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Abs t rae t - -The  potential energy of the elastic surface of an elastic body which is growing by the 
coherent addition of material is derived. Several equivalent expressions are presented for the energy 
required to add a single atom, also known as the chemical potential. The simplest involves the 
Eshelby stress tensors for the bulk medium and for the surface. Dual Lagrangian/Eulerian 
expressions are obtained which are formally similar to each other. The analysis employs two distinct 
types of  variations to derive the governing bulk and surface equations for an accreting elastic solid. 
The total energy of the system is assumed to comprise bulk and surface energies, while the presence 
of an external medium can be taken into account through an applied surface forcing. A detailed 
account is given of the various formulations possible in material and current coordinates, using four 
types of  bulk and surface stresses : the Piola-Kirchhoff  stress, the Cauchy stress, the Eshelby stress 
and a fourth, called the nominal  energy-momentum stress. It is shown that inhomogeneity surface 
forces arise naturally if the surface energy density is allowed to be position dependent. ~ 1998 
Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Accretion is a process by which the material surface of a body changes, either by mass 
rearrangement via bulk and surface diffusion, or by mass transfer from the surrounding 
environment. The former has received considerable attention because of its potential for 
stress-driven surface instability (Mullins, 1956; Asaro and Tiller, 1972; Grinfeld, 1986; 
Freund, 1995), while the latter subject is at the heart of equilibrium and non-equilibrium 
mechanics of multi-phase systems (Larch6 and Cahn, 1973, 1985 ; Alexander and Johnson, 
1985; Leo and Sekerka, 1989; Gurtin, 1993). A crucial feature in thermomechanical 
formulations of these problems is the notion of the solid chemical potential, defined as the 
energy associated with the addition of a single atom to the surface. This is the subject of 
the present paper. 

It is possible to generate an expression for the chemical potential using variational 
arguments, the main ingredients being bulk and surface elastic energy functions. The 
groundwork for this was laid by Alexander and Johnson (1985) and Johnson and Alexander 
(1986), who considered multi-phase systems with curved interfaces, although they did not 
include an elastic surface energy in their formulation. Subsequently, Leo and Sekerka 
(1989) considered the effect of surface energy, and gave a thorough analysis of the vari- 
ational derivation of the equilibrium conditions associated with multi-phase interfaces. 
Based upon their results one can readily derive expressions for the chemical potential 
phrased in both Lagrangian (or material) and Eulerian (or current) coordinates. The 
Lagrangian/Eulerian results of Leo and Sekerka (1989) although they are formally identical 
to one another, do not appear symmetric. That is, their expression in one coordinate system 
looks quite different in the dual formulation. This distinction, which might not appear 
serious, can lead to complications. For instance, as pointed out by Wu (1995a, b) the 
expressions for the chemical potential adopted by Asaro and Tiller (1972) and by Rice and 
Chuang (1981) appear to be the same. However, they are in Lagrangian and Eulerian 
descriptions, respectively, and are not equivalent. This important distinction has long been 
appreciated (Herring, 1953) but only recently has it been examined in detail by Grinfeld 
(1994), who distinguishes two types of surface energy associated with the two descriptions: 
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Table 1. Stresses and their divergence based upon the Eule~Lagrange equations for the "standard" variation 6x. 
The relations among the bulk and surface stresses follow from the definitions of the Piola-Kirchhoff stresses, for 

instance. The bulk and surface equilibrium equations are all consequences of the first ones : VP.4 and SP.4 

Stress Symbol Definition Relation Balance equation 

Piola-Kirchhoff P (~ W/OF) r Jfa Div P = - G VP 
Cauchy a wi - pf f fP  div a = -- g VC 
Energy-mom. E WI - PF Jfp Div E = G F -  G inh VE 
Nominal E-M p ( ~ w / 0 f )  r J F E  div p = g F  - gi .h VN 

Piola-Kirchhoff p (~ ~ / ~ )  r df~ D~v P = N P -  G sur SP 
Cauchy ~ ~i - Of j [ P  di"~ # = n a -  g~Ur SC 
Energy-mom. 1~ i f ' i -  PF Jf~ Di'~ E = G s u r F -  ~inh _{_ OK -- NP~ + (1~" K)N SE 
Nominal E-M ~ (~ #,/~) r jFE d~v ~ = g~q~ - ~inh +fI~K -- na~" +f(l~ • K) N SN 

(Column) 1 2 3 4 

Her r ing  and  Laplace ,  respectively.  The  fo rmer  is based  on the work  o f  Her r ing  (1953) who 
assumes a surface energy based  on  L a g r a n g i a n  surface area,  whereas  the more  t r ad i t iona l  
concept  o f  surface energy,  as a surface tens ion on a l iquid for  ins tance (and hence the 
desc r ip to r  Laplace) ,  is mos t  readi ly  discussed using Euler ian  coord ina tes .  Recent ly ,  W u  
(1996b) deduced  symmet r ic  express ions  for  the chemical  po ten t ia l ,  bu t  his results  are  for  
two-d imens iona l  systems only,  and  are o f  l imited use. The  equi l ib r ium condi t ions  o f  Leo 
and  Sekerka  (1989) were ex tended  to non-equ i l ib r ium s i tua t ions  by  Gur t i n  and St ru thers  
(1990). They  did no t  avai l  o f  va r i a t iona l  me thod s  but  used more  direct  concepts  such as 
force, in t roduc ing  the no t ion  o f  accret ive forces, la ter  general ized to conf igura t iona l  forces 
by G u r t i n  (1995). These are  closely l inked to concepts  o f  force deve loped  extensively by 
Eshelby,  e.g. (Eshetby,  1951, !975),  and  others,  and  are  k n o w n  genera l ly  as mate r ia l  forces. 
M a u g i n  (1995) provides  a g o o d  review of  the l i te ra ture  o f  ma te r i a l  forces. 

In  this p a p e r  we re-examine  the va r i a t iona l  de r iva t ion  o f  the ent ire  system of  equa t ions  
for  a solid with a changing  mate r i a l  surface. We cons ider  the bas ic  ques t ion  o f  the stat ic 
equ i l ib r ium o f  an elastic body  and  its surface. N o  dynamic  or  quasi -s ta t ic  effects are  
assumed  or  discussed.  Our  object ive is a comple te  overview of  the var ious  fo rmula t ions  
poss ible  in ma te r i a l  and  cur ren t  coord ina tes ,  and  the m a n y  types  o f  stresses with which to 
express  the resul ts :  P i o l a - K i r c h h o f f  stress, Cauchy  stress, Eshelby  stress (also cal led the 
e n e r g y - m o m e n t u m  tensor)  and  a four th  one,  cal led the nomina l  e n e r g y - m o m e n t u m  stress. 
The  Eshe lby  stress is a centra l  fea ture  o f  mate r ia l  forces, wha tever  their  origin,  and  its role 
in the surface chemical  po ten t ia l  has been recognized  by Bar tho lomeusz  (1995). The analysis  
o f  Bar tho lomeusz ,  s imilar  in m a n y  ways  to tha t  fol lowed here, is l imited to small  strains.  
We  do  no t  assume any such res t r ic t ion  here, hop ing  tha t  the genera l i ty  o f  the fo rmal i sm 
will pe rmi t  us to see the w o o d  f rom the trees. 

Our  ma in  result  is tha t  the chemical  po ten t i a l  is 

tt = [ N  E N - I ~ ' K + J g  ~u~ ~ ^ • • F N -  Div  Q]fL (1) 

where  f2 is the vo lume o f  a single a t o m  in the reference coord ina tes ,  l and  E and  E are bulk  
and  surface e n e r g y - m o m e n t u m  tensors.  These  are defined (see Table  1) as E = W I - P F  
and  E = W I -  PF ,  where  W, P and  F are  bu lk  energy densi ty,  P i o l a - K i r c h h o f f  stress, and  
d e f o r m a t i o n  gradient ,  and  I¢ e, P and  F are  surface counte rpar t s .  The  surface curva ture  in 
reference coord ina te s  is K. The  final two terms in eqn (1) involve the force gSUr act ing on 
the surface, wi th  n o r m a l  N in the reference conf igura t ion  and  surface Jacob ian  J, and  the 

I T h e  volume of an atom is immutable but we use the reference volume f~ in eqn (1) because all other 
quantities are defined in terms of reference coordinates. The real, or current, atomic volume is ~o and f~ = e)/J. 
The definition of chemical potential per atom, as opposed to a molar unit, is common. 
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Table 2. Summary of notation. Note that the gradients indicate the explicit or partial derivatives of W and if/ 
with respect to X, i.e., G~ "h = -OW(F, X)/OXz with F fixed 

Eulerian/ Lagrangian/ Eulerian/ Lagrangian/ 
Quantity volume volume surface surface 

Energy density w W = Jw if, FV = ,/~, 
Force (applied) g G = Jg g~Ur GSUr = jgsur 
F o r c e  ( i n h o m )  g i n h =  jGinh  G inh = - -  V R W ~inh = jl~inh ~inh = __ VR [/V 

Force (rotate.) - -  ~] = J~O 0 = - (3 ff/./*?N ) 
Jacobian j = (dV/dv) J = (l/j) .] = (dS/ds) J = (1/j) 

surface divergence o f  a surface force 0 associa ted  with o r ien ta t iona l  dependence  o f  the 
surface energy densi ty  (see Table  2). 

The initial  k inemat ics  and  no t a t i on  are summar ized  in Sect ion 2, fol lowed by the 
var ia t iona l  analysis  in Section 3. Care  mus t  be taken  in defining the p r o p e r  type o f  var ia t ion  
associa ted  with a changing  mate r ia l  surface, and  a good  deal  o f  space is devoted  to this 
topic.  The results are discussed and in terpre ted  in Section 4. 

2. NOTATION AND KINEMATICS 

The ca lcula t ions  involve bo th  vectors,  tensors,  and  their  differential  p roper t ies  inside 
an elastic body  and  on its surface. Var ia t iona l  techniques will be used for  funct ionals  
defined on these domains ,  so it is therefore  impera t ive  to have a clear  unde r s t and ing  o f  the 
quant i t ies  and  their  funct ional  dependence.  Regard ing  nota t ion ,  c ompone n t s  will be used 
on occasion,  with the summat ion  o f  repeated  subscr ipts  unders tood .  Produc ts  such as 
A = BC are 2 Aij = BmCKj, or Aj = BKCKj, or  Ai = BroCK, depend ing  upon  whether  B and C 
are first or  second order  quanti t ies .  Inner  or  do t  p roduc ts  are deno ted  by  • and  signify 
con t rac t ion  over  all indices;  thus, A - B  = AiBi or A" B = AejBj~ = t r A B .  We will no t  use 
special subscr ipts  to dis t inguish surface quant i t ies  (except in the Append ix ) ,  nor  use the 
fact tha t  true surface quant i t ies  exist in a lower d imens iona l  space. Some quant i t ies  tha t  
exist only  on the surface and have bulk  analogs  will be deno ted  by the same symbol  as the 
bulk  quan t i ty  with a hat ,  e.g. P and P. Genera l ly ,  we prefer  to recognize the surface 
quant i t ies  as pro jec t ions  o f  th ree-d imens iona l  objects  whenever  possible.  We  now in t roduce  
some k inemat ic  identi t ies  and  associa ted  quanti t ies .  

Cons ider  a vo lume o f  mater ia l  and  its surface, deno ted  by V and  S in mater ia l  
coord ina tes  (X), or  v and  s in current  coord ina tes  (x). The de fo rma t ion  X ---, x is assumed 
to be con t inuous  with a well defined de fo rma t ion  gradient  F and inverse f, 

F = V R X ,  f = V X ,  f o r X e V ~ S  and x e v ( , g s .  (2) 

In componen t s ,  Fu = OxJOXj, fsg = c~X/Oxe. Thus, F f  = tT = I, where I denotes  the identi ty.  
Al ternat ive ly ,  F and  f m a y  be defined in terms o f  the grad ien t  o f  the d i sp lacement  vector  
u = x - X ,  i.e. F = I + V R u  and f = i - V u ,  where i = I denotes  the ident i ty  in the Euler ian 
descr ipt ion.  The  Jacob ian  o f  the de fo rma t ion  and its inverse are defined as J = dv/d V > 0 
and j = d V/dv, or  

J = d e t F ,  j = d e t f ,  j J =  1, (3) 

and  we note  the identi t ies  

d i v a  = j D i v ( J f a ) ,  D i v A  = Jdiv( / 'FA) .  (4) 

2 The simultaneous use of lower and upper case indices is intended to aid the readers interpretation. 
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These are simple consequences of  the Euler-Piola-Jacobi identities (Truesdell and Toupin, 
1960, p. 246). 

The surface unit normal in the material and current coordinates is denoted by N and 
n, respectively. Define the surface projection operators 

[ =  I - N ® N ,  i =  i - n ® n ,  (5) 

then the surface deformation gradients are the on-surface projections of F and f: 

~" = FI fo rX~S ,  f =  f~ fo rx~s .  (6) 

Therefore, according to these mathematical definitions, 

F I = F  and f i = f .  (7) 

In addition, the explicit fact that S is a material surface and s its image, implies the following 
kinematic identities, 

i F = F  and | f = f .  (8) 

As defined, F and f are rank deficient and are therefore not the inverse of one another, in 
the sense of three-dimensional tensors. They do, however, satisfy 

= i  and F f = l .  (9) 

These are consequences of the two sets of identities (7) and (8), and 

= fi~ = ~ = fv i  = i, (10) 

~'f = Fi f  = Ff = Ff~ = i, (11 ) 

completing the proofs of eqn (9). 
The surface deformation maps material lengths on the undeformed surface S to current 

lengths on the deformed surface s. Thus, a tangent vector dL s S is mapped to dl = F d L  s s 
with length dl given by (d/)  2 : (F  dL)"(F dL). In general, surface quantities that are anal- 
ogous to bulk parameters, such as F, will be denoted by the same letters with a hat, i .e.F. 
Further results concerning the surface deformation tensors are presented in the Appendix. 

The surface Jacobian and its inverse are 

J =  ds/dS,  j = dS/ds,  j J =  1. (12) 

They may be determined from eigenvalues of F, although, because of  the rank deficiency 
of the latter we do not use this procedure. An explicit formula for J i s  given in the Appendix. 
It may also be found from the well-known relations 

n = ]JNf.~> N = jJnF,  (13) 

which imply J = J N f ' n  = J /(nF-N).  The surface divergence operators Div and div are 
defined in the usual manner (using the divergence theorem, for example, to express the 
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surface divergence o f  a quan t i ty  as a line in tegral ) .  The surface analogs  o f  the volumetr ic  

identi t ies 4 are 

div a = j Div(J fa ) ,  Div  A = Jd iv( j t~A) ,  (14) 

where a and  A are vectors  or  tensors  which m a y  be defined for  all posi t ions ,  on or  off the 
surface, a l though  the divergence only uses surface values. 

The surface curva ture  tensor  is deno ted  as K in the mater ia l  descr ip t ion  and  by k in 
the current  descr ipt ion,  3 

K=--VRN, k=--Vn, (15) 

where VR and V denote  the on-surface  gradient  opera tors .  Note  tha t  k is the ac tua l  curva ture  
o f  the surface, while K m a y  be thought  o f  as the curvature  of  the unde fo rmed  state. The 
double  mean  curvatures  are defined as K = tr  K, k = tr k, or  

K = K ' i ,  k = k ' [ .  (16) 

Thus,  a solid sphere o f  radius  r has k = - 2/r. We note  the wel l -known identi t ies  

A ^ A ~  

d i v i = k n ,  D i v I = K N .  

The fol lowing identi t ies  are a direct  consequence of  eqns (14) and (17), 

(17) 

j D i v ( J f )  = kn, J d i v ( j F )  = KN.  (18) 

These are pe rhaps  not  as well known as eqn (17), for  instance,  but  they offer a useful means  
to de te rmine  the mean  curvatures  f rom the deformat ion .  In par t icu lar ,  the mean  curva ture  
in the reference (current)  state can be found  in terms o f  the surface divergence on the 
current  (reference) surface, thus, 

K = J d i v ( j F )  • N = J d i v ( j F )  • fn, (19) 

~ ~ ^  ~ ~ ^  

k = j D i v ( J  f)-  n = j D i v ( J  f ) .  FN. 

Final ly ,  we note  for la ter  use the fol lowing results 

(20) 

A A A / ~ .  

( D i v A ) ' N  = A ' K + D i v ( A N ) ,  ( d i v a ) - n  = a ' k + d i v ( a n ) .  

Their  der iva t ion  m a y  be considered an exercise in differential  geometry .  

(21) 

3. VARIATIONAL EQUATIONS 

3.1. Equilibrium equations 
The bu lk  and  surface energy densit ies per  unit  reference vo lume and  surface area  are 

assumed to depend  u p o n  their  respective de fo rma t ion  gradients  th rough  the i so thermal  
t h e r m o d y n a m i c  poten t ia l s  W and I~: 

3 Although K and k are surface quantities we do not use hats because there are no bulk equivalents. 
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W = W(F, X), i f /=  ffz(~, N, J~). (22) 

Note that we allow for inhomogeneity through the explicit dependence of the energies on the 
material position. The surface energy is also assumed to vary with the surface orientation, N. 
The dependence upon N is assumed to be continuous, which is contrary to observations, 
e.g. Herring (1953). However, this assumption permits us to generate pointwise equilibrium 
equations, and it could be subsequently relaxed by allowing the material forces to have 
distribution-type functional behavior. The corresponding energy densities in current coor- 
dinates are w and ~, which are related to the Lagrangian quantities by 

w = j W  and ff ,=jff / .  (23) 

The Piola-Kirchhoff  bulk stress and the analogous surface stress, P and P, respectively, 
are defined in the usual manner as 

P = (8 W/SF) r, p = (8 ffz/OF') r. (24) 

These relations are repeated in Table 1 in items VP.2 and SP.2, respectively. 
It is common to formulate dual sets of  equations in Lagrangian and Eulerian descrip- 

tions using the action integral as the starting point (Herrmann, 1981). However, we are 
interested in the possibility of  non-conservative forces in the bulk and on the surface, and 
are restricting attention to static phenomena. We therefore adopt as the starting point the 
potential energy functional 

n = g -  ~- ,  (25) 

where ~U is the work done by all external and applied forces acting on the body and its 
surface, and g represents elastic stored energy, bulk and surface combined. It may be 
defined by integrals in the current or reference domains : 

g= fdvw+fds~ 
~ r  d s  

=;dVW+fsdSff/, (26) 

respectively. 
All our results are based upon two types of variations of the potential energy functional. 

The first type of variation is a standard virtual displacement, for which Hamilton's principle 
implies that the variation of  H vanishes. That  is, 6FI -- 6 ~ -  6~/: = 0, with 

6~U=fdvg.6u+fdsg: . . . .  311 

=fvdVG.6U+fsdSG . . . .  61[I, (27) 

where the vector g represents an arbitrary body force acting in the solid, while gSUr is a force 
applied on the surface. The analogous material quantities G, G ~ur are defined in Table 2. In 
order to evaluate the variation 6~ we consider the integrands of the two integrals in eqn 
(26) as functions of the displacement u = x -  X and its gradient, subject to the restriction 
that X does not change with the virtual displacement. That  is, 6u = 6x, and consequently 
6F = 86u/~X. The restriction 6X = 0 suggests that we use the Lagrangian forms for 6g 
because the variation will obviously commute with the integrals, that is 
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6g=ffvdVW+6fsdSI~ 

0 r ~ r  

Combining this with the Lagrangian form for M/" in eqn (27) and integrating by parts, 
yields 

6 H =  - d V ( D i v P + G ) . f u +  d S ( D i v P - N P + G  sur)'fu. (29) 

This may be converted into Eulerian form using eqns (4), (13) and (14), 

f fA 3 H = - -  d v ( d i v a + g ) ' b u +  d s ( d i v b - n a + g  s"~)'bu. (30) 

Equations (29) and (30) imply the bulk and surface equilibrium equations which are listed 
in Table 1 as VP.4, VC.4, SP.4 and SC.4. 

The quantities E and p defined in Table 1 have dimensions of stress, and they are 
clearly duals to the more familiar stresses a and P, respectively. Based upon their definitions, 
it is clear that the divergence of each of the four quantities P, a, E and p are linearly related. 
Thus, from the definitions in VE.2 and VN.3, and using eqn 4, we have 

Div E = - (Div P ) F -  Ginh, div p = j Div E, (31) 

where the material inhomogeneity force G ~nh is defined in Table 2. The two identities in eqn 
(31) imply the results VE.4 and VN.4, respectively. The remaining surface equilibrium 
conditions in Table 1, viz SE.4 and SN.4, are also consequences of the basic equilibrium 
equations for th~,e Piola-Kirchhoff and Cauchy surface stresses, SP.4 and SC.4, respectively. 
The value of Div E follows from its definition in SE.2 and by use of eqn (21) with EN = 0. 
The surface inhomogeneity force ~nh arises from the explicit dependence of the surface 
energy on material position. In addition, the orientational dependence of  if/introduces the 
rotational "force" 0 ,  defined as 

a w  
Q = - cgN' (32) 

The specific form of the term OK in SE.4 follows from the identity (15)l. Note that (~is a 
tangential vector on S, i.e., 0 "  N = 0. The final result in column 4 of Table 1, for div 0, 
follows using the relation SN.3 between 0 and l~, the equilibrium equation for the latter, 
and eqns (13) and (14). 

Regarding notation, we use the term nominal energy-momentum stress because the 
stresses P and P with this descriptor are the energy-momentum tensors dual to the Piola 
Kirchhoff stress, which is itself related to (by transpose), or sometimes called, the nominal 
stress (Ogden, 1984). 

The relations among the volumetric quantities in Table 1 are well known, but we have 
repeated them briefly here for completeness. We refer to Chadwick (1975) for a detailed 
discussion. The surface equations have not, to our knowledge, been presented in this form. 
The results in column 4 of  the Table are called balance equations for want of a different 
name. They could equally well be called equilibrium equations ; however, it has been pointed 
out that one person's equilibrium equation can be another's conservation law (Herrmann, 
1981). 
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3.2. M a t e r i a l  variation 

We emphasize that the equations in column 4 of Table 1 all follow from VP.4 and 
SP.4, which are consequences of  the Principle of  Virtual Work as we have defined it above. 
No other type of  variation is required to establish these equations, although one could use 
other variational devices. Our purpose here is to establish a new equation, one which does 
not follow from those derived above. In order to arrive at this we need a different type of 
variation based upon a virtual "reverse" displacement in which 6d ~ is considered a function 
of the material coordinates. The virtual displacement is associated with a fixed material 
particle. This did not present a problem with the previous variation because we chose the 
"s tandard"  variation with 6X = 0. In this case we need to be a bit more specific about  the 
definition of the variation. 

Both types of  variation considered here are but special cases of  the most general type 
permissible, for which fix and fix are considered independent. Surface equations obtained 
using this general (6x, 6X) variation, the so-called transversality condition (Edelen, 1981), 
provide a relation between 6x and 5X, the interpretation of which depends upon the 
problem at hand. It is usually associated with a moving boundary condition, as occurs in 
fracture mechanics, for instance. In the present case we will prescribe a relation between 6x 
and fiX, which defines the type of moving boundary. As such, the constraint we impose on 
(6x, 6X) can be viewed as a definition of accretion. 

There are other means of defining an accretive variation. For  instance, Larch6 and 
Cahn (1973) introduced the notion of a network, which imbues a solid with a characteristic 
not found in a fluid. The network can be thought of  as a lattice extending beyond the 
confines of  the solid, but associated with a lattice if there is one. Newly added atoms are 
assigned positions on this network, thus providing a rule for accretion. The method adopted 
here is clearly different than the network model, but the final results should be independent 
of  such details. It should be noted that the accretion process considered here involves only 
substitutional atoms, in the terminology of Cahn (1980). The necessity for such finesse in 
defining variations for solids is one of the features which makes solids different from fluids. 
The difficult question of what exactly distinguishes a solid from a fluid is addressed in some 
detail by Larch6 and Cahn (1985). 

The rule used for applying the variation under accretion is based on ideas of  Maugin 
(1979) for constrained variations. Thus, we introduce a one-parameter pair of  vector 
functions : X(x, e) and ~(X, e,), such that 

X = .~(x,0) and x = ~:(X,0). (33) 

L e t f  = f(X, e) and g = g( x, e,) be arbitrary functions, and define 

H' Og(x, e) ':," . 
c S x . f -  ~?f(X, e) 6xg - (34) 

~?e ,xed' de ..... 

As defined, these variations are completely independent. The crucial step is to link them to 
one another via the deformation. Specifically, the mappings are assumed to satisfy the 
constraints 

x = ~(.'K(x, E), e) and X = X(~(X, e), e), (35) 

for all 4 ~;. These are natural conditions and are mutually dual, in the sense that one implies 
the other. For instance, the first one implies that the same material point (particle) is 
referred to by the mapping. Expanding the first condition to first order in e gives the relation 

fix~ + F,SxX = 0. (36) 

4This condition is perhaps overly stringent, as we only require that it hold in a neighborhood of e = 0. 
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This is the basic relation sought--but  what does it mean? The fact that we employed 
the deformation constraints (35) provides a clue, suggesting that the material variation 3, 
represents the addition (or accretion) of new material that conforms to the underlying 
deformation. That is, new material is added with the same deformation as the neighboring 
surface and of the underlying bulk material. In this sense the procedure replaces the concept 
of a prevailing network (Larch6 and Cahn, 1973) with a calculus basis for the same result. 
The present procedure is more akin to that employed by, for example, Maugin and Trimarco 
(1992) in similar variational analyses. 

Equation (36) allows us to compute the displacement variation 6u for a material 
variation, that is, one using 3, rather than 6, which was the basis of the previous variation 
results. Recalling that 3u must be evaluated with reference to a fixed particle, i.e., ~u = 6xu, 
we have, 

3xU = fix x 

= - Fg~X. (37) 

It is now clear that the previous variational results, specifically eqns (29) and (30), are 
actually based upon the vanishing of 6xH. We will now compute 6xI-l, starting with the 
Eulerian form of g in eqn (26) as integrals over the current volume and surface because 
these integrals commute with 3x. We also use the first form for ~5~f given in eqn (27), 
combined with the identity (37) for 3u. The one remaining quantity required is the variation 
of the surface normal, which satisfies the kinematic identity 

6,N = 6X'VRN--VR(N'3X) 

= - N ( % 6 X )  

= - N ( * ~ X ) ~ .  (38) 

Proceeding as before, and using the definitions of the nominal stresses in Table l (VN.2 
and SN.2), and of  ~inh, ~ and gSUr in Table 2, we find 

f i ^~  A . A (~,FI = d v ( g F - g i " h - d i v  p) • fiX + ds(g~"rF + np + j Q K -  (div ~ ) N -  g''h - div ~) • fiX. 

(39) 

This may be converted to integrals over the reference domains by using eqns (4) and (14) 
and the relations between the various stresses given in Table 1, 

f .  
6~FI = | d V ( G F -  G "~h - Di"~ E) .  3X 

J~ 

I S  ~ ~ ~ " ~ ^  
+ dS(G~"rF + NE + Q K -  (Div Q ) N -  G '"h - Div E).  6X. (40) 

Setting the variation 3xH to zero for arbitrary 6X, both within the body and on the surface, 
implies that the quantities in parentheses in the integrals of eqns (39) and (40) all vanish. 
The associated equations generated by the volumetric integrals are precisely the balance 
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equations VE.4 and VN.4, derived previously. The surface terms, however, give new equa- 
tions" 

A A  A 

Div E = GSUrF + N E -  (~inh _~ (~K - (Div Q)N, (41) 

di/"~ ~ = gSUrF + r ip -  ~inh + j O K  - (di~'~ fi)N. (42) 

Although these look similar to SE.4 and SN.4, they do indeed differ from those relations 
which were consequences of the fundamental surface equilibrium equation, SP.4 or SC.4. 

In summary, the material variation 6xII gives exactly the same set of bulk equations 
that were obtained from the standard variation, but the surface equations are different. In 
the next section we will demonstrate that the surface terms in eqns (39) and (40) provide 
some new information, in addition to the previously obtained equilibrium conditions listed 
in Table 1. 

4. INTERPRETATION 

4.1. The chemical potential 
The surface inhomogeneity forces ~inh and ~inh are, from their definition in Table 2, 

both tangential to the reference surface S. It therefore follows from the equilibrium equa- 
tions outlined in column 4 of  Table 1 that the vectors appeAaring in the surface integral of 
eqns (39) and (40)~,, (g~UrF+np-~inh+j0K-(di"v t ] )N-div~)  and (GSUrF+NE-(~mh+ 
O K - ( D i v Q ) N - D i v E ) ,  respectively, are both parallel to N. Hence, the surface com- 
ponents of eqns (41) and (42) are identical to the surface components of SE.4 and SN.4, 
reAspectively. Also, the component of SE.4 in the N-direction is just the kinematic identity 
D i v E ' N  = E . K ,  which follows from eqn (21)~ and the fact that I~.N = 0, by definition, 
and the N-component of  SN.4 is a consequence of the definition of ~ in SN.Y In other 
words, the N-components of SE.4 and SN.4 are differential identities for tensors and 
surfaces, and as such they do not contain any mechanics. In contrast, the N-components 
ofeqns (41) and (42) contain new information of a mechanical nature. We will first examine 
this and return later to the question of which set of Euler-Lagrange equations is "correct".  

The additional scalar information in eqns (41) and (42) is associated with the freedom 
to vary fiX on the surface in the direction of N. We therefore first consider the two vectors 
mentioned above which arise in the variational eqns (39) and (40). These vectors are parallel 
to one another and to N, and based on the discussion above, may be written as 

G~urr + NE - ~inh _~_ O K  __ (Di'~ Q)N - Di"~ 1~ = 2N, (43) 

gsurF -~- np - ffnh + ]OK -- (di~'~ ~)N - di'~ ~ = ]2N, (44) 

where 2 vanishes if we impose the condition 6xH = 0 for variations 6X [I N. The scalar ,~ is 
directly related with the chemical potential of the surface, defined as the energy required to 
add one atom to the surface. Thus if co is the volume of one atom, then f~ =.j~o is the 
reference volume, and the chemical potential is 

= j),~o. (45) 

The new information in the "equilibrium" eqn (41), or (42) which is the same, is therefore 
that the chemical potential at the surface must be zero for material equilibrium. 
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We will now derive several alternative expressions for the fundamental parameter 2 
which is defined by eqn (43) as 

A ^ 
2 = (G~UrF + N E -  ~inh - -  Di/~ 1~)- N - Div Q. (46) 

It is assumed that the body and surface are in static or quasi-static equilibrium, so that 
Table 1 may be employed. Thus, using SE.4, we have 

2 = G ... .  F N + N E . N - I ~ ' K - D ~ v ( ~ .  (47) 

This is perhaps the simplest and most concise form for 2, as it illustrates the influence of 
the applied surface foArce, the bulk elasticity, and the surface elasticity separately. The final 
terms in eqn (47), Div Q, has been interpreted by Gurtin (1995) as arising from a surface 
shear force, and the explicit use of the surface Eshelby tensor I~ in this context was first 
noted by Gurtin (1993). There are many alternative forms for 2, as we now illustrate. Thus, 

A 
2 = W -  WK+ G ... .  FN - NP" FN + PF" K -  Div Q 

= W - - / ~ K -  (Di'~ 1~) • FN - (P'F) • ~'RN -- Di'~ (~, (48) 

where we have used VE.2, SE.2, SPA, and eqn (15), in that order. Alternatively, ~ may be 
replaced by F in the final term in eqn (48), and using the identity 

a F .  
(VRF)N = ~ I, (49) 

where O/ON = N" VR, the surface derivatives can be simplified to yield 

2 = W -  i f / K -  Div(PFN) + P" ~ - Div 0 .  (50) 

The previous expressions for 2 are all in terms of Lagrangian quantities. We now focus 
on Eulerian representations. Our main objective is to deduce an expression using Eulerian 
quantities which is formally similar to one of the above expressions. One's first guess might 
be that the expression in eqn (47) can be translated in this manner. However, as an example, 
the following expression is obtained from ( N E ' N - I ~ ' K )  by the interchange of dual 
quantities, according to Table 1 and 2, 

NE" N -  1~" K - ,  no" n - ~ "  k. (51) 

But this is simply zero because, using SC.4 and eqn (21), b" k = na" n. Therefore, the simple 
"translation" suggested by eqn (51) cannot yield the correct Eulerian expression for 2. It 
is, however, possible to obtain an Eulerian form similar to eqn (50). We start by taking the 
inner product of eqn (44) with fn, implying 

j,)~ = ( g S U r F  - ~  l i p  - -  ~ inh  __ di"~ P ) "  f n - j J d i " ~  ~]. ( 5 2 )  
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Table 3. The listed expressions are equivalent  and are based upon  the equat ions in 
the right hand  column 

Row The chemical potential  of  a surface # Equat ion 

[G .. . .  F N + N E . N - E ' K  D ~ v 0 l n  47 

[ W ~;. K - Di"~(15) • FN - D~iv 0]f~ 47.48 

{ W -  i f /K+ [D~'v(['F) - (D~v 15)rl • N - ~ 0}f~ Row 2 

[W--  if /K-- ~ ' v ( P F N )  + P.(0F/e?N) - D~v (~1~ 50 

[w-- #" k - d~v(O ) • fn - ~i.h. fn - j J ~ v  ~]]~o 52, 53 

{w-jZ)K+j2y'2[~lv(~F)- (~'v ~-)r I . (nr) - jY~tv~l}o)  Row 3 

[ w -  ff~k - di"~ (Ofn) + ~ "(0f/0n) - fg,nh, fn -- j . f  d~v fi]w 56 

Using p = w F - a F ,  we have 

At the same time, 

n p ' f n  = w - - n a ' n  

= w-- (div t~). n -  g .. . .  n 

= w - b ' k - g  . . . .  n. (53) 

di"~(Ofn) = (di'~ ~)" fn + ~" 5~ - Of" k, (54) 

and using Table 1 to eliminate (Of), 

- (div ~). fn = - div(~fn) + ~" ~nn - ~k + b" k. (55) 

Combining eqns (52), (53) and (55) we obtain the Eulerian counterpart of eqn (50), 

j2 = w - i f&-  di'~(Ofn) + ~" ~ ginh. fill --j]dit"~ q" (56) 

Note the presence of the additional penultimate term in eqn (56), associated with the 
inhomogeneity "force".  

In summary, we now have quite a few alternative formulae for the chemical potential 
p, based upon eqn (45) and the derived formulae for 2. Several different looking but 
equivalent expressions are listed in Table 3. The expressions in rows 3 and 6 are most 
similar in form to those of  Leo and Sekerka (1989) [see their eqn (104)] who derived 
equilibrium equations for accreting single and two phase systems. The fourth and seventh 
expressions in Table 3 are related to the expressions for the chemical potential derived by 
Wu (1996b), although Wu's results were restricted to two-dimensions and did not take into 
account the dependence of the surface energy on N. 

4.2. E x a m p l e  

As a simple illustration of the above formulae we consider the case for which the 
surface energy depends only upon the surface Jacobian, 
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~ =  r(aS.~,~ = 7(h, 
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(57) 

where the two functions F and 7 are related by 7(3) = ~ - I F ( ~ - I )  • Using Table 1 and the 
identity, 

r - ~ '  = y ,  (58) 

where the prime denotes the derivative with respect to the argument, it follows that the 
four surface stresses are 

F '=  F '~ ,  

b =  F'], 

= YL 

0 : 7 %  (59) 

We may now substitute these surface stresses into the various formulae in Table 3 to get 
several equivalent expressions for the chemical potential '  

/~ = [G . . . .  F N + N E . N _ 7 , K ]  ~ 

= [ W - -  7 ' K -  F ' J k  - F"J(VRJ)f- FN]~ 

= [ w -  F ' k -  7~[K-- 7 ' j ( V j ) F  • fn](o. (60) 

These correspond to rows l, 2 and 5 in Table 3, respectively, and have been simplified using 
the identities (17) and (19). 

A special case of the above is the Laplace-Herring model of Grinfeld (1994), which 
corresponds to linear functions 

F = F0 + 70 J¢~ 7 = 70 + F0j. (61) 

In this case the latter pair of expressions in eqn (60) become 

= [ W - - F o K - 7 o J k ] n  

= [ W - 7 o k - - F o j K ] o 9 .  (62) 

Hence, the coefficients F0 and ~o determine the dependence upon the reference and current 
mean surface curvatures, respectively. Note that for an initially flat surface deformed into 
a flat surface (k = K = 0) the chemical potential in eqn (62) depends only on the bulk 
elastic energy. 

More generally, the quantities F" and 7" in the second and third expressions in eqn 
(60) do not vanish if F is a nonlinear function, or equivalently, if ~ is a nonlinear function 
of its argument. These terms persist even for the case of a flat surface deformed into another 
flat surface. Referring to the Appendix, we may rewrite the second and third expressions 
for ~t in eqn (60) as 

= [ w - / / ~ -  r ' J k -  r"~  • % J ] n  

= [w-  r ' k - / j K + / ) j ~ -  ¢j]~o. (63) 

The tangent vector 1~ e S and its image ~ e s represent the shear in a plane orthogonal to the 
surface. This may be seen by noting, from the Appendix, that 
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FN = ](~+ Jn), (64) 

which combined with eqn (74)1 implies that the plane spanned by 1i and N is locally 
deformed into the plane spanned by ~ and n. However, eqE(64 ) implies that the right angle 
between 1~ and N is skewed by an amount  _+ [ r l / ~  2 +j2. Hence, the terms involving g" 
and y" in the two expressions for/~ in eqn (63) both vanish if there is no shear orthogonal 
to the surface, or equivalently, if the image of  N is parallel to n. 

4.3. Spatial and material equilibrium equations 
The balance equations in column 4 of Table l were derived using the first variation, 

6x. We will denote these as the spatial equilibrium equations, to distinguish them from the 
material equations obtained with the 6,. variation. The two sets are identical for the bulk, 
but have different surface equations. Thus, setting )~ = 0 gives eqns (41) and (42) instead 
of SE.4 and SN.4, respectively. A further pair of surface equations based upon the material 
variation can be obtained from eqns (41) and (42), using SC.2 and SP.2. After some 
calculation, we obtain 

A 

Div P = N P ] -  G~u~[ + J(b" k)n, (65) 

di/"v b = n a l -  g ~ +  (b" k)n. (66) 

These clearly differ from the Eule~Lagrange equations SP.4 and SC.4 obtained from the 
6x variation. We note that the same pair of equations, i.e. (65) and (66), are obtained if we 
use SE.4 and SN.4 as the starting point, rather than eqns (41) and (42). 

A close examination of  eqns (65) and (66) indicates that their on-surface components 
are the same as those of SP.4 and SC.4, respectively, but they have different n-components. 
In this regard they bear the same relation to the spatial equations SP.4 and SC.4 as SEA 
and SN.4 did to the material eqns (41) and (42). One way of  interpreting this situation is 
by viewing SP.4 and SC.4 as the fundamental spatial surface equations, and eqns (41) and 
(42) are the fundamental material surface equations. The remaining equations, SE.4, SN.4 
in the spatial case, eqns (65) and (66) in the material case, are derived from the fundamental 
equations but contain less information than these. The loss of information can be ascribed 
to the fact that l~ in the spatial case, and 8 in the material case, are projections onto S and 
s, respectively. Thus, the normal components of the fundamental equations, viz. 

A A ~  A 

div b" n = na" n -  g . . . .  n and Div E" N = NE- N + GSUrF • N -  Div Q, 

are lost in the process, to be replaced by the purely kinematic relations 

(67) 

respectively. 

A ~  

di"v 8" n = 8" k and Div E" N = 1~" K, (68) 

5. CONCLUSION 

We have derived two sets of balance equations for the bulk and surface of an elastic 
body using spatial and material variational methods. The former variation is quite standard, 
and leads to the eight equations listed in column 4 of  Table 1. The material variation, on 
the other hand, produces exactly the same bulk equations, but slightly different surface 
equations, i.e. eqns (41), (42), (65) and (66) instead of  SP.4, SC.4, SE.4 and SN.4, respec- 
tively. The differences lie with the normal components, and are associated with the possi- 
bility of  accretion which changes the underlying material. The energy required to perform 
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this is the chemical potential /~, which may be represented in various ways, including 
dual Lagrangian/Eulerian expressions, see Table 3. Perhaps the simplest expression of the 
chemical potential is by means of the Eshelby (or energy-momentum) bulk and surface 
stresses. 

It should be noted that the additional equilibrium equation, which can be cast as 
/x = 0, only makes sense if the material is permitted this additional degree of  freedom. 
Solids do not normally exhibit the ability to spontaneously accrete, and the material 
equilibrium equation is not relevant to most problems in solid mechanics. However, there 
are circumstances under which it comes into play, by, for instance, surface diffusion effects. 
Another important example is multi-phase equilibrium with an inviscid melt. In the present 
study we have restricted attention to a single phase where all external influences on the 
surface are mechanical and are defined by the distributed force gS~r. This offers a means to 
consider interactions with the outside environment. In future papers we will discuss the 
separate issues of surface kinetics and phase equilibrium. 
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APPENDIX:  THE SURFACE DEFORMATION TENSOR 

Let S j and S 2 represent unit tangent vectors to the surface S in the reference configuration, such that 
{SI,S2,N} form an orthonormal triad with N = S ~ ̂  S 2. Similarly, let s ~ and s 2 be tangent vectors to s in the 
current state, so that {SI , s  2, n}, n = S 1 A S 2, is another orthonormal triad. Note that s ~, ~ = 1 or 2, is not  the unit 
vector of the image of the tangent vector S ~ under the deformation. However, the span of S j and S 2 is mapped 
into the span of s ~ and s 2, with J = S ' ® S ~ and i = s ~ ® s" where repeated Greek subscripts indicate summation 
over 1 and 2 only. The surface deformation tensors can be expressed explicitly as 

where 

[~ = D,t~s ~ ® S ~, f = d~l~S ~ ® s I~, 

D~,d~.t~ = 3~1~, ] = det [D,a], j = det [d,a]. 

The surface values of the bulk deformation tensors may then be written as 

F = F + j ~ ® N + ] J n ® N  fo rXe  S, 

f = t'--]]~ ® n+ag"N ® n f o r x e s ,  

where ~ and 1~ are tangent vectors in the current and reference configurations : 

=r~s  ~, 13.=R~S ~. 

The following identities are a consequence of the fact that f and F are mutual inverses, 

In fact, 

F I ~  = i o ~  = 1~, 

implying that ~ and 1~ are images of one another under the deformation. 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 


