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We develop an effective medium theory of the nonlinear elasticity of a random sphere
pack based upon the underlying Hertz-Mindlin theory of grain-grain contacts. We
compare our predictions for the stress-dependent sound speeds against new experi-
mental data taken on samples with stress-induced uniaxial anistropy. We show that
the second-order elastic moduli, Cyy, and therefore the sound speeds, can be calcu-
lated as unique path-independent functions of an arbitrary strain environment, { ey},
thus generalizing earlier results due to Walton. However, the elements of the stress
tensor, oy, are not unique functions of { ey} and their values depend on the strain
path. Consequently, the sound speeds, considered as functions of the applied stresses,
are path dependent. Illustrative calculations for three cases of combined hydrostatic
and uniaxial strain are presented. We show further, that, even when the additional
applied uniaxial strain is small, these equations are not consistent with the usual
equations of third-order hyperelasticity. Nor should they be, for the simple reason
that there does not exist an underlying energy function which is simply a function of
the current state of the strain. Our theory provides a good understanding of our new
data on sound speeds as a function of uniaxial stress.
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1 Introduction

Granular media exhibit a wide range of interesting properties.
They are in some respects similar to solids and in other respects
similar to fluids, although they are distinctly different from
either. Consequently, the physics of granular media represents
an active area of current research activity (Bideau and Dodds,
1991; Mehta, 1991; Nagel, 1992). A major area of interest is
the manner by which applied forces are communicated from
one grain to another, a subject with clear implications for the
propagation of sound waves which is the topic of this article.
Specifically, we present new theoretical and experimental re-
sults which clarify the way that sound speeds in granular media
depend upon the applied stresses which, in general, may be
anisotropic. The central issue here is that sound cannot propa-
gate unless there is an applied stress because the *‘spring con-
stants’’ between the grains vanish when the stress is eliminated.
By measuring the effects of anisotropic stresses, we have ex-
tended earlier experimental work which had been limited to
a consideration of applied stress which is strictly hydrostatic.
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Previous such studies are seriously inadequate, for reasons upon
which we expand below.

Two related issues complicate the analysis of sound propaga-
tion in granular systems: nonlinearity and path dependence.
Both effects originate with the contact forces exerted by one
grain on another. Stress-induced changes in sound speeds are
the fundamental signature of nonlinear elasticity. It is well
known that granular media are highly nonlinear and that the
rates at which sound speeds change with applied stress increase
dramatically as the stress decreases. It is also known that stress
versus strain experiments on such systems often show consider-
able hysteresis, which is due, in part, to the path-dependent
nature of the contact forces. From a theoretical viewpoint, it is
therefore necessary to develop nonperturbative methods of the
kind employed in this paper.

We emphasize the importance of studying granular systems
under the influence of anisotropic stresses. First, in conventional
nonlinear hyperelasticity theory, there exists an energy density
function which is strictly a function of the current state of strain,
and not upon the past history of the deformation. Here, the so-
called third-order elastic constants are used to describe the rate
of change of sound speeds with applied stress or strain. (The
values of the sound speeds themselves are given in terms of the
second-order elastic constants, e.g., the Lamé constants A and
u.) Even in the very simplest case of an isotropic hyperelastic
medium there are three different third-order elastic constants:
A, B, and C. A measurement of the change of longitudinal and
of transverse sound speeds due to applied hydrostatic pressure
can determine only two linearly independent combinations of
these constants. Therefore, even in this simplest case, a mea-
surement of the effects of nonhydrostatic stress is needed to
complete the determination of the set A, B, C. Second, in granu-

Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.or g/ on 08/23/2013 Terms of Use: http://asme.org/terms



lar systems the forces exerted at the individual grain-grain con-
tacts are path dependent. It follows that the stress-induced
changes in forces are also path dependent so that sound speeds
depend on the order in which stresses are applied. (This is true
even though there is no hysteresis along any given stress path.)
This issue does not arise when only hydrostatic pressure is
applied nor does it arise in hyperelastic materials. Third, in
geophysical applications, sedimentary rocks, which are formed
from granular media, often exhibit strong acoustic anisotropy
due to their inherently anisotropic stress environment (Walsh,
1965; Nur and Simmons, 1969; Nur, 1971; Lockner et al., 1977;
Berryman, 1979; Helbig, 1983; Thomsen, 1986; Sayers, 1988;
Sayers et al., 1990; Yin and Nur, 1992). We view the under-
standing of the nonlinear acoustic properties of unconsolidated
granular media and the associated stress-induced anisotropy as
a paradigm problem for this more general class of materials.

As the issues considered here are complicated, it will be
useful to summarize the structure of this paper. In Section 2
we review the equations that describe the Hertz-Mindlin forces
exerted between two grains in contact. Each contact is assumed
to be rough and static friction prevents tangential slipping. In
general, such forces are not described by a well-defined strain-
energy function and any discussion of the resulting acoustic
properties of the granular composite must take account of the
strain history (Mindlin, 1949; Elata, 1996). Because we focus
our interests here upon the role of the strain history, we employ
an effective medium theory (Walton, 1987; Norris and Johnson,
1997) to make the connection between the properties of the
individual grain-grain contacts and those of the composite.

We use the term ‘‘random’’ to distinguish our samples from
ordered packings. As with all effective medium theories, only
some features of the true random nature of the sample are
captured by our theory, such as the average number of grain-
grain contacts. This particular effective medium theory is easily
generalizable to other situations, such as different bead sizes, a
nonisotropic distribution of contacts, a radial distribution of
contacts, but we do not explicitly consider those examples here.

Within this context, there is, surprisingly, one important rela-
tion in the acoustics of granular systems that is path indepen-
dent. Norris and Johnson (1997) (NJ) have shown that the
additional work associated with incremental displacements of
a contact around a given strain state are path independent to
second order in the additional strain. The coefficients of these
second-order terms are, in turn, path-independent functions of
the current state of strain. This implies that the associated equa-
tions for the second-order elastic moduli (i.e., the sound speeds)
considered as functions of the strain tensor are also path inde-
pendent. By contrast, we show that the relation between stress
and strain is explicitly path dependent. Therefore, the sound
speeds are path independent functions of applied strain, but
path-dependent functions of applied stress. To illustrate these
findings we consider three cases of combined hydrostatic and
uniaxial strain. In Section 3 we ask if the conventional theory
of third-order hyperelasticity can be used to describe this system
(Hughes and Kelly, 1953; Gol'dberg, 1961). Here we show
that, even when the deviations from the isotropic state are small,
the path dependent nature of the forces implies that the third-
order formulation is not valid, precisely because of the lack
of a strain-energy function and we illustrate this point with a
numerical example. In Section 4 we discuss the comparison
of our analysis with new experimental results on the stress
dependence of longitudinal and transverse sound speeds in a
granular packing under uniaxial compression. Generally, the
level of agreement between theory and experiment is quite satis-
factory. Our conclusions are presented in Section 5.

2 Theory of Combined Hydrostatic and Uniaxial
Strain

In this section we derive results for the elastic constants and
for the stress tensor, when the strain is a combination of both
hydrostatic and uniaxial compression.
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2.1 Path-Dependent Contact Forces. In a recent article,
Norris and Johnson (1997) considered the linear and nonlinear
elasticity of different models of granular aggregates. These
models differ in the nature of the grain-grain contact but can
be written in the context of a common formalism. Let us suppose
2w, 2s are, respectively, the normal and the transverse compo-
nents of the displacement of one sphere relative to another. Let
N, T be the normal and transverse components of the restoring
force. An infinitesimal change in displacement (w = w + Aw,
s — 5 + As) leads to an infinitesimal change in restoring force
(N—= N+ AN, T— T+ AT). All models considered in Norris
and Johnson (1997) can be written in the form

AN = Ca,(w)Aw, AT = Ca,(w)As, (1)

where C,, C, depend only on shear modulus, p, and the Poisson
ratio, v, of the individual grains

8,

C =2t = :
2 -

= , 2
- (2)
The quantities a,, a, are different for the different models of
grain-grain contact but they do not depend upon the elastic
constants of the grains. For the specific no-slip case being con-
sidered in the present article, one has

a,(w) = a,(w) = (Rw)'?%,

(3)

where R is the radius of the spherical grain.

Let W(w, s) be the work needed to displace the two grains
relative to each other. In general W is very much dependent
upon the path of the deformation, s = s(w), and not simply
upon the final values of (w, s). Suppose, however, one asks
the question: How much additional work is needed to take the
contact from one state characterized by (w,, o) to another (w,
+ wi, So + 51)? For any of the models that can be brought into
the form of Eq. (1), one has the result from (Norris and John-
son, 1997)

W(wo + wy, 5o + 8)

= Wo(wo, So) + Now, + Tosy + 3Cua,(wo)w? + 5Ca,(wo)s?

+ path-dependent third-order terms in (w,, s,),

(4)

where Ny and T, are the normal and transverse components,
respectively, of the force between the grains at the state of
displacement (wy, ). The terms quadratic in wy, s, are inde-
pendent of the path taken in (w, s,) space. Moreover, because
the coefficients of these terms depend only on wq, and not upon
So, these terms are independent of the path of the original defor-
mation: sy = so(wy). For this reason, the elastic constants of
the ensemble of grains are well-defined functions of the current
state of strain €; for any of the models that can be brought to
the form (1) the elastic constants can be written, in the effective
medium approximation, as Eq. (60) of Norris and Johnson
(1997):

2
Coul€) = (1 = ) % (([4C,a,(£) = 4Ca(E)IN, NNN:)
0

+ (Ca,(EY(6u NN, + 8uN;N + 6NN, + 8, N:N))YY. (5)

Here N is a unit vector along the sphere centers, £ =
—N- €' NR, (- - +) represents an average over solid angles, n
is the average number of contacts per grain, ¢ is the porosity,
and V,, = (%) 7R? is the volume of a single grain. In addition to
being an effective medium approximation, Eq. (§) also pre-
sumes that the relative change in sample dimensions is negligi-
ble compared against the relative change in stiffness. For sake
of numerical definiteness, we shall assume the angular distribu-
tion of contacts is isotropic, although Jenkins et al. (1989) have
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argued that there is evidence of anisotropy in the distribution
of contacts due to the directionality imposed by gravity.

The effective medium theory of Norris and Johnson (1997)
was derived by finessing the issue of the rotation of the grains.
If a symmetric strain is applied to the sample, it was pointed
out that the total torque on each grain will vanish and therefore
the grains will not rotate. It is therefore possible to deduce
the (properly symmetrized) elastic constants and stresses as a
function of the strain history. These elastic constants are the
relevant ones for long-wavelength wave propagation, even, say,
for shear waves. In such a motion, the grains may rotate but
they do so in such a manner that the torque vanishes and the
relevant elastic constants are the ‘‘torque-free’” ones. See
Schwartz et al. (1984) for details.

Within the effective medium framework, the validity of Eq.
(5) does not depend on the strain history of the composite
system. In the special case appropriate to Hertz-Mindlin con-
tacts, for which Eq. (3) holds, Eq. (5) reduces to

co - 3nd ~ ¢)
" 4r’R'By(2By + Cy)

(€2 {2CwN; N;N,N,

+ Bw(6aN;N, + 6yN;N, + 6,N;Ni + 6uN;Np)}), (6)
where
2 411 1
By=—, Cp==|=-—]1. 7
v wC, v Tr[C, C,,] D

Equations (6) are identical with those derived by Walton
(1987) who made the unnecessary assumption that all compo-
nents of the strain ¢,, are simultaneously increased together,
holding their ratios fixed. We emphasize, again, that these equa-
tions are valid for any applied strain, and are independent of
the history of the granular medium.

2.2 Analytic Results for Specific Strain Paths. Let us
consider a special case of interest in which the strain is a combi-
nation of hydrostatic and uniaxial compression:

(8)

2.2.1 Sound Speeds. In this case it is clear that the system
will exhibit the symmetries usually associated with transversely
isotropic materials and, after some rearranging, we have from

Eq. (6)

€ = 6(5,‘1' + 636,’361-3.

Cu=Cyy = g' {2BW[10(0‘) - L(a)]
+ 220 (1) - 2y(a) + Ma)]} ,

Cyi=Cyz = g {CwlhL(a) — L(a)l},

Cis = Capys = az (4Byly(a) + 2Cyli(a)},

Cu=Cyy = Y {‘B_W [I(a) + L(a)]
a | 2
+ Cwlh(a) - 14(a)]} ,
Ces = Cra1z = 5 {BW[I()(“) — L(a)]
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Fig. 1 The values of {C,} are shown as functions of e;/e. These are
calculated from Eqgs. (9) with the following parameter values: C, = 95
GPa, C,/C, = 0.35, n = 8.5, ¢ = 0.38, ¢ = —0.0035.

+ % [o(e) ~ 2L (a) + 14(a)]} . ()

where

3n(1 —d)(=e)'* 3

= = = C.Cn(l = $)(—€)'2, (10
Y 5By 2By 1 Cpy 32 SO T (=0T, (D)
a® = e/e; and {I,(a)} denotes the integrals

1
L(a) = x"a® + x%dx, (11)
0
which can be evaluated analytically as
2
Io(oz)=-1—[ 1+a’+a’ln <1+—1t—“—)]
2 o
1
bLyia(a) = S 4[(1 +a?)¥? — (2n + Da’Li(a)],
n=0 (12)

In Fig. 1 we show the behavior of the moduli C; calculated
from Egs. (9)—(12). The values of the parameter set were
chosen in order to match our experimental data which we pres-
ent later in Section 4. Instead of plotting C;3 we show the
combination (Cs; — C;3)/2 which reduces to the shear modulus,
 as €3/e = 0. (In this limit, C); and Cs; approach A + 2u.) As
might be expected on physical grounds, the quantity Cs; shows
the greatest variation as e;/e increases. In Fig. 2 three high
symmetry (Vp/Vg)? ratios are plotted against e;/¢. Shown also
are the limiting behaviors as e€;/¢ = 0 and e;/e = «. The first
of the limits was discussed by Schwartz et al. (1994) within
the framework of a simple perturbation expansion based on
Walton’s original Eq. (6). The second limit was considered by
Walton, and Fig. 2 makes clear that the approach to this limiting
regime is very slow. This approach is controlled by the logarith-
mic terms in Eqs. (12); indeed, when the results are replotted
on a logarithmic scale (Fig. 3) the approach to the uniaxial
limit is evident.

2.2.2  Stress Tensor. In the foregoing subsection we de-
rived results for the second-order elastic constants as well-de-
fined functions of the specific strain, Eq. (8). Experimentally
it is difficult to monitor the strain in unconsolidated samples;
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Fig. 2 Three squared sound speed ratios are plotted as functions of €,/
€. The upper and lower curves are the ratios Cy3/Css and Cy4/Cyq4; the
middle (nearly flat) curve is Cyi/Cg. On the right-hand side the asymp-
totic values are shown with thick solid lines while the corresponding
lines on the left-hand side give the three ratios of the initial slopes, Eqgs.
(27). Same parameter set as in Fig. 1.

generally it is one or more components of the stress tensor that
are measured. Thus, we wish to formulate an equation relating
stress to the strain elements. In order to do so, we must make
a specific assumption regarding the strain history of the granular
packing. In the present discussion we consider the three strain
paths described in Fig. 4. In all cases the starting point is Eq.
(55) of Norris and Johnson (1997), which we rewrite as

nR |1
op=(1-¢) A {-2- (N.T; + NT;) — Cn<An(€)Ni1Vj>} - (13)
0

Here T is the path-dependent transverse force for a given con-
tact:

T, = C,f a(§)dsi (§), (14)

path

& = —N- €- NR is the normal component of displacement, s =

PeNR is the transverse component, P = I — NN is a projection

Stress Induced Anisotropy
Unconsolidated Grain Pack: ¢ =0.38

32 & —9
28
RN
R ¢
>k 22
<
18 |
— 4
12 b— .
-4 2 6 8 10

2 4
Infe e}

Fig. 3 The same curves shown in Fig. 2 are shown on a logarithmic
scale to emphasize the slow approach to the large strain asymptote
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Fig. 4 Three distinct strain paths, all leading to the same final state, are
illustrated schematically

operator, and 4,,(£) = ( %)R 112¢372 The integral in (14) is depen-
dent upon the path s = s(£). In general, T and s are not parallel.

For the special class of deformation paths for which s for
each contact always points in the same direction, we may write

ds = 8ds(&), (15)

where § = PeNR/s is the (constant) unit vector in the direction
of transverse displacement and s = |PeN| R is the magnitude
of the final value of the transverse displacement. Under these
restrictions, T and s are parallel and Eq. (13) becomes

nR
%_u_¢h5%mQmeam@ﬂ
X '21; (N; Py, + NjPik)€k1N1> - C,,(An(ﬁ)N,»N,)} - (16)

Let us consider path 1 in detail. Here the system is first
hydrostatically compressed

€; = xeby; 0 <x <1 (17)
Equation (17) implies £ = —xeR and s = Q. The resulting stress
is isotropic: a; = —pb; where the pressure p was first derived
by Walton (1987):
p= 01— i ZEG e (18)
Next, an additional uniaxial compression is applied
€; = €6y + y€30;3650 < y < 1. (19)
For this path we have
£ = —(e + ysN})R,
s = —ye[N3(1 = NHI'2 (20)

At the end of this path, the deformation is that given by Eq.
(8). It is straightforward to evaluate the path-dependent inte-
grals implied by (16) as well as the angular averages. In terms
of the final strain components the only nonzero stress compo-
nents are 043 and oy, = 09

_2(=9%(1 = $)nR°®
3(13‘/0

X {Clal(a) + (1 — a®)L(a) — L(a) — 2a°/3]

o(e, €) =

+ Cla’hL(a) + L(a)]}, (21)
and
_N\3207 _ R3
an(e &) = — (e) 3(;3V0¢)n
X {=Cla*l(a) + (} — a®), - Li(a) — 203/3]
+ Cla’(a) + (1 — a®)h(a) — L(a)]}. (22)

In the second path described in Fig. 4, we have a uniaxial
compression followed, rather than preceded, by an isotropic

JUNE 1998, Vol. 65 / 383

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.or g/ on 08/23/2013 Terms of Use: http://asme.org/terms



Stress Induced Anisotropy

Unconsolidated Grain Pack: ¢ =0.38
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Fig. 5 The vertical and horizontal components of the stress tensor
(based on Egs. (21) and (22)) are plotted as functions of ¢;/¢. Same
parameter set as in Fig. 1.

compression. The final strain configuration is the same as for
path 1 but the corresponding stress is now given by

2(-€)¥*(1 - ¢)nR?

o33(€, €3) = —

3a3V0
X {—11—2' C + Cla*L(a) + h(a)]} , (23)
and
N\3201 _ R}
ouam=~(f)£mf“ {—éa+qm%m>

+ (1~ a®)h(a) - 14(a)]} - (24

Finally, for the third path in Fig. 4, where the two strain
components are applied simultaneously, we have

2= = $)nk®
3a3Vo
X {Clh(a) = L(a)] + Cla’L(a) + L(a)]},

033(€, &) =

(25)
and

(=e)*?(1 = ¢)nR’
3a3V0

+ Glal(a) + (1 — a®)h(a) — L(a)]}. (26)

In each of these cases we have oy, (¢, €3) = a3 (¢, €). Note
that the limit e; — 0 leads to the result for hydrostatic pressure
(Eq. (3.19) of Walton (1987)) and that in the opposite limit
of purely uniaxial compression, € — 0, the above equations all
reduce to Eqs. (3.24) of Walton (1987). The stress components
corresponding to the first strain path are plotted in Fig. 5. In
Fig. 6, results for the different strain paths considered above
are compared on an expanded scale; clearly, -the differences
between the three sets of curves are quite small.

{-Clh(a) ~ Li(a)]

o€, €) = —

3 Remarks on Third-Order Hyperelasticity Theory

Since the effective elastic constants are unique, path-indepen-
dent functions of the strain tensor, it might be supposed that
they are equivalent to the predictions of an effective, nonlinear

384 / Vol. 65, JUNE 1998
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Fig. 6 The vertical and horizontal components of the stress tensor,
based on the three paths shown in Fig. 4, are compared in the small
strain regime. The three sets of curves remain very close for all values
of Eg/E-

hyperelastic medium. This is not so for the simple reason that
the contact forces are path dependent, and certainly not deriv-
able from a potential energy function. Thus the macroscopic
equations of motion are not derivable from an elastic energy
density function. At some point the analogy must break down.
Here we demonstrate a specific contradiction between the two
points of view.

It was shown in Norris and Johnson (1997) that the analogy
breaks down at the third order in the expansion of the change in
energy due to an incremental deformation. Although the second-
order coefficients, the usual elastic constants, are path indepen-
dent, the third-order terms are not. In conventional nonlinear
elasticity theory, it is these third-order coefficients which deter-
mine how the sound speeds change under the application of an
incremental strain applied to the system taken in some conve-
niently chosen reference state. Here we take the reference state
to be any state of purely isotropic strain; this is always a valid
choice for isotropic elastic systems. Let us therefore consider
how the elastic constants change when a small uniaxial strain
is superimposed upon a large isotropic strain, i.e., Eq. (8) to
first order in €;/€. It is straightforward to expand equations (9)
to first order in 1/va. These specific results had been reported
by Schwartz et al. (1994).

oo ($))
ol (5]
C66=y{3§1+%+%<%+%>:|. (27)

Similarly, let us now consider the predictions of third-order
elasticity theory for these same moduli under the same condi-
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tions of small €; but arbitary e. The second and third-order
elastic constants will, therefore, be seen to be functions of the
isotropic strain, e. Qur derivation proceeds along the lines of
Hughes and Kelly (1953), who considered the similar problem
of the change of speeds under uniaxial stress; we use the Landau
and Lifschitz (1986) notation as presented by Gol’dberg
(1961). Thus, the second-order elastic constants are A, x while
the third-order ones are A, B, C. Let us consider wave motion
in which the propagation direction is confined to the x—z plane:
u = [u(x, z), v(x, z), w(x, z)]. We find

0%u 8? 8%u 82w
Po'c,;{= Cu 61:+ C44(9 >+ (Cpis + Caa)
w . Bw ’*w
Pow— C445;C7+ Cy— 52 + (Ci3 + C44)0 5
o O o%
Pow Ces — ol + Cos — PR (28)

where (x, z) refer to the original (Lagrangian) position and, to
first order in €5:

Chh=M+2u+ e&(M+ 2B+ 20C),
Ci=N+e(—p+ 2B+ 20),
Ci =N+ 2u+ 63N+ 6u +2A + 6B + 20),
Cis = p + es(N + 2u + A/2 + B),

Ces = 4 + €3(N + B). (29)

Is there any way in which Eqs. (27) can be made to be equiva-
lent to Eqs. (29)? First, we see that there is no problem with
the zero-order terms which imply A = (%) Cyyand p = ((%)BW
+ (12—5) Cw)y. Second, the third-order constants must have a
divergent term: (A, B, C) « (—¢) V', Therefore, for small
enough €, we may neglect (\, ) as compared with (A, B, C)
in the terms proportional to e; because (A, u) x (—¢)"/2,
Similarly, we may neglect the distinction between the new den-
sity and the original p’ = (1 + €3)p, as well as that between
the new coordinates and the old z’ = (1 + €;)z. There remains
an unavoidable problem: If one sets the coefficient of ¢, in each
of Egs. (27) equal to its counterpart in (29) (neglecting A and
1 as compared with A, B, C) we have five equations in only
three unknowns. There is no set of the quantities (A, B, C)
which can simultaneously satisfy these equations. This makes
concrete the general demonstration that, for path-dependent
contact forces, the second-order elastic constants are well-de-
fined functions of the strain but the third-order constants are
path dependent.

A careful inspection of (27) and (29) shows that the quanti-
ties dependent upon Cy can be made to match correctly but
that the coefficients of By can not, This is a reflection of the
fact that, within Walton’s (1987) formulation, the normal com-
ponent of stiffness for each contact is proportional to 2By +
Cw whereas the tangential stiffness is proportional to 2 By; see
Egs. (2.13) and (2.14) of Walton (1987). It has been empha-
sized previously (Norris and Johnson, 1997) that the difficulty
in reconciling models of path-dependent contact forces with
nonlinear elasticity stems from the transverse components of
the contact stiffness. Alternatively, we may say that the diver-
gent parts of the changes in Cj are predicted to obey the follow-
ing relationships, according to third-order elasticity theory, Egs.
(29):

AC, — AC;3 =0,
AC[] + AC33 - 2AC13 - 4AC44 = 0. (30)
We see from Eqs. (27) that the second of these equations is
satisfied by the predictions of the contact theory, but not the
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Table1l The quantities which determine the strain-induced
anisotropy of the elastic constants for a random sphere pack,
via Eqs. (27), as compared to the best fit values assuming
the validity of third-order elasticity theory, equations (29).
We assume A = u = 24 GPa as appropriate for a silica
glass. The best fit values are (e/ Y) 4, B, C) = (27.2, 34.7,
—17.2). All values in 10~¢ (Pa)~™.

Contact Theory

Third-Order Elasticity

2By Cw €
AC v 71.1 51 L
1 (15 35> A/(B+2C)
Cw €
ACy, s 47 351 < (2B +20
35 9
2B, Cy ¢
ACy =t 226 2283 S (24 + 6B + 20)
Y
ACy 2By Cw 71.1 483 SR+ B
15 35 5
By Cy ¢
AC, 2 34.7 47 <&
% <15 105) ;&

first. So to say, we have four equations (not five) in three
unknowns. This is a specific manifestation of a more general
property of this contact theory, derived in Norris and Johnson
(1997), that changes in second-order elastic constants due to
an imposed strain are governed, to first order, by four ‘‘third-
order modulii,”* Bi11, Bii2, Bizs, and B and not the usual three
(A, B, C).

How serious an error might be made were one to assume the
validity of third-order elasticity theory for a system such as
this? Let us consider a hypothetical case of a granular medium
whose strain dependent moduli are accurately given by Eq. (27)
(for small €;). An experimental measurement of the change of
elastic constants with uniaxial strain would be proportional to
the quantities within parentheses in (27). Typical values are
given in Table 1, assuming the beads are made of glass. If one
were to make a best least-squares fit of Eqs. (29) to these
values, the resultant values of these quantities are poorly fit by
third-order elasticity theory; these values are also listed in Table
1. We see that there is an appreciable problem were one naively
to apply third-order elasticity theory to the strain dependence
of the sound speeds.

Winkler and Liu (1997} have already performed an experi-
ment analogous to the gedanken experiment shown in Table 1.
They have measured the changes in the speeds of sound as a
function of applied stresses in a suite of nine rocks. They consid-
ered P and § speeds as a function of isotropic pressure and
they considered P and both S speeds for waves propagating
perpendicular to the axis of an applied uniaxial stress. From the
initial slopes of these five measurements they determined a best
fit set of values for the third-order elastic constants (A, B, C).
The quality of their fit is much better than that indicated in our
Table 1. Thus, we conclude that the concept of an elastic energy
of deformation for sedimentary rocks may be a valid one, at
least through third order in the applied strain—unlike the model
of the present paper. For larger stress, though, it is known
that rocks undergo hysteretic deformation (Brown et al., 1989;
Hilbert et al., 1994).

4 Comparison With Experimental Data

Our measurements were made in a specialized compaction
cell that was constructed to study the developing elastic proper-
ties of artificial sediments as a function of axial stress. A block
diagram of the compaction cell is shown in Fig. 7. Anisotropic
compressional and four-component shear wave velocities were
recorded using transducers oriented parallel and perpendicular
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Fig. 7 Block diagram for the experimental setup used to measure the sound speeds as a function of applied stress

to the direction of axial stress. The compaction cell was con-
structed of EN303 stainless steel and the system has a maximum
confining stress of 110 MPa. The cell is presumed to be rigid
enough that the sample experiences a macroscopic uniaxial
strain (negligible lateral motion). A Power Team 1826 25 ton
hydraulic shop press applies the axial stress to the vertical pis-
ton. Transducers for elastic wave measurements are 4 X Verde
GeoScience compressional and polarized shear wave 500 kHz
ultrasonic transducers. Sample length is dynamically measured
during the acquisition using a Schlumberger DC50 LVDT.
The sample we studied was comptised of dry mono-dispersed
spherical glass beads with diameters of roughly 70 um. The
beads were placed in the chamber of the compaction cell and
were uniaxially strained by the application of axial stresses up
to 100 MPa applied over four separate cycles. To determine
the P and S-wave velocities, we examined the corresponding
waveforms as a function of stress for each of the four cycles.
As expected, the most stable results were obtained for the last
stress cycle. By this point the individual beads appear to have
reached relatively stable configurations within the disordered
packing. In almost all of the waveforms, the desired arrival is
easily identified. However, properly locating the shear arrivals
can be difficult, particularly at low applied stresses for the mode
propagating normal to the direction of axial stress and polarized
perpendicular to the direction of axial stress. We found that
identification of weak arrivals was facilitated by examining the
waveforms as a function of applied stress. While the best signal
to noise ratios were obtained at the largest applied stress levels,
the weaker arrivals could be identified by following the desired
point of constant phase (first zero crossing) to lower stresses.
Figure 8 is a composite plot of the measured velocities for
the fourth cycle of applied stress. Clearly, even for this simplest
of granular media, the data show considerable hysteresis. The
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physical basis for this hysteresis is most likely small rearrange-
ments in the positions of the grains during the increasing stress
part of the cycle. Once the particles are tightly wedged together,
one might assume that there are many fewer rearrangements in
decreasing stress part of the cycle. Indeed, we believe that

Stress Induced Anisotropy
Unconsolidated Grain Pack: ¢ =0.38
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Fig. 8 Experimental resuits for two compressional mode (circles) and
two shear mode {squares) speeds are plotted as a functions of applied
vertical stress during the fourth stress cycle. The filled {open) symbols
correspond to the increasing (decreasing) stress part of the cycle. The
faster and slower P waves are associated with vertical and horizontal
propagation, respectively. The faster S wave propagates vertically while
the slower S wave propagates horizontally and is polarized horizontally.
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Fig. 9 V, and Vs as a function of confining pressure for unconcolidated glass beads. The
data are from Domenico {1977). The calculated value of the ratio V/V is very sensitive to
the assumed value of C,/C,,, here taken to be 0.35. The overall scale of the speeds is then set
by C,, here taken to be 95 GPa. We assume the average coordination number is n = 6.5.

this wedging of grains during the stress cycles contributes to a
residual stress distribution in the packing even when the piston
is removed and there is no applied stress. It is this residual
stress that gives rise to the internal strain that we model with
the parameter e, the initial hydrostatic compression.

Because granular rearrangements involve breaking and re-
forming of contacts, they invalidate the assumption of our effec-
tive medium description of the packing. For this reason we com-
pare our equations only with the decreasing stress part of the last
cycle. To get a reasonable fit to the data we have treated the
quantities n, C,, C,/C,, and ¢ as adjustable parameters. We some-
what arbitrarily take n = 6.5, although only the products, nC,
and nC,, enter in the theory. First, we demand consistency of
our calculations with the data of Domenico (1977) who measured
Ve and Vs as a function of hydrostatic confining pressure on
unconsolidated glass beads. We see in Fig. 9 that the ratio Vp/
Vs is essentially independent of pressure, as the theory predicts.
This sets the value of the ratio C,/C, = 0.35. Then, the value C,
= 95 GPa was taken to ensure a reasonable overall fit to the
actual speeds, as shown in Fig. 9. (For comparison, the first of
Eqs. (2) yields C, = 128 GPa and C,/C, = 0.857 if we take y,
= 24 GPa and v, = 0.25 as appropriate for a silica glass. This
would predict a value Vp/V that is significantly lower than the
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measured pressure-independent value.) Finally, the value ¢ =
~—0.0035 was chosen to get an acceptable fit to our own measured
data. Our fit to the data is presented in Figs. 10 and 11. The
calculated curves are faithful to the qualitative trends in the mea-
sured data and are in good overall agreement with the absolute
values of the sound speeds and the Vp/Vy ratios. In connection
with Fig. 11, we note that there is considerably less difference
in the V,/V, ratios for the increasing and decreasing parts of the
stress cycle than was seen for the absolute velocities shown in
Fig. 8. We remind the reader that we have made two critical
assumptions: the validity of the effective medium approximation
and the assumption of no-slip between grains, either of which
may be suspect. In the case of the former assumption we note
that Liu et al. (1995) have given convincing theoretical and
experimental arguments for the existence of a very broad (~ex-
ponential ) distribution of contact forces. In the case of the latter
assumption we note that our best-fit value of C,/C, is less than
half that predicted from a literal interpretation of Eq. (2).

5 Conclusions

We have considered the elastic properties of granular media,
specifically systems for which each grain-grain contact is de-
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Fig. 10 The experimental speeds shown in Fig. 8 for decreasing applied
stress are compared with the results of our calculations. Here the relation
between stress and strain was calculated from Eqs. (21) and {22). Same
parameter set as in Fig. 1.
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Fig. 11 Ratios of squared P to S speeds calculated as in Fig. 10 are
shown together with experimental data for both the increasing and de-
creasing parts of the fourth stress cycle. (The relation between o, and
¢€; is again calculated from Egs. (21) and (22).) As in Fig. 2, the upper
curve and the circles represent Cy;/C.,, the middle curve and the dia-
monds represent Cy,/C,4,, and the lower curve and the squares represent
C11/Css. In all three cases, the filled (open) symbois are the measured
ratios for decreasing (increasing) stress.

scribed by a slight generalization of the Hertz-Mindlin theory.
Within the context of a simple effective medium theory, we
have derived expressions which describe each elastic constant
as a function of a combined hydrostatic and uniaxial strain. This
is a path-independent result. We have explored three different
assumptions regarding the order in which the strain is applied
and have calculated how the stress depends upon strain for
each path. Although the second-order elastic constants are well-
defined functions of the strain, the third-order constants are not.
We have shown specifically how the concept of third-order
elastic constants breaks down when a small uniaxial strain is
applied to an unconsolidated granular medium that already has
a large hydrostatic strain. Finally, we have shown how our
experimental data on sound speeds measured as a function of
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applied stress can be understood if one assumes there is a rema-
nent hydrostatic strain in the system.
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