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A direct inverse scattering method for imaging obstacles with
unknown surface conditions
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A new technique is described for imaging obstacles using the acoustic far "eld response for
plane wave incidence. The method requires no a priori information about the surface, nor
does it depend upon prior knowledge of the surface boundary conditions. The algorithm
is straightforward to implement and is illustrated by imaging multiple targets simultane-
ously for various surface boundary conditions: soft, hard, and impedance. The input data
is the full acoustic scattering matrix at a single frequency, from which the eigenvalues and
eigenfunctions of the far "eld operator are determined. Associated incident wave functions
are then used to compute a spatial indicator function which takes on large values in the
exterior of the target but is bounded inside the obstacle, or obstacles when there are multi-
ple disconnected surfaces.

1. Introduction

Inverse scattering methods may be categorized as direct or indirect, depending upon how
the algorithm arrives at the unknown quantity. Here we consider the target identi"cation
problem: to "nd the surface or surfaces of targets given the far "eld data. Indirect ap-
proaches to this problem include optimization or least squares methods, based on an as-
sumed form for the surface. The error between the predicted and measured data is mini-
mized over the class of assumed surfaces, using a direct scattering solver at each step of
the solution. Examples on this approach are Angell et al. (1989,1997) who use an alter-
nating iteration procedure. This has the advantage that only limited data are needed, but
it requires prior knowledge of the target: the assumption that it is a single closed surface
with known impedance boundary condition. A related method for obstacle reconstruction
is described by Roy et al. (1997) which also requires solving the direct problem iteratively.
The method of Kirsch and Kress (Colton & Kress 1992) is more direct in that it seeks a
closed surface on which the total "eld satis"es the boundary condition. The related `dual
space' procedure of Colton & Monk (Colton & Kress 1992; Colton & Monk 1994; Misici
& Zirilli 1994) also depends critically on knowledge of the surface boundary condition.
Target recognition of underwater and buried marine objects involves reconstructing the

exterior surfaces of structures that are themselves wave bearing. At the simplest level, they
may be considered to possess frequency dependent surface impedance. Thus, even a sphere
of tungsten carbide in water can appear to be acoustically `soft' at certain frequencies (Nor-
ris 1990). Structures comprising metallic plates must be modelled, at the very least, by an
impedance condition which depends upon the thickness and the ratio of the mass densities.
Given these unavoidable mechanical circumstances, and the sensitivity of the mentioned
reconstruction methods to the assumed surface conditions, the target recognition problem
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for thick or thin shell objects appears to be a formidable task. This is particularly so if
the target consists of two or more closely spaced objects�a veritable clutter of unknown
complexity.
The inverse method presented here is radically different from those outlined above. It

does not require any assumptions about the surface, which may consist of several discon-
nected parts. Nor does it presuppose knowledge of the surface boundary conditions (hard,
soft or impedance). The price to be paid is that more data are necessary, in the form of
extensive far "eld amplitude and phase information, although only at a single frequency.
The output is not a surface but a spatial function which takes on special values for posi-
tions inside the target, thereby enabling the boundary or boundaries to be determined. The
key to the approach is the ability to infer the eigenvalues and eigenfunctions of the far
"eld operator. The former describe the scattering strength of the target with respect to the
associated incident wavefunction, which is de"ned by the eigenfunction. The eigenvalues
cluster about zero, which is the unique point of accumulation, and the associated incident
wavefunctions tend to zero on the domain of the target. The present approach does not, as
mentioned above, demand prior knowledge of the boundary conditions. In fact, the proce-
dure will be demonstrated for non-simply-connected targets comprising separated multiple
scatterers. The reason why this can be achieved is related to the zeroing property of the in-
cident wavefunctions.
Several developments have had particular in#uences on the present approach. Thus,

Colton & Kirsch (1996) demonstrated that it is possible to synthesize scattering from point
sources by superposing far "eld data. This leads to a spatially dependent function which,
according to Colton & Kirsch, is singular on the obstacle surface, but bounded elsewhere.
More recently, Mast et al. (1997) showed that the eigenfunctions of the far "eld operator
form a natural basis for representing distributed inhomogeneities. Their interests were in
reconstructing compressibility variations in an acoustic medium. The ideas of Colton &
Kirsch (1996) and of Mast et al. (1997) are combined here by synthesizing point-source-
type "elds using functions related to the eigenfunctions of the far "eld operator. The gen-
eral procedure is to obtain spatial functions which have characteristic behaviours on the
surface of the scatterer. This could be in the form of a singularity at the surface, as in
Colton & Kirsch (1996). Alternatively, Potthast (1996) discussed a different procedure for
generating a function that becomes singular on the boundary. Here we will derive a spa-
tially dependent function which is unbounded in the exterior but "nite in the interior.
We begin with a detailed overview of the far "eld operator, its properties, and its spec-

tral description. The basic imaging method is introduced in Section 3, and its capacity
for reconstructing obstacles using far "eld data is illustrated via numerical examples in
Section 4.

2. The far "eld operator and its spectral properties

2.1 The far "eld operator

The total acoustic pressure for a time harmonic wave, with e−iωt dependence, due to a
plane wave of amplitude p0 incident in direction ααα is

p(x) = p0 e
ikααα.x + ps(x) , (2.1)
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where k = ω/c and c > 0 is the constant wave speed outside the target. The scattered
pressure, ps , is a solution to the homogeneous Helmholtz equation in the exterior of the
target or targets, such that the total "eld satis"es

∇2 p + k2 p = 0, for x outside B, (2.2)

where B denotes the target boundary The scattered pressure is a radiating or outgoing "eld
at in"nity, and the total pressure satis"es certain boundary conditions on B. To be speci"c,
we consider the impedance condition

p + γ (x)∂p
∂n
= 0, x ∈ B, (2.3)

for real γ . For instance, the mass loading of a thin shell of thickness h yields γ =
−hρs/ρ f , where ρs and ρ f are the solid and #uid densities, respectively. We consider
two-dimensional problems only, for which the far "eld function u∞(θ, α) is de"ned by the
far "eld behavior of the scattered wave,

ps(r, θ) = −
√
8π

kr
ei(kr−

1
4π) p0 u∞(θ, α)+ o

(
1√
kr

)
, r →∞ . (2.4)

The associated far "eld operator is

U∞ f ≡
2π∫
0

dα u∞(θ, α) f (α) , (2.5)

and its transpose is

U∗∞ f ≡
2π∫
0

dθ u∗∞(θ, α) f (θ) , (2.6)

where u∗∞ is the complex conjugate. Note that U∞ is related to the operator A of Mast et
al. (1997) byU∞ = iA/8π , and−U∞ is equivalent to the T-matrix (Waterman 1968). The
product U∗∞U∞ is essentially the time reversal operator of Prada et al. (1995).
The function u∞ and the operatorU∞ satisfy some general properties. First, we note the

reciprocal identity that u∞ is unaltered under the interchange (θθθ, ααα)→ (−ααα,−θθθ), which is
a consequence of source�receiver reciprocity applied in the far "eld. For two-dimensional
scattering, this implies that

u∞(θ, α) = u∞(α + π, θ + π) . (2.7)

Next, consider the total "eld resulting from two incident plane waves such that p(x) =
P(p1, ααα; p2, βββ; x), where

P(p1, ααα; p2, βββ; x) ≡ p1 e
ikααα.x + p2 e

ikβββ.x + ps(x) . (2.8)

The averaged energy #ux per cycle at a point is 12Re p
∗v, where v = (iωρ f )−1∇ p is the
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particle velocity, and therefore the total #ux leaving a circle of large radius is F , where

ωρ f

2π
F = ωρ f

2π
lim
r→∞

2π∫
0

rdθ Re

(−ip∗
2ωρ f

∂p

∂r

)
= [2(U∗∞u∞)(α, α)− u∞(α, α)− u∗∞(α, α)] |p1|2
+[2(U∗∞u∞)(β, β)− u∞(β, β)− u∗∞(β, β)] |p2|2
+[2(U∗∞u∞)(α, β)− u∞(α, β)− u∗∞(β, α)] p∗1 p2
+[2(U∗∞u∞)(β, α)− u∞(β, α)− u∗∞(α, β)] p1 p∗2 . (2.9)

It is assumed that there is no dissipation in the scattering process, and hence the total
energy #ux across a closed surface must be zero when averaged over a cycle. In particular
F = 0, and consequently each of the four bracketed terms in (2.9) must be zero because of
the independence of the complex numbers p1 and p2. Referring to either of the two "nal
terms, and interpreting them as operators, we see that

2U∗∞U∞ −U∗∞ −U∞ = 0 , (2.10)

or

S∗S = I , (2.11)

where S is the scattering operator,

S = I − 2U∞ , (2.12)

and I is the identity, with integrand δ(θ − α). If we perform the same #ux analysis for
the total "eld p(x) = P(p1,−ααα; p2,−βββ; x), but replace u∞ everywhere that it occurs by
using the reciprocal identity (2.7), then we arive at a result similar to equation (2.10) except
that U∗∞U∞ is replaced by U∞U∗∞. Hence,

SS∗ = I , (2.13)

and we have the important but well-known results that the scattering operator S is unitary
and the far "eld operator U∞ is normal (Colton & Kress 1992),

U∗∞U∞ = U∞U∗∞ . (2.14)

Let λ be an eigenvalue of U∞ with eigenfunction f (α),

U∞ f = λ f . (2.15)

The unitary nature of S implies that λ lies on the circle in the complex plane centred at 12
of radius 12 . That is,

λ = e−iψ cosψ , (2.16)

for some real angle ψ . We emphasize that the present analysis assumes a lossless medium,
Im k = 0; the properties of the eigenvalues are different if absorption is present, as
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discussed by Colton & Kress (1995). The set of eigenfunctions { fn}, with eigenvalues
λn, n = 1, 2, 3,..., are assumed to be normalized with respect to the inner product

(
g, h

) = 2π∫
0

dα g∗(α)h(α) , (2.17)

that is,
(
fn, fm

) = δnm . The far "eld eigenfunctions thus form an orthonormal basis for
L2[0, 2π ], such that

δ(θ − α) =
∑
n

fn(θ) f
∗
n (α) , u∞(θ, α) =

∑
n

λn fn(θ) f
∗
n (α) . (2.18)

2.2 Incident wavefunctions

The incident "eld for the eigenfunction fn is de"ned as

En(x) =
(
e−ikααα.x, fn(α)

)
. (2.19)

The associated far "eld is u∞ = U∞ fn , which reduces to u∞ = λn fn , so that the total
"eld is

p(r, θ) = En(x)−
√
8π

kr
ei(kr−

1
4π) λn fn(θ)+

(
1√
kr

)
, r →∞ . (2.20)

Hence, En(x) is the unique incident wave which has the far "eld fn(θ). It is useful to list
some of the properties of the incident wavefunctions {En}. First, they form a basis for plane
waves, which may be deduced using (2.18)1,

eikααα.x =
∑
n

En(x) f ∗n (α) . (2.21)

Using the identity
(
eikααα.y, eikααα.x

) = 2π J0(k|x− y|), equation (2.21) implies that
2π J0(k|x− y|) =

∑
n

En(x) E∗n (y) . (2.22)

Let us see how the choice of the origin determines the eigenfunctions. The far "eld function
with respect to a new or shifted origin at x(s) is

u(s)∞ (θ, α) = eikθ.x
(s)
u∞(θ, α)e−ikααα.x

(s)
. (2.23)

The modi"ed eigenvalues are therefore the same as before, λ(s)n = λn , but the far "eld
eigenfunctions are changed, to

f (s)n (θ) = eikθ.x(s) fn(θ) . (2.24)

However, the modi"ed incident "elds, de"ned with respect to the shifted origin, are

E (s)n (x)= (e−ikααα.(x−x(s)), f (s)n (α)
)

= En(x) , (2.25)
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where we have used (2.19). In summary, the far "eld eigenfunctions f (s)n depend upon the
choice of origin, but the incident "elds En are independent of the origin.
The fact that the incident wavefunctions form a representation for plane waves means

that they are not spatially compact. This may be seen by considering the integral of En(x)
over the interior of the circle of radius R, which can be found using standard identities for
Bessel functions and their integrals,∫

r6R
dx En(x) = 2π R

k
J1(kR)

(
1, fn

)
. (2.26)

This is not de"ned in the limit as R→∞. Alternatively, let us consider the `inner product'
on the interior of the same circle:

Imn(R) =
∫

r6R
dx Em(x)E∗n (x) . (2.27)

This may be simpli"ed, using (2.19) and the Bessel function identities once more:

Imn(R)=
2π∫
0

dα

2π∫
0

dβ fm(α) f
∗
n (β)

R∫
0

rdr

2π∫
0

dθ eikr cos(α−β)

= 2π R
k

2π∫
0

dα

2π∫
0

dβ fm(α) f
∗
n (β)

J1(kR|ααα − βββ|)
|ααα − βββ| . (2.28)

For large R we may use the equivalence J1(kR|ααα − βββ|)/|ααα − βββ| ≈ 2δ(α − β), to obtain

Imn(R) = 4π R
k
δmn + O(1) . (2.29)

Thus, the incident wavefunctions are orthogonal on large domains.
Zero eigenvalues can occur, and they have a direct physical interpretation: Interior res-

onance frequencies correspond to zeros of the far "eld operator. In order to prove this
statement, suppose that p0(x) is a mode of the interior problem, that is, a solution of the
Helmholtz equation inside B subject to the impedance condition (2.3) on the boundary.
This may be expanded as

p0(x) =
∞∑

n=−∞
cn Jn(kr)e

inθ , for x inside B, (2.30)

for some constants {cn}. This representation of the interior mode, valid for x inside B, can
now be continued to the exterior. Thus, the incident "eld

E(x) ≡
∞∑

n=−∞
cn Jn(kr)e

inθ , for x outside B, (2.31)
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automatically satis"es the boundary condition (2.3), and it therefore corresponds to a far
"eld eigenfunction with eigenvalue zero. The eigenfunction follows from (2.31) as

f (θ) = b
∞∑

n=−∞
cn (−i)neinθ , (2.32)

where b is a normalization factor.
The existence of zero eigenvalues is well known, but they occur only at discrete frequen-

cies. However, no matter what frequency we consider, zero is a point of accumulation for
eigenvalues, meaning that for any ε > 0 there exists an in"nite set of eigenvalues of mag-
nitude less than ε. The physical meaning of these is quite distinct from the possible zero
eigenvalue: they result from the fact that the far "eld operator is compact. Eigenfunctions
with λn close to zero possess incident "elds which generate extremely weak scattered far
"elds, and are thus dif"cult to extricate from the far "eld response. The sensitivity of these
functions to the far "eld data is a direct indication of the ill-posed nature of the inverse
scattering problem.

2.3 Example: The circle

As an example, consider a circular target, B : r = a, with a constant surface impedance
γ . The eigenvalues are given by equation (2.16) with

ψn = arg
(
H (1)
n (ka)+ kγ H (1)′

n (ka)
)
. (2.33)

The eigenfunctions and associated incident "elds are

fn(θ) = 1√
2π

einθ , En(x) =
√
2π in Jn(kr)e

inθ . (2.34)

This example indicates that the eigenfunction can be quite independent of the eigenvalue.
That is, for a given eigenfunction, fn , the eigenvalue can take on any value on the circle
of eigenvalues. For example, by varying the surface impedance γ one can change each
eigenvalue for the circle, but the eigenfunctions remain "xed. Thus, the magnitude of λn
has little or no bearing on the focusing property of the eigenfunction fn . This is perhaps
contrary to the statements of Mast et al. (1997) concerning focusing and eigenfunctions of
the far "eld operator; although their objective was quite different, as they were interested
in smoothly varying materials rather than sharp interfaces.
This simple example illustrates the remark above that zeros of λn correspond to reso-

nance frequencies of the interior problem, because in this case they occur when

Jn(ka)+ kγ J ′n(ka) = 0 ⇔ λn = 0 . (2.35)

We note that (2.22) directly gives the well-known identity for Bessel functions:

J0(k|x1 − x2|) =
∞∑

n=−∞
Jn(kr1)Jn(kr2)e

in(θ1−θ2) . (2.36)

Also, the inner products of (2.27) are explicit in this case,

Imn(R) = δmn 2π2R2
[
J 2n (kR)− Jn−1(kR)Jn+1(kR)

]
, (2.37)

thus verifying the approximation (2.29) for large R.
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3. The imaging algorithm

Suppose we are given a far "eld pattern, F(θ), such that the total acoustic pressure is

p(r, θ) = G(x)−
√
8π

kr
ei(kr−

1
4π) F(θ)+ o

(
1√
kr

)
, r →∞ . (3.38)

Can we determine the incident "eld G uniquely? The answer is no because the near-to-far
"eld operator is compact and hence has no inverse. In order to see this, suppose we expand
F in terms of the far "eld eigenfunctions, using (2.18)1,

F(θ) =
∑
n

fn(θ)
(
fn, F

)
. (3.39)

This is well de"ned, but the function∑
n

1

λn
fn(θ)

(
fn, F

)
(3.40)

is not, because of the property that the eigenvalues cluster about zero. This is directly
related to the fact that U∞ is not invertible. However, the truncated function

g(N )(θ) =
N∑
n=1

1

λn
fn(θ)

(
fn, F

)
(3.41)

is a suitable approximation. The associated incident "eld

G(N )(x) = (e−ikααα.x, g(N )(α)) = N∑
n=1

1

λn
En(x)

(
fn, F

)
, (3.42)

is a regularized solution to the problem of "nding G of (3.38), using a spectral cut-off
regularization (Colton & Kress 1992).
We now apply this regularization procedure to far "eld patterns associated with point

source incident "elds. These are far "elds which would arise from a monopole or multipole
at source point y. The generic case, for a monopole, is F(θ) = F(θ, y), where

F(θ, y) = e−ikθ.y . (3.43)

The regularized incident function follows from (2.19) and (3.41) as

g(N )(θ, y) =
N∑
n=1

1

λn
fn(θ) E

∗
n (y) , (3.44)

and the incident "eld is therefore,

G(N )(x, y) =
N∑
n=1

1

λn
En(x)E∗n (y) . (3.45)

The present technique is closely related to that of Colton & Kirsch (1996), who de"ned
a `far "eld equation' for an unknown function g(θ, y):

U∞g = e−ikθ.y . (3.46)
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This integral equation of the "rst kind cannot be solved in general becauseU∞ is a compact
operator. However, by con"ning y to some restricted domain and using Tikhonov regular-
ization, Colton & Kirsch obtained numerical solutions to (3.46). They showed that g has
a logarithmic singularity when y lies on the obstacle surface, and based on this a recon-
struction algorithm follows by plotting the function g(θ, y) versus y; see also (Colton et al.
1997).
The incident wave for the function g of equation (3.46) is

G(x, y) ≡ (eikθ.x, g(θ; y)) (3.47)

which, by de"nition, has an associated far "eld pattern e−ikθ.y, or a total solution

p(r, θ) = G(x, y)−
√
8π

kr
ei(kr−

1
4π) e−ikθ.y + o

(
1√
kr

)
, r →∞ . (3.48)

The unique radiating "eld with this far "eld is ps = −2πH (1)
0 (k|x − y|), which is the

scattered "eld for the incident wave G, implying the total "eld

p(x, y) = G(x, y)− 2πH (1)
0 (k|x− y|) . (3.49)

How are we to interpret this? First, it is clear that G of equation (3.47) is the limit of G(N )

as N → ∞, if the limit exists. At the same time, if the source point y is in the exterior
region then the incident "eld which gives rise to the scattered "eld of (3.49) is simply

G(x, y) = 2πH (1)
0 (k|x− y|) , (3.50)

and the total "eld is zero. Hence, as |x − y| → 0 the function G(N )(x, y) should, in some
approximate sense, synthesize the singularity of 2πH (1)

0 (z) as z → 0. This suggests that
the function |G(N )(x, x)| should take on large values for all x in the exterior of the target.
It is interesting to note the duality between the expression (2.22), on the one hand and

2πH (1)
0 (k|x− y|) =

∑
n

1

λn
En(x) E∗n (y) for x or y outside B, (3.51)

on the other. The latter follows from (3.45) and (3.50) and uses the symmetry of G(N ) with
respect to x and y to deduce that (3.51) applies if either one is in the exterior domain.
At the same time, the analysis for the circular target in Appendix A indicates that
|G(N )(x, x)| is bounded for positions x located inside the target. Does this property ex-
tend to other, far more complex, target geometries? We claim here that it does, and offer
as proof the numerical evidence of the examples in the next section, deferring until later a
more rigorous proof, although a brief outline of such is provided in Section 4. The different
behaviour of |G(N )(x, x)| for x inside or outside the target suggests that we try to locate re-
gions of space where this function is small. Such regions indicate the scattering obstacles.
Whether or not this is feasible will be evident from the numerical examples next.
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FIG. 1. The calculated function Î (x) of (4.57) using the computed incident wavefunctions for the 3-cylinder target
at ka = 1. The three obstacles are of unit radius and centres (x, y) = (3,−2), (−3,−2) and (−3, 2)

4. Numerical experiments and discussion

4.1 Computational method

Given the far "eld data, u∞(θ, α), whether synthetic or otherwise, the far "eld eigen-
functions are found by taking inner products of the far "eld operator with the exponential
functions {(2π)−1/2einθ }. Thus, we form the square matrix [U ], such that

u∞(θ, α) = 1

2π

(M)∑
m

(M)∑
n

Umne
i(mθ−nα) , (4.52)

where

Umn = 1

2π

2π∫
0

dθ

2π∫
0

dα u∞(θ, α)e−i(mθ−nα) . (4.53)

The next step is to diagonalize [U ] as

[U ] = [V ][Λ][V ]∗ , (4.54)

such that the columns of [V ] are the right eigenvectors of [U ], and [Λ] is the diagonal
eigenvalue matrix,

Λmn = λ̂nδmn , (4.55)
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FIG. 2. The image of a circular target of unit radius centered at (x, y) = (1, 2), at ka = 1 with impedance
γ = 100

where the carat on a quantity indicates that it is an approximant. Also, [V ]∗ is the Hermitian
transpose and it follows that [V ] is a unitary matrix. The approximate incident wavefunc-
tion is therefore, using (2.34),

Ên(x) =
(M)∑
m

√
2π im Jm(kr)e

imθ Vmn . (4.56)

In applying the present technique, it is important to "rst determine how well the approx-
imated eigenfunctions can represent plane waves on the domain of computation, which in
the examples considered is the square −6 6 x, y 6 6. Referring to equation (2.22), we
assess this by visual inspection of the function

Î (x) = 1

2π

(M)∑
n

Ên(x) Ê∗n (x) , (4.57)

which should be unity or close to it on the domain of interest. Figure 1 shows this for
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FIG. 3. The surface shows the quantity − log |G(N )(x, x)| for the 3-cylinder target with γ = 1000 and ka = 1

the eigenfunctions of the 3-cylinder target at ka = 1 considered below. The accuracy is
reasonable over a large region centred on the origin, but deteriorates further away. The
limitation here is the number of circular functions employed in generating [U ], which is
17 in this example.

4.2 Examples

We consider targets comprising one, two or three circular obstacles, all of unit radius (a =
1). The far "eld of the forward multiple scattering problem is obtained using the procedure
outlined in Appendix B. The eigenfunctions and eigenvalues are determined, as described
above, and the approximant Î (x) is examined; see Fig. 1. Then the `indicator' function
|G(N )(x, x)| is plotted on the domain of interest, −6 6 x, y 6 6.
The method was "rst put to the test on the trivial example of a single circular target.

Figure 2 shows a grey scale image of the "nal result: the details of the plotting procedure
are outlined below. As a more stringent test we consider a target comprising three distinct
circular obstacles of unit radius centred at the points (x, y) = (3,−2), (−3,−2) and
(−3, 2). The indicator function |G(N )(x, x)| of (3.45) is shown in Fig. 3. The quantity
plotted versus x = (x, y) is z = − log |G(N )(x, x)|, and it is evident from Fig. 3 that the
magnitude of G(N ) is indeed large at points away from the target domain. It is dif"cult
to discern the demarcations in Fig. 3, so we henceforth illustrate the indicator function by
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FIG. 4. The grey-scale replica of Fig. 3, on a linear scale

grey-scale images, as in Fig. 2 for the single obstacle. The grey-scale image of Fig. 3 is
depicted in Fig. 4, which shows |G(N )(x, x)| on a linear scale with the dark areas showing
the regions where the indicator function is small in magnitude. The three circular obstacles
are clearly imaged, but several phantom images appear in Fig. 4. The spurious images shift
with varying frequency, see Fig. 5, and could be eliminated in practice by using data from
more than a single frequency.
Figure 6 shows the computed eigenvalues of the three circular obstacles for ka = 1

using circular basis functions einθ with −8 6 n 6 8, yielding a 17 × 17 matrix [U ]. The
eigenvalues in Fig. 6 display the expected clustering near zero. All the numerical images,
such as Figs 3 to 5 and subsequent ones, were generated by retaining only those eigenvalues
of magnitude greater than 10−3 for the purpose of evaluating G(N ) of equation (3.45). The
choice of the spectral cut-off |λn| > 10−3 is quite arbitrary, but in general it will depend
upon the numerical precision of the data. The same procedure was employed in all results
presented here, and it typically meant that about N = 10 eigenvalues and eigenfunctions
were used in computing G(N ). The relevant incident wavefunctions {En} associated with
the nine largest eigenvalues of Fig. 6 are illustrated in Fig. 7. These are the essential basis
for the images in Figs 3 to 5.
The four images in Fig. 8 were generated for two identical circular obstacles centred at
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FIG. 5. The same as Fig. 4 but for (a) ka = 0.6, and (b) ka = 1.2
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FIG. 6. An Argand diagram of the complex numbers λn − 1
2 for the 3-cylinder example with ka = 1 and

γ j = 1000 (hard obstacles). The matrix [U ] is 17 × 17 implying 17 eigenvalues. The point of accumulation
around zero (at 180◦) is evident

(x, y) = (−1,−2) and (2, 2) for different surface conditions. Thus, Figs 8a,b correspond
to soft (γ = 0) and hard (γ = 1000) boundary conditions, respectively, both at ka = 1.
Image 8c was computed for the mass-like boundary condition γ = −1 at ka = 1. Spurious
images are apparent in 8c, but they are seen to disappear at a different frequency, as image
8d for ka = 0.8 illustrates. However, note the quite distinct intensity scales in 8c and 8d.

4.3 Discussion

The numerical examples demonstrate that the computed indicator function G(N )(x, x)
takes on large values outside the target, and is bounded at or near the target, as claimed
in Section 3. The reason for the large values in the exterior domain is that the indicator
function attempts to emulate a point source at its source, see (3.50). At the same time, the
analysis for the circular target in Appendix A indicates that G(x, x) is well de"ned only
inside the target, and is divergent outside. However, it is not clear why the indicator func-
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FIG. 7. The "rst nine incident wavefunctions of the three-obstacle target, associated with the nine largest eigen-
values of Fig. 6. The shading indicates regions where the functions are large in magnitude

tion should, in general, be bounded inside the target. By way of justi"cation, we offer the
following physical argument, based on superposition.
The "eld scattered from an obstacle is regular in the exterior region, but cannot be con-

tinued into the interior. However, the scattered "eld may be represented to a given degree
of accuracy by a "nite set of virtual sources located inside the obstacle. Angell et al. (1997)
have shown that these sources are linearly independent in the far "eld, and that such a rep-
resentation is a suitable basis for solving the forward problem. If we assume that the source
amplitudes are linear functions of the incident direction, then by appropriate superposition
of incident waves, one can isolate any single virtual source. Thus, a point source at arbi-
trary location y inside the target can be synthesized by incident plane waves. Hence the
incident "eld, G(x, y), is regular at a source location y = x inside the target.
A quite different perspective of the method is gained by noting that the incident wave-

functions associated with the accumulating eigenvalues are vanishingly small on the do-
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FIG. 8. (a) Two soft (γ = 0) cylinders of unit radius centred at (−1,−2) and (2, 2) for ka = 1; and (b) The same
as (a) but for hard cylinders (γ = 1000)
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FIG. 8. (c) Two mass-like cylinders (γ = −1) at ka = 1; and (d) The same as (c) but for ka = 0.8
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FIG. 9. The "rst nine incident wavefunctions of the two-obstacle target considered in Fig. 8a

main of the target. This property, what one might call a nulli"cation on the target region,
guarantees that the scattered "eld, and hence λn , are both small. In order to appreciate this
property, consider the incident wavefunctions corresponding to Figs 8a and 8b, which are
shown in Figs 9 and 10, respectively. It is clear that the wavefunctions are similar, despite
the different surface conditions, although they are re-ordered because of the quite different
eigenvalues for the two solutions. The "rst few wavefunctions in either case have sizeable
amplitudes on the target domain, but for those associated with smaller λn (in the lower
rows of Figs 9 and 10) it is apparent that the functions are small in magnitude on the target
region. This feature is much more apparent if we look at a wavefunction for some very
small eigenvalue. Thus, Fig. 11 shows the wavefunction for the 12th largest eigenvalue
for image 8b�the pair of hard cylinders (note the scale in Fig. 11!). The fact that these
wavefunctions are approximately zero on the target domain, or more speci"cally, on the
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FIG. 10. The "rst nine incident wavefunctions of the two-obstacle target considered in Fig. 8b

boundary B, suggests that they possess the potential to demarcate the boundary. It is this
zeroing property that lies at the heart of the imaging method.

5. Summary

We have demonstrated a new method for using the incident wave functions of the scatter-
ing operator to image non-convex, disconnected scatterers, with various surface boundary
conditions: hard, soft and "nite impedance. The inversion algorithm is direct, with no iter-
ation or forward scattering solver required. The surface boundary conditions do not need
to be known in advance, and it is this feature above all else that distinguishes the method
from other inversion schemes.
The analysis and examples in this paper are strictly 2-dimensional, but it is clear that

the methods can be applied directly to 3-dimensional problems, given the appropriate 3-
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FIG. 11. The incident wavefunction for the 12th eigenvalue of Fig. 8b. In this case the shading indicates where
the magnitude of the function is small

dimensional far "eld data. We have also made no attempt to address questions related to
limited aperture far "eld data, absorption, or sensitivity to noise.
Finally, we remark that the results presented here shed light on the general issues con-

fronting the inverse scatterer seeking unknown targets. It is sometimes convenient to use
the language of evanescent "elds and complex wavenumbers, both of which are absent
from the far "eld data, but are crucial to the near "eld, and hence the target identi"ca-
tion. Here, however, we demonstrate the importance of the ability to infer the far "eld
eigenvalues, and the related incident wavefunctions. These are contained within the far
"eld operator, but in an ill-conditioned sense because of the asymptotic clustering of the
eigenvalues about λn = 0 as n→∞.
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Appendix A:. The function G for a circular target

The sum (3.45) has the explicit form in this case, using equation (2.34)2,

G(N )(x1, x2) = 2π
(N )∑
n

1

λn
Jn(kr1)Jn(kr2)e

in(θ1−θ2). (A.1)

It is possible to make an accurate statement about the limiting behavior of this function as
N →∞, assuming that no eigenvalue is identically zero. The eigenvalues λn can be found
for large values of |n| by using the known properties Jn(z) ≈ (z/2)n/n! and H (1)

n (z) ≈
−i(n − 1)!(2/z)n/π , and assuming γ 6= 0, as

λn ≈ −iπ
|n|!(|n| − 1)!

(
ka

2

)2|n|
, (A.2)

and therefore,
2π

λn
Jn(kr1)Jn(kr2) ≈ 2i

|n|
(r1r2
a2

)|n|
. (A.3)

It is clear from equations (A.1) and (A.3) that the function G = limN→∞ G(N ) is conver-
gent if and only if r1r2 < a2. When this is the case we may sum the in"nite part of the
series by inspection, using z + z2/2+ z3/3+...= log [1/(1− z)], to give
G(x1, x2) = 2i log

[
r21r

2
2 +a4−2r1r2a2 cos(θ1−θ2)

]+G0(x1, x2) , r1r2 < a2 , (A.4)
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where G0 is a bounded function for all r1r2 6 a2. Equation (A.4) indicates that a loga-
rithmic singularity occurs at the analyticity boundary r1r2 = a2. Inside this domain the
limiting function is bounded, while it is divergent for r1r2 > a2.
It is interesting to note that the total "eld p(x, y) of equation (3.49) with y = x is

actually bounded if x lies on the circle r = a. This can be seen from the fact that H (1)
0 (z) ≈

(i2/π) log z as z → 0. This is due to the fact that γ 6= 0, and the hard boundary condition
dictates the limiting behaviour of G.

Appendix B:. Multiple scattering from circular obstacles

We consider J > 2 circular targets, of radii a j and impedance γ j , centred at x j , j =
1, 2,..., J . Assuming that the incident wave is a plane wave in direction ααα, as in (2.1), then
the total scattered solution is represented as

ps(x) = −
J∑
j=1

eikααα.x j
N ( j)1∑
n

N ( j)2∑
q

c( j)nq i
n H (1)

n (kr j )e
i(nθ j−qα) , (B.1)

where {r j , θ j } are polar coordinates of the "eld point x with respect to the centre of circle
j . The far "eld follows from (2.4) and (B.1) as

u∞(θ, α) = 1

2π

J∑
j=1

e−ik(θθθ−ααα).x j
N ( j)1∑
n

N ( j)2∑
q

c( j)nq e
i(nθ−qα) . (B.2)

The eigenvalues and eigenvectors can be determined from this by forming the matrix [U ]
of equation (4.53), which becomes in this case

Ump =
J∑
j=1

N ( j)1∑
n

N ( j)2∑
q

c( j)nq i
m−n−p+q Jn−m(kr j0)Jq−p(kr j0)e−i(m−n−p+q)θ j0 , (B.3)

where {r j0, θ j0} are polar coordinates of the centres x j , j = 1, 2,..., J with respect to the
origin. It remains to determine the coef"cients c( j)nq , which we do next.
The two main formulae required are

eikααα.x = eikααα.x j
∞∑

n=−∞
in Jn(kr j ) e

in(θ j−α), (B.4)

and

H (1)
m (krl)e

imθl =
∞∑

n=−∞
H (1)
m−n(kr jl)e

i(m−n)θ jl Jn(kr j )einθ j , (B.5)

where {r jl , θ jl} are the polar coordinates of x j relative to xl . Using these, we can write the
total solution of (2.1) and (B.1) in terms of the coordinates of any one circle, thus:

p(x) = eikααα.x j
∑
n

b( j)n (r j , α) i
n einθ j , (B.6)
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where

b( j)n (r j , α)= Jn(kr j )e
−inα −

N ( j)2∑
q

c( j)nq e
−iqαH (1)

n (kr j )

−Jn(kr j )
J∑
l 6= j

eikααα.(xl−x j )
N (l)1 )∑
m

N (l)2∑
q

c(l)mqe
−iqα im−n H (1)

m−n(kr jl)e
i(m−n)θ jl .(B.7)

This form allows us to apply the boundary condition (2.3) on obstacle j (r j = a j ) as a
series in einθ j , and equating each coef"cient to zero, we obtain

0= λ( j)n e−inα −
N ( j)2∑
q

c( j)nq e
−iqα

−λ( j)n
J∑
l 6= j

eikααα.(xl−x j )
N (l)1 )∑
m

N (l)2∑
q

c(l)mqe
−iqα im−n H (1)

m−n(kr jl)e
i(m−n)θ jl , (B.8)

where λ( j)n is the far "eld eigenvalue associated with obstacle j in the absence of the others,
that is,

λ
( j)
n =

Jn(ka j )+ kγ j J ′n(ka j )
H (1)
n (ka j )+ kγ j H (1)′

n (ka j )
. (B.9)

Now take the inner product of (B.8) with eiqα for each q, to get a linear system of equation
for the unknowns c( j)nq ,

c( j)nq + λ( j)n
J∑
l 6= j

N (l)1∑
m

N (l)2∑
p

c(l)mp i
m−n−p+q H (1)

m−n(kr jl)Jp−q(kr jl)e
i(m−n−p+q)θ jl = λ( j)n δnq .

(B.10)
In the computations reported N ( j)1 = N1 and N

( j)
2 = N2 with N1 = N2. The solution

was obtained using MATLAB, which handles the equations very expeditiously . For in-
stance, the matrix in (B.10) is formed by "rst forming two separate N1 × N2 matrices and
then using the kron function within MATLAB to generate the large N1N2 J × N1N2 J ma-
trix. The linear system in the N1N2 J unknowns c

( j)
nq was solved directly when the size was

not too great (6 103) or when the frequency was high. Iteration was used for large systems
and for low frequencies. The iterative procedure rewrites the system as (I − M)L = R,
and solves for L as L = R + MR + M(MR) +.... Once the unknowns is found, then the
[U ] matrix is determined from (B.3) as

[U ] =
J∑
j=1
[A( j)][C ( j)][A( j)]∗, A( j)mn = im−n ei(n−m)θ j0 Jn−m(kr j0) . (B.11)

In this way the vectorization capabilities of MATLAB can be used to advantage.


