shell equations which
include explicit coupling between extensional (in-surface) motion and flexural (trans-
verse) motion. Thin-shell theories are well developed and have been used to study the
response of fluid-loaded finite bodies, such as the uniform cylinder and sphere. These
examples allow of solutions via separable coordinates, whereas finite shell structures
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Diffraction by the junction of two curved plates 1423

with discontinuities require brute force numerical treatment. Realistic ocean-going
structures are composed of piecewise homogeneous sections, or plates, joined along
well-defined lines of contact. Individual waves can be identified on large structures,
and the question arises as to how such waves interact with the junctions, and how
they generate further wave types. Very little is known for arbitrarily curved plates
under fluid loading. Two exceptions are the studies by Brazier-Smith (1987) and Nor-
ris & Wickham (1995) who considered flexural wave incidence upon the junction of
two dissimilar flat plates. The present study contains the flat plate case as a limit in
which the coupling between extensional and flexural modes disappears, and only the
flexural waves are coupled to the fluid. This leads to a great deal of simplification,
in principle, since one can immediately disregard extensional effects. Both studies
mentioned presented many useful numerical results and conclusions; in particular,
they compared the sensitivity of the acoustic scattering to the type of edge condi-
tions at the junction. This sensitivity to join conditions was also discussed by Wu
& Zhu (1995a, b) who extended the work of Brazier-Smith (1987) to include mean
flow of the fluid. We restrict attention here to the cases of ‘welded’ and ‘clamped’
contact with zero mean flow, although our methodology is easily generalized to other
contact conditions. Several authors have discussed diffraction from a surface com-
posed of two semi-infinite impedance strips (Clemmow 1953; Heins & Feshbach 1954;
Kay 1959; Senior 1952). This is a further special limiting case of the Brazier-Smith
problem, when both plates have vanishing bending stiffnesses. The plates then have
only inertial reactions, and the diffraction problem is relatively simple. A complete
analysis of this limit is given by Norris & Rebinsky (1995), who also discuss how it
can be used to estimate the acoustic-to-extensional diffraction. Rebinsky & Norris
(1995a) have also extended this study to include acoustic-to-extensional and shear
diffraction.

Unlike the previously mentioned solutions (Brazier-Smith 1987; Senior 1952; etc.),
the junction of two distinctly curved shells presents, in general, a non-separable
geometry for the acoustic wave equation. We circumvent this difficulty by ‘flattening’
the plates, or more precisely, the equations, onto the line tangent at the join. This is
a reasonable procedure as long as the radii of curvature are large in comparison to
the longest wavelength in the problem. Further motivation for the flattening is given
in § 3. This still leaves us with a fairly formidable mixed boundary value problem to
solve because of the coupling between flexural and extensional motion of the curved
plates. The general procedure for attack is to apply Fourier transforms, leading to a
Wiener–Hopf problem in the transform parameter. One of the main contributions of
this paper is that we provide a systematic procedure to deal with high-order coupled
systems of equations which reduce to Wiener–Hopf form. In fact, as we show in
§ 5, the formal solution is easily found, but the hard work lies in applying the edge
conditions. We give a general method for finding the relevant Wiener–Hopf split
functions, which again is sufficiently general to cope with far more sophisticated
shell theories. Explicit asymptotic forms are obtained for the split functions, which
can then be used to reduce the edge conditions to a system of linear equations.

The presentation proceeds in the following sequence, starting with the theory for
fluid-loaded curved plates in § 2. Then, in § 3, we apply a ‘flattening’ approximation
to yield a well-defined boundary value problem for a fluid half-space with mixed
boundary conditions on a line. Some dispersion functions and reflection coefficients
are defined in § 4, after which the formal solution to the boundary value problem
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is easily derived and stated in § 5. Two major hurdles must be surmounted on the
way to the solution: first an analytic factorization of the quotient of the dispersion
functions must be obtained, and then the join conditions must be satisfied. The
former is dealt with in detail in Appendix A, and the join conditions are discussed
in § 6. Satisfaction of these conditions uniquely determines the form of the unknown
function in the general solution, hence completing the problem. Several limiting cases
are discussed in § 7, especially the degenerate limiting situations of one plate flat and
of both plates flat. In § 8, we discuss and illustrate the various wave diffraction
coefficients along with an examination of energy partition and conservation.

2. General theory

The curved plates of figure 1 may have different densities, elastic properties, thick-
nesses and curvatures, but they are joined such that the tangent to the surface is
continuous across the join. The behaviour of each plate may be described by the
dynamic equations for a two-dimensional shell. Let v and w be the in-surface and
normal (into the fluid) displacements, and p the total acoustic pressure in the fluid.
We consider time-harmonic motion, with e−iωt understood but suppressed. The shell
equations of motion are

τ,s +mω2v = 0, (2.1 a)
τ

b
+Bw,ssss−mω2w = −p, on S, (2.1 b)

where s is the arc-length and the pressure p is evaluated at the shell S. The shell
parameters, b, m, B and C, are constant on each shell, where b is the radius of
curvature, m the mass per unit area, B the bending stiffness and C is the exten-
sional stiffness. The latter enters into the constitutive relation for τ , the tensile or
longitudinal stress in the plate:

τ = C(v,s +w/b). (2.2)

The quantities m, B and C may be related to the intrinsic plate properties; thus,
m = ρh, B = Eh3/12(1 − ν2), and C = Eh/(1 − ν2), where h, ρ, E and ν are
the thickness, density, Young’s modulus and Poisson ratio, respectively. The shell
equations (2.1) are supplemented by the equation of kinematic continuity between
the plate and fluid,

ρfω
2w =

∂p

∂n
, on S, (2.3)

and the Helmholtz equation in the fluid region Vf ,

∇2p+ k2
f p = 0, in Vf . (2.4)

Here, ρf is the fluid density and n is the normal to the surface into the fluid, kf = ω/cf
is the acoustic wave number and cf is the fluid sound speed.

We now reduce the three equations on the surface S, given by equations (2.1) and
(2.3), to a single boundary condition. First, define the flexural and longitudinal wave
numbers, κ and k, and the impedance length, a, by

κ4 =
m

B
ω2, k2 =

m

C
ω2, a =

m

ρf
. (2.5)
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plate 1
vacuum

plate 2
s

x

y

fluid, y > 0

Figure 1. Geometry of the two curved plate structure.

The impedance length is related to the null frequency introduced by Crighton et
al . (1992), defined as the frequency at which kfa = 1. The null frequency serves
as a useful frequency threshold distinguishing the transition from a low-frequency
pressure-release regime, to higher frequencies where the plate acts in a more rigid
manner. Differentiate the in-surface equation (2.1 a) and use (2.2) to eliminate v, so
that the equilibrium condition for in-surface forces becomes

τ,ss +k2τ =
mω2

b
w. (2.6)

The in-surface displacement, now considered as a secondary variable, is
v = −(mω2)−1τ,s. (2.7)

Next, eliminate τ from (2.1 b) by operating on the equation with (∂2
s + k2), yielding

mω2

b2
w + (∂2

s + k2)(Bw,ssss−mω2)w + (∂2
s + k2)p = 0, on S. (2.8)

Using (2.3) and the definitions (2.5) reduces the boundary condition to a single
equation for the pressure:

Lp = 0, on S, (2.9)
where the boundary operator is

L ≡ (∂2
s + k2) + a[(κ−4∂4

s − 1)(∂2
s + k2) + b−2]∂n. (2.10)

Each shell is therefore characterized by the lengths a and b, and the wave numbers
k and κ, while the fluid is characterized by its wave number kf . One could introduce
non-dimensional parameters relative to one of these lengths, preferably k−1

f , but we
choose to maintain the parameters as dimensional. The following non-dimensional
parameters for each shell will arise in the sequel where they are explained in more
detail: the curvature/flatness relative to the fluid wavelength given by kfb � 1, the
ring frequency, which is the frequency defined by kb = 1, the coincidence frequency,
defined by kf = κ, and the previously defined null frequency, at which kfa = 1.
Of these various non-dimensional frequencies we assume that kfb is large, while the
remaining parameters can be of any size.

3. Statement of the diffraction problem

A two-dimensional section of a curved shell is shown in figure 1, with fluid above
the shell and occupying the half-space y > 0. The surface of the shell is described
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locally by y + x2/2b ≈ 0 near the origin, and the arc length is s = x+ x3/6b2 + . . . ,
or alternatively, x = s− s3/6b2 + . . . . Derivatives along the surface may be replaced
by derivatives along the tangent x-direction using ∂s = (1−x2/2b2 + . . . )∂x. Similar
approximations imply ∂n = (1−x2/2b2 + . . . )∂y+(x/b+ . . . )∂x. We now assume that
b far exceeds the fluid wavelength, or equivalently, that ε = (kfb)−1 is asymptotically
small, ε� 1. Consider a neighbourhood B of the origin in which kfx = O(ε−λ), where
0 < λ < 1

2 . Within B we have x/b = O(δ), where δ = ε1−λ, and hence the partial
derivatives ∂s and ∂n can be asymptotically approximated as ∂s = (1+O(δ2))∂x and
∂n = ∂y+O(δ). The boundary operator of equation (2.10) becomes L = (1+O(δ))L̄,
where L̄ is the same as L but with the tangential and normal derivatives replaced with
x- and y-derivatives. Furthermore, to within the same asymptotic approximation, the
operator can be defined on y = 0 in the region B. The same arguments generalize to
the case of the two shells joined at x = 0. Thus, we let

ε = max
(

1
kfb1,2

)
, (3.1)

and again it is explicitly assumed that ε� 1. The boundary operators approximate
in the same way within the region B, and the continuity conditions for slope, bending
moment, etc., approximate accordingly. This local approximation procedure, which
is based upon the assumption that shell curvature is much less than the fluid wave
number, may be called a shell-flattening approximation. It does not, however, reduce
the equations to those of a flat plate under fluid loading, because we still retain the
curvature term 1/b2 in the ‘flattened’ operator L̄. This term, which admittedly is
small, is the only mechanism by which in-surface longitudinal waves can be excited
in the shell or radiate into the fluid. Therefore, it is important to retain this term in
the equations in order to obtain a quantitative prediction for the mode conversions
to and from such membrane waves.

Finally, we note that incident wave fields may be locally approximated in the
same manner, in that their values on S can be replaced by their equivalent values
on the tangent plane. The relative error is of order ε1−2λ � 1 for a plane acoustic
wave incident from the fluid with spatial dependence of the form eikf(x cos θ0−y sin θ0),
where θ0 is the direction of propagation. This can be seen by expanding the y-phase
dependence. Similarly, we can approximate an incident plate wave with dependence
like eiks on S. Assuming that the wave number is of the same order as the fluid
wave number, which is certainly true of (longitudinal membrane) waves, then a sim-
ilar analysis for the y-dependence implies that the relative error in the flattening
approximation is again of order ε1−2λ.

The diffraction boundary value problem defined on the joined, curved surface S can
therefore be mapped onto an equivalent problem on the tangent plane, as long as the
preceding asymptotic reasoning is valid. We assume this to be so for the remainder
of the paper, in which case the ‘flattened’ boundary operator will be denoted by L,
dropping the overbar. In summary, we need to solve the Helmholtz equation (2.4) in
the fluid, y > 0, subject to the boundary conditions

L1p = 0, y = 0, x < 0,
L2p = 0, y = 0, x > 0,

}
(3.2)

where

Lj ≡ (∂2
x + k2

j ) + aj [(κ−4
j ∂4

x − 1)(∂2
x + k2

j ) + b−2
j ]∂y, j = 1, 2. (3.3)
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Im

Re

ξ

ξ

εS

-kf

kf

Figure 2. The complex ξ-plane, the branch cuts for γ(ξ), and the shaded region S = H+ ∩H−.
Note that H+ = S ∪ Im ξ > 0 and H− = S ∪ Im ξ < 0.

We must also satisfy the conditions at the junction x = 0 of the two curved plates.
By definition, the following parameters are continuous across the joint of two plates
in welded contact: w, w,x, Bw,xx, Bw,xxx, τ and v, corresponding to normal dis-
placement, rotation, bending moment, shear force, longitudinal force and in-plane
displacement. The condition on the in-plane displacement can be expressed in terms
of τ,x by using (2.7). If the curved plates are clamped at the junction x = 0 then the
normal displacement, rotation and in-plane displacement (w,w,x, v) vanish at each
plate termination.

We will also consider simpler limiting cases of the general equations with fewer
junction conditions. The scattering solutions developed in the remainder of the paper
provide formally exact answers to the problems posed. They do not take further
account of the disparity in the physical parameters, used to ‘flatten’ the boundary
conditions, nor do they take advantage of possible asymptotic approximations in
terms of small parameters.

4. The dispersion relation and reflection by a homogeneous plate

(a) Dispersion relation

The dispersion function D associated with the boundary condition operator L is
defined by

Leiξx−γy = eiξx−γyD(ξ), (4.1)
where the radical

γ(ξ) = (ξ2 − k2
f )1/2 (4.2)

is defined as an analytic function in the complex ξ-plane cut as shown in figure 2 so
that its imaginary part is non-negative and γ(0) = −ikf . Its values along the real
axis are

γ(ξ) = −i
√
k2

f − ξ2, for |ξ| < kf
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and

γ(ξ) =
√
ξ2 − k2

f , for |ξ| > kf .

We have selected this branch for γ so that Fourier superpositions of solutions of the
form used in (4.1) are outgoing at infinity. Note also that, for later convenience, we
have given kf a small positive imaginary part, i.e. kf = |kf |eiε, 0 < ε � 1. We shall
further assume that D(ξ) 6= 0, ξ ∈ H+ ∩H−, where H± are upper and lower halves
of the complex ξ-plane as shown in figure 2.

The analysis of this paper applies in general to any boundary condition of the form
(3.2) with associated dispersion function

D(ξ) = U(ξ)− γ(ξ)V (ξ). (4.3)

The functions U and V are polynomials in ξ2 with real-valued coefficients, and hence
have reflection symmetry in the origin of the complex ξ-plane, i.e. U(−ξ) = U(ξ)
and V (−ξ) = V (ξ). For the problem at hand,

U(ξ) = k2 − ξ2, V (ξ) = U(ξ)V̂ (ξ) + a/b2, (4.4)

where

V̂ (ξ) = a(κ−4ξ4 − 1). (4.5)

Note that U and V are not necessarily irreducible, in the sense that they possess
no common polynomial factors. However, U(ξ) is a common factor in the important
special case of a flat plate, i.e. when 1/b = 0.

The associated function D̃(ξ) is defined by

Leiξx+γy = eiξx+γyD̃(ξ), (4.6)

and hence

D̃(ξ) = U(ξ) + γ(ξ)V (ξ). (4.7)

Thus, D is defined for outgoing wave solutions, and D̃ for ingoing solutions.

(b) Reflection coefficients

Now suppose a plane wave with incident x-component of slowness ξ0 impinges on
a homogeneous boundary y = 0 where the acoustic pressure satisfies either of (3.2)
for all x, then the total field consisting of incident plus reflected waves is

p(0)(x, y) = eiξ0x+γ(ξ0)y +R(ξ0)eiξ0x−γ(ξ0)y, (4.8)

where the reflection coefficient

R(ξ) = −D̃(ξ)
D(ξ)

= −U(ξ) + γ(ξ)V (ξ)
U(ξ)− γ(ξ)V (ξ)

. (4.9)

Alternatively, we may write this as

R(ξ) = − exp[2 tanh−1(γV/U)]. (4.10)
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Thus, R(−ξ) = R(ξ) is complex valued and of unit magnitude for −kf < ξ < kf , and
R is real for ξ real and ξ2 > k2

f . If the degree of γV equals or exceeds that of U ,
which is true for the problem under consideration, then R(±∞) = 1. Combined with
R(±kf) = −1, this means that there is at least one pair of roots for R(ξ) = 0 located
on the real axis with |ξ| > kf . There may also exist poles of R on the real axis such
that |ξ| > kf , which are associated with fluid-loaded shell waves, i.e. where D(ξ) = 0,
and these are discussed below. The reflection coefficient for a plane acoustic wave
incident at angle θ from the surface is

R(θ) = R(kf cos θ), (4.11)

and hence |R(θ)| = 1 for real θ.
The reflection coefficients, R1(ξ) and R2(ξ), of the individual plates are generally

distinct, but they coincide for certain values of the incident wave number. Note that

R1 −R2 =
2γP ∗

D1D2
, (4.12)

where P ∗ is the polynomial

P ∗(ξ) = U1(ξ)V2(ξ)− U2(ξ)V1(ξ). (4.13)

Hence, if ξ is a root of P ∗(ξ) = 0, while D1(ξ)D2(ξ) 6= 0, then R1(ξ) = R2(ξ),
and both plates reflect equally at such values. We will see that the roots of P ∗ play
a central role in the general solution. Further insight into the physical meaning of
these roots can be gained from Appendix C, which discusses a ‘sandwich’ structure
composed of two plates separated by a fluid layer.

If one of the plates is flat, plate 1 say, then ξ = k1 is a simultaneous zero of P ∗(ξ)
and D1(ξ), and R1(ξ) 6= R2(ξ) in this case. In fact, the flat plate reflection coefficient
is independent of the extensional properties, namely

R(ξ) = −1 + γV̂

1− γV̂ , flat plate. (4.14)

(c) Shell waves

Real roots (if any) of the shell dispersion relation

D(ξ) = 0 (4.15)

correspond to surface wave solutions that can propagate in the absence of any exter-
nal forcing. There are also complex roots, corresponding to ‘leaky’ waves (Crighton
1979). Two classes of shell waves may be usefully distinguished, flexural and longi-
tudinal, each of which is unambiguously defined on a flat plate in vacuo. They may
be characterized essentially as waves with shell motions which are predominantly
transverse, or in-surface, respectively. In the limiting case of the flat plate (1/b→ 0),
the root structure simplifies, because D then has the form D = (1 − γV̂ )U , where
V̂ is defined in (4.5). The dispersion relation for flexural waves on a fluid-loaded flat
plate is 1− γV̂ = 0, and its root structure has been the subject of much discussion
in the literature (see, for example, Crighton 1979). This dispersion relation admits
of a real root for subsonic flexural waves, which by their nature induce no radiation
in the far-field. Generally, we can expect that the flexural roots will be only slightly
perturbed from their flat plate values in the presence of shell curvature.
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The other possible roots for the flat plate come from U(ξ) = 0, or ξ = ±k, which
give extensional or longitudinal waves. In the absence of curvature these waves have
no transverse motion (w = 0) and are not coupled to the fluid. Non-zero curva-
ture causes the roots to be displaced slightly from the real axis, and they can be
asymptotically approximated by using the assumption that ε of (3.1) is small. The
procedure is described by Norris & Rebinsky (1995). The extensional waves are then
weakly coupled to the fluid, and are leaky because they are supersonic relative to
the acoustic sound speed.

In this paper we will be concerned mainly with frequencies below coincidence.
The flexural waves are subsonic and non-radiating but the longitudinal waves are
supersonic and leaky, although the ‘leakiness’ vanishes if the plate is flat. Crighton
(1979) has demonstrated quite convincingly that leaky waves have no relevance to
the radiated ‘far-field’ on a flat plate. However, if the waves are weakly leaky, then
they may have a large but finite domain of influence (Crighton 1979). This dis-
tinction is crucial in dealing with leaky longitudinal waves, because they are by
definition only weakly leaky. It can be shown that the loss tangent (ratio of imag-
inary to real parts of ξ) is of order ε2 (see Norris & Rebinsky 1994). At the same
time, the structure being considered usually has a global dimension of the order b, so
that the leaky wave can make many circumnavigations before the radiation damp-
ing has significantly drained its energy. Thus, the acoustic far-field ‘sees’ the leaky
wave from the entire structure, or more precisely, from those parts of the structure
it reaches. At the same time, the concept of ‘far-field’ is quite different here than
in the strictly two-dimensional setting considered by Crighton (1979). We assume
the junctions are parts of compact three-dimensional structures, and the far-field
is defined in the sense appropriate to this situation. Bearing these distinctions in
mind, it should be clear that the leaky longitudinal waves are of utmost significance
as far as the far-field is concerned. We note that the poles giving the leaky longi-
tudinal waves lie on the unphysical Riemann sheet, which is discussed further in
Appendix A.

5. Formal solution of the diffraction problem

(a) Incident and scattered fields

We now consider the scattering problem defined in § 3. First, we introduce the
scattered field p(s) according to

p(x, y) = p(0)(x, y) + p(s)(x, y), (5.1)

where p(0) is an incident wave solution with horizontal wave number ξ0 and satisfying
the boundary condition on x < 0. Thus, p(0) may be an incident plane acoustic wave
with ξ0 = kf cos θ0, where 0 < θ0 <

1
2π so that ξ0 lies in the upper half-plane, and

the amplitude of p(0) at the origin is then (1 +R1(θ0)) times the incident pressure
there. Or, it could be an incident-free shell wave, in which case ξ0 is a root of the
dispersion equation (4.15) with Re ξ0 > 0. The flat plate presents a special case, for,
if plate 1 is flat and the incident wave is an extensional (longitudinal) wave, then
the associated incident pressure is zero. We denote this as an FPL wave (flat plate,
longitudinal) and say more about it later. Thus, the incident field is assumed to be
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of the form

p(0)(x, y) = eiξ0x

 [eγ(ξ0)y +R1(ξ0)e−γ(ξ0)y], acoustic wave,
e−γ(ξ0)y, shell wave,
0, FPL wave.

(5.2)

We assume for FPL incidence that the incident stress, τ (0)(x), defined by analogy
with (5.1), is of the form

τ (0)(x) = eiξ0x, ξ0 ≡ k1, FPL wave. (5.3)

Without loss of generality, we may suppose that ξ0 lies in the upper half, H+, of
the complex ξ-plane described in figure 2. One could use spectral superposition to
consider more complicated incident wave fields, but we restrict attention in this paper
to plane acoustic and shell waves.

The boundary conditions (3.2) may then be written as

L1p
(s) = 0, x < 0,

L2p
(s) = −L2p

(0), x > 0.

}
(5.4)

We now introduce an outgoing Fourier superposition of plane waves for p(s) in the
form

p(s)(x, y) =
1

2π

∫ ∞
−∞

p̃(ξ)eiξx−γ(ξ)y dξ. (5.5)

This will satisfy (5.4) if the dual equations

1
2π

∫ ∞
−∞

D1(ξ)p̃(ξ)eiξx dξ = 0, x < 0, (5.6 a)

1
2π

∫ ∞
−∞

D2(ξ)p̃(ξ)eiξx dξ = −D2(ξ0)A0eiξ0x, x > 0, (5.6 b)

hold with

A0 =

 R1(ξ0)−R2(ξ0), acoustic wave,
1, shell wave,
(k2

2 − k2
1)/[b2D2(k1)], FPL wave,

(5.7)

where the FPL result follows from equations (2.1) and (5.3). Note that A0 = 0 for
plane wave incidence if ξ0 is a root of P ∗ = 0, (but not a root of D1D2 = 0, cf.
equation (4.13)), in which case the scattered pressure is identically zero. A0 also
vanishes for FPL incidence if k2 = k1, even when plate 2 is not flat (1/b2 6= 0). We
call this highly degenerate but physically significant configuration FPL∗. There is
still a scattered pressure in this case, and it turns out that the analysis is essentially
the same whether A0 vanishes or not. We discuss the FPL∗ case in more detail later
in § 7.

(b) General solution

It is evident that (5.6 a) is satisfied by writing

p̃(ξ) = F−(ξ)/D1(ξ), (5.8)
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where F− is any function analytic in H− and

F−(ξ) = O(ξ−1), ξ →∞, ξ ∈ H−. (5.9)

Substituting this ansatz into the second of (5.6) yields

1
2π

∫ ∞
−∞

D2(ξ)
D1(ξ)

F−(ξ)eiξx dξ = −D2(ξ0)A0eiξ0x, x > 0. (5.10)

Again by inspection, a particular solution of this equation is

F−(ξ) =
iA0D2(ξ0)
ξ − ξ0

K−(ξ)
K+(ξ0)

, (5.11)

where

K(ξ) =
D1(ξ)
D2(ξ)

=
K−(ξ)
K+(ξ)

. (5.12)

That is, K±(ξ) are particular Wiener–Hopf factors of the quotient of the two disper-
sion functions that are analytic in the half-planes H± of figure 2.

A little reflection on the preceding argument shows that further solutions of the
dual equations may be generated according to the prescription

F−(ξ) =
iA(ξ)D2(ξ0)

ξ − ξ0
K−(ξ)
K+(ξ0)

, (5.13)

where A(ξ) is now a polynomial of degree no greater than q (say) where q is chosen
so that (5.9) is satisfied in the whole complex plane and

A(ξ0) = A0. (5.14)

The general solution for the pressure transform is

p̃(ξ) =
iA(ξ)
ξ − ξ0

G(ξ0)
G(ξ)

, (5.15)

where G is an analytical generalization of the dispersion functions,

G(ξ) ≡ D2(ξ)
K+(ξ)

=
D1(ξ)
K−(ξ)

. (5.16)

Thus we have provided a formal construction of a q-parameter family of outgoing
scattered fields satisfying Helmholtz’s equation and the shell boundary conditions
(3.2). It remains to satisfy the conditions at the junction of the two plates. Evidently,
the value of q depends only on the size of the factors K± as ξ → ∞, and we would
expect that the physical constraints at the join associated with a particular form
for D(ξ) will also number q to enable a unique construction. In § 6 we shall show
that this is indeed the case, after we provide an analytic construction for K±(ξ) in
Appendix A. But first, we discuss the general form of the solutions for the other
physical quantities of interest.
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(c) Displacement and stress solutions

The pressure, the transverse and in-plane deflections, and the membrane stress
may all be expressed in terms of two fundamental potentials p0(x), and w0(x),

p(x, y) = p(0)(x, y)−A
(
−i

∂

∂x

)
p0(x, y), (5.17 a)

ρfω
2w(x) =

∂p(0)

∂y
(x, 0)−A

(
−i

d
dx

)
w0(x), (5.17 b)

τ(x)
b

= −p(0)(x, 0)− a
(

1
κ4

∂4

∂x4 − 1
)
∂p(0)

∂y
(x, 0)−A

(
−i

d
dx

)
τ0(x), (5.17 c)

v(x) = − 1
mω2

dτ
dx
, (5.17 d)

where

p0(x, y) =
1

2πi

∫ ∞
−∞

G(ξ0)
G(ξ)

eiξx−γy

ξ − ξ0 dξ, (5.18 a)

w0(x) = − 1
2πi

∫ ∞
−∞

γ(ξ)
G(ξ0)
G(ξ)

eiξx

ξ − ξ0 dξ, (5.18 b)

and p0(x, 0) is denoted by p0(x). The function τ0(x) depends upon w0(x), p0(x) and
the plate parameters,

τ0(x) = −p0(x)− a
(

1
κ4

d4

dx4 − 1
)
w0(x). (5.19)

As is usual, the material parameters take the appropriate values either side of the
join at x = 0. These relations follow from equations (5.1), (5.5), (5.15), (2.1 b),
(2.3) and (2.7). At first, it may appear to be a simple matter to formally apply
the junction continuity conditions by using the above expressions for p, w, τ and v.
However, (5.18 b) will in general have weak singularities at x = 0 and it is therefore
necessary to proceed with caution. Our approach is straightforward in that we will
first derive alternative expressions for p0(x) and w0(x) so that it is easy to find their
power series as x → 0± and then obtain an algebraic system of equations for the
undetermined coefficients in A by substituting these expansions into (5.17) and the
junction conditions.

(d) Diffraction coefficients

The scattered pressure simplifies at distances far from the junction in units of the
longest wavelength in the problem. A far-field approximation may be obtained by
the usual methods of first shifting the contour of integration from the real axis to
the path of steepest descents. The saddle point then yields the scattered pressure in
the fluid, which depends upon a diffraction coefficient C(θ) defined such that

p(s) = C(θ)
√

2
πkfr

e−iπ/4eikfr, kfr →∞, 0 < θ 6 π, (5.20)

where

C(θ) = 1
2kf sin θ p̃(kf cos θ). (5.21)
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If the incident wave is an acoustic wave with angle of incidence θ0 such that ξ0 =
kf cos θ0, the diffraction coefficient can be considered a function of both angles, i.e.
C(θ, θ0). It follows from (5.7), (5.15) and (5.21) as

C(θ, θ0) = −1
2
γ(ξ)

G(ξ0)
G(ξ)

A(ξ, ξ0)
ξ − ξ0 , (5.22)

where ξ = kf cos θ and we have rewritten A(ξ) as A(ξ, ξ0) to remind us that it is a
function of both the incident and scattered directions.

When the observation angle θ is close to θ = 0, the deformation onto the path of
steepest descents will capture two poles which correspond to the subsonic flexural
wave and supersonic longitudinal wave travelling to the right in x > 0. The flexural
pole occurs at the positive real zero of D2(ξ). The longitudinal pole is actually a
root of D̃2(ξ) with real positive part less than kf and a small positive imaginary
part. Note that the longitudinal wave has Re γ < 0, but for some values of x and y
the phase iξx− γy represents an outgoing wave. In order to capture the longitudinal
pole, the contour must be deformed onto the other Riemann sheet represented by
Re γ < 0. Whether or not the longitudinal pole is captured depends upon the position
of the point of stationary phase. A discussion of similar contour manipulations can
be found in the works of Crighton (1971) and Rebinsky & Harris (1992). Similarly,
when θ is close to θ = π, the deformation of the contour captures poles at the zeros
of D1(ξ) and D̃1(ξ) corresponding to the negative counterparts of those for x > 0.
For example, when the incident field is a subsonic flexural wave advancing from the
left, the residues at these poles are the reflected and transmitted waves, respectively.
Using equations (5.15) and (5.16) with ξ0 = ξ

(1)
s (the subscript ‘s’ indicating the

subsonic flexural root), we thus find the left- and right-going waves are

p1 = Rflexe−iξ(1)
s x−γ(ξ(1)

s )y +RlongH(−θ1 − θ)e−iξ(1)
m x−γ(ξ(1)

m )y, (5.23 a)

p2 = Tflexeiξ(2)
s x−γ(ξ(2)

s )y + TlongH(θ2 − θ)eiξ(2)
m x−γ(ξ(2)

m )y, (5.23 b)

where ξ(1)
s , ξ

(1)
m and ξ(2)

s , ξ
(2)
m are the wave numbers of the subsonic flexural and mem-

brane waves on the right- and left-hand plates, respectively. Also, H is the Heaviside
function, θ = tan−1(y/x), and θ1,2 ≈ sin−1(k1,2/kf) which are the longitudinal wave
critical angles. The reflection and transmission coefficients for the subsonic flexural
waves are

Rflex =
A(−ξ(1)

s )G(ξ(1)
s )

2ξ(1)
s K+(ξ(1)

s )D′1(ξ(1)
s )

, Tflex =
A(ξ(2)

s )G(ξ(1)
s )K+(ξ(2)

s )

(ξ(1)
s − ξ(2)

s )D′2(ξ(2)
s )

, (5.24)

respectively. Note that the polynomial A(ξ) is also a function of the incident direc-
tion, given in this example as ξ(1)

s , in addition to the scattered direction. We can
also determine those coefficients describing the diffracted longitudinal waves, both
reflected and transmitted,

Rlong =
A(−ξ(1)

m )G(ξ(1)
s )

(ξ(1)
s + ξ

(1)
m )K+(ξ(1)

m )D′1(ξ(1)
m )

, Tlong =
A(ξ(2)

m )G(ξ(1)
s )K+(ξ(2)

s )

(ξ(1)
s − ξ(2)

m )D′2(ξ(2)
m )

, (5.25)

respectively. Note that the diffraction coefficients of (5.24) and (5.25) are in terms
of the surface pressure, not the displacement.
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(e) Consequences of reciprocity

Acoustical reciprocity requires that the diffraction should be the same under the
interchange of the source and receiver directions, or

C(θ, θ0) = C(π − θ0, π − θ). (5.26)

This implies, using (5.22),

A(ξ, ξ0)γ(ξ)G(ξ0)/G(ξ) = A(−ξ0,−ξ)γ(ξ0)G(−ξ)/G(−ξ0), (5.27)

where we have written A(ξ) as A(ξ, ξ0) to remind us that it is a function of both
incident and scattered directions. Now,

G(ξ)G(−ξ) = D1(ξ)D2(ξ) =
2γ(ξ)P ∗(ξ)

R1(ξ)−R2(ξ)
, (5.28)

from (4.12), (5.16) and (A 1), while the denominator in the last expression simplifies
further for acoustic wave incidence as R1(ξ)−R2(ξ) = A(ξ, ξ), from (5.7). Using
(5.27) and (5.28) and the identity A(ξ, ξ) = A(−ξ,−ξ), we see that reciprocity
implies the connection

A(ξ, ξ)A(−ξ, ξ0)P ∗(ξ0) = A(ξ0, ξ0)A(−ξ0, ξ)P ∗(ξ). (5.29)

The function A must satisfy this relation for arbitrary plane wave incidence.

(f ) Energy conservation

The balance of wave power, or flux, can be used as a check on the solution of the
fluid-curved plate system. The energy conservation identity for flat plates has been
previously studied by Crighton & Innes (1984) and by Norris & Wickham (1995).
Here we require the energy flux (the structural intensity) for a curved plate under
unilateral fluid loading. A general theorem on energy for an inhomogeneous elastic
shell with fluid loading was derived by Pierce (1993), with the final form given by

∂E
∂t

+DαI
α = −pw,t, (5.30)

where E is the total energy and Iα is the structural intensity. Following Crighton &
Innes (1984), we take the time average of (5.30) to obtain

〈I1(x1)− I1(x2)〉 =
〈∫

S

pw,t dx
〉
, (5.31)

with

I1 = −τv,t −B(w,xxw,xt − w,xxxw,t), (5.32)

being the remaining component of the structural intensity and S the surface in the
fluid joining the points x1 and x2 on the plate. The time average in equation (5.31)
is defined by

〈f1(x1, t)f2(x1, t)〉 = 1
2 Re[f1(x1)f∗2 (x1)], (5.33)

where ∗ denotes complex conjugation. The time average of the structural intensity
I1 is given by

〈I1〉 = 1
2 Re[−iωB(w∗,xxxw − w∗,xxw,xt) + iωτ∗v]. (5.34)

Phil. Trans. R. Soc. Lond. A (1998)



1436 A. N. Norris, D. A. Rebinsky and G. R. Wickham

In addition to the structural intensity one must also determine the rate of working
of the pressure, which is given by

〈Ip〉 = 1
2

Re
[ ∫ ∞

0
p

(
1

iρfω

∂p

∂x

)∗
dy
]
. (5.35)

The sum of these contributions gives the total energy flux F associated with the
structural wave.

For the longitudinal wave this is simply just the energy flux in the curved plate,

Flong = L(ξm)
|τ0|2
2mω

e−2δm|x|,

L(ξm) = Re(ξm)(1 + 2 Re(ξ∗m)2|U(ξm)|2b2κ−4), (5.36)

where τ0 is the incident stress amplitude, ξm is the longitudinal wave number in
the curved plate and δm = Im ξm. Note that at x = ±∞ the longitudinal flux in
the curved plate is zero. Here we will assume that this expression is approximately
valid at x = 0 when using far-field diffraction coefficients. The longitudinal pressure
coefficients (5.25) can be converted to stress-based coefficients by multiplying by the
factor b(1 + γV̂ ):

Rτlong = b1[1 + γ(ξ(1)
m )V̂ 1(ξ(1)

m )]Rlong, (5.37 a)

T τlong = b2[1 + γ(ξ(2)
m )V̂ 2(ξ(2)

m )]Tlong, (5.37 b)

where γ has been negated to account for the longitudinal poles being on the lower
sheet (Re γ < 0) of the complex ξ-plane. The energy flux for the longitudinal waves
can be obtained in terms of pressure by using equations (2.3) and (2.6) to relate the
stress to the pressure. Then

|τ0|2
2mω

=
a

b2
|γ(ξm)|2
|U(ξm)|2

|p0|2
2ρfω

. (5.38)

The flux for a flat plate is obtained from equation (5.36) by letting b → ∞ and
noting that in this limit U(ξm)→ 1/b2.

The subsonic flexural wave contains energy in both the curved plate and the fluid.
After some algebraic manipulations using equations (5.34) and (5.35), the flux is

Fflex = F (ξs)
|p0|2
2ρfω

,

F (ξs) = −D
′(ξs)γ(ξs)
2U(ξs)

= aξsγ
2(ξs)

(
2
ξ2
s

κ4 +
1

U2(ξs)b2

)
+

ξs
2γ(ξs)

, (5.39)

where ξs is the subsonic flexural wave number. Once again the expression for a flat
plate follows by letting b→∞.

The flux of acoustic energy diffracted from the junction into the fluid follows from
(5.20) as

lim
r→∞

1
ρfcf

∫ π

0
|p(s)(r, θ)|2r dθ =

2
πρfω

∫ π

0
|C(θ)|2 dθ. (5.40)

Now consider an incident flexural wave with unit flux, then equations (5.36)–(5.40)
may be combined to provide a statement of energy conservation. We will find that
subsonic flexural waves provide the only means of significant energy flow away from
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the junction, other than acoustic diffraction loss (cf. § 8). Note that the membrane
(longitudinal) waves are leaky so that at large distances from the junction their
energy flux is zero. Applying the above energy flux identities at the junction gives

1 = |Rflex|2 +
F (2)(ξ(2)

f )

F (1)(ξ(1)
s )
|Tflex|2 +

1
a1

L(1)(ξ(1)
m )

F (1)(ξ(1)
s )
|Rτlong|2

+
1
a2

L(2)(ξ(2)
m )

F (1)(ξ(1)
s )
|T τlong|2 +

1

F (1)(ξ(1)
s )

4
π

∫ π

0
|C(θ)|2 dθ. (5.41)

The five terms on the right-hand side are each positive and less than unity, and
correspond to the fractional energy reflected as flexural on plate 1, transmitted as
flexural on plate 2, reflected as longitudinal on plate 1, transmitted as longitudinal on
plate 2 and acoustically radiated into the fluid. A similar equation can be obtained
for longitudinal wave incidence.

6. Satisfying the join conditions

We now give a general systematic procedure for evaluating A(ξ) in the formal solu-
tion (5.15) so that various prescribed conditions at the junctions of the plates may
be determined. We shall proceed in the context of the problem posed in § 3, but
the reader should notice that the analysis is valid for a wide class of plate models
and physical constraints at the join. Application of the junction conditions requires
knowledge of the behaviour of the potentials p0(x) and w0(x) in the neighbourhood
of the join, x = 0. Our first order of business is to obtain analytic expansions of
these quantities; actually, as we will see, Taylor series in x. We can then apply the
conditions in a straightforward manner.

(a) Alternative integral forms for w0 and p0

The potentials are both in the form of Fourier transforms which can be separated
into two distinct transforms each of which vanishes for either x > 0 or x < 0. Thus,

{p0(x), w0(x)} =
1

2πi

∫ ∞
−∞
{p̃0(ξ), w̃0(ξ)}eiξx dξ

=
1

2πi

∫ ∞
−∞
{p̃±0 (ξ), w̃±0 (ξ)}eiξx dξ, x<> 0, (6.1)

where w̃+
0 , w̃−0 , are the analytic partitions of w̃0, defined by

w̃0(ξ) = w̃+
0 (ξ) + w̃−0 (ξ), (6.2)

such that w̃+
0 (ξ) is analytic in H+ and w̃−0 (ξ) is analytic in H−. Analytic partitions

of p̃0(ξ) are defined in the same manner. The transforms w̃0 and p̃0, as defined in
equation (5.18), may be rewritten by noting that

γ(ξ)/G(ξ) = [K−(ξ)U2(ξ)−K+(ξ)U1(ξ)]/P ∗(ξ), (6.3 a)

1/G(ξ) = [K−(ξ)V2(ξ)−K+(ξ)V1(ξ)]/P ∗(ξ), (6.3 b)
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which are easily obtained by eliminating γ between the two equations (5.16). Thus,

w̃0(ξ) = G(ξ0)
U1(ξ)K+(ξ)− U2(ξ)K−(ξ)

(ξ − ξ0)P ∗(ξ)
, (6.4 a)

p̃0(ξ) = −G(ξ0)
V1(ξ)K+(ξ)− V2(ξ)K−(ξ)

(ξ − ξ0)P ∗(ξ)
, (6.4 b)

where the denominator in these integrands is the polynomial P ∗ defined in equa-
tion (4.13). The general form of the polynomial is

P ∗(ξ) = P ∗0

N∗/2∏
n=1

(ξ2 − ζ2
n), (6.5)

say, where the zeros ±ζn, n = 1, 2, . . . , 1
2N
∗ are necessarily outside H+ ∩ H−, and

we define them such that ζn, n = 1, 2, . . . , 1
2N
∗ are in H+. For the problem under

consideration

N∗ = 8 and P ∗0 =
a2

κ4
2
− a1

κ4
1
. (6.6)

The partition functions can be found quite easily from (6.4) because, apart from
the split function K+ and K−, the only singularities arise from the simple poles
at ξ = ξ0 and the roots of P ∗ = 0. By adding and subtracting poles at the same
points with suitable residues, we can arrive at explicit formulae for the partitioned
functions. They therefore become

w̃−0 (ξ) = G(ξ0)
{
U1(ξ0)K+(ξ0)
(ξ − ξ0)P ∗(ξ0)

− U2(ξ)K−(ξ)
(ξ − ξ0)P ∗(ξ)

+
4∑

n=1

[
u+

1n

(ξ − ζn)(ζn − ξ0)
+

u−2n
(ξ + ζn)(−ζn − ξ0)

]}
, (6.7 a)

w̃+
0 (ξ) = G(ξ0)

{
U1(ξ)K+(ξ)

(ξ − ξ0)P ∗(ξ)
− U1(ξ0)K+(ξ0)

(ξ − ξ0)P ∗(ξ0)

−
4∑

n=1

[
u+

1n

(ξ − ζn)(ζn − ξ0)
+

u−2n
(ξ + ζn)(−ζn − ξ0)

]}
, (6.7 b)

where

u±jn = residue of
[
Uj(ξ)K±(ξ)

P ∗(ξ)

]
ξ=±ζn

. (6.8)

The functions p̃+
0 and p̃−0 then follow by simply replacing Uj with −Vj , j = 1, 2, in

equations (6.7) and (6.8). The residues u+
1n and u−2n can be related to one another

by noting, from equations (4.13), (5.16) and (6.3), that

K =
U1

U2
=
V1

V2
, at ξ = ±ζn. (6.9)

This identity, together with the fact that P ∗ is an even function, implies

u−2n = −u+
1n/[K

−(ζn)K+(ζn)], (6.10)

for each n.
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(b) Behaviour of w0 and p0 near the join

In practice, to satisfy the join conditions, we only need the asymptotic forms for
p0 and w0 and their derivatives near x = 0, and these follow immediately from
the power series expansion of the Fourier transform about the point at infinity. For
instance, let f signify either of these functions, and suppose that the partitions of
f̃(ξ) are of the form

f̃±(ξ) = ∓
M∑
m=1

f̃∓m−1ξ
−m +O(ξ−(M+1) log ξ), (6.11)

for some integer M > 1. Then it can be shown that

f(x) =
M∑
m=0

f̃±m
(ix)m

m!
+O(xM log |x|), x<> 0. (6.12)

The only terms containing logarithmic singularities in the expressions (6.7) for
w̃±0 are those with K±(ξ), respectively. Referring to the asymptotic results in equa-
tions (B 6) and (B 7), and to equations (6.5)–(6.7), the leading-order singular term
at infinity in the expansion of the Fourier transforms for w0 in (6.1) is of order
ξ−12 log ξ. On inversion, the latter yields a term of order x11 log |x|. Similarly, the
transforms for p0 have a leading-order singularity of order ξ−8 log ξ, yielding a term
of order x7 log |x|. The leading-order singularities for the stress τ(x) and the in-
plane displacement v(x) depend upon the function τ0(x) of equation (5.19), with the
associated transform (cf. (4.5))

τ̃0(ξ) = −p̃0(ξ)− V̂ (ξ)w̃0(ξ). (6.13)

Hence, for example, the transform required to evaluate τ0(x) for x < 0 is

τ̃0(ξ) = −{U1(ξ)p̃+
0 (ξ) + [V1(ξ)− a1/b

2
1]w̃+

0 (ξ)}/U1(ξ), (6.14)

which, from (6.7) and the corresponding equation for p̃+
0 , has a singularity of the

form ξ−14 log ξ. The leading-order singularity of τ0(x) is therefore x13 log |x|.
The transforms w̃±0 and p̃±0 may be put into the form (6.11), where, based upon

the above discussion, M = 7 and 11, respectively. The details of the splitting can be
found in Appendix B. Having expanded the transforms about the point at infinity
it is a simple matter to invert term by term by using equation (6.12), which yields
explicit power series for w0(x) and p0(x) near the origin, namely

w0(x) =
11∑
n=0

λ±n
(ix)n

n!
+O(x11 log |x|), x<> 0, (6.15 a)

p0(x) =
7∑

n=0

ψ±n
(ix)n

n!
+O(x7 log |x|), x<> 0, (6.15 b)

and, again, the coefficients are listed explicitly in Appendix B. We note that λ+
j = λ−j

for j = 0–5, and hence w0(x) and its first five derivatives are continuous at x = 0.
Similarly, ψ+

0 = ψ−0 and ψ+
1 = ψ−1 , implying that p0(x) and dp0(x)/dx are continuous

at x = 0.
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(c) Determination of A(ξ)

Letting

A(ξ) =
q∑

n=0

Ānξ
n, (6.16)

we see that equation (5.14) implies the identity
q∑

n=0

Ānξ
n
0 = A0. (6.17)

The displacement and pressure near the origin therefore follow from equations (5.17),
(6.15) and (6.17), as

ρfω
2w(x) =

∂p(0)

∂y
(x, 0)−

11−q∑
n=0

Λ±n
(ix)n

n!
+O(x11−q log |x|), x<> 0, (6.18 a)

p(x, 0) = p(0)(x, 0)−
7−q∑
n=0

Ψ±n
(ix)n

n!
+O(x7−q log |x|), x<> 0, (6.18 b)

where

Λ±n =
q∑

k=0

Ākλ
±
k+nH(11− k − n), (6.19 a)

Ψ±n =
q∑

k=0

Ākψ
±
k+nH(7− k − n), (6.19 b)

and H indicates the Heaviside step function with H(0) = 1. The stress and velocity
depend upon

A

(
−i

d
dx

)
τ0(x) = Γ±0 + ixΓ±1 +O(x2), x<> 0, (6.20)

where

Γ−,+n = −Ψ−,+n − a1,2

(
Λ−,+4+n

κ4
1,2
− Λ−,+n

)
. (6.21)

For example, by using (5.17c) the stress can be written as

τ(x)
b

= −p(0)(x, 0)− a
(

1
κ4

d4

dx4 − 1
)
∂p(0)

∂y
(x, 0)

−
7−q∑
n=0

Γ±n
(ix)n

n!
+O(x7−q log |x|), x<> 0, (6.22)

while the in-surface displacement follows similarly from (2.7).
At this point the maximum value of q in the sum in equation (6.16) can be deter-

mined. (6.18 b) implies that the pressure is singular at the join unless q is chosen to
satisfy q 6 6. This can also be seen by examining the expansions of the dispersion
functions and the Wiener–Hopf split functions at infinity. In doing so, K± = O(1) as
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|ξ| → ∞ from Appendices A and B, and D(ξ) = O(ξ7) at infinity from equation (4.3)
so that in order to keep w and p(s) bounded everywhere q is limited to a value of 6.

All that remains is to determine the unknown coefficients Āk, k = 0, 1, . . . , 6 in the
polynomial A. These are found by application of the various edge conditions at the
join located at x = 0. Next we formulate the algebraic system for all the coefficients
in this polynomial. We also note that the procedure may be somewhat complicated
so that we have provided an outline of the solution method as applied to the simpler
case of two joined membranes. This is discussed in Appendix D. For now we continue
with two joined curved plates.

(i) Welded join

The first four edge conditions for continuity of the displacement and rotation,
w, w,x, and the bending moment and shear force, Bw,xx and Bw,xxx, can now be
expressed in terms of Λ±n by using equation (5.17) and (6.18):

Λ+
0 − Λ−0 = 0, (6.23 a)

Λ+
1 − Λ−1 = 0, (6.23 b)

µΛ+
2 − Λ−2 = ξ2

0(µ− 1)p(0)
,y (0, 0), (6.23 c)

µΛ+
3 − Λ−3 = ξ3

0(µ− 1)p(0)
,y (0, 0), (6.23 d)

where

µ = B2/B1. (6.24)

The remaining two continuity conditions for the in-plane force and in-surface dis-
placement, τ and v, follow from equations (6.22) and (2.7), as

βΓ+
0 − Γ−0 = −(β − 1)p(0)(0, 0)− [βV̂ 2(ξ0)− V̂ 1(ξ0)]p(0)

,y (0, 0), (6.25 a)

βΓ+
1 − αΓ−1 = −ξ0(β − α)p(0)(0, 0)− ξ0[βV̂ 2(ξ0)− αV̂ 1(ξ0)]p(0)

,y (0, 0), (6.25 b)

where

α = a2/a1, β = b2/b1. (6.26)

Equations (6.17), (6.23) and (6.25) constitute a set of seven equations for the
seven unknowns Ān, n = 0, 1, . . . , 6. An explicit linear system of equations for these
unknowns follows from equations (6.19) and (6.21). However, the two kinematic
conditions (6.23 a) and (6.23 b) turn out to be trivially satisfied. Thus, as mentioned
previously, λ+

j = λ−j for j = 0–5; therefore, (6.23 a) and (6.23 b) imply, respectively,
that Ā6 = 0 and Ā5 = 0. Hence, A is actually fourth order (q = 4) and there are, in
general, five equations to be satisfied: (6.17), (6.23 c), (6.23 d), (6.25 a) and (6.25 b).

Furthermore, by choosing

A(ξ) = A0 + (ξ − ξ0)
4∑

n=1

Ãnξ
n−1, (6.27)

equation (6.17) is satisfied which then reduces the system to four equations to deter-
mine the unknown Ãn. These are (6.23 c), (6.23 d), (6.25 a) and (6.25 b), which can
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be written, by using equations (6.18) and (6.19), as

4∑
j=1

Ãj(µλ̃+
1+j − λ̃−1+j) = ξ2

0(µ− 1)p(0)
,y (0, 0)−A0(µλ+

2 − λ−2 ), (6.28 a)

4∑
j=1

Ãj(µλ̃+
2+j − λ̃−2+j) = ξ3

0(µ− 1)p(0)
,y (0, 0)−A0(µλ+

3 − λ−3 ), (6.28 b)

and
4∑
j=1

Ãj

{
β

[
ψ̃+
j−1 + a2

(
λ̃+

3+j

κ4
2
− λ̃+

j−1

)]
−
[
ψ̃−j−1 + a1

(
λ̃−3+j

κ4
1
− λ̃−j−1

)]}
= (β − 1)p(0)(0, 0) + [βV̂2(ξ0)− V̂1(ξ0)]p(0)

,y (0, 0)

−A0

{
β

[
ψ+

0 + a2

(
λ+

4

κ4
2
− λ+

0

)]
−
[
ψ−0 + a1

(
λ−4
κ4

1
− λ−0

)]}
, (6.29 a)

4∑
j=1

Ãj

{
β

[
ψ̃+
j + a2

(
λ̃+

4+j

κ4
2
− λ̃+

j

)]
−
[
ψ̃−j + a1

(
λ̃−4+j

κ4
1
− λ̃−j

)]}
= ξ0(β − α)p(0)(0, 0) + ξ0[βV̂2(ξ0)− αV̂1(ξ0)]p(0)

,y (0, 0)

−A0

{
β

[
ψ+

1 + a2

(
λ+

5

κ4
2
− λ+

1

)]
−
[
ψ−1 + a1

(
λ−5
κ4

1
− λ−1

)]}
, (6.29 b)

where the various combinations of λn, ψn and λ̃n, ψ̃n are given by (B 11) and (B 13),
respectively.

(ii) Clamped join

In the instance where the two curved plates are clamped at x = 0, then w, w,x
and v all vanish at either plate termination. The out-of-plane conditions (w(±0) = 0
and w,x(±0) = 0) then follow as

Λ+
0 − Λ−0 = 0, (6.30 a)

Λ+
1 − Λ−1 = 0, (6.30 b)

Λ+
0 = p(0)

,y (0, 0), (6.30 c)

Λ+
1 = ξ0p

(0)
,y (0, 0), (6.30 d)

and the in-plane conditions (v(±0) = 0) are

Γ−1 = −ξ0[p(0)(0, 0) + V̂ 1(ξ0)p(0)
,y (0, 0)], (6.31 a)

Γ+
1 = −ξ0[p(0)(0, 0) + V̂ 2(ξ0)p(0)

,y (0, 0)]. (6.31 b)

Once again the first two equations of (6.30) are trivially satisfied, reducing q to
4, and (6.17) is also satisfied by choosing the polynomial A to be represented by
(6.27), leaving one with the following system of equations to determine the remaining
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coefficients of A:
4∑
j=1

Ãj λ̃
+
j−1 = p(0)

,y (0, 0)−A0λ
+
0 , (6.32 a)

4∑
j=1

Ãj λ̃
+
j = ξ(µ− 1)p(0)

,y (0, 0)−A0λ
+
1 , (6.32 b)

and, again referring to Appendix B,
4∑
j=1

Ãj

{
ψ̃−j + a1

(
λ̃−4+j

κ4
1
− λ̃−j

)}

= ξ0[p(0)(0, 0) + V̂ 1(ξ0)p(0)
,y (0, 0)]−A0

[
ψ−1 + a1

(
λ−5
κ4

1
− λ−j

)]
, (6.33 a)

4∑
j=1

Ãj

{
ψ̃+
j + a2

(
λ̃+

4+j

κ4
2
− λ̃+

j

)}

= ξ0[p(0)(0, 0) + V̂ 2(ξ0)p(0)
,y (0, 0)]−A0

[
ψ−1 + a2

(
λ−5
κ4

2
− λ−1

)]
. (6.33 b)

7. Limiting cases

Several interesting and physically important special cases deserve discussion. We
consider in succession the following situations: (a) two curved plates with identical
mechanical properties; (b) one flat plate; (c) the FPL∗ case; and (d) both plates flat.

(a) Identical plates: change in curvature

The mechanical properties of the plates are the same, a1 = a2, k1 = k2, κ1 = κ2,
but b1 6= b2. The main simplification is that the polynomial P ∗ reduces to a quadratic,
with roots ±ζ1 = ±k1. Hence, the reflection coefficients R1 and R2 coincide at this
wave number, and the diffraction problem for the pressure becomes trivial (p(s) = 0)
if ξ0 = ±k1.

(b) One flat plate

The general set of edge conditions needs to be amended when one or both plates
has zero curvature. Referring to equations (2.1) and (5.17 c) it should be clear that
τ0 should vanish on the flat side of the junction. To be specific, if we let plate 1 be
flat, then it follows from (6.13) that τ0(x) for x < 0 depends upon

τ̃0(ξ) = −D1(ξ)
U1(ξ)

p̃0(ξ)

= −G(ξ0)
K−(ξ)
U1(ξ)

= −G(ξ0)K−(−k1)
2k1(k1 + ξ)

+
G(ξ0)
k1 + ξ

[
K−(−k1)

2k1
− K−(ξ)
k1 − ξ

]
. (7.1)
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The scattered stress for x < 0 therefore depends upon the first term on the right-
hand side, because the other is analytic in H−. Noting that |b1| → ∞, and p(0) for
x < 0 in equation (5.17 a) implies that in order for the stress at the junction to be
finite, we must have

A(−k1) = 0. (7.2)

This condition replaces condition (6.25 a), and holds whatever the incident wave type
may be: acoustic, flexural or longitudinal (FPL).

The actual value of the scattered (total minus incident) stress at the junction is
then given by evaluating (5.17 c) on the curved side (x = 0+), yielding

τ (s)(0) = −τ (0)(0)− b2{p(0)(0, 0) + V̂ 2(ξ0)p(0)
,y (0, 0) + Γ+

0 }. (7.3)

Note that τ (0) = 0 unless the incident excitation is from a FPL wave, in which case
it is given by equation (5.3). In either case, the scattered stress on plate 1 must be
of the form (cf. equation (2.6))

τ (s)(x) = τ (s)(0)e−ik1x, x < 0, (7.4)

i.e. the value of the diffracted FPL wave is determined by the stress at the junction.
If the incidence is acoustic or flexural, we have the general result: the amplitude of
the diffracted longitudinal stress wave on a flat plate is precisely the value of the
stress at the junction.

Finally, the v-condition at x = 0 for a welded junction is given by (5.17 c), using
the value from (7.4) for the flat side:

Γ+
1 =

iα
b2

[τ (0)
,x (0)− ik1τ

(s)(0)]− ξ0[p(0)(0, 0) + V̂ 2(ξ0)p(0)
,y (0, 0)]. (7.5)

After substituting the junction stress and its derivative given by equations (7.3) and
(7.4), one arrives at

Γ+
1 + αk1Γ

+
0 =

iα
b2

[τ (0)
,x (0) + ik1τ

(0)(0)]

− (ξ0 + αk1)[p(0)(0, 0) + V̂ 2(ξ0)p(0)
,y (0, 0)]. (7.6)

The full set of seven equations required to determine A are (6.17), (6.23), (7.2) and
(7.6). We note that equations (6.23 a) and (6.23 b) are identically satisfied so that
the order of A is reduced to four. Further simplifications are obtained by choosing
the polynomial A in the following manner:

A(ξ) =
ξ + k1

ξ0 + k1

[
A0 + (ξ − ξ0)

3∑
j=1

Ãjξ
j−1
]
, (7.7)

which leaves us with three remaining conditions to determine the unknown Ãj with
j = 1, 2, 3. They are (6.23 c), (6.23 d) and (7.6). If the joint between the two plates
is clamped, then the remaining three conditions are (6.30 c), (6.30 d), and (6.31 b),
which applies only for acoustic or flexural incidence. For longitudinal wave incidence
(5.3), the solution for a clamped joint is trivial with the reflected stress being equal
in amplitude to the incident stress, but now as an outgoing wave.
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(c) FPL∗

In this special case plate 1 is flat, the incident excitation is a longitudinal wave
propagating towards the junction on this plate, and the longitudinal wave numbers
are identical on both plates, i.e. k2 = k1. Then, as noted in § 5, A0 vanishes, but a non-
trivial solution satisfying this condition can be found. Referring to equations (5.14)
and (5.15) it is clear that A(ξ) also vanishes at ξ = ξ0, and so must be of the form
A(ξ) = (ξ − ξ0)A∗(ξ). Therefore, the general solution is

p̃(ξ) = A∗(ξ)
G(ξ0)
G(ξ)

, (7.8)

which satisfies the dual condition of equation (5.6) with A0 = 0, again as long as
A∗(ξ) is a polynomial, chosen accordingly. In summary, this case is really no different
from that of a a flat plate with k1 6= k2, except that A0 = 0. However, the general
solution of equations (5.14) and (5.15) still works with

A∗(ξ) =
ξ + k1

ξ0 + k1

3∑
j=1

Ãjξ
j−1, (7.9)

using equations (6.23 c), (6.23 d) and (7.6) to determine the unknown coefficients.

(d) Two flat plates

When both plates have zero curvature the same argument which led to the condi-
tion (7.2) implies the analogous argument

A(k2) = 0. (7.10)

The full set of equations are therefore (6.17), (6.23), (7.2) and (7.10). The final two
imply that

A(ξ) =
(
ξ + k1

ξ0 + k1

)(
ξ − k2

ξ0 − k2

)
A∗(ξ). (7.11)

Using previous arguments it can easily be seen that A∗ is now a second-order poly-
nomial which we choose as

A∗(ξ) = A0 + (ξ − ξ0)(Ã1 + Ã2ξ), (7.12)

subject to the conditions (6.23 c) and (6.23 d).
After some reconsideration of the equations, and of the physics, particularly the

decoupling of the longitudinal motion, it is clear that the solution depends only upon
the flexural plate equation. This is obtained by setting U = 1 and V = V̂ (cf. (4.5))
in the definition of the dispersion functions, which then gives

P (ξ) = 1− a2
(
ξ10

κ8 −
k2

f ξ
8

κ8 −
2ξ6

κ4 + 2
k2

f

κ4 ξ
4 + ξ2 − k2

f

)
, (7.13)

so that N = 10. The polynomial P ∗ is fourth order (N∗ = 4), P ∗0 is the same as in
(6.6), so the roots are explicitly given by

ζ4
n = (a2 − a1)

(
a2

κ4
2
− a1

κ4
1

)−1

= κ4
1

(
α− 1
µ− 1

)
. (7.14)
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Further simplifications arise in the course of the derivation, the most significant of
which are that A∗ replaces A, and that the coefficients in Appendix A take on simpler
forms.

The remaining two conditions (6.23 c) and (6.23 d) can be reduced to give[
(µ− 1)(λ±3 − ξ0λ±2 ) µ(λ+

4 − ξ0λ±3 )− (λ−4 − ξ0λ±3 )
µ(λ+

4 − ξ0λ±3 )− (λ−4 − ξ0λ±3 ) µ(λ+
5 − ξ0λ+

4 )− (λ−5 − ξ0λ−4 )

] [
Ã1

Ã2

]
= (µ− 1)

[
ξ2
0p

(0)
,y (0, 0)−A0λ

±
2

ξ3
0p

(0)
,y (0, 0)−A0λ

±
3

]
, (7.15)

where λ+
j = λ−j for j = 0, 1, 2 and 3, only. The matrix elements can be reduced by

first noting that, from (6.9), we have K = 1 at the two roots ζm, m = 1, 2, in H+,
and hence, K−(ζm) = K+(ζm). Define the phase of the split functions at the roots
by

K+(ζm) = eνm . (7.16)

Then, by using (B 11) and the fact that K+
∞ =

√
µ, we have

λ±3 − ξ0λ±2 =
G(ξ0)
2P ∗0

2∑
m=1

sinh νm

ζm
, (7.17 a)

λ±4 − ξ0λ±3 =
G(ξ0)
2P ∗0

{ 2∑
m=1

cosh νm − 2(
√
µ)∓1

}
, (7.17 b)

λ±5 − ξ0λ±4 =
G(ξ0)
2P ∗0

{ 2∑
m=1

ζm sinh νm − 2β∓1 (
√
µ)∓1

}
. (7.17 c)

where β+
1 = β−1 (see Appendix A) and the terms u+

1m have been simplified by using
(6.8) and (7.14). Now using (7.17) for the matrix, and (B 14) and (B 11) for p(0)

,y (0, 0)
and λ±2 , equation (7.15) becomes exactly

G(ξ0)
2P ∗0

2∑
m=1

[
(1/ζm)sinh νm cosh νm

cosh νm ζm sinh νm

] [
Ã1

Ã2

]

= −A0
G(ξ0)
2P ∗0

2∑
m=1

1
ζ2
m − ξ2

0

[
cosh νm + (ξ0/ζm)sinh νm

ξ0 cosh νm + ζm sinh νm

]
. (7.18)

Finally, using ζ2
1 + ζ2

2 = 0, see equation (7.14), and solving the matrix system, (7.18)
yields

A∗(ξ) =
A0

ζ4
1 − ξ4

0

{
ζ4
1 − ξ2ξ2

0 −
(ξ − ξ0)

1 + cosh ν1 cosh ν2
[(ξ − ξ0)ζ1ζ2 sinh ν1 sinh ν2

+ (ξξ0 + ζ2
1 )ζ1 sinh ν1 cosh ν2 + (ξξ0 + ζ2

2 )ζ2 sinh ν2 cosh ν1]
}
. (7.19)

This clearly satisfies the reciprocity condition (5.29). For the case of a clamped
join, the junction conditions change to those given by (6.16), (6.30 c) and (6.30 d).
Repeating the previous analysis using clamped joint conditions, the polynomial A is
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found to be similar to (7.19), the only difference being that the 1 + cosh ν1 cosh ν2
term is replaced by 1− cosh ν1 cosh ν2.

At this point we refer the reader to the paper by Norris & Wickham (1995) for
further discussion on two flat plates, which includes both light and heavy fluid-loading
limits.

8. Numerical results

The numerical results reported here are for pairs of plates that are identical in every
regard except thickness and curvature. Therefore, α of equation (6.26) is just the ratio
of thicknesses, and the flat plate flexural wave numbers are simply related by κ2 =
κ1/
√
α. The conventional dimensionless fluid-loading parameter ε = (kfh)/(ka)/

√
12

(Crighton & Innes 1984) is identical for both plates. We consider steel plates loaded
by water (ε = 0.134) with the join of the plates either welded or clamped. Based upon
the computations reported by Norris & Wickham (1995), who compared steel/water
and aluminium/water (ε = 0.4) flat plate systems, we do not expect the results to
depend strongly upon ε for metallic structures in water.

The present results extend the flat plate calculations of Brazier-Smith (1987) and
Norris & Wickham (1995) by introducing different radii of curvature for each plate in
addition to the contrast provided by a discontinuity in plate thickness. We consider
a thickness change of 100% or α = 2 with plate 1 being 0.0254 m thick. As a rep-
resentative example, the radii of curvatures were chosen to be 0.5 m for shell 1 and
1 m for shell 2. The null, ring and coincidence frequencies are 47, 1730 and 8916 Hz
for shell 1 and 94, 865 and 4493 Hz for shell 2. Equation (3.1) then implies that the
frequency must be greater than 238 Hz. The present theory is not valid below this
frequency. We find that the trends in the results are qualitatively similar for typical
choices of radii of curvature, with the main effects depending upon the increase or
decrease of the ring frequency.

The results in figures 3–7 are presented as a function of the non-dimensional fre-
quency Ω, which is based upon the coincidence frequency (the frequency at which
kf = κ) of plate 1:

Ω = k2
f /κ

2
1. (8.1)

Thus, the coincidence frequency of plate 1 occurs at Ω = 1 and for plate 2 at
Ω = 0.5. The curved plates have identical ring frequencies at Ω = 0.1925 for the
chosen parameters, and hence we only plot results for Ω > 0.2.

The diffraction coefficients of structural waves on a pair of curved plates generated
by an incident subsonic flexural wave are plotted in figure 3. These curves display
the pressure amplitude for unit incident pressure p0. It is observed that subsonic
flexural transmission is strongest for a welded join whereas a clamped join generates
a larger reflected longitudinal wave. The peaks in the subsonic flexural coefficients
occur at approximately the coincidence frequency of each plate. This is the frequency
at which the fluid wave number matches the subsonic flexural wave number of the
curved plate (cf. Photiadis 1995; Rebinsky & Norris 1995b). It is interesting to note
that the diffracted pressure amplitudes of the longitudinal waves are of the same
order as those of the subsonic flexural waves.

The redistribution of structural wave energy is shown in figures 4–6 for an incident
subsonic flexural wave. The partition of diffracted energy on two joined flat plates
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Figure 3. Amplitudes of the reflected and transmitted structural waves generated by the (a)
welded and (b) clamped joining of two curved plates: - - - - -, reflected subsonic flexural; ——,
transmitted subsonic flexural; · · · · ·, reflected longitudinal; − · ·− · ·−, transmitted longitudinal.

(Norris & Wickham 1995) is shown for comparison. In general most of the energy
flow from the junction is contained in the diffracted subsonic flexural waves at lower
frequencies (figure 4) and in acoustic diffraction at higher frequencies (figure 5).
However, the details vary considerably for the welded and clamped plates, which are
discussed separately next.

The energy partition for a welded join is shown in figures 4a, 5a and 6a. It is evident
that the transmitted flexural energy is influenced strongly by the curvature contrast,
and it decreases for large contrast (large β). The reflected flexural power is less
sensitive to the curvature contrast. There is also a significant amount of reflected and
transmitted longitudinal energy generated at the discontinuity. For the configuration
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Figure 4. Partition of reflected and transmitted flexural energy for flat plate and curved plate
systems where the junction is (a) welded and (b) clamped: · · · · ·, both flat plates; ——, both
curved plates.

considered in the figures, each longitudinal wave contains approximately 5% of the
total energy over a wide range of frequencies.

Turning to the clamped join, figures 4b, 5b and 6b, we see that an increase of the
curvature contrast, β, diminishes both the reflected flexural energy and the acoustical
diffraction near the ring frequency. The reflected longitudinal energy is significant for
Ω < 1. The increase in the amount of reflected longitudinal energy at the expense
of the other wave types may be explained by the enhanced coupling between normal
and in-plane motion that occurs as the plates are curved. It is not surprising that the
transmitted longitudinal energy is negligibly small. This is because the only means
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Figure 5. Acoustic radiated energy for flat plate and curved plate systems where the junction
is (a) welded and (b) clamped: · · · · ·, both plates flat; ——, both curved plates.

of interaction between the incident structural wave and plate 2 is through the fluid,
which couples strongly to normal motion but very weakly to in-plane motion.

Longitudinal wave incidence from a flat plate onto a curved plate with radius of
curvature of 1 m is considered in figure 7. We find that most of the energy is converted
into diffracted longitudinal waves. At high frequencies, the curved plate appears flat
and the longitudinal energies approach their in vacuo values of 1

9 reflected and 8
9

transmitted for α = 2. If the joint is clamped instead of being welded, the trivial
result of total reflection is obtained.

It is of some interest to study the directivity of the acoustic diffraction pattern
generated by a subsonic flexural wave striking the join. We find that the directivity is
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Figure 6. Reflected and transmitted longitudinal energy for curved plate systems where the
junction is (a) welded and (b) clamped: ——, reflected longitudinal energy; · · · · ·, transmitted
longitudinal energy. Note that the amount of transmitted longitudinal energy for a clamped
junction is negligibly small.

dramatically dependent upon the type of junction, the frequency regime and the cur-
vature of the plates. Brazier-Smith (1987) and Norris & Wickham (1995) examined
the acoustic diffraction for different edge conditions over a broad range of frequencies.
We therefore focus here on the influence of curvature. Figures 8 and 9 show radiation
patterns for Ω = 0.25, 0.75 and 1.25 for both welded and clamped steel plates in
water. The total radiated power is small at low frequencies, and the directivity is
similar to that of a dipole placed at the plate junction with its axis perpendicular
to the tangent line. However, the radiated acoustic field develops intense beams at
higher frequencies. The beam directions correlate well with the emergence of leaky
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Figure 7. Reflected and transmitted longitudinal wave energy for FPL∗ incidence on a flat plate
welded to a curved plate: ——, reflected longitudinal energy; · · · · ·, transmitted longitudinal
energy.

longitudinal waves that couple to the fluid only when the plates possess curvature.
The sharp peaks in the directivity occur at the critical angle for a longitudinal wave,
which is approximately 15◦ for steel and water. When the wave is incident from a
flat plate the directivity shows only one sharp beam in the forward direction, corre-
sponding to a leaky wave on the curved plate along x > 0. Two sharp peaks can be
seen when both plates are curved, with one in the forward direction and the other
in the backward direction (see figures 8 and 9). These beams are strongest when the
joint is welded.

Finally, figure 10 shows the acoustic radiation pattern generated by longitudinal
wave (FPL∗) incidence from a flat plate which strikes the welded joint with a curved
plate. We note that the total radiated power is small, although intense beams are
present once again at the longitudinal wave critical angle.

9. Conclusions

We have outlined a relatively simple, straightforward method for characterizing
acoustic or structural wave interaction with the junction of two curved plates which
are unilaterally fluid loaded. The main results are summarized by equations (5.1)
and (5.2) for the total response, equation (5.7) for the incident wave field and equa-
tions (5.5), (5.15) and (5.16) for the scattered wave field. The Wiener–Hopf split
function K+ is derived in Appendix A in a semi-analytic form which allows for easy
computation. The scattered response depends upon a polynomial function A which
requires at most a 4× 4 linear system of equations to be solved for either welded or
clamped plate edges. With these formulae, acoustic–structural wave interactions at
junctions between plate segments whether curved or flat can be numerically evalu-
ated over a wide frequency range. Energy flux relations have also been derived for
the structural waves in fluid-loaded curved plates. We have illustrated some typical
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Figure 8. Polar plots of the scattered acoustic pressure amplitude generated at a welded junction
of two steel plates loaded by water. The non-dimensional frequencies Ω are (a) 0.25, (b) 0.75
and (c) 1.25: · · · · ·, both flat plates; ——, both curved plates.
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Figure 9. Polar plots of the scattered acoustic pressure amplitude generated at a clamped junc-
tion of two steel plates loaded by water. The non-dimensional frequencies Ω are (a) 0.25, (b)
0.75 and (c) 1.25: · · · · ·, both flat plates; ——, both curved plates.

Phil. Trans. R. Soc. Lond. A (1998)



Diffraction by the junction of two curved plates 1455

0

20

40

60

p (dB)

Figure 10. Polar plots of the scattered acoustic pressure amplitude generated at a welded junction
of a flat plate with a curved one due to the interaction of a longitudinal wave (FPL∗) with the
joint: · · · · ·, Ω = 0.25; - - - - -, Ω = 0.75; ——, Ω = 1.25.

numerical results for various wave interactions by presenting diffraction coefficients
and energy distributions.

A.N.N. and D.A.R. were supported by the US Office of Naval Research.

Appendix A. Factorization of the dispersion functions

(a) Preliminary results and definitions

The functions K+(ξ) and K−(ξ) defined in equation (5.12) are evaluated here. In
general, we can consider any pair of dispersion functions D1(ξ) and D2(ξ) that are of
the form (4.3) with U1(ξ) and V1(ξ) the same order as U2(ξ) and V2(ξ), respectively.
The fact that D1 and D2 are even functions of ξ implies the symmetry property

K−(−ξ) = 1/K+(ξ), (A 1)

and therefore

K+(0) =
√
D2(0)/D1(0). (A 2)

It follows from its definition in (5.16) and from (A 1) that the value of G(ξ) is
unaltered under the double interchange 1 ↔ 2 followed by ξ ↔ −ξ. This symmetry
property is apparent in the context of the diffraction problem—it amounts to a
mirror symmetry or parity of the system. It is clear from the general solution in
equation (5.15) that this function G(ξ) is of fundamental importance.

Define P (ξ) by

P (ξ) = D(ξ)D̃(ξ)

= U2(ξ) + (k2
f − ξ2)V 2(ξ). (A 3)

Hence, P is a polynomial in ξ2, with roots ξ = ±ξn, n = 1, 2, . . . , 1
2N , where N = 14

for the problem as stated. With no loss in generality, we let Im ξn > 0. Associated
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Figure 11. A map of the complex t-plane near the contours C0 and C1. The four quadrants
indicated are the images of the corresponding regions in the original complex ξ-plane, where
ξ = −kf cosh t. Thus, γ = −kf sinh t has real part positive (negative) in the physical (unphysical)
quadrants. Unphysical roots of this equation are all mapped into the unphysical quadrants.

split functions P+ and P− are defined by

P (ξ) = P+(ξ)P−(ξ), (A 4)

and the constraint

P−(−ξ) = P+(ξ). (A 5)

Hence,

P±(ξ) =
a

κ4

N/2∏
n=1

(ξn ± ξ). (A 6)

Note that the dispersion function can be expressed in terms of P and the reflection
coefficient:

D(ξ) = R−1/2(ξ)P 1/2(ξ). (A 7)

We first consider the analytic factorization of the function

L(ξ) = R2(ξ)/R1(ξ) = L−(ξ)/L+(ξ), (A 8)

where L±(ξ) are analytic H±, respectively, and they satisfy the same reflection sym-
metry as K±, i.e. L−(−ξ) = 1/L+(ξ). The desired functions then follow from equa-
tions (5.12), (A 4), (A 7) and (A 8); for example,

K+(ξ) =
[
P+

2 (ξ)
P+

1 (ξ)
L+(ξ)

]1/2

. (A 9)

(b) Analytic splitting

It can be shown by standard means (Noble 1958) that

(logL±)′(ξ) = − 1
2πi

∫ ∞
−∞

[logL(s)]′

s− ξ ds, (A 10)
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where f ′(s) ≡ df(s)/ds, and the L+ contour goes under ξ, the L− over, for real
ξ. Now change integration variables according to the conformal transformation s =
−kf cosh t, γ(s) = −kf sinh t, and focusing on the function L+, we have

(logL+)′(ξ) = − 1
2πi

∫
C0

[logL(−kf cosh t)]′
sinh t dt

cosh t− coshu
, (A 11)

where ξ = −kf coshu, and the contour C0 runs from t = −∞ + ib to t = ∞ +
iπ + ib (see figure 11). The pole associated with real-valued ξ lies slightly above
C0. The integrand in (A 11) is periodic with period 2πi, implying that the contour
C0 could be equally well replaced by any contour Cn, n = ±1,±2, . . . , obtained
by shifting C0 by n2πi. Let C be the closed contour formed by combining C0, C1
and vertical contours of length 2π joining the ends of C0 and C1 at ±∞. Let g(t)
denote the integrand of (A 11), then the integral of g(t) around the closed contour C
is identically zero. However, consider the integral of tg(t) around C in the counter-
clockwise sense. For a given value of t on C0 the value of this function on C1 differs
from that on C0 by 2πig(t). Hence the total integral is simply (−2πi) times the
integral (A 11) (the short vertical segments of C contribute nothing to the final
answer). Wickham (1995) provides further insight into this contour manipulation
and the resulting factorization.

Noting that g(t) is a meromorphic function we are led to the identity

(logL+)′(ξ) =
1

2πi

∑
C

res
{

[logL(−kf cosh t)]′
t sinh t

cosh t− coshu

}
, (A 12)

where the sum is over all simple poles within C.

(c) Evaluating the residues

There are two poles associated with ξ at t = u and t = 2πi− u. The value of ξ is
the same at both, but γ(s(2πi− u)) = −γ(s(u)). Thus, the first pole is ‘physical’ in
the sense that its value of γ satisfies the radiation conditions, while the second pole
is ‘unphysical’. In particular, logL(s(2πi−u)) = − logL(s(u)), from which it follows
that

1
2πi

∑
ξ−poles

res
{
t sinh t(logL)′

cosh t− coshu

}
=

2(u− iπ)
2πi

[logL(ξ)]′

= − 1
π

[logL(ξ)]′ cos−1(ξ/kf). (A 13)

The appropriate branch for the inverse cosine is

cos−1(ξ/kf) = −i log[ξ/kf − γ(ξ)/kf ], (A 14)

where log z = log |z| + iθ, −π < θ < π, which when combined with the identity
cosh−1(−z) = iπ − icos−1z ensures that the regions in the complex ξ-plane are
mapped into the sectors of the t-plane as shown in figure 11.

We now consider the poles of (logL)′ = (logR2)′ − (logR1)′, which can be simpli-
fied by using the definition (4.9):

[logR(ξ)]′ =
D̃′

D̃
− D′

D
. (A 15)
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The region inside C contains two replicas of both the ‘physical’ and the ‘unphysical’
transform planes, where Re γ(ξ) > 0 in the former and Re γ(ξ) 6 0 in the latter.
Thus, the poles of D and D̃ are the roots ±ξn, n = 1, 2, . . . , 1

2N , of the polyno-
mial P of (A 3). Recall that Im ξn > 0, with ξn = −kf cosh tn, where tn lie in the
‘upper physical’ and ‘upper unphysical’ quadrants of C. Those in the former quad-
rant correspond to roots of the dispersion relation D(ξ) = 0 and the others solve
D̃(ξ) = 0. In any event, it is important to realize that all the roots of P = 0 are
involved in the residue evaluation for both terms in (A 15). In addition to the poles
at t = tn there are poles at t = 3πi − tn, corresponding to the roots −ξn. Note
that the value of γ(s(t)) = −kf sinh t is the same at t = tn and t = 3πi − tn. The
residues at these poles are simple to calculate, taking into account the fact that
dD(s)/dt = −kf sinh tD′(s). Let 1

2Ñ 6
1
2N be the number of zeros of D̃, arranged

such that the first 1
2(N − Ñ) roots ξn are the zeros of D. It follows from these

considerations that the first 1
2(N − Ñ) poles give

− 1
2πi

(N−Ñ)/2∑
n=1

res
{

t sinh t
cosh t− coshu

(
D′

D
− D̃′

D̃

)}∣∣∣∣
ξn

=
1

2πikf

(N−Ñ)/2∑
n=1

{
tn

cosh tn − coshu
− (2πi− tn)

cosh tn − coshu
.

− (3πi− tn)
cosh tn + coshu

+
(πi + tn)

cosh tn + coshu

}

=
1
πi

(N−Ñ)/2∑
n=1

2ξn(iπ − tn)
ξ2
n − ξ2 . (A 16)

The four terms in (A 16) arise from, in succession, the pole of D at ξn (tn) in the
upper physical sector; the pole of D̃ at ξn (2πi− tn) in the upper unphysical sector;
the pole of D at −ξn (3πi− tn) in the lower physical sector; and the pole of D̃ at −ξn
(πi + tn) in the upper unphysical sector. A similar result follows for the remaining
Ñ roots, i.e.

− 1
2πi

N/2∑
n=((N−Ñ)/2)+1

res
{

t sinh t
cosh t− coshu

(
D′

D
− D̃′

D̃

)}∣∣∣∣
ξn

= − 1
πi

N/2∑
n=((N−Ñ)/2)+1

2ξn(iπ − tn)
ξ2
n − ξ2 . (A 17)

Equations (A 16) and (A 17) may be combined, by using (A 15), to give

1
2πi

∑
ξn−poles

res
{
t sinh t(logR)′

cosh t− coshu

}
=

1
π

N∑
n=1

2ξnθnsn
ξ2
n − ξ2 , (A 18)

where

sn =
{

1, for physical roots,
−1, for unphysical roots. (A 19)

Phil. Trans. R. Soc. Lond. A (1998)



Diffraction by the junction of two curved plates 1459

Recall that the two membrane roots are unphysical. Also, the angle θn = π+ itn, or
specifically,

θn = cos−1(ξn/kf), (A 20)

where the branch of the inverse cosine is given by (A 14).

(d) Number of physical roots

By applying the principle of the argument to the dispersion function (4.3), the
number of physical roots with Re γ(ξ) > 0 can be determined. Recall that this
principle states that if a function f(ξ) is analytic on a simple closed curve C, except
for a finite number of poles within C and no zeros on C, then

1
2πi

∫
C

df
dξ

dξ
f(ξ)

= nz − np, (A 21)

where nz, np are the number of zeros and poles in C, respectively.
Here we consider the dispersion relation D(ξ) = 0 given by (4.3) which has no

poles (np = 0) so that (A 21) will then count the number of zeros. First, we rewrite
the dispersion function in terms of γ giving D(ξ) = D(γ), and by using (A 21) to get

nz =
∫
C′

d[logD(γ)]. (A 22)

By counting the number of times the contour C ′ encircles the origin in the counter-
clockwise direction as γ is varied along the contour enclosing the half-space Re γ > 0,
the number of physical roots is determined. For the situation considered here, a
curved plate, it was found that there are always three physical roots, and therefore
four unphysical ones because there are seven in total. The three physical roots are
similar to those obtained for a flat plate which has three physical and two unphysical
roots. By curving the plate, coupling between flexural and longitudinal motion occurs
but the two longitudinal roots are always unphysical.

(e) Various forms of K+

Combining (A 12), (A 13) and (A 18), we have

L+(ξ) =
[
R1(0)
R2(0)

]1/2

e[Φ1(ξ)−Φ2(ξ)], (A 23)

where

Φ(ξ) ≡ 1
π

∫ ξ

0

[N/2∑
n=1

2ξnθnsn
s2 − ξ2

n

+ [logR(s)]′ cos−1(s/kf)
]

ds, (A 24)

and the value at ξ = 0 follows from the definition and symmetry of L±. Equa-
tions (A 9) and (A 23) now imply that

K+(ξ) =
[
P+

2 (ξ)
P+

1 (ξ)

]1/2[
R1(0)
R2(0)

]1/4

e[Φ1(ξ)−Φ2(ξ)]/2, (A 25)

and it is clear that this automatically satisfies the condition (A 2). This can be seen
by using (A 4)–(A 7). The main effort in calculating the split function for finite values
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of the argument is thus reduced to evaluating the integral (Φ1−Φ2). Equation (A 25)
expresses K+ in a form which is easily evaluated for small values of ξ. We note that
the integrand possesses no poles in the upper half-plane, H+, because the poles of
R are exactly cancelled by the poles in the first term in the integrand.

This can be observed by expressing the second term of (A 24) in partial fractions.
Note that (logR)′(ξ) can be written as

(logR)′(ξ) = R′(ξ)/R(ξ) = 1/γ(ξ)Q(ξ), (A 26)
where Q(ξ) is the ratio of two polynomials and is given by

Q = P/(D̃′D − D̃D′)γ. (A 27)
Since only P appears in the numerator of Q, they share the same zeros and

res[1/Q(ξ)]|ξ=±ξn = −snγ(ξn). (A 28)
Thus,

(logR)′(ξ) =
N/2∑
n=1

−2ξsn
ξ2 − ξ2

n

γ(ξn)
γ(ξ)

. (A 29)

Substituting (A 29) into (A 24) and using (A 20), we then obtain

Φ(ξ) =
2
π

∫ cos−1 ξ/kf

π/2

N/2∑
n=1

θ cos θ sin θn − θn cos θn sin θ
cos2 θ − cos2 θn

sn dθ. (A 30)

An alternative form for K+ can be found by factorizing the denominator of (A 30)
and using (A 7) to obtain

K+(ξ) =
[
D2(0)
D1(0)

]1/2∏′ 1 + ξ/ξ
(2)
n

1 + ξ/ξ
(1)
n

e[φ1(ξ)−φ2(ξ)], (A 31)

where the products
∏′ are taken over the roots for which sn = 1, and

φ(ξ) =
1

2π

∫ cos−1 ξ/kf

π/2

N/2∑
n=1

[
θ sin θn − θn sin θ

cos θ − cos θn
+
θ sin θn − (π − θn) sin θ

cos θ + cos θn

]
sn dθ.

(A 32)
Evidently, φ1−φ2 → 0 in the limit of light fluid loading. This form of K+ is preferred
for numerical computations because it does not contain any square roots in the pre-
exponent.

The main attraction of the Wiener–Hopf split function K+ as given by either
(A 25) or (A 31) is the finite interval of integration in equations (A 30) and (A 32),
which permits fast numerical evaluation. Abrahams & Lawrie (1995) describe a fun-
damentally different finite-integral factorization procedure based upon Malyuzhinets
functions.

Appendix B. Expansion coefficients

(a) Asymptotic forms for K+

Equations (4.3), (4.4), (5.12) and (A 1) imply that the value of K+(ξ) at infinity,
denoted by K+

∞, is

K+
∞ = lim

ξ→∞

[
P+

2 (ξ)
P+

1 (ξ)

]1/2

=
√
µ, (B 1)
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where µ = B2/B1. It is then easily seen from (A 25) that

K+(ξ) =
[
P+

2 (ξ)
P+

1 (ξ)

]1/2

exp[Φ∞2 (ξ)− Φ∞1 (ξ)], (B 2)

where

Φ∞ =
1

2π

∫ ∞
ξ

[N/2∑
n=1

2ξnθn
s2 − ξ2

n

+ [logR(s)]′ cos−1(s/kf)
]

ds. (B 3)

The latter expression has the virtue that it is easy to expand about the point at
infinity in the complex ξ-plane once we have determined that the appropriate branch
of the inverse cosine is

i cos−1(ξ/kf) = log(2ξ/kf)− k2
f /(4ξ

2) +O(ξ−4). (B 4)
Further, a routine calculation yields

d
dξ

[logR(ξ)] = −10κ4

aξ6 −
7k2

f κ
4

aξ8 +O(ξ−10), (B 5)

and so expanding the integrand in (B 3) and then integrating term by term we find
that
K+(ξ)
K+∞

= exp
[ 5∑
n=1

1
ξn

(β(2)
n − β(1)

n )− i
πξ5

(
κ4

2

a2
− κ4

1

a1

)
log
(

2ξ
kf

)
+O(ξ−6)

]
, (B 6)

where, for the sake of convenience, we have promoted the prefactor in (B 3) into the
exponent before expanding. The coefficients are all explicitly expressed in terms of
the zeros of P1(ξ) and P2(ξ) as

β
(k)
j =

1
2j

7∑
n=1

{
θ

(k)
n

π
[(ξ(k)

n )j − (−ξ(k)
n )j ]− (−ξ(k)

n )j
}
. (B 7)

The expansions of the functions p̃±0 and w̃±0 for large ξ are straightforward except
for the terms involving K±(ξ) (see equation (6.7)). Combining all terms in the expo-
nent, we have from equations (B 6) and (6.6) that

K±(ξ)
(ξ − ξ0)P ∗(ξ)

=
K±∞
P ∗0

ξ−(1+N∗) exp
[ 4∑
n=1

β±n
ξn

+O(ξ−5 log ξ)
]

=
K±∞
P ∗0

4∑
n=0

δ±n
ξ(1+N∗+n) +O(ξ−14 log ξ), (B 8)

where K−∞ = 1/K+
∞, P ∗0 is defined in (6.5),

β±j = (±1)j−1(β(2)
j − β(1)

j ) +
1
j

{
(ξ0)j +

N∗/2∑
n=1

[(ζn)j + (−ζn)j ]
}

(B 9)

and
δ±0 = 1, (B 10 a)

δ±1 = β±1 , (B 10 b)

δ±2 = 1
2(β±1 )2 + β±2 , (B 10 c)

δ±3 = 1
6(β±1 )3 + β±1 β

±
2 + β±3 , (B 10 d)

δ±4 = 1
24(β±1 )4 + 1

2(β±1 )2β±2 + 1
2(β±2 )2 + β±1 β

±
3 + β±4 . (B 10 e)
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(b) Expansions for w̃±0 and p̃±0
The expansion for w̃±0 of equation (6.7), and of p̃±0 , imply by using (6.11), (6.12)

and (6.15) that

λ±n = G(ξ0)
{
U1(ξ0)K+(ξ0)

P ∗(ξ0)
(ξ0)n +

N∗/2∑
m=1

[
u+

1m(ζm)n

ζm − ξ0 −
u−2m(−ζm)n

ζm + ξ0

]

− K∓∞
P ∗0

2∑
l=0

δ∓n+l−N∗U
±
l

}
, n = 0, . . . , 10, (B 11 a)

ψ±n = G(ξ0)
{
−V1(ξ0)K+(ξ0)

P ∗(ξ0)
(ξ0)n −

N∗/2∑
m=1

[
v+

1m(ζm)n

ζm − ξ0 −
v−2m(−ζm)n

ζm + ξ0

]

+
K∓∞
P ∗0

6∑
l=2

δ∓n+l−N∗V
±
l

}
, n = 0, . . . , 6, (B 11 b)

where V −j , V +
j , U−j and U+

j are the coefficients of ξj in V1(ξ), V2(ξ), U1(ξ) and U2(ξ),
respectively. Thus, for example, V −2 = a1, V −4 = k2

1a1/κ
4
1, V −6 = −a1/κ

4
1, while U−0 =

k2
1 and U−2 = −1. Also, δ±n = 0 for n < 0 and n > 4 in (B 11), and (cf. (6.8))

v±jn = residue of
[
Vj(ξ)K±(ξ)

P ∗(ξ)

]
ξ=±ζn

. (B 12)

We note that v−2n = −v+
1n/K

−K+, which may be used in conjunction with the
analogous result (6.10) to simplify equation (B 11).

The λ and ψ may be easily computed by using the following recursion relations:

λ̃±n = λ±n+1 − ξ0λ±n

= G(ξ0)
4∑

m=1

[(ζm)nu+
1m + (−ζm)nu−2m]

− K∓∞
P ∗0

G(ξ0)
2∑
l=0

(δ∓n+l−7 − ξ0δ∓n+l−8)U±l , n = 0, . . . , 9, (B 13 a)

ψ̃±n = ψ±n+1 − ξ0ψ±n

= −G(ξ0)
4∑

m=1

[(ζm)nv+
1m + (−ζm)nv−2m]

+
K∓∞
P ∗0

G(ξ0)
6∑
l=2

(δ∓n+l−7 − ξ0δ∓n+l−8)V ±l , n = 0, . . . , 5. (B 13 b)

Finally, we note that for acoustic or shell wave incidence (i.e. when A0 6= 0) the
first terms in (B 11 a) and (B 11 b) can be simplified by using

G(ξ0)U1(ξ0)
K+(ξ0)
P ∗(ξ0)

=
1
A0

p(0)
,y (0, 0), (B 14 a)

Phil. Trans. R. Soc. Lond. A (1998)



Diffraction by the junction of two curved plates 1463

−G(ξ0)V1(ξ0)
K+(ξ0)
P ∗(ξ0)

=
1
A0

p(0)(0, 0). (B 14 b)

Appendix C. Meaning for the roots of P ∗(ξ) = 0

Consider a sandwich composed of plates 1 and 2 with a fluid layer of thickness 2d
between them and a vacuum above and below. The sandwich is considered as flat,
with the equations of motion for each plate governed by the operator Lj , j = 1 or
2. To be specific, let plate 1 lie above plate 2, and they are situated at y = d and
y = −d, respectively. Define w1 (w2) as the downward (upward) displacement of
plate 1 (2). The equations of motion are then

V1

(
−i

d
dx

)
ρfω

2w1(x) = −U1

(
−i

∂

∂x

)
p(x, d), (C 1 a)

V2

(
−i

d
dx

)
ρfω

2w2(x) = −U2

(
−i

∂

∂x

)
p(x,−d), (C 1 b)

where p is the pressure in the fluid layer. Consider a breathing type of motion of the
sandwich, for which

w1(x) = w(x), w2(x) = w(x)/Γ, (C 2)

and p satisfies

p(x, d)− Γp(x,−d) = 0. (C 3)

Then it follows that w satisfies the equation of motion

P ∗
(
−i

d
dx

)
ρfω

2w(x) = U1

(
−i

∂

∂x

)
U2

(
−i

∂

∂x

)
(p(x, d)− Γp(x,−d))

= 0, (C 4)

where P ∗ is the polynomial defined in equation (6.5). A solution of the form,

ρfω
2w(x) = eiζnx, (C 5)

automatically satisfies (C 4), and the associated pressure is

p(x, y) = [ps cos(γ(ζn)y) + pa sin(γ(ζn)y)]eiζnx. (C 6)

Equations (C 1) and (C 3) imply that

ps =
(
Γ + 1

2Γ

)
sec(γ(ζn)d)
γ(ζn)X

pa =
(
Γ − 1

2Γ

)
csc(γ(ζn)d)
γ(ζn)X

, (C 7)

where

X = − U1(ζn)
V1(ζn)γ(ζn)

= − U2(ζn)
V2(ζn)γ(ζn)

. (C 8)

The continuity condition at the two plates, (2.3), is then satisfied if and only if both

Γ = 1 and tan(γ(ζn)d) = X. (C 9)

Therefore, a root ζn of P ∗(ζn) = 0 which satisfies the identity (C 9)2 corresponds to
a symmetric free wave of the sandwich. The mode shape is such that w1 = w2 and
p is symmetric about the centre.
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Appendix D. Two membranes

The structural dynamics are governed by the equations
−Tjw,xx −mjω

2w = −p, j = 1, x < 0; j = 2, x > 0, (D 1)
where the ‘tensions’ T1,2 > 0 will be allowed to differ. The general theory can now
be applied, with

Uj = 1, Vj = aj(ξ2/k̄2
j − 1), (D 2)

where k̄2
1,2 ≡ mjω

2/Tj are the membrane wave numbers, and a1,2 are defined by
(2.5)3. The reflection coefficient polynomial P ∗ is quadratic (N∗ = 2) with

P ∗0 =
a1

k̄2
1
− a2

k̄2
2
, ζ2

1 =
a1 − a2

P ∗0
= k̄2

1

(
α− 1
µ̄− 1

)
, (D 3)

where α is given by (6.26)1, and µ̄ = T2/T1 is the stiffness ratio, analogous to µ of
equation (6.24) for the plate.

There are two junction conditions for the continuity of w and Tw,x, implying
q = 2. The first condition is exactly the same as (6.23 a), and the second is similar
to (6.23 c):

µ̄Λ+
1 − Λ−1 = ξ0(µ̄− 1)p(0)

,y (0, 0). (D 4)
In this particular problem λ+

j = λ−j for j = 0 and j = 1, only, but this implies, by
using (6.23 a), that Ā2 = 0. The remaining two equations, (6.17) and (D 4), become[

1 ξ0

(µ̄− 1)λ±1 µ̄λ+
2 − λ−2

] [
Ā0

Ā1

]
=

[
A0

ξ0(µ̄− 1)p(0)
,y (0, 0)

]
. (D 5)

Redefine A according to
A(ξ) = A0 + (ξ − ξ0)Ã1, (D 6)

then (D 5) implies that

Ã1 = (µ̄− 1)
[

ξ0p
(0)
,y (0, 0)− λ±1 A0

µ̄(λ+
2 − ξ0λ±1 )− (λ−2 − ξ0λ±1 )

]
. (D 7)

The denominator can be reduced by using
λ±2 − ξ0λ±1 = G(ξ0)[ζ1(u+

11 − u−21)− (µ̄)∓1/2/P ∗0 ]

=
G(ξ0)
P ∗0

(cosh ν1 − (µ̄)∓1/2), (D 8)

which follows from (6.10), (B 11) with K+
∞ =

√
µ̄, the fact that K−(ζ1) = K+(ζ1)

because K(ζ1) = 1, and the definition
ν1 = logK+(ζ1). (D 9)

The numerator in (D 7) simplifies by using the identity (B 14), yielding
Ã1 = −A0(ξ0 + ζ1 tanh ν1)/(ζ2

1 − ξ2
0). (D 10)

Finally, we obtain the polynomial

A(ξ) =
A0

ζ2
1 − ξ2

0
[ζ2

1 − ξξ0 − (ξ − ξ0)ζ1 tanh ν1]. (D 11)

It is easily verified that this satisfies the reciprocity condition (5.29). Also note that
the pressure is continuous at the origin, p(+0, 0) = p(−0, 0), because ψ+

j = ψ−j for
j = 0 and j = 1.
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(a) Light fluid-loading limit

The limit of light fluid loading is defined here as the limit in which the lengths
a1,2 far exceed all other lengths in the problem. Consequently, the function K can
be approximated as K = V1/V2, with the explicit split functions

K+(ξ) =
√
µ̄

(
k̄2 + ξ

k̄1 + ξ

)
,K−(ξ) =

1√
µ̄

(
k̄1 − ξ
k̄2 − ξ

)
, (D 12)

and the generalized dispersion function of (5.16) becomes

G(ξ) = −γ
√
a1a2

k̄1k̄2
(ξ + k̄1)(ξ − k̄2). (D 13)

The transform of the scattered pressure, from (5.15), is

p̃(ξ) =
iA(ξ)
ξ − ξ0

(ξ0 + k̄1)(ξ0 − k̄2)
(ξ + k̄1)(ξ − k̄2)

. (D 14)

Equations (D 3), (D 12) yield, after some algebra,

ζ1 tanh ν1 = k̄1

(
α− 1

1 +
√
αµ̄

)
, (D 15)

which, combined with (D 11), gives an explicit expression for A.
Consider a membrane wave incident from the left, for which ξ0 ≈ k̄1 and A0 = 1.

The reflection coefficient for the membrane wave travelling back to the left is then
Rmem = (−i) res p̃(−k̄1), which can be evaluated by using equations (D 11), (D 15)
and (D 14), giving

Rmem =
√
αµ̄− 1√
αµ̄+ 1

. (D 16)

This agrees with the expected result, Rmem = (Z2−Z1)/(Z2 +Z1), where Zj = mjcj
is the membrane wave impedance for membrane j, j = 1, 2 and cj = ω/k̄j are the
membrane wave speeds. The equivalence follows from the identity

√
αµ̄ = Z2/Z1,

and is expected because membrane wave reflection and transmission is only weakly
affected under light fluid loading.

As a second example, consider an incident acoustic wave, with A0 given by equa-
tion (5.7). The diffracted acoustic wave depends upon the diffraction coefficient of
equation (5.22), which becomes, by using (4.12) and the above equations,

C(θ, θ0) =
(
k̄2

2

a2
− k̄2

1

a1

)
γ(ξ)
γ(ξ0)

[ζ2
1 − ξξ0 − (ξ − ξ0)ζ1 tanh ν1]

(ξ − ξ0)(ξ + k̄1)(ξ − k̄2)(ξ0 − k̄1)(ξ0 + k̄2)
. (D 17)

This is small, of order 1/a, as expected. It is also real-valued, and possesses sin-
gularities corresponding to the specular direction (ξ = ξ0), forced incident mem-
brane waves (ξ0 = k̄1,−k̄2) and forced ‘radiating’ membrane waves (ξ = −k̄1, k̄2).
These singularities appear because we are implicitly neglecting the acoustic feedback
between the membrane and the fluid in the light fluid limit. The membrane waves
are either subsonic or leaky in the full solution, and are therefore not excitable by
an incident acoustic plane wave. Their appearance in (D 17) indicates that the light
fluid-loading approximation becomes invalid for incident wave number in the vicinity
of one of these wave numbers, and a different ansatz is required. Thus, the ξ0 poles
correspond to the fact that the ‘incidence’ or forcing is dominated by a membrane
wave, not just an acoustic wave, and the ξ poles can be viewed similarly in terms of
reciprocity.
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(b) Heavy fluid-loading approximation

The converse physical limit in which a1,2 are much shorter than all other physical
lengths is called the heavy fluid-loading limit. The acoustic reflection coefficients
R1,2 are approximately −1 in this case, as compared with +1 in the light fluid-
loading regime. In fact the leading-order approximation is now much simpler, because
K(ξ) ≈ 1, implying K±(ξ) ≈ 1 and G(ξ) ≈ 1. Thus, (D 11) reduces to

A(ξ) = A0
ζ2
1 − ξξ0
ζ2
1 − ξ2

0
. (D 18)

Furthermore, the scattered acoustic response is simply p̃ ≈ iA(ξ)/(ξ−ξ0). For exam-
ple, the acoustic diffraction coefficient becomes

C(θ, θ0) ≈ γ(ξ)γ(ξ0)
ξ0 − ξ

[(
a1

k̄2
1
− a2

k̄2
2

)
ξξ0 − (a1 − a2)

]
, (D 19)

which is again real and small.
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