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Linear and Nonlinear Elasticity 
of Granular Media: Stress- 
Induced Anisotropy of a 
Random Sphere Pack 
We develop an effective medium theory of  the nonlinear elasticity of  a random sphere 
pack based upon the underlying Hertz-Mindlin theory of  grain-grain contacts. We 
compare our predictions for  the stress-dependent sound speeds against new experi- 
mental data taken on samples with stress-induced uniaxial anistropy. We show that 
the second-order elastic moduli, Cokt, and therefore the sound speeds, can be calcu- 
lated as unique path-independent functions of  an arbitrary strain environment, {eke}, 
thus generalizing earlier results" due to Walton. However, the elements of  the stress 
tensor, cr U, are not unique functions o f  {ekl} and their values depend on the strain 
path. Consequently, the sound speeds, considered as functions of  the applied stresses, 
are path dependent. Illustrative calculations for three cases of  combined hydrostatic 
and uniaxial strain are presented. We show further, that, even when the additional 
applied uniaxial strain is small, these equations are not consistent with the usual 
equations of  third-order hyperelasticity. Nor should they be, for the simple reason 
that there does not exist an underlying energy function which is simply a function of  
the current state o f  the strain. Our theory provides a good understanding of our new 
data on sound speeds as a function o f  uniaxial stress. 

1 Introduction 

Granular media exhibit a wide range of interesting properties. 
They are in some respects similar to solids and in other respects 
similar to fluids, although they are distinctly different from 
either. Consequently, the physics of granular media represents 
an active area of current research activity (Bideau and Dodds, 
199t; Mehta, 1991; Nagel, 1992). A major area of interest is 
the manner by which applied forces are communicated from 
one grain to another, a subject with clear implications for the 
propagation of sound waves which is the topic of this article. 
Specifically, we present new theoretical and experimental re- 
suits which clarify the way that sound speeds in granular media 
depend upon the applied stresses which, in general, may be 
anisotropic. The central issue here is that sound cannot propa- 
gate unless there is an applied stress because the "spring con- 
stants" between the grains vanish when the stress is eliminated. 
By measuring the effects of anisotropic stresses, we have ex- 
tended earlier experimental work which had been limited to 
a consideration of applied stress which is strictly hydrostatic. 
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Previous such studies are seriously inadequate, for reasons upon 
which we expand below. 

Two related issues complicate the analysis of sound propaga- 
tion in granular systems: nonlinearity and path dependence. 
Both effects originate with the contact forces exerted by one 
grain on another. Stress-induced changes in sound speeds are 
the fundamental signature of nonlinear elasticity. It is well 
known that granular media are highly nonlinear and that the 
rates at which sound speeds change with applied stress increase 
dramatically as the stress decreases. It is also known that stress 
versus strain experiments on such systems often show consider- 
able hysteresis, which is due, in part, to the path-dependent 
nature of the contact forces. From a theoretical viewpoint, it is 
therefore necessary to develop nonperturbative methods of the 
kind employed in this paper. 

We emphasize the importance of studying granular systems 
under the influence of anisotropic stresses. First, in conventional 
nonlinear hyperelasticity theory, there exists an energy density 
function which is strictly a function of the current state of strain, 
and not upon the past history of the deformation. Here, the so- 
called third-order elastic constants are used to describe the rate 
of change of sound speeds with applied stress or strain. (The 
values of the sound speeds themselves are given in terms of the 
second-order elastic constants, e.g., the Lain6 constants k and 
#.) Even in the very simplest case of an isotropic hyperelastic 
medium there are three different third-order elastic constants: 
A, B, and C. A measurement of the change of longitudinal and 
of transverse sound speeds due to applied hydrostatic pressure 
can determine only two linearly independent combinations of 
these constants. Therefore, even in this simplest case, a mea- 
surement of the effects of nonhydrostatic stress is needed to 
complete the determination of the set A, B, C. Second, in granu- 
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lar systems the forces exerted at the individual grain-grain con- 
tacts are path dependent. It follows that the stress-induced 
changes in forces are also path dependent so that sound speeds 
depend on the order in which stresses are applied. (This is true 
even though there is no hysteresis along any given stress path.) 
This issue does not arise when only hydrostatic pressure is 
applied nor does it arise in hyperelastic materials. Third, in 
geophysical applications, sedimentary rocks, which are formed 
from granular media, often exhibit strong acoustic anisotropy 
due to their inherently anisotropic stress environment (Walsh, 
1965; Nur and Simmons, 1969; Nur, 1971 ; Lockner et al., 1977; 
Berryman, 1979; Helbig, 1983; Thomsen, 1986; Sayers, 1988; 
Sayers et al., 1990; Yin and Nut, 1992). We view the under- 
standing of the nonlinear acoustic properties of unconsolidated 
granular media and the associated stress-induced anisotropy as 
a paradigm problem for this more general class of materials. 

As the issues considered here are complicated, it will be 
useful to summarize the structure of this paper. In Section 2 
we review the equations that describe the Hertz-Mindlin forces 
exerted between two grains in contact. Each contact is assumed 
to be rough and static friction prevents tangential slipping. In 
general, such forces are not described by a well-defined strain- 
energy function and any discussion of the resulting acoustic 
properties of the granular composite must take account of the 
strain history (Mindlin, 1949; Elata, 1996). Because we focus 
our interests here upon the role of the strain history, we employ 
an effective medium theory (Walton, 1987; Norris and Johnson, 
1997) to make the connection between the properties of the 
individual grain-grain contacts and those of the composite. 

We use the term "random" to distinguish our samples from 
ordered packings. As with all effective medium theories, only 
some features of the true random nature of the sample are 
captured by our theory, such as the average number of grain- 
grain contacts. This particular effective medium theory is easily 
generalizable to other situations, such as different bead sizes, a 
nonisotropic distribution of contacts, a radial distribution of 
contacts, but we do not explicitly consider those examples here. 

Within this context, there is, surprisingly, one important rela- 
tion in the acoustics of granular systems that is path indepen- 
dent. Norris and Johnson (1997) (NJ) have shown that the 
additional work associated with incremental displacements of 
a contact around a given strain state are path independent to 
second order in the additional strain. The coefficients of these 
second-order terms are, in turn, path-independent functions of 
the current state of strain. This implies that the associated equa- 
tions for the second-order elastic moduli (i.e., the sound speeds) 
considered as functions of the strain tensor are also path inde- 
pendent. By contrast, we show that the relation between stress 
and strain is explicitly path dependent. Therefore, the sound 
speeds are path independent functions of applied strain, but 
path-dependent functions of applied stress. To illustrate these 
findings we consider three cases of combined hydrostatic and 
uniaxial strain. In Section 3 we ask if the conventional theory 
of third-order hyperelasticity can be used to describe this system 
(Hughes and Kelly, 1953; Gol'dberg, 1961). Here we show 
that, even when the deviations from the isotropic state are small, 
the path dependent nature of the forces implies that the third- 
order formulation is not valid, precisely because of the lack 
of a strain-energy function and we illustrate this point with a 
numerical example. In Section 4 we discuss the comparison 
of our analysis with new experimental results on the stress 
dependence of longitudinal and transverse sound speeds in a 
granular packing under uniaxial compression. Generally, the 
level of agreement between theory and experiment is quite satis- 
factory. Our conclusions are presented in Section 5. 

2 T h e o r y  of C o m b i n e d  H y d r o s t a t i c  a n d  U n i a x i a l  

S t r a i n  

In this section we derive results for the elastic constants and 
for the stress tensor, when the strain is a combination of both 
hydrostatic and uniaxial compression. 

2.1 P a t h - D e p e n d e n t  C o n t a c t  F o r c e s .  In a recent article, 
Norris and Johnson (1997) considered the linear and nonlinear 
elasticity of different models of granular aggregates. These 
models differ in the nature of the grain-grain contact but can 
be written in the context of a common formalism. Let us suppose 
2w, 2s are, respectively, the normal and the transverse compo- 
nents of the displacement of one sphere relative to another. Let 
N, T be the normal and transverse components of the restoring 
force. An infinitesimal change in displacement (w ~ w + Aw, 
s ~ s + As) leads to an infinitesimal change in restoring force 
( N ~  N + AN, T ~  T + AT).  All models considered in Norris 
and Johnson (1997) can be written in the form 

A N  = Cna,,(w)Aw, A T  = C,a,(w)As,  (1) 

where C,,, C, depend only on shear modulus, #, and the Poisson 
ratio, v, of the individual grains 

C~ = 4#s C ,=  8#.,~_ (2) 
1 - v~ ' 2 - vs ' 

The quantities a,,, a, are different for the different models of 
grain-grain contact but they do not depend upon the elastic 
constants of the grains. For the specific no-slip case being con- 
sidered in the present article, one has 

an(w) = a,(w) = (Rw) 1/2, (3) 

where R is the radius of the spherical grain. 
Let W ( w ,  s) be the work needed to displace the two grains 

relative to each other. In general W is very much dependent 
upon the path of the deformation, s = s (w) ,  and not simply 
upon the final values of (w, s). Suppose, however, one asks 
the question: How much additional work is needed to take the 
contact from one state characterized by (w0, so) to another (w0 
+ wt, so + st)? For any of the models that can be brought into 
the form of Eq. (1), one has the result from (Norris and John- 
son, 1997) 

W(wo + wl, So + s~) 

1 2 1 2 = Wo(wo, so) + Now1 + Tosl + ~C,a,(wo)wl + ~C~,(Wo)Sl 

+ path-dependent third-order terms in (w~, s~), (4) 

where No and To are the normal and transverse components, 
respectively, of the force between the grains at the state of 
displacement (Wo, s0). The terms quadratic in wl, Sl are inde- 
pendent of the path taken in (w~, sl) space. Moreover, because 
the coefficients of these terms depend only on w0 and not upon 
so, these terms are independent of the path of the original defor- 
mation: so = so(wo). For this reason, the elastic constants of 
the ensemble of grains are well-defined functions of the current 
state of strain e; for any of the models that can be brought to 
the form (1) the elastic constants can be written, in the effective 
medium approximation, as Eq. (60) of Norris and Johnson 
(1997): 

nR 2 
Cuk,(E ) = (1 - ~b) ~--~0 {([4C, a,(~) - 4C,a,(~)]N, NjNkN,) 

+ (C,a,(~)(6,kNjN, + 6,,NjNk + 6],N, Nk + 6:kN, Ni))].  (5) 

Here N is a unit vector along the sphere centers, ~ ~- 
- N .  e.  NR, (. • .) represents an average over solid angles, n 
is the average number of contacts per grain, 95 is the porosity, 
and Vo = (~)TrR 3 is the volume of a single grain. In addition to 
being an effective medium approximation, Eq. (5) also pre- 
sumes that the relative change in sample dimensions is negligi- 
ble compared against the relative change in stiffness. For sake 
of numerical definiteness, we shall assume the angular distribu- 
tion of contacts is isotropic, although Jenkins et al. (1989) have 

Journal of Applied Mechanics JUNE 1998, Vol. 65 / 381 

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 08/23/2013 Terms of Use: http://asme.org/terms



argued that there is evidence of anisotropy in the distribution 
of contacts due to the directionality imposed by gravity. 

The effective medium theory of Norris and Johnson (1997) 7o00 
was derived by finessing the issue of the rotation of the grains. 
If a symmetric strain is applied to the sample, it was pointed 6000 
out that the total torque on each grain will vanish and therefore 
the grains will not rotate. It is therefore possible to deduce 5000 
the (properly symmetrized) elastic constants and stresses as a 
function of the strain history. These elastic constants are the 
relevant ones for long-wavelength wave propagation, even, say, ~ 4000 
for shear waves. In such a motion, the grains may rotate but 
they do so in such a manner that the torque vanishes and the ~ 30oo 
relevant elastic constants are the "torque-free" ones. See 
Schwartz et al. (1984) for details. 2000 

Within the effective medium framework, the validity of Eq. 
(5) does not depend on the strain history of the composite moo 
system. In the special case appropriate to Hertz-Mindlin con- 
tacts, for which Eq. (3) holds, Eq. (5) reduces to 

0 

3n(1 - ~b) ({ , ,2{2CwN~NjNkN ~ 
Cukl = 47rZR1/ZBw(2Bw + Cw) 

+ Bw(6,kNj.N~ + 6~,NjN~ + 6j,N~N~ + 6jkN~Nt)}), (6) 

where 

Stress Induced Anisotropy 
Unconsolidated Grain Pack: ~ = 0.38 

• -----'-. 'Ci fC33 ' . . . , . . , • . . 

. . . .  (C u - C . ) / 2  

. . . .  c .  

o . . . .  ~ . . . . . .  - Y  . . . .  a ; ,o 
~31E 

Fig. 1 The values of {Co} are shown as functions of ~3/E, These are 
calculated from Eqs. (9) with the following parameter values: C.  = 95 
GPa, Ct/C. = 0.35, n = 6.5, ~ = 0.38, e = -0,0035. 

Bw - 2  C w = 4 [  1 ~ , ]  
7rC,'  7 ~ -  ' (7) 

+cw } 
T [ lo(a)  - 2 h ( a )  + l . ( a ) ]  , (9) 

Equations (6) are identical with those derived by Walton 
(1987) who made the unnecessary assumption that all compo- 
nents of the strain ~pq are simultaneously increased together, 
holding their ratios fixed. We emphasize, again, that these equa- 
tions are valid for any applied strain, and are independent of 
the history of the granular medium. 

2.2 Analy t i c  Resul ts  for  Specif ic  Strain  Paths .  Let us 
consider a special case of interest in which the strain is a combi- 
nation of hydrostatic and uniaxial compression: 

eij = ~(~ij + C36i3~j3' ( 8 )  

2.2.1 Sound Speeds. In this case it is clear that the system 
will exhibit the symmetries usually associated with transversely 
isotropic materials and, after some rearranging, we have from 
Eq. (6) 

CH =-- Cm,  = Za { 2 B w [ l o ( a )  - / z (a ) ]  

+ 3Cw } 
4 [10(a) - 2 /2(a)  + / 4 ( a ) ]  , 

Cl  3 ~ C1133 = .Z { C w [ 1 2 ( o g  ) _ / 4 ( 0 / ) ] }  ' 
o/ 

C33 ..~ C3333 = .Z {4Bwl2(a)  + 2 C w L ( a ) } ,  
OL 

C44~-C2323 = Z { - ~  [ l ° (a )  + h ( a ) ] a  

+ Cw[h(a )  - h(oL)] } , 

C66 -~ C1212 = a Z { B w [ l o ( a )  - 12(a)] 

where 

3n(1 - ~b ) ( - e )  ~'2 3 
31 ~ 47r2Bw(2Bw + Cw) = 3-2 C,,C,n(1 - q ~ ) ( - e )  1/2, 

ce 2 ~ e/c3 and { l , ( a )}  denotes the integrals 

£ I.(,~) ~ x " ~  + x2&, 

which can be evaluated analytically as 

lo(a)  = ~  1 + + In - - 
O/ 

(10) 

(11) 

1 
12,+2(a) = 2n +--------~[(1 + a2) 3/2 - (2n + 1)a212,(a)] ,  

n ~ 0. (12) 

In Fig. 1 we show the behavior of the moduli C U calculated 
from Eqs. ( 9 ) - ( 1 2 ) .  The values of the parameter set were 
chosen in order to match our experimental data which we pres- 
ent later in Section 4. Instead of plotting C13 we show the 
combination ( C33 - C13)/2 which reduces to the shear modulus, 
# as erie ~ 0. (In this limit, Cll and C33 approach h + 2/.z.) As 
might be expected on physical grounds, the quantity C33 shows 
the greatest variation as e3/e increases. In Fig. 2 three high 
symmetry (Vp/Vs) 2 ratios are plotted against eft& Shown also 
are the limiting behaviors as eric ~ 0 and e3/e ~ 0% The first 
of the limits was discussed by Schwartz et al. (1994) within 
the framework of a simple perturbation expansion based on 
Walton's original Eq. (6).  The second limit was considered by 
Walton, and Fig. 2 makes clear that the approach to this limiting 
regime is very slow. This approach is controlled by the logarith- 
mic terms in Eqs. (12); indeed, when the results are replotted 
on a logarithmic scale (Fig. 3) the approach to the uniaxial 
limit is evident. 

2.2.2 Stress Tensor. In the foregoing subsection we de- 
rived results for the second-order elastic constants as well-de- 
fined functions of the specific strain, Eq. (8). Experimentally 
it is difficult to monitor the strain in unconsolidated samples; 
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3.2 

2.8 

~ 2 . 2  

1.8 

Stress Induced Anisotropy 
Unconsolidated Grain Pack: ¢ = 0.38 

/ / 
f /  

¢ 

= T . . . . . . .  ± . . . . . .  i , , , i . . . . . . . . .  i 
1.2 0 2 4 6 8 10 

E3/E 

Fig. 2 Three squared sound speed ratios are plotted as functions of E3/ 
• , The upper and lower curves are the ratios C . / C ~  and C11/C~; the 
middle (nearly flat) curve is C~/C~. On the right-hand side the asymp- 
totic values are shown with thick solid lines while the corresponding 
lines on the left-hand side give the three ratios of the initial slopes, Eqe. 
(27), Same parameter set as in Fig, 1, 

generally it is one or more components of the stress tensor that 
are measured. Thus, we wish to formulate an equation relating 
stress to the strain elements. In order to do so, we must make 
a specific assumption regarding the strain history of the granular 
packing• In the present discussion we consider the three strain 
paths described in Fig. 4. In all cases the starting point is Eq. 
(55) of  Norris and Johnson (1997),  which we rewrite as 

vonR{~ } 0 . u = ( 1 - 4 ' ) - 7 7  (N, T j + N j T , ) - C . ( A . ( ~ ) N ,  Nj) . (13) 

Here T is the path-dependent transverse force for a given con- 
tact: 

= C, f a,(~)ds,(~), (14) T, 
Op ath 

~ - N "  ~" NR is the normal component of displacement, s = 
P~NR is the transverse component, P = I - NN is a projection 

Stress Induced Anlsotropy 
Unconsolidated Grain Pack: ¢ = 0.38 

3.2 '~ 

2.8 

i 1 . 8  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 _  . . . . .  5 
1 2  -4 -2 o 2 4 6 8 10 

lnle3/~l 

Fig, 3 The same curves shown in Fig, 2 are shown on a logarithmic 
scale to emphasize the slow approach to the large strain asymptote 

--E 

• • t  -''•''~ 2 

• ' • • - E  3 

Fig. 4 Three distinct strain paths, all leading to the same final state, are 
illustrated schematically 

operator, andA,,(()  = (~)R 1/2~3/2.  The integral in (14)  is depen- 
dent upon the path s = s ( ( ) .  In general, T and s are not parallel. 

For the special class of deformation paths for which s for 
each contact always points in the same direction, we may write 

ds = gds(~). (15) 

where ~ = P~NR/s is the (constant) unit vector in the direction 
of  transverse displacement and s = I P~N I R is the magnitude 
of  the final value of the transverse displacement. Under these 
restrictions, T and s are parallel and Eq. (13) becomes 

l 0.0 = ( t  - 4')-;-7, C,R a,(~)ds(~) 
ath 

l (NiPjk + NjPik)ektNt I - C,(A,(~)NiNj)} (16) 
× 2"-ss 

Let us consider path 1 in detail. Here the system is first 
hydrostatically compressed 

(-ij = X(~6 U 0 < X < 1. (17) 

Equation (17)  implies ~ = -xeR  and s -= 0. The resulting stress 
is isotropic: a 0 = -p6~j where the pressure p was first derived 
by Walton ( 1987 ) : 

2nR3Cn 
p = - ( 1  - 4') ~ ( - x E )  3:2. (18) 

Next, an additional uniaxial compression is applied 

eij = c6ij + ye36i36j30 < y < 1. (19) 

For this path we have 

= - ( e  + ye3N~)R, 

s = -yc3[N3Z(1 - N~)] 1/2 (20) 

At the end of this path, the deformation is that given by Eq. 
(8) .  It is straightforward to evaluate the path-dependent inte- 
grals implied by (16) as well as the angular averages. In terms 
of  the final strain components the only nonzero stress compo- 
nents are 0"33 and 0"11 = 0 2 2 :  

2 ( - e ) 3 / z ( 1 -  4')nR 3 
0 " 3 3 ( £ ,  e 3 )  = - -  3 o t 3 V 0  

× {C,[a2Io(a) + (1 - a2)12(a) - 14(a) - 2a3/3]  

+ Cn[a212(a) + 14(a)]} ,  (21) 

and 

( -e )3 /2 (1  - 4,)nR 3 
0.,l(e, e3) = - 3o~3V0 

× {-Ct[o~210(a) + (1 - o~2)12 - 14 (o t ) -  2ol3/3] 

+ C,,[a210(a) + (1 - a2)12(a)  - 1 4 ( a ) ] } .  (22) 

In the second path described in Fig. 4, we have a uniaxial 
compression followed, rather than preceded, by an isotropic 
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Stre s s  I n d u c e d  A n i s o t r o p y  

Unconsolidated Grain Pack: $ = 0.38 
1 0 0  . . . , • • , • • , . . . , • • - 

- -  O33 

75 

25 

0 ~ 2' ~ -' 41 , , ' ~6 . . . . .  81 . . . .  10 

~ / e  

Fig, 5 The vertical and horizontal components of the stress tensor 
(based on Eqa. (21) and (22)) are plotted as functions of (a/e. Same 
parameter set as in Fig. 1. 

45 

S tre s s  I n d u c e d  A n i s o t r o p y  

Unconsolidated Grain Pack: ~ = 0.38 

3O 

15 

- -  Path I ~ 

. . . .  Path 2 . ,f . .: , 'f> 

................ Path 3 ./.<'~ ~/ 
.....~ 

....~.~ 
"~"2 

....~.~s 

i i 
O0  2 4 

£3/:E 

Fig. 6 The vertical and horizontal components of the stress tensor, 
based on the three paths shown in Fig. 4, are compared in the small 
strain regime. The three sets of curves remain very close for all values 
of Eale. 

compression. The final strain configuration is the same as for 
path 1 but the corresponding stress is now given by 

2 ( -e )3 /2 (1  - qb)nR 3 
,r3~(~, c3) = - 

3oL3Vo 

)<{~2Ct+Cn[ol212(ol)+14(ot)]}, (23) 

and 

crll(e, e3) ( -e)3/2(1-qb)nR3(1 ~ : - 3"-"3~ ° - C, + C,,[oZ21o(O~) 

+ (1 - a2 ) I z ( a )  - L ( a ) ] }  . (24) 

Finally, for the third path in Fig. 4, where the two strain 
components are applied simultaneously, we have 

2 ( - e )3 /2 (1  - ~)nR 3 
O'33(E , E3) = - -  

3aaVo 
× { C,[12(a) - 1 4 ( s t ) ]  + Cn[ot21:(a) + 1 4 ( a ) ] } ,  ( 2 5 )  

and 

( -e )3 /2(1  - ~b)nR 3 
~r11(e, e3) = - { - C , [ h ( a )  - h ( a ) ]  

3a3Vo 
+ C,[o~21o(OZ) + (1 - aZ)I2(ot) - /4(00]}.  (26) 

In each of these cases we have ~rll(e, e3) = tr22(e, Ca). Note 
that the limit e3 ~ 0 leads to the result for hydrostatic pressure 
(Eq. (3.19) of Walton (1987))  and that in the opposite limit 
of purely uniaxial compression, e ~ 0, the above equations all 
reduce to Eqs. (3.24) of Walton (1987). The stress components 
corresponding to the first strain path are plotted in Fig. 5. In 
Fig. 6, results for the different strain paths considered above 
are compared on an expanded scale; clearly, the  differences 
between the three sets of curves are quite small. 

3 R e m a r k s  o n  T h i r d - O r d e r  H y p e r e l a s t i c i t y  T h e o r y  

Since the effective elastic constants are unique, path-indepen- 
dent functions of the strain tensor, it might be supposed that 
they are equivalent to the predictions of an effective, nonlinear 

hyperelastic medium. This is not so for the simple reason that 
the contact forces are path dependent, and certainly not deriv- 
able from a potential energy function. Thus the macroscopic 
equations of motion are not derivable from an elastic energy 
density function. At some point the analogy must break down. 
Here we demonstrate a specific contradiction between the two 
points of view. 

It was shown in Norris and Johnson (1997) that the analogy 
breaks down at the third order in the expansion of the change in 
energy due to an incremental deformation. Although the second- 
order coefficients, the usual elastic constants, are path indepen- 
dent, the third-order terms are not. In conventional nonlinear 
elasticity theory, it is these third-order coefficients which deter- 
mine how the sound speeds change under the application of an 
incremental strain applied to the system taken in some conve- 
niently chosen reference state. Here we take the reference state 
to be any state of purely isotropic strain; this is always a valid 
choice for isotropic elastic systems. Let us therefore consider 
how the elastic constants change when a small uniaxial strain 
is superimposed upon a large isotropic strain, i.e., Eq. (8) to 
first order in erie. It is straightforward to expand equations (9) 
to first order in 1 /~a .  These specific results had been reported 
by Schwartz et al. (1994). 

C l l  
~' [  3 5 ~ ~ -  

C13 = '~/ 1 5  e 

C33 = "YL 3 + 5 +--e + ' 

2Bw 2Cw 
C44= Y 3 + 15 c \  15 

C 6 6 =  y [ 2 3 w  + 15 + --e - ~  + ' (27) 

Similarly, let us now consider the predictions of third-order 
elasticity theory for these same moduli under the same condi- 
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tions of small e3 but arbitary c. The second and third-order 
elastic constants will, therefore, be seen to be functions of the 
isotropic strain, e. Our derivation proceeds along the lines of 
Hughes and Kelly (1953), who considered the similar problem 
of the change of speeds under uniaxial stress; we use the Landau 
and Lifschitz (1986) notation as presented by Gol'dberg 
(1961). Thus, the second-order elastic constants are k, # while 
the third-order ones are A, B, C. Let us consider wave motion 
in which the propagation direction is confined to the x - z  plane: 
u = [u(x, z), v(x, z), w(x, z)] .  We find 

02b[ Cl I 02b[ 02__.~_ .~ (C13 At- C44 ) 02----.-----~- 
Po Ot---7 : cox - - -5  + C44 0z 2 OxOz ' 

02w 02w C 02w -~ (C13 -~- C44 ) 02u 
po-g-~- = c44 Ox--- i + 33 Oz 2 OxO---~z' 

02v = C 02v OZv (28) 
DO 0-~ 66 OX'" ~ -[- C44 Oz-" ~ , 

where (x, z) refer to the original (Lagrangian) position and, to 
first order in e3: 

Cll = k + 2/z + e3(k + 2B + 2C), 

C13 = k + e3(-/~ + 2B + 2C), 

C33 = ~ +  2# + e3(3h + 6 # +  2A + 6B + 2C), 

Can = # + e3(h + 2# + A / 2  +B) ,  

C66 = # + e3(k + B). (29) 

Is there any way in which Eqs. (27) can be made to be equiva- 
lent to Eqs. (29)? First, we see that there is no problem with 
the zero-order terms which imply k = (~)Cwy and/z = ((])Bw 
+ (~)Cw)y. Second, the third-order constants must have a 
divergent term: (A, B, C) c~ ( - e )  -(~/2). Therefore, for small 
enough e, we may neglect (~, #) as compared with (A, B, C) 
in the terms proportional to e3 because (k, #) ~ ( - e )  (m). 
Similarly, we may neglect the distinction between the new den- 
sity and the original p '  = (1 + E3)po as well as that between 
the new coordinates and the old z '  = ( 1 + e3)z. There remains 
an unavoidable problem: If one sets the coefficient of e3 in each 
of Eqs. (27) equal to its counterpart in (29) (neglecting k and 
# as compared with A, B, C) we have five equations in only 
three unknowns. There is no set of the quantities (A, B, C) 
which can simultaneously satisfy these equations. This makes 
concrete the general demonstration that, for path-dependent 
contact forces, the second-order elastic constants are well-de- 
fined functions of the strain but the third-order constants are 
path dependent. 

A careful inspection of (27) and (29) shows that the quanti- 
ties dependent upon Cw can be made to match correctly but 
that the coefficients of Bw can not. This is a reflection of the 
fact that, within Walton's (1987) formulation, the normal com- 
ponent of stiffness for each contact is proportional to 2Bw + 
Cw whereas the tangential stiffness is proportional to 2Bw; see 
Eqs. (2.13) and (2.14) of Walton (1987). It has been empha- 
sized previously (Norris and Johnson, 1997) that the difficulty 
in reconciling models of path-dependent contact forces with 
nonlinear elasticity stems from the transverse components of 
the contact stiffness. Alternatively, we may say that the diver- 
gent parts of the changes in C 0 are predicted to obey the follow- 
ing relationships, according to third-order elasticity theory, Eqs. 
(29): 

ACii -- AC13 = 0, 

ACH + AC33 - 2AC13 - 4AC44 = 0. (30) 

We see from Eqs. (27) that the second of these equations is 
satisfied by the predictions of the contact theory, but not the 

Table 1 The quantities which determine the strain-induced 
anisotropy of the elastic constants for a random sphere pack, 
via Eqs. (27), as compared to the best fit values assuming 
the validity of third-order elasticity theory, equations (29). 
We assume h = /x = 24 GPa as appropriate for a silica 
glass. The best fit values are (e/,y) (A, B, C) = (27.2, 34.7, 
-17.2) .  All values in 10 -4 (Pa) -~. 

Contact Theory Third-Order Elasticity 

2Bw Cw) 
AClt + ~ -  71.1 35.1 2_ (2B + 2C) 

\ 15 Y 

AC13 ( ~ )  4.7 35.1 2_ (2B + 2C) Y 

AC33 ( ~ + - ~ )  222.6 228.3 2_(2A+6B+2C)y 

\(2Bw15 j~Cw) •C44 . + -~- 71.1 48.3 e (A/2 + B) 
3' 

AC66 "i~ + i ~  34.7 34.7 2_ (B) 
7 

first. So to say, we have four equations (not five) in three 
unknowns. This is a specific manifestation of a more general 
property of this contact theory, derived in Norris and Johnson 
(1997), that changes in second-order elastic constants due to 
an imposed strain are governed, to first order, by four "third- 
order modulii," BXll, BlI2, B123, and/~ and not the usual three 
(A, B, C). 

How serious an error might be made were one to assume the 
validity of third-order elasticity theory for a system such as 
this? Let us consider a hypothetical case of a granular medium 
whose strain dependent moduli are accurately given by Eq. (27) 
(for small e3). An experimental measurement of the change of 
elastic constants with uniaxial strain would be proportional to 
the quantities within parentheses in (27). Typical values are 
given in Table 1, assuming the beads are made of glass. If one 
were to make a best least-squares fit of Eqs. (29) to these 
values, the resultant values of these quantities are poorly fit by 
third-order elasticity theory; these values are also listed in Table 
1. We see that there is an appreciable problem were one naively 
to apply third-order elasticity theory to the strain dependence 
of the sound speeds. 

Winkler and Liu (1997) have already performed an experi- 
ment analogous to the gedanken experiment shown in Table 1. 
They have measured the changes in the speeds of sound as a 
function of applied stresses in a suite of nine rocks. They consid- 
ered P and S speeds as a function of isotropic pressure and 
they considered P and both S speeds for waves propagating 
perpendicular to the axis of an applied uniaxial stress. From the 
initial slopes of these five measurements they determined a best 
fit set of values for the third-order elastic constants (A, B, C). 
The quality of their fit is much better than that indicated in our 
Table 1. Thus, we conclude that the concept of an elastic energy 
of deformation for sedimentary rocks may be a valid one, at 
least through third order in the applied strain--unlike the model 
of the present paper. For larger stress, though, it is known 
that rocks undergo hysteretic deformation (Brown et al., 1989; 
Hilbert et al., 1994). 

4 C o m p a r i s o n  W i t h  E x p e r i m e n t a l  Data  

Our measurements were made in a specialized compaction 
cell that was constructed to study the developing elastic proper- 
ties of artificial sediments as a function of axial stress. A block 
diagram of the compaction cell is shown in Fig. 7. Anisotropic 
compressional and four-component shear wave velocities were 
recorded using transducers oriented parallel and perpendicular 
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Fig, 7 Block diagram for the experimental setup used to measure the sound speeds as a function of applied stress 

to the direction of axial stress. The compaction cell was con- 
structed of EN303 stainless steel and the system has a maximum 
confining stress of 110 MPa. The cell is presumed to be rigid 
enough that the sample experiences a macroscopic uniaxial 
strain (negligible lateral motion). A Power Team 1826 25 ton 
hydraulic shop press applies the axial stress to the vertical pis- 
ton. Transducers for elastic wave measurements are 4 × Verde 
GeoScience compressional and polarized shear wave 500 kHz 
ultrasonic transducers. Sample length is dynamically measured 
during the acquisition using a Schlumberger DC50 LVDT. 

The sample we studied was comprised of dry mono-dispersed 
spherical glass beads with diameters of roughly 70 /.zm. The 
beads were placed in the chamber of the compaction cell and 
were uniaxially strained by the application of axial stresses up 
to 100 MPa applied over four separate cycles. To determine 
the P and S-wave velocities, we examined the corresponding 
waveforms as a function of stress for each of the four cycles. 
As expected, the most stable results were obtained for the last 
stress cycle. By this point the individual beads appear to have 
reached relatively stable configurations within the disordered 
packing. In almost all of the waveforms, the desired arrival is 
easily identified. However, properly locating the shear arrivals 
can be difficult, particularly at low applied stresses for the mode 
propagating normal to the direction of axial stress and polarized 
perpendicular to the direction of axial stress. We found that 
identification of weak arrivals was facilitated by examining the 
waveforms as a function of applied stress. While the best signal 
to noise ratios were obtained at the largest applied stress levels, 
the weaker arrivals could be identified by following the desired 
point of constant phase (first zero crossing) to lower stresses. 

Figure 8 is a composite plot of the measured velocities for 
the fourth cycle of applied stress. Clearly, even for this simplest 
of granular media, the data show considerable hysteresis. The 

physical basis for this hysteresis is most likely small rearrange- 
ments in the positions of the grains during the increasing stress 
part of the cycle. Once the particles are tightly wedged together, 
one might assume that there are many fewer rearrangements in 
decreasing stress part of the cycle. Indeed, we believe that 

2.5 

Stress Induced Anisotropy  

Unconsolidated Grain Pack: ~ = 0.38 

¢ ¢ P [o33 inc.] 
¢ = S [oa3 inc.] 

- -0 P [a33 dec,] 
2,0 ~ - ~ S [ff3a dec,] ~ ~ . ~ . ~ . ~ = ~ - 0  

~ 1 . 5  ~ .c~ - ~  

1.o a..~=:B:= 2: 

0 . 5 [  , , , , . . . .  , . . . . . . . .  20 40 6'0 8~0 100 
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Fig. 8 Experimental results for two compressional mode (circles) and 
two shear mode (squares) speeds are plotted as a functions of applied 
vertical stress during the fourth stress cycle. The filled (open) symbols 
correspond to the increasing (decreasing) stress part of the cycle. The 
faster and slower P waves are associated with vertical and horizontal 
propagation, respectively, The faster S wave propagates vertically while 
the slower S wave propagates horizontally and is polarized horizontally. 
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Fig. 9 Vp and Vs as a function of confining pressure for unconcolidated glass beads. The 
data are from Domenico (1977). The calculated value of the ratio Vp/Vs is very sensitive t o  
the assumed value of Ct/C., here taken to be 0.35. The overall scale of the speed• is then set 
by CR, here taken to be 95 GPa. We assume the average coordination number is n = 6.5.  

this wedging of grains during the stress cycles contributes to a 
residual stress distribution in the packing even when the piston 
is removed and there is no applied stress. It is this residual 
stress that gives rise to the internal strain that we model with 
the parameter c, the initial hydrostatic compression. 

Because granular rearrangements involve breaking and re- 
forming of contacts, they invalidate the assumption of our effec- 
tive medium description of the packing. For this reason we com- 
pare our equations only with the decreasing stress part of the last 
cycle. To get a reasonable fit to the data we have treated the 
quantities n, C,,, Ct/C,, and e as adjustable parameters. We some- 
what arbitrarily take n = 6.5, although only the products, n C, 
and n C,, enter in the theory. First, we demand consistency of 
our calculations with the data of Domenico (1977) who measured 
Vp and Vs as a function of hydrostatic confining pressure on 
unconsolidated glass beads. We see in Fig. 9 that the ratio Vp/ 
Vs is essentially independent of pressure, as the theory predicts. 
This sets the value of the ratio C,/C,, = 0.35. Then, the value C, 
= 95 GPa was taken to ensure a reasonable overall fit to the 
actual speeds, as shown in Fig. 9. (For comparison, the first of 
Eqs. (2) yields C,, = 128 GPa and CI/C, = 0.857 if we take #., 
= 24 GPa and u, = 0.25 as appropriate for a silica glass. This 
would predict a value Vp/Vs that is significantly lower than the 

measured pressure-independent value.) Finally, the value e = 
-0.0035 was chosen to get an acceptable fit to our own measured 
data. Our fit to the data is presented in Figs. 10 and 11. The 
calculated curves are faithful to the qualitative trends in the mea- 
sured data and are in good overall agreement with the absolute 
values of the sound speeds and the Vp/Vs ratios. In connection 
with Fig. 11, we note that there is considerably less difference 
in the Vp/V, ratios for the increasing and decreasing parts of the 
stress cycle than was seen for the absolute velocities shown in 
Fig. 8. We remind the reader that we have made two critical 
assumptions: the validity of the effective medium approximation 
and the assumption of no-slip between grains, either of which 
may be suspect. In the case of the former assumption we note 
that Liu et al. (1995) have given convincing theoretical and 
experimental arguments for the existence of a very broad (~ex-  
ponential) distribution of contact forces. In the case of the latter 
assumption we note that our best-fit value of C,/C,, is less than 
half that predicted from a literal interpretation of Eq. (2) .  

5 Conclusions 

We have considered the elastic properties of granular media, 
specifically systems for which each grain-grain contact is de- 
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Fig. 10 The experimental speeds shown in Fig. 8 for d e c r e a s i n g  applied 
stress are compared with the results of our calculations. Here the relation 
between stress and strain was calculated from Eqs. (21) and (22). Same 
parameter set as in Fig. 1. 
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Fig. 11 Ratios of •quared P to S speeds calculated as in Fig. 10 are 
shown together with experimental data for both the increasing and de- 
creasing parts of the fourth stress cycle. (The relation between ¢r~ and 
~ is again calculated from Eqs. (21) and (22).) As in Fig. 2, the upper 
curve and the circles represent C . / C ~ ,  the middle curve and the dia- 
monds represent Cll/C44, and the lower curve and the squares represent 
Ctt/Cee. In all three cases, the filled (open) symbols are the measured 
ratios for decreasing (increasing) stress. 

scribed by a slight generalization of the Hertz-Mindlin theory. 
Within the context of a simple effective medium theory, we 
have derived expressions which describe each elastic constant 
as a function of a combined hydrostatic and uniaxial strain. This 
is a path-independent result. We have explored three different 
assumptions regarding the order in which the strain is applied 
and have calculated how the stress depends upon strain for 
each path. Although the second-order elastic constants are well- 
defined functions of the strain, the third-order constants are not. 
We have shown specifically how the concept of third-order 
elastic constants breaks down when a small uniaxial strain is 
applied to an unconsolidated granular medium that already has 
a large hydrostatic strain. Finally, we have shown how our 
experimental data on sound speeds measured as a function of 

applied stress can be understood if one assumes there is a rema- 
nent hydrostatic strain in the system. 
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