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Abstract-—The potential energy of the elastic surface of an elastic body which is growing by the
coherent addition of material is derived. Several equivalent expressions are presented for the energy
required to add a single atom, also known as the chemical potential. The simplest involves the
Eshelby stress tensors for the bulk medium and for the surface. Dual Lagrangian/Eulerian
expressions are obtained which are formally similar to each other. The analysis employs two distinct
types of variations to derive the governing bulk and surface equations for an accreting elastic solid.
The total energy of the system is assumed to comprise bulk and surface energies, while the presence
of an external medium can be taken into account through an applied surface forcing. A detailed
account is given of the various formulations possible in material and current coordinates, using four
types of bulk and surface stresses : the Piola~Kirchhoff stress, the Cauchy stress, the Eshelby stress
and a fourth, called the nominal energy-momentum stress. It is shown that inhomogeneity surface
forces arise naturally if the surface energy density is allowed to be position dependent. © 1998
Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Accretion is a process by which the material surface of a body changes, either by mass
rearrangement via bulk and surface diffusion, or by mass transfer from the surrounding
environment. The former has received considerable attention because of its potential for
stress-driven surface instability (Mullins, 1956 ; Asaro and Tiller, 1972 ; Grinfeld, 1986
Freund, 1995), while the latter subject is at the heart of equilibrium and non-equilibrium
mechanics of multi-phase systems (Larché and Cahn, 1973, 1985 ; Alexander and Johnson,
1985; Leo and Sekerka, 1989; Gurtin, 1993). A crucial feature in thermomechanical
formulations of these problems is the notion of the solid chemical potential, defined as the
energy associated with the addition of a single atom to the surface. This is the subject of
the present paper.

It is possible to generate an expression for the chemical potential using variational
arguments, the main ingredients being bulk and surface elastic energy functions. The
groundwork for this was laid by Alexander and Johnson (1985) and Johnson and Alexander
(1986), who considered multi-phase systems with curved interfaces, although they did not
include an elastic surface energy in their formulation. Subsequently, Leo and Sekerka
(1989) considered the effect of surface energy, and gave a thorough analysis of the vari-
ational derivation of the equilibrium conditions associated with multi-phase interfaces.
Based upon their results one can readily derive expressions for the chemical potential
phrased in both Lagrangian (or material) and Eulerian (or current) coordinates. The
Lagrangian/Eulerian results of Leo and Sekerka (1989) although they are formally identical
to one another, do not appear symmetric. That is, their expression in one coordinate system
looks quite different in the dual formulation. This distinction, which might not appear
serious, can lead to complications. For instance, as pointed out by Wu (1995a, b) the
expressions for the chemical potential adopted by Asaro and Tiller (1972) and by Rice and
Chuang (1981) appear to be the same. However, they are in Lagrangian and Eulerian
descriptions, respectively, and are not equivalent. This important distinction has long been
appreciated (Herring, 1953) but only recently has it been examined in detail by Grinfeld
(1994), who distinguishes two types of surface energy associated with the two descriptions:

*Tel.: 908 445 3818. Fax: 908 445 5313. E-mail : norris(a:norris.rutgers.edu.

5237



5238 A. N. Norris

Table 1. Stresses and their divergence based upon the Euler-Lagrange equations for the “*standard” variation 4,.
The relations among the bulk and surface stresses follow from the definitions of the Piola-Kirchhoff stresses, for
instance. The butk and surface equilibrium equations are all consequences of the first ones: VP.4 and SP.4

Stress Symbol Definition  Relation Balance equation

Piola—Kirchhoff P (OW/OF)" Jio DivP = -G VP
Cauchy o wi—pf JFP dive = —g vC
Energy-mom. E WI1—PF Jip DivE = GF—-G™ VE
Nominal E-M P @w/onT JFE divp = gF—g™ VN
Piola—Kirchhoff P @weR) I8  DivP=NP-G“ Sp
Cauchy é wi—pf_ JEP divé =ne—g" ~ SC
Energy-mom. E Wi—PF Jip  DivE=G"F-G™+QK-NPF+(E-K)N SE
Nominal E-M P @wjenT JFE divp = g"F—§" + QK —noF +j(E - K)N SN
(Column) 1 2 3 4

Herring and Laplace, respectively. The former is based on the work of Herring (1953) who
assumes a surface energy based on Lagrangian surface area, whereas the more traditional
concept of surface energy, as a surface tension on a liquid for instance (and hence the
descriptor Laplace), is most readily discussed using Eulerian coordinates. Recently, Wu
(1996b) deduced symmetric expressions for the chemical potential, but his results are for
two-dimensional systems only, and are of limited use. The equilibrium conditions of Leo
and Sekerka (1989) were extended to non-equilibrium situations by Gurtin and Struthers
(1990). They did not avail of variational methods but used more direct concepts such as
force, introducing the notion of accretive forces, later generalized to configurational forces
by Gurtin (1995). These are closely linked to concepts of force developed extensively by
Eshelby, e.g. (Eshelby, 1951, 1975), and others, and are known generally as material forces.
Maugin (1995) provides a good review of the literature of material forces.

In this paper we re-examine the variational derivation of the entire system of equations
for a solid with a changing material surface. We consider the basic question of the static
equilibrium of an elastic body and its surface. No dynamic or quasi-static effects are
assumed or discussed. Our objective is a complete overview of the various formulations
possible in material and current coordinates, and the many types of stresses with which to
express the results: Piola—Kirchhoff stress, Cauchy stress, Eshelby stress (also called the
energy-momentum tensor) and a fourth one, called the nominal energy-momentum stress.
The Eshelby stress is a central feature of material forces, whatever their origin, and its role
in the surface chemical potential has been recognized by Bartholomeusz (1995). The analysis
of Bartholomeusz, similar in many ways to that followed here, is limited to small strains.
We do not assume any such restriction here, hoping that the generality of the formalism
will permit us to see the wood from the trees.

Our main result is that the chemical potential is

4= [N-EN—E-K+Jg* - FN-DivQQ, (1)

where Q is the volume of a single atom in the reference coordinates,' and E and E are bulk
and surface energy-momentum tensors. These are defined (see Table 1) as E = WI—PF
and E = WI—PF, where W, P and F are bulk energy density, Piola—Kirchhoff stress, and
deformation gradient, and W, P and F are surface counterparts. The surface curvature in
reference coordinates is K. The final two terms in eqn (1) involve the force g™ acting on
the surface, with normal N in the reference configuration and surface Jacobian J, and the

'The volume of an atom is immutable but we use the reference volume Q in eqn (1) because all other
quantities are defined in terms of reference coordinates. The real, or current, atomic volume is w and Q = w/J.
The definition of chemical potential per atom, as opposed to a molar unit, is common.
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Table 2. Summary of notation. Note that the gradients indicate the explicit or partial derivatives of W and W
with respect to X, i.e., GI™ = —3W(F, X)/0X, with F fixed

Eulerian/ Lagrangian/ Eulerian/ Lagrangian/
Quantity volume volume surface surface
Energy density w W=Jw W W=Jw
Force (applied) g G=Jg g G =Jg"
Force (mhom) ginh =ijh Ginh — _VRW glnh =j;(;-mh AGmh — VYRW
Force (rotatg) — — Kl =jFQ Q= —(@W/N)
Jacobian J=(dV/dv) J=(1}j) 7 =(dS/ds) J=(1/p

surface divergence of a surface force Q associated with orientational dependence of the
surface energy density (see Table 2).

The initial kinematics and notation are summarized in Section 2, followed by the
variational analysis in Section 3. Care must be taken in defining the proper type of variation
associated with a changing material surface, and a good deal of space is devoted to this
topic. The results are discussed and interpreted in Section 4.

2. NOTATION AND KINEMATICS

The calculations involve both vectors, tensors, and their differential properties inside
an elastic body and on its surface. Variational techniques will be used for functionals
defined on these domains, so it is therefore imperative to have a clear understanding of the
quantities and their functional dependence. Regarding notation, components will be used
on occasion, with the summation of repeated subscripts understood. Products such as
A = BC are® 4, = BxCy;, or A; = BiCy;, or A, = BCy, depending upon whether B and C
are first or second order quantities. Inner or dot products are denoted by * and signify
contraction over all indices; thus, A-B = A;B, or A-B = A,,B;; = tr AB. We will not use
special subscripts to distinguish surface quantities (except in the Appendix), nor use the
fact that true surface quantities exist in a lower dimensional space. Some quantities that
exist only on the surface and have bulk analogs will be denoted by the same symbol as the
bulk quantity with a hat, e.g. P and P. Generally, we prefer to recognize the surface
quantities as projections of three-dimensional objects whenever possible. We now introduce
some kinematic identities and associated quantities.

Consider a volume of material and its surface, denoted by V and S in material
coordinates (X), or v and s in current coordinates (x). The deformation X — x is assumed
to be continuous with a well defined deformation gradient F and inverse f,

F=Vix, f=VX, forXeV|)S and xev(Js. 2)
In components, F;, = 0x,/0X,, f,; = 0X,/¢x,. Thus, Ff = fF = I, where I denotes the identity.
Alternatively, F and f may be defined in terms of the gradient of the displacement vector
u=x—X,i.e F=1I+Vyuand f=i—Vu, where i = I denotes the identity in the Eulerian

description. The Jacobian of the deformation and its inverse are defined as J = dv/dV > 0
and j = dV/dv, or

J=detF, j=detf, jJ=1, 3)
and we note the identities

diva = jDiv(Jfa), DivA = Jdiv(jFA). 4)

 The simultaneous use of lower and upper case indices is intended to aid the readers interpretation.
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These are simple consequences of the Euler—Piola—Jacobi identities (Truesdell and Toupin,
1960, p. 246).

The surface unit normal in the material and current coordinates is denoted by N and
n, respectively. Define the surface projection operators

I=I-N®N, i=i-n®n, (5)
then the surface deformation gradients are the on-surface projections of F and f:
F=FI forXes, f=fi forxes. (6)

Therefore, according to these mathematical definitions,

=3

FI=F and fi=1 7N

In addition, the explicit fact that S'is a material surface and s its image, implies the following
kinematic identities,

F=F and If=H (8)

As defined, K and f are rank deficient and are therefore not the inverse of one another, in
the sense of three-dimensional tensors. They do, however, satisfy

ff=1 and Ff=1i 9)

fF=fif=fF =fFi =1, (10)
if = Fif = Ff = Ffi =1, (11)

completing the proofs of eqn (9).

The surface deformation maps material lengths on the undeformed surface S to current
lengths on the deformed surface s. Thus, a tangent vector dL e S is mapped to dl = FdLes
with length d/ given by (d/)> = (FdL)- (F dL). In general, surface quantities that are anal-
ogous to bulk parameters, such as F, will be denoted by the same letters with a hat, i.e. F.
Further results concerning the surface deformation tensors are presented in the Appendix.

The surface Jacobian and its inverse are

J=ds/dS, j=dS/ds, jJ=1. (12)

They may be determined from eigenvalues of F, although, because of the rank deficiency
of the latter we do not use this procedure. An explicit formula for Jis given in the Appendix.
It may also be found from the well-known relations

n = j/Nf< N = j/nF, (13)

which imply J = JNf-n = J/(nF - N). The surface divergence operators Div and div are
defined in the usual manner (using the divergence theorem, for example, to express the
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surface divergence of a quantity as a line integral). The surface analogs of the volumetric
identities 4 are

diva = jDiv(/fa), DivA = Jdiv(jFA), (14)

where a and A are vectors or tensors which may be defined for all positions, on or off the
surface, although the divergence only uses surface values.

The surface curvature tensor is denoted as K in the material description and by k in
the current description,’

K= —ViN, k= —Vn, (15)
where Vg and V denote the on-surface gradient operators. Note that k is the actual curvature

of the surface, while K may be thought of as the curvature of the undeformed state. The
double mean curvatures are defined as K = trK, k = trk, or

K=K-'I, k=k-i. (16)
Thus, a solid sphere of radius r has £ = —2/r. We note the well-known identities
divi=kn, Divi=KN. (17)

The following identities are a direct consequence of eqns (14) and (17),

iDiv(h = kn, Jdiv(jF) = KN. (18)

These are perhaps not as well known as eqn (17), for instance, but they offer a useful means
to determine the mean curvatures from the deformation. In particular, the mean curvature
in the reference (current) state can be found in terms of the surface divergence on the
current (reference) surface, thus,

= Jdiv(jf) N = Jdiv(jF) - fn, (19)
k = jDiv(/f)-n = jDiv(J/1) - FN. (20)

Finally, we note for later use the following results

(DivA)-N = A-K+Div(AN), (diva)-n = a-k+div(an). @1

Their derivation may be considered an exercise in differential geometry.

3. VARIATIONAL EQUATIONS

3.1. Equilibrium equations

The bulk and surface energy densities per unit reference volume and surface area are
assumed to depend upon their respective deformation gradients through the isothermal
thermodynamic potentials W and W

* Although K and k are surface quantities we do not use hats because there are no bulk equivalents.
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W= W(F,X), W=W®FEN,X). (22)

Note that we allow for inhomogeneity through the explicit dependence of the energies on the
material position. The surface energy is also assumed to vary with the surface orientation, N.
The dependence upon N is assumed to be continuous, which is contrary to observations,
e.g. Herring (1953). However, this assumption permits us to generate pointwise equilibrium
equations, and it could be subsequently relaxed by allowing the material forces to have
distribution-type functional behavior. The corresponding energy densities in current coor-
dinates are w and w, which are related to the Lagrangian quantities by

w=jW and W= W, (23)

The Piola-Kirchhoff bulk stress and the analogous surface stress, P and P, respectively,
are defined in the usual manner as

P =(@W/oF)", P =(@W/0F)T. (24)

These relations are repeated in Table 1 in items VP.2 and SP.2, respectively.

It is common to formulate dual sets of equations in Lagrangian and Eulerian descrip-
tions using the action integral as the starting point (Herrmann, 1981). However, we are
interested in the possibility of non-conservative forces in the bulk and on the surface, and
are restricting attention to static phenomena. We therefore adopt as the starting point the
potential energy functional

M=&—7, (25)

where 7~ is the work done by all external and applied forces acting on the body and its
surface, and & represents elastic stored energy, bulk and surface combined. It may be
defined by integrals in the current or reference domains:

é":jduw-l—stW

= J dVW+J dsw, (26)
Vv S

respectively.

All our results are based upon two types of variations of the potential energy functional.
The first type of variation is a standard virtual displacement, for which Hamilton’s principle
implies that the variation of IT vanishes. That is, I1 = & — 0¥ = 0, with

oY = J dvg-5u+f dsg® « du

= J dVG'éﬂ—f—J dSG™ + du, 27)
vV N

Sur o

where the vector g represents an arbitrary body force acting in the solid, while g*" is a force
applied on the surface. The analogous material quantities G, G*" are defined in Table 2. In
order to evaluate the variation & we consider the integrands of the two integrals in eqn
(26) as functions of the displacement u = x —X and its gradient, subject to the restriction
that X does not change with the virtual displacement. That is, ou = éx, and consequently
SF = 0éu/oX. The restriction §X = 0 suggests that we use the Lagrangian forms for §&
because the variation will obviously commute with the integrals, that is
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88 = 5J dVW+5J dsw
Vv

N

ow\" oWNT
o () v [ as (25 . @

Combining this with the Lagrangian form for 67" in eqn (27) and integrating by parts,
yields

ST = —J dV(DivP+G) - du+ J dS(Div P—NP+G*") - su. (29)
4

N

This may be converted into Eulerian form using eqns (4), (13) and (14),

5Tl = —J do(dive+g) - du+ J ds(div & —ne +g*) - ou. (30)

s

Equations (29) and (30) imply the bulk and surface equilibrium equations which are listed
in Table 1 as VP.4, VC.4, SP.4 and SC 4.

The quantities E and p defined in Table 1 have dimensions of stress, and they are
clearly duals to the more familiar stresses ¢ and P, respectively. Based upon their definitions,
it is clear that the divergence of each of the four quantities P, o, E and p are linearly related.
Thus, from the definitions in VE.2 and VN.3, and using eqn 4, we have

DivE = — (DivP)F—G™, divp = jDivE, 31)

where the material inhomogeneity force G™ is defined in Table 2. The two identities in eqn
(31) imply the results VE.4 and VN.4, respectively. The remaining surface equilibrium
conditions in Table 1, viz SE.4 and SN .4, are also consequences of the basic equilibrium
equations for the Plolalerchhoﬂ“ and Cauchy surface stresses, SP.4 and SC .4, respectlvely
The value of Div E follows from its definition in SE.2 and by use of eqn (21) with EN = 0.
The surface inhomogeneity force G™ arises from the explicit dependence of the surface
energy on material position. In addition, the orientational dependence of W introduces the
rotational “force” Q, defined as

_ oW

Q=-x (32)

The specific form of the term QK in SE.4 follows from the identity (15),. Note that Q isa
tangential vector on S, i.e., QN = 0. The final result in column 4 of Table 1, for div p i
follows using the relation SN.3 between p and E, the equilibrium equation for the latter,
and eqns (13) and (14).

Regardmg notation, we use the term nominal energy-momentum stress because the
stresses P and P with this descriptor are the energy-momentum tensors dual to the Piola—
Kirchhofl stress, which is itself related to (by transpose), or sometimes called, the nominal
stress (Ogden, 1984).

The relations among the volumetric quantities in Table 1 are well known, but we have
repeated them briefly here for completeness. We refer to Chadwick (1975) for a detailed
discussion. The surface equations have not, to our knowledge, been presented in this form.
The results in column 4 of the Table are called balance equations for want of a different
name. They could equally well be called equilibrium equations ; however, it has been pointed

out that one person’s equilibrium equation can be another’s conservation law (Herrmann,
1981).
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3.2. Material variation

We emphasize that the equations in column 4 of Table 1 all follow from VP.4 and
SP.4, which are consequences of the Principle of Virtual Work as we have defined it above.
No other type of variation is required to establish these equations, although one could use
other variational devices. Our purpose here is to establish a new equation, one which does
not follow from those derived above. In order to arrive at this we need a different type of
variation based upon a virtual “reverse” displacement in which é¢ is considered a function
of the material coordinates. The virtual displacement is associated with a fixed material
particle. This did not present a problem with the previous variation because we chose the
“standard” variation with 06X = 0. In this case we need to be a bit more specific about the
definition of the variation.

Both types of variation considered here are but special cases of the most general type
permissible, for which dx and dX are considered independent. Surface equations obtained
using this general (6x, dX) variation, the so-called transversality condition (Edelen, 1981),
provide a relation between dx and 60X, the interpretation of which depends upon the
problem at hand. It is usually associated with a moving boundary condition, as occurs in
fracture mechanics, for instance. In the present case we will prescribe a relation between dx
and 5X, which defines the type of moving boundary. As such, the constraint we impose on
(6x, 6X) can be viewed as a definition of accretion.

There are other means of defining an accretive variation. For instance, Larché and
Cahn (1973) introduced the notion of a network, which imbues a solid with a characteristic
not found in a fluid. The network can be thought of as a lattice extending beyond the
confines of the solid, but associated with a lattice if there is one. Newly added atoms are
assigned positions on this network, thus providing a rule for accretion. The method adopted
here is clearly different than the network model, but the final results should be independent
of such details. It should be noted that the accretion process considered here involves only
substitutional atoms, in the terminology of Cahn (1980). The necessity for such finesse in
defining variations for solids is one of the features which makes solids different from fluids.
The difficult question of what exactly distinguishes a solid from a fluid is addressed in some
detail by Larché and Cahn (1985).

The rule used for applying the variation under accretion is based on ideas of Maugin
(1979) for constrained variations. Thus, we introduce a one-parameter pair of vector
functions: X(x, ¢) and X(X, &), such that

X =X(x,0) and x=%(X,0). (33)
Let f = f(X, &) and g = g(x, ¢) be arbitrary functions, and define

X og(x,
b= TED| gD (34)

L= 0 i
X fixed x tixed

As defined, these variations are completely independent. The crucial step is to link them to
one another via the deformation. Specifically, the mappings are assumed to satisfy the
constraints

x =x%(X(x,¢),8) and X = X(x(X,¢),2), (3%

for all* &. These are natural conditions and are mutually dual, in the sense that one implies
the other. For instance, the first one implies that the same material point (particle) is
referred to by the mapping. Expanding the first condition to first order in ¢ gives the relation

S X +F5.X =0. (36)

4 This condition is perhaps overly stringent, as we only require that it hold in a neighborhood of ¢ = 0.
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This is the basic relation sought—but what does it mean? The fact that we employed
the deformation constraints (35) provides a clue, suggesting that the material variation d,
represents the addition (or accretion) of new material that conforms to the underlying
deformation. That is, new material is added with the same deformation as the neighboring
surface and of the underlying bulk material. In this sense the procedure replaces the concept
of a prevailing network (Larché and Cahn, 1973) with a calculus basis for the same result.
The present procedure is more akin to that employed by, for example, Maugin and Trimarco
(1992) in similar variational analyses.

Equation (36) allows us to compute the displacement variation du for a material
variation, that is, one using J, rather than ¢, which was the basis of the previous variation
results. Recalling that éu must be evaluated with reference to a fixed particle, i.e., ou = d u,
we have,

Ol = dyX

—Fs X. (37

It

[t is now clear that the previous variational results, specifically eqns (29) and (30), are
actually based upon the vanishing of d,I1. We will now compute §,I1, starting with the
Eulerian form of & in eqn (26) as integrals over the current volume and surface because
these integrals commute with §,. We also use the first form for §¥" given in eqn (27),
combined with the identity (37) for du. The one remaining quantity required is the variation
of the surface normal, which satisfies the kinematic identity

5N = 6X-VyN—V.(N-5X)
—N(VrdX)
—~N(VSX)F. (38)

it

Proceeding as befor_e, and using the definitions of the nominal stresses in Table I (VN.2
and SN.2), and of 8", § and g*" in Table 2, we find

6.1 = J do(gF — g™ —div p) : 6X +j ds(g""F + np+ QK — (div §)N — g — div p) - 5X.

(39)

This may be converted to integrals over the reference domains by using eqns (4) and (14)
and the relations between the various stresses given in Table 1,

501 = J dV(GF—G"™ —DivE) - X
.
+ f dS(G"F+NE+ QK — (DivQ)N—G™ —DivE) - 6X.  (40)
S

Setting the variation 6,1 to zero for arbitrary §X, both within the body and on the surface,
implies that the quantities in parentheses in the integrals of eqns (39) and (40) all vanish.
The associated equations generated by the volumetric integrals are precisely the balance
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equations VE.4 and VN .4, derived previously. The surface terms, however, give new equa-
tions:

DivE = GF+NE—G™ + QK — (Div Q)N, (41
divp = g F+np—§™ +jQK — (div§N. (42)

Although these look similar to SE.4 and SN.4, they do indeed differ from those relations
which were consequences of the fundamental surface equilibrium equation, SP.4 or SC.4.

In summary, the material variation 6,IT gives exactly the same set of bulk equations
that were obtained from the standard variation, but the surface equations are different. In
the next section we will demonstrate that the surface terms in eqns (39) and (40) provide
some new information, in addition to the previously obtained equilibrium conditions listed
in Table 1.

4. INTERPRETATION

4.1. The chemical potential

The surface inhomogeneity forces G™ and g™ are, from their definition in Table 2,
both tangential to the reference surface S. It therefore follows from the equilibrium equa-
tions outlined in column 4 of Table 1 that the vectors appearing in the surface integral of
eqns (39) and (40), (g"F+np— g+ jQK — (d1V GN-— div p) and (GF+NE—G™+
QK — (DivQ)N— D1v E), respectlvely, are both parallel to N. Hence, the surface com-
ponents of eqns (41) and (42) are identical to the surface components of SE.4 and SN 4,
respectlvely Also, the component of SE.4 in the N-direction is ]ust the kinematic identity
DivE'N=F- K, which follows from eqn (21), and the fact that E-N = 0, by definition,
and the N-component of SN.4 is a consequence of the definition of p in SN.3. In other
words, the N-components of SE.4 and SN.4 are differential identities for tensors and
surfaces, and as such they do not contain any mechanics. In contrast, the N-components
of eqns (41) and (42) contain new information of a mechanical nature. We will first examine
this and return later to the question of which set of Euler—Lagrange equations is ““correct’.

The additional scalar information in eqns (41) and (42) is associated with the freedom
to vary 8X on the surface in the direction of N. We therefore first consider the two vectors
mentioned above which arise in the variational eqns (39) and (40). These vectors are parallel
to one another and to N, and based on the discussion above, may be written as

ainh

G*'F+NE—G"™ + QK — (DivQ)N—DivE = iN, (43)
g F +np—§"" + QK — (div §)N —div p = jiN, (44)

where A vanishes if we impose the condition ,IT = 0 for variations 6X || N. The scalar 4 is
directly related with the chemical potential of the surface, defined as the energy required to
add one atom to the surface. Thus if w is the volume of one atom, then Q = jw is the
reference volume, and the chemical potential is

u=Ai0
= jAw. (45)

The new information in the “equilibrium” eqn (41), or (42) which is the same, is therefore
that the chemical potential at the surface must be zero for material equilibrium.
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We will now derive several alternative expressions for the fundamental parameter 4
which is defined by eqn (43) as

) =(G*F+NE— G —DivE)-N—Div Q. (46)

It is assumed that the body and surface are in static or quasi-static equilibrium, so that
Table 1 may be employed. Thus, using SE.4, we have

4 =G -FN+NE-N—E-K-DivQ. 47

This is perhaps the simplest and most concise form for A, as it illustrates the influence of
the applied surface force, the bulk elasticity, and the surface elasticity separately. The final
terms in eqn (47), Div Q. has been interpreted by Gurtin (1995) as arising from a surface
shear force, and the explicit use of the surface Eshelby tensor E in this context was first
noted by Gurtin (1993). There are many alternative forms for 4, as we now illustrate. Thus,

J= W—WK+G*-FN—-NP-FN+PF-K-DivQ

I

W— WK — (Div P) - FN— (PF) - VeN—Div Q, (48)

where we have used VE.2, SE.2, SP.4, and eqn (15), in that order. Alternatively, F may be
replaced by F in the final term in eqn (48), and using the identity

- cF
(VPN = =1, (49)

where ¢/0N = N+ Vg, the surface derivatives can be simplified to yield

A, AN ~ aF -
b= W—WK-DVPFN)+P- - ~DivQ. (50)

The previous expressions for 4 are all in terms of Lagrangian quantities. We now focus
on Eulerian representations. Our main objective is to deduce an expression using Eulerian
quantities which is formally similar to one of the above expressions. One’s first guess might
be that the expression in eqn (47) can be transiated in this manner. However, as an example,
the following expression is obtained from (NE:N—E:K) by the interchange of dual
quantities, according to Table 1 and 2,

NE'‘N—E‘K—>ne-n—é-k. (51)

But this is simply zero because, using SC.4 and eqn (21), é * k = ne * n. Therefore, the simple
“translation” suggested by eqn (51) cannot yield the correct Eulerian expression for 4. It
is, however, possible to obtain an Eulerian form similar to eqn (50). We start by taking the
inner product of eqn (44) with fn, implying

74 =(g""F+np—g™ —div p) - fn— ;7 div §. (52)
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Table 3. The listed expressions are equivalent and are based upon the equations in
the right hand column

Row The chemical potential of a surface u Equation
1 [G™-FN+NE-N—E-K—DivQIQ 47

2 [W—E-K—Div(P) FN—DivQ]Q 47. 48
3 (W — WK+ [Div(PF) — (Div P)F] - N - DivQ}Q Row 2
4 (W — WK —Div(PFN) + P «(6F/eN) — Div Q]Q 50

5 w—6 k—div(p) - fn—g"" - fn—j/ div §lo 52,53

6 {w—j K+ Pdv(e F) — (div 6)F] - @F) —i/ divg} o Row 3
7 [w — ok — div(pfn) + p (/o) — g™ - fn— 7 div {w 56

Using p = wF—gaF, we have
np*fa=w—ne-n

= w—(cTi\v&)'n—gS“’-n

=w—6-k—g™n. (53)
At the same time,
o~ o~ . . of .
div(pfn) =(divp) - fn+p “n —pt-k, (54)
and using Table 1 to eliminate (f)f'),
o~ . o~ . Lof
—(divp)fn = ~d1v(pfn)+p'%—wk+o"k. (55)

Combining eqns (52), (53) and (55) we obtain the Eulerian counterpart of eqn (50),
. A T oa ~ of ,inh LEA A
jh = w—wk—dlv(pfn)-l-p'a — g™ - fn—j/divq. (56)

Note the presence of the additional penultimate term in eqn (56), associated with the
inhomogeneity “force”.

In summary, we now have quite a few alternative formulae for the chemical potential
4, based upon eqn (45) and the derived formulae for A. Several different looking but
equivalent expressions are listed in Table 3. The expressions in rows 3 and 6 are most
similar in form to those of Leo and Sekerka (1989) [see their eqn (104)] who derived
equilibrium equations for accreting single and two phase systems. The fourth and seventh
expressions in Table 3 are related to the expressions for the chemical potential derived by
Wu (1996b), although Wu’s results were restricted to two-dimensions and did not take into
account the dependence of the surface energy on N.

4.2. Example
As a simple illustration of the above formulae we consider the case for which the
surface energy depends only upon the surface Jacobian,
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W =T () <w=70), (57)

where the two functions I" and y are related by y(&) = £ '['(¢~Y). Using Table 1 and the
identity,

r—-Jjr =y, (58)

where the prime denotes the derivative with respect to the argument, it follows that the
four surface stresses are

P=r4,

6 =T,

E =91,

p = yF. (59)

We may now substitute these surface stresses into the various formulae in Table 3 to get
several equivalent expressions for the chemical potential :

i =[G FN+NE-N—yK|Q
= [W—yK—T"Jk=T"J(V: Hf- FNIQ
= [w—T"k—yjK—y"}(V))F - fn]w. (60)

These correspond to rows 1, 2 and 5 in Table 3, respectively, and have been simplified using
the identities (17) and (19).

A special case of the above is the Laplace-Herring model of Grinfeld (1994), which
corresponds to linear functions

r=ro+?0j©)’:?0+roﬁ (61)
In this case the latter pair of expressions in eqn (60) become

p=[W~-T K—y,Jk]Q
= [w—y,k—T ojK]w. (62)

Hence, the coefficients I'y and y, determine the dependence upon the reference and current
mean surface curvatures, respectively. Note that for an initially flat surface deformed into
a flat surface (k = K = 0) the chemical potential in eqn (62) depends only on the bulk
elastic energy.

More generally, the quantities I'” and y” in the second and third expressions in eqn
(60) do not vanish if I" is a nonlinear function, or equivalently, if y is a nonlinear function
of its argument. These terms persist even for the case of a flat surface deformed into another
flat surface. Referring to the Appendix, we may rewrite the second and third expressions
for i in eqn (60) as

p=[W—yK-T"Jk—T"R-V . JQ
= [w—T"k—yjK+7y"jjt* Vj]o. (63)

The tangent vector Re S and its image f € s represent the shear in a plane orthogonal to the
surface. This may be seen by noting, from the Appendix, that
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FN = j(f+Jn), (64)

which combined with eqn (74), implies that the plane spanned by R and N is locally
deformed into the plane spanned by f and n. However, eqn (64) implies that the right angle
between R and N is skewed by an amount =+ |#|/./|#|>+J2. Hence, the terms involving I'”
and y” in the two expressions for g in eqn (63) both vanish if there is no shear orthogonal
to the surface, or equivalently, if the image of N is parallel to n.

4.3. Spatial and material equilibrium equations

The balance equations in column 4 of Table | were derived using the first variation,
dx. We will denote these as the spatial equilibrium equations, to distinguish them from the
material equations obtained with the §, variation. The two sets are identical for the bulk,
but have different surface equations. Thus, setting 4 = 0 gives eqns (41) and (42) instead
of SE.4 and SN 4, respectively. A further pair of surface equations based upon the material
variation can be obtained from eqns (41) and (42), using SC.2 and SP.2. After some
calculation, we obtain

Div P = NPi — G+ /(6 k)n, (65)
divé = nai—g"i+ (- k)n. (66)

These clearly differ from the Euler—Lagrange equations SP.4 and SC.4 obtained from the
dy variation. We note that the same pair of equations, i.e. (65) and (66), are obtained if we
use SE.4 and SN.4 as the starting point, rather than eqns (41) and (42).

A close examination of eqns (65) and (66) indicates that their on-surface components
are the same as those of SP.4 and SC.4, respectively, but they have different n-components.
In this regard they bear the same relation to the spatial equations SP.4 and SC.4 as SE 4
and SN.4 did to the material eqns (41) and (42). One way of interpreting this situation is
by viewing SP.4 and SC.4 as the fundamental spatial surface equations, and eqns (41) and
(42) are the fundamental material surface equations. The remaining equations, SE.4, SN .4
in the spatial case, eqns (65) and (66) in the material case, are derived from the fundamental
equations but contain less information than these. The loss of information can be ascribed
to the fact that E in the spatial case, and & in the material case, are projections onto S and
s, respectively. Thus, the normal components of the fundamental equations, viz.

divé-n=ne'n—g-n and DivE-N=NE-N+G"“F-N—DivQ, (67)

are lost in the process, to be replaced by the purely kinematic relations

divé-n=6-k and DivE-N=E-K, (68)

respectively.

5. CONCLUSION

We have derived two sets of balance equations for the bulk and surface of an elastic
body using spatial and material variational methods. The former variation is quite standard,
and leads to the eight equations listed in column 4 of Table 1. The material variation, on
the other hand, produces exactly the same bulk equations, but slightly different surface
equations, i.e. eqns (41), (42), (65) and (66) instead of SP.4, SC.4, SE.4 and SN .4, respec-
tively. The differences lic with the normal components, and are associated with the possi-
bility of accretion which changes the underlying material. The energy required to perform
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this is the chemical potential u, which may be represented in various ways, including
dual Lagrangian/Eulerian expressions, see Table 3. Perhaps the simplest expression of the
chemical potential is by means of the Eshelby (or energy-momentum) bulk and surface
stresses.

It should be noted that the additional equilibrium equation, which can be cast as
u =0, only makes sense if the material is permitted this additional degree of freedom.
Solids do not normally exhibit the ability to spontancously accrete, and the material
equilibrium equation is not relevant to most problems in solid mechanics. However, there
are circumstances under which it comes into play, by, for instance, surface diffusion effects.
Another important example is multi-phase equilibrium with an inviscid melt. In the present
study we have restricted attention to a single phase where all external influences on the
surface are mechanical and are defined by the distributed force g*™'. This offers a means to
consider interactions with the outside environment. In future papers we will discuss the
separate issues of surface kinetics and phase equilibrium.
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APPENDIX: THE SURFACE DEFORMATION TENSOR

Let S' and §? represent unit tangent vectors to the surface S in the reference configuration, such that
{S',S,N} form an orthonormal triad with N =S' A S Similarly, let s' and §* be tangent vectors to s in the
current state, so that {s',s’, n}, n = s' A §% is another orthonormal triad. Note that §*, « = 1 or 2, is not the unit
vector of the i 1mage of the tangent vector S" under the deformation. However, the span of S' and §? is mapped
into the span of s' and s%, with I = §*® S* and 1 = s* ® s* where repeated Greek subscripts indicate summation
over | and 2 only. The surface deformation tensors can be expressed explicitly as

F=pD,s®¢ {=d,Sa¢, (69)
where
D,dy =3, J=det[Dy], j=det[d,. (70
The surface values of the bulk deformation tensors may then be written as
F=F+f@N+//n®N forXes, (70
f:f'ﬂ'i®n+ij®n forxes, (72)
where # and R are tangent vectors in the current and reference configurations:
f=rs", R=RS" (73)

The following identities are a consequence of the fact that f and F are mutual inverses,

R. (74)

=1
It

R=1#

-

In fact,
FR =f<fi =R, (75)

implying that f and R are images of one another under the deformation.



