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Abstract

Exact expansions are presented for frequency-domain and time-domain fields generated by sources in a finite region of
space. These expansions determine the field outside the minimum sphere from the values of the field on any sphere outside the
source region, e.g., the far-field sphere. The basis functions are directionally localized monopole or multipole point sources
located on a sphere in complex space. The frequency-domain expansions are first presented and then used along with the
analytic Fourier transform to obtain the corresponding time-domain expansions.

1. Introduction

We consider the radiation from 3D scalar sources located in a finite region of space inside the minimum sphere
with radius ryjp. The scalar field generated by these sources is denoted by f(x, t) and satisfies the wave equation
with constant wave speed c¢. We shall derive new exact expansions for this field in which the basis functions are
directionally localized, and the expansion coefficients are either determined from the values of f (X, t) on a sphere
r = b, with b > rpn, or from the far-field pattern of f(x, r). Two time-harmonic (frequency-domain) and two
transient (time-domain) expansions will be presented. Each of the time-domain expansions is obtained by applying
the analytic Fourier transform to the corresponding frequency-domain expansion.

The simplest frequency-domain expansion that expresses the field everywhere outside the minimum sphere in
terms of its values on the minimum sphere is the Helmholtz representation [1, Section 1.29], which requires that the
field as well as its normal derivative be known on the minimum sphere. A more versatile expansion that requires
knowledge only of the field itself is the spherical harmonics expansion [1, Section 8.11]. This expansion can be
used to compute the frequency-domain field everywhere in the region r > ry;n, either from the values of the field
on any sphere r = b with b > ry;,, or from the far-field pattern.

The time-domain analog of the Helmholtz representation is easily obtained and well-known [1, Section 1.17};
whereas the time-domain analogs of the spherical harmonics expansion are more complicated [2-6]. The expansion
derived in [5] allows one to compute the field in the region r > b given the field and its time integration on r = b.
Moreover, a sampling theorem is derived in [5] that determine how many spherical modes are needed and how
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closely one has to sample in space and time to compute the expansion coefficients accurately. The expansion in [5)
was derived for spherical near-field scanning in the time domain.

All the frequency and time-domain expansions discussed so far employ basis functions that are not directionally
localized. In many cases where inhomogeneous media are involved, it is advantageous to have at one’s disposal
expansions that employ directionally localized basis functions [7-10].

The directionally localized complex point-source field of Deschamps [11] was used by Norris [7] to expand the
field of a real frequency-domain point source. Specifically, in [7] the real point-source field is written as an exact
superposition of point-source fields whose source points are located on the surface of a sphere in complex space.
Using the analytic Fourier transform along with Norris’ beam formula [7], Heyman [8] obtained an exact expansion
of a real time-domain point source in terms of complex-source pulsed beams located on a sphere in complex space.
By superposition, the complex point-source expansions of Norris [7] and Heyman [8] could be used to expand the
field of a general source region of finite extent. However, this simple superposition would result in expansions in
which the complex point sources would be located on different nonconcentric spheres. Specifically, each point in
the source region would be the center of a sphere in complex space that would contain complex point sources. Such
expansions would not allow one to immediately compute the fields outside the minimum sphere r = ry,;, given the
far field or the field on a sphere r = b > rpjy.

Recently, the frequency-domain expansion of [7] was generalized to express the field of an arbitrary frequency-
domain source, located in the region r < rpin, in terms of point sources (monopoles) on the surface of a single
sphere in complex space [12,13]. Given the frequency-domain field on any sphere r = b > ryy. the expan-
sion in [12,13] expresses the field everywhere in the region r > ry;, in terms of directionally localized sources.
In particular, this expansion can be used to compute the field in the region r > ry;, from the far field. In
the present paper, we shall derive yet another new exact expansion, which expresses an arbitrary frequency-
domain field in terms of complete set of multipole point sources on the surface of a single sphere in complex
space.

Also in this paper, the analytic Fourier transform will be used to derive the time-domain analogs of the two
frequency-domain complex point-source expansions. The resulting time-domain expansions express the field outside
the minimum sphere in terms of directionally localized sources and reduce to the expansion of Heyman [8] in the
case of a single point source located at r = 0.

The paper is organized as follows. In Section 2 we present the two frequency-domain expansions and determine the
low-frequency behavior of some of the expansion coefficients. A motivation for using the analytic Fourier transform
to derive the time-domain results and a short presentation of the properties of analytic signals are contained in
Section 3. Finally, Section 4 presents the derivation of the new time-domain formulas that express the field outside
the scan sphere in terms of directionally localized sources.

2. Frequency-domain beam formulas

In this section we are concerned with solutions to the Helmholtz equation that are regular outside the sphere of
radius rmip. That is, we consider the field radiated by a source whose maximum spatial dimension is 2rn. The time
dependence e "'’ is suppressed in all the time-harmonic equations, and the frequency-domain field radiated by the
sources is denoted by f(x, w) for w > 0.

The wave function f(x, w) satisfies the Helmholtz equation

V2f(x, @)+ k2 f(x, @) =0, 1> rmin, ()
and the radiation condition

af/or —ikf = O(f/r), r — oo, )
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with r = |x| and k = w/c, where c is the constant wave speed. At infinity, the field f(x, w) can be written in terms
of the far-field pattern F (X, w) as
ikr
f(x, ) ~ F(X, w) , r—> 00, (3)
drrr

and the field can be expanded in terms of spherical harmonics as

hy (kr)
fx w) = Z Z Fom, @) G5 Yim ©.9). 7 2 i, “)

n=0m=-n

where the expansion coefficients

Jrm (b, ) =ff(b§, )Y, (0, $)dS2(6, ¢) 3

are determined from the field on the sphere r = b > rpj,. Here hf,l) (kr) is the spherical Hankel function of the first
kind, Y, (6, ¢) the spherical harmonic as defined by Jackson [14], X a unit vector pointing in the direction given by
the spherical angles (9, ¢), and * denotes complex conjugation. The expansion coefficients fnp (b), w) determined
from the field at the sphere of radius » = b are related to the expansion coefficients f,, (b, @) through

D kbr)

f (b],CU) -
nm (l) kb

— Jam (b, ). ©)

The far-field pattern can also be expanded in terms of spherical harmonics

+00 n
FRo)=Y Y Fun(@)Yam(6,9), @)

n=0m=-n

where the expansion coefficients for the far-field pattern

Fom(@) = /F(i, )Y, (6, ¢)d2(0, @) (8)

5 4

are related to the expansion coefficients fp, (b, @) through

47{(—i)"+1

Fim(w) = ———
kh (kb)

Jam(b, w). 9

It is assumed that outside the source region f(x, w) — f1(x) as w — 0, where f)(x) is a bounded frequency-
independent function. This assumption assures that the frequency-domain field has no singularities (with respect
1o w) near w = 0. Furthermore, it will be assumed that a positive constant « exists such that f(x, w) = O(e™**)
as @ — oo. This condition is met by any known generator and assures that the time-domain field is infinitely
differentiable with respect to time.

Before presenting the frequency-domain beam formulas, we determine the behavior of the frequency-dependent
expansion coefficients Fy, (w) for small w. From the identity [12, (5.4)] and the fact that j, (x) = O(xMasx — 0,
we find that

f(? X)) Y, (0,9 AR, ¢ ) =0, n>gq, (10)
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where X is an arbitrary vector. Letting the surface in the Helmholtz representation be the sphere r = b, the far-field
pattern can be written as

-~

F(X,w) = —b2/ [ik?-?f(b?, ) + %(b&”, a))] e kXX 400, ). (1)
4

Inserting the far-field expression (11) into formula (8) for the far-field expansion coefficients and employing (10)
shows that F,,,, (@) = O(w") as w — 0. This low-frequency result for F;,,, (w) is derived under the assumption that
the spectrum of f (X, w) has no singularity at @ = 0 and will prove useful in the subsequent time-domain derivation.
Of course, if f(x, w) — 0 as w — 0, the coefficients F,, (w) approach zero faster than o".

2.1. First frequency-domain beam formula
This section presents the first of the frequency-domain beam formulas that will be translated into the time domain

in Section 4. In [12,13] we showed that the frequency-domain field f(x, @) for @ > 0 can be written in terms of
complex point-source fields as follows:

ks
fxw) = f Yom@, @) —2m @€ 406" ¢, > ruim (12)

= Om.——n 4mi—" j,(ika) 4ms

where a is a positive constant satisfying rmin > a, and j,(kr) is the spherical Bessel function. Furthermore,
s = |x — iav| = s; + is; is the complex length whose real and imaginary parts are given by s, and s;, respectively.
The unit vector v defines the point on the unit sphere given by the primed spherical coordinates (9, ¢'), and s has a
branch cut on the disk whose radius, center, and normal are given by a, X = 0, and v, respectively. The real part of
s satisfies s; > 0, whereas the imaginary part of s satisfies —a < s;j < a with its minimum value —a attained only
when X = v and its maximum value a attained only when X = —v. Employing (9), we can also write f(X, ) in
terms of the coefficients f,,, (b, @) that are determined from the field on the sphere r = b. Comparing the complex
point-source expansion (12) to the standard spherical harmonics expansion (4) with (9) inserted, one finds that the

multipole functions hf,l) (kr)Ypm (9, @) can be written in terms of the complex point sources as
" 1 eiks
AV kY@, ¢) = ———— | Ym0, ¢)— d2(0', &), 13
n (kr)Ynm(6, @) ikjy (ika) / nm ( ¢)47TS @,¢) (13)
4

which is a generalization of Norris’ result [7].
2.2. Second frequency-domain beam formula

Another frequency-domain beam formula can be obtained from Wittmann’s identity [135, Egs. (17), (70})]
eikr
B (kr) Ym0, ¢) = i7" PG, — (14)

nikr

where the operator P, is given by

— L ]entD) e —m i (m)(l ) 15

with 3, = 8/(dx), dy = 3/(dy), and 9; = 3/(dz). Here P,fm)(x) is simply the m’t}lgerivative of the Legendre
polynomial (it is not the associated Legendre function), and for m < O the operator Py, can be determined from
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P,‘,"_m = (— l)mP,g"m*. According to Norris [7], the real point source field can be expressed in terms of complex
point sources as

eikr 1 eil<s

= 2, ¢).
4mr 47 jo(ika) drrs @, ¢) (16)
4

Combining Norris’ beam expansion (16) with Wittmann’s operator formula (14), it is found that

1D (kr) Yo (0, ) = Ik] = f drzw/ &) a7

and thus the basis functions in the spherical expansion (4) are expressed in terms of multipoles with complex source
points. Some of these complex multipoles have been discussed by Shin and Felsen [17] who showed that they
reduce to Hermite—Gaussian beams in the paraxial region. Inserting expression (17) into (4) and using (9) gives us
the desired general beam expansion

iks

Fom(w) w € ’ .
fx w) = ZMZ_ ke | Pin ez, 42090, 1 2 rmin. (18)

One may insert (9) into (18) to get a beam formula that expresses the field outside the minimum sphere in terms of
the field on any sphere r = b > rp;q.

3. Analytic signals

In the following section, we shall make use of the analytic Fourier transform [16] to derive the time-domain
analogs of the exact beam formulas (12) and (18). One of the reasons for using analytic Fourier transform, rather
than the real standard Fourier transform, is that the beam formulas (12) and (18) hold only for w > 0 and contain
the factors e %2 and 1/}, (ika).

To use the real standard Fourier transform, one has to define the frequency-domain fields for all real frequencies,
and these frequency-domain fields must satisfy the relation A(—w) = h*(w). For example, the factor e~ka (valid
only for w > 0) would translate into e %1 (valid for all real w) and give rise to a convolution involving the function

+o0
_lkla . —i 2(a/c)
|kla ,—iwt _
/ e e dw = —(a/c)2 prR | (19)
—00

As will be demonstrated below, if instead the analytic Fourier transform is used, the factor e~ ka gives rise to a

simple complex time shift and no convolution need to be introduced. One also finds that if the analytic Fourier
transform is used, the factor 1/j,(ika) can be represented in the time-domain by time integrals, time derivatives,
and complex time shifts. No convolution need to be introduced. This ability to represent complicated operations in
the time-domain, without introducing convolutions, is the main reason for using the analytic Fourier transform in
this work.

Some of the properties and definitions of the analytic field A (¢), corresponding to the real time-domain field
h(t), will now be listed. The real time-domain field can be determined from its standard Fourier transform through
the equations

+00 +oo
h(t) = / h(w)e " dw, h(w ::% / h()el dr. (20)

—00 —oC
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The analytic field 2™ (¢) can be defined in terms of the Fourier transform h(w) by

00
h+(t)=2fh(a))e"i“" dw, Im@) <0, @0
0

or directly in terms of the real field 4(t) by

h(t) — iHAQ®) for real ¢,

+ 1 ha
= !
(0 _/ ( - dt’ forIm(z) <0, (22)
b4 t—1t
—00
where
1 +ooh( /)
t
Hh(t) = —p.v. !
() nPU/t_t,dt (23)
—cC

is the Hilbert transform of A ().
From the integral (21) it is seen that 2™ (¢) is analytic in the region Im(f) < 0 and is defined only for Im(z) < 0.
Also, (22) shows that the real signal A(¢) can be recovered from the analytic signal A7 (¢) through the equation

h(t) = Re(ht(r)) forrealt. (24)

One may show that if h(w) = h|(w)hy(w), then for Im(#) <0
1 1 1 1
Rt (t) = —hT @h(t) = —hT @) = —ht Qhi(t) = —hT @AT
( ) o 1 ® 2( ) o 2 ® 1( ) . 1 ® 2 (t) e 2 ®h1 (t)a (25)

where the convolution operator ® is defined by

+00

By @ ha(t) = / hi(e — Yot dt' 26)

—00

We will now investigate the decay of the analytic signal 2t (¢) at infinity in the complex ¢ plane and write
t =t + i, where both £ and t; are real and #; < 0. Assume first that #(w) = O(w") as @ — 0 and that there
exists an ¢ > O such that ~(w) = O(e™“*) as w — +o00. From Watson’s Lemma [18, p. 103], it is immediately
found that A1 (f; + ity) = O(tz_""l) as t» — —oo when ¢; is fixed. Similarly, from (18, p. 232] it is found that
bt (t +it2) = Ot ") as |t — +oo when 1, is fixed.

Let us now briefly describe the analytical wave fields that will be used as basis functions in the time-domain
expansions. As in {8], we shall employ time-domain pulsed beams that are the time-domain analogs of the frequency-
domain complex point-source fields h(w)e”“/ (4rrs), where h(w) is some frequency-domain function and s is
defined in Section 2. Since s; =Im(s) satisfies —a < s; < a, and thus becomes negative, we cannot immediately
define an analytic signal corresponding to the frequency-domain beam h(cu)eiks/ (4rs) for all ¢+ with Im(¢) <
0. The reason for this is the exponential growth of e!** occurring when s; < 0. Instead we consider the beam
field

h(w)e—kaeiks

U(X, (L)) = T, (27)
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which has an analytical time signal

ht(t — s /c —i(a/c + 5i/c))

vh(x, 1) =
(x, 1) Ans

(28)

defined for all complex times with Im(#) < 0. The pulsed beam (28), as well as its real counterpart v(x, ) =
Re(v*(x, 1)) for real t, has been described in [8, Appendix]. To illustrate the physical properties of the pulsed
beams, we consider the special case where h(w) = —e™®" with 7; > 0 for which the analytic beam is given
by

1

+ —
vT(x, 1) = dxislt —s/c —i(th +a/o)]’

(29)

Furthermore, let the normal direction of the source disk be the z direction, so that s = \/P + y? + (z — ia)? with
Re(s) > 0. The source disk is then located in the region given by the equations z = 0 and x2 4 y? < a?. With these
choices of the time function and the source disk, one finds that the analytic far-field pattern V*(X, t), defined such
that vt (x, 1) ~ V¥Y(X,t — r/c)/(4mr) as r —> 00, is given by

1

ViR = .
t1+ (1 —cosBajc— it

(30)

where 6 is the usual spherical angle. In Fig. 1 we have plotted the real far-field pattern V(X,1) = Re(VT(X, 1))
for different angles of observation. It is seen that the pulsed beam has its maximum radiation in the direction
@ = 0 (which is the normal to the source disk), and that the radiation decreases rapidly as one moves away from
6 =0.

In the following sections, we will express the time-domain field generated by time-dependent sources located in
the region r < rpip as a superposition of pulsed beams of the form (28).

20 1 T j — T
16 | | e g=0 1
-: ———— =45
2 ————-  §=00
E i ——= @=135
12 F P - =180 1
: 1
9 {
w i
(TS H A
c 8f ;
<< H
18 H
4t i .
AT
i ~.
mnme et R R R AT AT AT R SRR AN
o ey QYRS ST b=t 14 M e b & TERSL S =
1.5 1.0 -0.5 0 05 1.0 1.5
TIME

Fig. 1. The real far-field pattern of a complex pulsed beam with ¢; = 0.05a/c.
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4. Time-domain beam formulas

In this section we use the analytic Fourier transform, described in Section 3, to derive the time-domain analogs
of the first and second frequency-domain beam formulas given by (12) and (18), respectively.

4.1. First time-domain beam formula

Taking the analytic Fourier transform of the frequency-domain beam formula (12) shows that

100 n S/C)
fren =y Zf Yum (6, ¢) de ', ¢, (31)

n=0 m=-—n 16 2

where E;, is a time operator that will be determined below. This formula expresses the radiated field in terms of
pulsed beams of the form (28). For each of the pulsed beams in this expansion, the direction normal to the source disk
(which is also the main-beam direction) is given by the spherical integration variables (9’, ¢). The time function
for each of these beams is L, F,}, (t — s /c), where F,}, () is the analytic far-field expansion coefficients determined
from the analytic far-field pattern by

,,Jin(t):fFJ’(X DY, (0, $)d2(0, ¢), (32)

4

and the analytic far-field pattern F*(X,?) is defined such that f¥(x,t) ~ FT(X,t — r/c)/(4nr) as r —
oo. In"Section 4.3 it will be shown how F,\ (t) can be determined from the field on any sphere r = b with
b > rmin- - —

The analytic function L, F,}, (¢) is defined for Im(r) < a/c so that L, Fl(t— s/c) is defined for all ¢ with
Im(#) < 0 (recall that —a < Im(s) < a). In the frequency-domain, the operator L, is represented by the real
factor [g, (ka))~! with gnka) = i7" j,(ika). From [19, p. 437, Eq. (10.1.2)] it is seen that g, (ka) is a real function
that increases and is positive for all ka > 0. Moreover, g,(ka) ~ (ka)"/[1-3-5---(2n + 1)] as ka — 0 and
gn(ka) ~ ek /(2ka) as ka — .

Since F,,; (w) = O(w") as w — 0, itfollows from the results of the prev10us sectlon that F,\ (t1+1t2) O(t_" 1)
as tp — —oo for fixed 11, and since g, (ka) = O(w") as w — 0, we find that L,, m + (11 +it2) = O )as [t1] = o0
for fixed 7. "

Let us begin by deriving an expression for the operator Lg. For ka > 0 we have

1 1 ka d
_ — = 2ka e—ka Z e—2kap (33)

go(ka)  jo(ika)  sinh(ka) oy

and to get an expansion for 1/gg(ka) that is uniformly convergent for ka > 0 we note that x> e=2*? < e~2/p?
for all x > 0 and 377, e~%/p? < oo. Thus the series 3 )7, x2e~2P is uniformly convergent for x > 0.

Writing !

80 (lka) ka Z(ka)ze—ka(sz (34)

! The series Z;o:o 2kae~*a2P+D i not uniformly convergent for ka > 0. To see this note that this series approaches one as ka — 0,

whereas all of its terms approach zero as ka — 0.
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and introducing the operators 2

t
_ , b
o ]f+(t) = / f+(t ydr', 0 = Y 35)
—0C
we find that
3 +00 F ( )
~ ia__ . 0.0{®w) _.
LoF (1) =—a! /(—m))—’——e !
00FT T go(ka)
0
2% 00 +00
:la!—] Z(ar)z f e—ku(2p+1)F0’0(w)e—iwt da)
c =
0
2ia | & .
= =8 Y @) Filo(t — ia(1+2p)/c), (36)
p=0

where we have used the fact that the series is uniformly convergent for ka > 0 to interchange integration and
summation. Since (8,)2F(f ol +in) = O(t]_3 ) we may apply the operator 8,—1 to each term in (36) to get the final
expression

~ 2ia & .
LoFgfo(0) = — > 8 Fgfo(t —ia(l +2p)/c). (37)
p=0

The general asymptotic behavior Fg’ oltl +in) = O, l) as t — —oo shows that the derivative 9; cannot, in
general, be moved outside the summation in (37).
Now consider the operator L. We have

I 1 [ sin(ika) cos(ika)]™' _ ka/cosh(ka) 38)
gitka)  i~'ji(ika) ik2q? ka " 1 — tanh(ka)/ka
and since |x ! tanh x| < 1 for all x > 0 we find from (38) that
1 k &, /tanh(ka)\”
_ a Z anh(ka) 39)
g1(ka)  cosh(ka) ka

p=0
for all ka > 0. We want to write 1/g;(ka) in terms of a series that is uniformly convergent for ka > 0 so that
integration and summation can be interchanged. Begin by noting that the series Z;":O x3(x~ ! tanh(x))? converges
uniformly for x > 0 (this follows from the fact that the function x3(x~! tanh(x))? has a maximum Xp given
asymptotically by x, = 3//2p 4+ O(1/p) for p — oo and the fact that the series Z;‘;o xg(xp‘ "tanh(x,))?
converges). Writing

1 1 > 5 { tanh(ka)\?
- amika) 4
g1ka) _ (ka)? cosh(ka) p;(k") ( ka ) ’ (40)

2 The operator 9, ! can only be applied to functions A (r) that satisfy A+ (¢) = 0(:"_‘) ast — —oo for some € > 0. This condition
can also be stated as h(w) = O(wf) as w — 0. ‘
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recalling that F} ,, (w) = O(w) as w — 0, and noting that B,Z]F;fm (t1 +in) = O(tl“2) as f; - —oo we find

+0o0
o~ _ . Fim(w)
LF+1=31f— B CeTlerg
1 ],m() t J (—iw) 21 (ka) w

00 +00 2
k tanh(ka) \ ? A
z‘iat_lz ] (ka) (an ( a)) Fl,m(w)e—uot dw
p=0 0

ia cosh(ka) ka
00 oo 2
k tanh(ka) \? .
== 4 f (ha) ( an “)) Fim(@)e ™ do, @41
la = / cosh(ka) ka

where the fact that the series in (40) is uniformly convergent for ka > 0 has been used to interchange the integration
and summation. Because the Fourier integral in (41) is of order ¢, 4 as t; — —o0, one can interchange the integral
operator 8,_1 with the summation.

To compute the integral in (41) note that

(ka)? (tanh(ka))p (2sinh(ka)>” [2(ka)ﬂ+2e—’<aew+”ka}

cosh(ka) ka (ka)? eka (2 cosh(ka))Pt!
1 — e—2ka p z(ka)p+2 e—ka
B ( (ka)? ) [(1 - e-zkw“] ’ “»

where we have arranged the factors to make the series expression for the square bracket uniformly convergent for
ka > 0. For @ > 1 the series

x(x o0 )
— =Y (—Dix%e (43)
-2
l+e =0

is absolutely and uniformly convergent for x > 0. This is shown by noting that x%e™ 29 < (a/(2g))* e for all
x > 0 and that Z;io (@/(2g))® e~ converges fora > 1. The properties of the series (43) withe = (p+2)/(p+1)
and the Binomial theorem show that

2(ka)P*2 et 2(P tq+ 1) —k
e et —14 (ka)PT g kaq+l) 44
(1 + e 2ka)yp+1 l;)( Y (ka) q (44)

where (g) = p'/q!(p — q)". Since series in (43) is absolutely and uniformly convergent (and bounded) for x > 0,
it follows that the series in (44) (which is simply the series (43) raised to the power p + 1) converges uniformly and
absolutely for ka > 0. The operator L i p corresponding to the factor (44) can now be determined by integrating
term by term to get

— . p+2 oo
LiapFih ) =2 (%) 3 =1y (” +Z + 1)(3,)P+2F,fm(t —iaq + 1)/o). (45)
g=0

The second factor in the right-hand side of (42) is given by

(ﬂ)p = (ka)~?P zp:(_l)q (p)e~2kaq (46)
(ka)? = q
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and its operator is
LT R0 = (£)7 @ Z( 07 () LT Fic - 2iag o @)
With these definitions, the operator I: in (41) is given by
C 20 1 I o
Fi.(0) = ;;)a: Li2pLiypF, ). (48)

It should be noted that one cannot in general interchange the operators L:{ p and L:; p because LE »F 1+ ()
may not exist. The reason for this is that (8,_'1)‘7 F 1+ (1) does not, in general, exist for g > 1.

Having determined lz) and a we will now derive a recursion relation that expresses L’,,T,l in terms of L:l
and a simple operator G,. First note that the recursion relation [19, p. 439, Eq. (10.1.19)] for the spherical Bessel
functions shows that

2n+1

gn+1(ka) = gn-1(ka) — gn(ka). (49)

Since g,+1(ka) is positive for ka > 0, Eq. (49) gives us

: gnka) >0 (50)

2n +
8n—1(ka) >

for all ka > 0, and thus (49) shows that foralln > 1 and all ka > 0

-1 o0 p
11 [1_2n+1 gn(ka) ] _ 1 Z(2n+1 gn(ka) ) , 51
gn+1(ka)  gn—i(ka) ka  gn_1(ka) gn-1ka) =\ ka gn-i(ka)

where we have used that fact that

2n+1 gp(ka)

———— <1 forka > 0.
ka gn—1(ka)

We will prove that the series in the expression

1 2 1 k P
L _ 2 3 (k) ( nt M) (52)
gnt1(ka)  (ka)’gn—i(ka) 7= ka  gn-1(ka)
converges uniformly for ka > 0. To do this note that
2n+1 gn(x) -1 gnt1(x) 1 — dpiy (), (53)

X gno1(x)  gaoi(x)

where dj,41(x) has the following properties: dp+1(0) = 0,0 < dp41(x) < 1 forall x > 0, dy1(x) ~ xz/[(2n +
D@n+3)]asx — 0,and &’ p1(x) > 0 forall x > 0. Uniform convergence of the series in (52) can now be
investigated by considering the series Z p=0% 31 - dp+1(x))P. The funcnon x3(1 — dy+1(x))? has one and only
one maximum (denoted by x,) which satisfies 3(1 — dp+1(xp)) — pxpd +1 (xp) = 0. This equation for x,, and the
properties of d, 1 (x) imply thatx, — Oas p — oo. Inserting a power series expansion for dy, 1| (x) into the equation
for xp, shows that x, ~ /3(2n + 1)(2n + 3)/(2p) + O(1/p) as p — oo. The series Z —0%p 31 = dn1(xp)?
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converges and consequently the series in (52) is uniformly convergent for ka > 0. Since Forim(w) = O(w™t1) as
w — O we find that

+00

Fn+lm(w)_
Lot Ffy )= | 2Hbm @ pmior g,
it Frgrm 0= /gn+.(ka)

N +00
_ (N ingen -
= ()" @y Ln_.pz_j/wa)% "
0

8 (Zn—l-l gnka)
ka g,-i(ka)

p .
) Fat1m(@)e™™ do, (54)

where ng > 2 can be chosen arbitrarily. The restriction that ng > 2 ensures that (ka)"0 ™" Foiimw) = O(a)3) as
w — 0.

To obtain the final operator expression for 1/g,41(ka) we need the operator expression for g, (ka). Note
that

gn(ka) = i[hg”(ika) + h? (ika)]

1/2,
= (-iw) - ‘Z(é;//)pﬁ)[( 1P & 4 (— 1)) iy~ (55)

where (n + 1/2, p) = (n+ p)!/[p'(n — p)']. Since g,(ka) = O(w") as w —> 0, the summation in (55) is of order
w*"t1 as @ — 0. This shows that the operator for g, (ka) is given by

~ +1/2,
GnF ) @ =" "Hz(é //)pﬁ)( D" TPI(=DPF,, (¢ +ia/c)

+(—1)"+1Frf+1m (t —ia/c)]. (56)

Even though G, f7(?) is defined only for Im(r) < —a/c, the function L,1Gyr fT(t) is defined for all ¢ with
Im(¢) < O because g,_1(ka) ~ eka /(2ka). From (54) one can now obtain the final expression

L — 2 o 2n41__, ~ ~\?
Lot = @7 L, Y (@)™ ( e O ‘L,,+|Gn) : (57)
=0

where n > 1 and ng is an arbitrary integer satisfying ng > 2. For n > 1 one may choose ny = n and thereby
simplify the expression (57).

In summary, the operators Lo and L1 are given by (37) and (45), respectively; and the operator Ln+ 1 withn > 1
is given recursively by (57). Now that these operators are determined, the field radiated by the source region can be
computed from (31) in terms of pulsed beams.

In this section it has been assumed that the field outside the source region satisfies f(x, w) — f1(x) asw — 0,
where f](x) is a frequency-independent function. This rather general assumption made it necessary to be care-
ful when interchanging operators, sumnmations, and integrations. If instead the field satisfies the more restrictive
condition that f(x, w) = 0 for lw| < wp and f(x,w) = O(e™¥%) as w — 400 with « > 0, the derivations
would be significantly simpler. In this case, all the frequency-domain summations would be uniformly conver-
gent for ka > 0 because the problematic point @ = 0 would be avoided. The time-domain field would satisfy
fr&x, 1 +in) = Oe™!2ly as 1, — —oo and the decay of the analytic expansion coefficients F;l,, () + if2)
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would be exponential for r — —o0o. Thus, operators and summations could be interchanged in the expressions
(37), (48), and (57). For example, when the field satisfies this more restrictive frequency-dependence one can move
the operator 9; in (37) outside the summation.

The simple case where F),,,, = 0 for (n, m) # (0, 0) was considered by Heyman [8] and corresponds to the source
region consisting of one single point source located at the origin of the coordinate system. Choosing Fy o(w) =
VAmh(w) such that f(x, w) = h(w)e* /(4rr), Eq. (31) becomes

_hT(t—r/c)  ia Z / ht(t —s/c —ia(1 +2p)/c)

+ ! ’
froen = 4rr ~ 2ne 4rs 42’ &), (58)

which is identical to Heyman’s result [8, Egs. (11)—(13)]. 3

4.2. Second time-domain beam formula

The second time-domain beam formula, which is much simpler than the first time-domain beam f formula is

obtained by takmg the analytic Fourier transform of (18). Before doing this we note that the operator P%, in (15) is
of order ™" as w — 0. Since Fy,,,(w) = O(w") as w — 0, it follows that (8’1)" r, (1) exists and P,{m F,j,‘n (t) is

well defined (the operator 8,_1 is given by (35)). We can now take the analytic Founer transform of (18) to get the
time-domain beam formula

Fran = f S/ ) 406", ¢), (59)

—0 m——n

where Lg is the time operator given by (37), and I”Z; is the time-domain analog of 13;“’;, given by

~  [2n41(—m)!
Pl = ”4;: %T'%cm(a;‘ax+ia,—lay)'"P,f'")(—ca,—‘az), m > 0. (60)

For m < 0 the operator P,{ can be determined from P,{ = (—1)'"1/’,‘?;,*.

Formula (59) expresses the radiated field in terms of analytic time-domain multipole fields, which are obtained
by taking spatial and time derivatives of the pulsed beams in (28). For each of the pulsed beams in this expansion,
the direction normal to the source disk is given by the spherical integration variables (6', ¢’). The analytic far-field
expansion coefficients Fntn () are determined from the analytic far-field pattern by (32). Some of the multipole fields
in (59) have been discussed by Heyman and Beracha [20]. For the special case where Fj,, = 0 for (n, m) # (0, 0)
expression (59) reduces to (58), and is thus in agreement with Heyman [8].

4.3. Expansion coefficients in terms of the field on a sphere r = b

The time-domain beam formulas (31) and (59) express the field outside the minimum sphere in terms of the
analytic far-field expansion coefficients F, (t). To get beam formulas that express the field in terms of the analytic
expansion coefficients f,}, (b, 1), which are determined from the analytic field on the sphere r = b, we shall express

+ (¢) in terms of £, (b, 1).

3 The length b in Heyman’s paper [8] is given in terms of our a by the equation b =
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Begin by noting that the frequency spectrum h(w) of any real function 4(¢) satisfies A*(—w) = h(w) for all

real w. This relation is satisfied by the factor 47i™"~ ! /1kh f,]) (kb)] occurring in the frequency-domain formula (9).
Consequently, the convolution rule (25) for analytic fields shows that

I +00
F,:;l(t)zi—;ffn*,'n(b,t—t')P,l(b,t')dt’, (61)
—oc

where P, (b, t) is the real (not analytic) time-domain function

+oc

P ) Ll T
Potb, 1) = / Dot g, (62)
kD (kb

which is defined only for real ¢.
The integral in (62) can be calculated by the use of contour integration in the complex w plane, and it can be
expressed in terms of residues as [6, Eq. (12)]

2 n —iwpgt
Pa(b,1) = 87 |:5(t +b/e) = (=)' g ult + /)Y —%f—] , 63)
b g=1 Wnghn* (Wngb/c)

where u(z) is the unit step function given by u(t) = 0 fort < 0 and u(t) = 1 for ¢+ > 0. The constants wy, are the

zeros of the function hﬁ,l](bwnq /c). It can be shown that hf,l)(z) has n simple zeros located symmetrically around
the imaginary axis in the half plane Im(z) < 0 inside the circle |z| = n [21]. An asymptotic formula that determines
these zeros for large n is presented in [22]. One may use the symmetry of the zeros wp, to show directly that the
right-hand side of (63) indeed is real.

Inserting expression (63) for P, (b, t) into the convolution integral (61) gives

+00
2 n + Np—iwngt’
c b,t —t)e '
F,f,,,(t):étnbf,,fn(b,t—l—b/c)—47r(—i)”;E:/ Jm iy )
=1y Wnghn* (bwng/c)

dr’, (64)

which may in turn be inserted into (31) and (59) to get beam formulas that express the field for r > rpy;, in terms
of its values on the sphere r = b.

5. Conclusion

In this paper we have presented new exact expansions of fields generated by sources in a finite region of space.
We started by presenting two frequency-domain expansions. One of these uses Deschamps’ complex points-source
fields as basis functions. The other employs as basis functions multipoles obtained by applying Wittmann’s operator
for the spherical harmonics [15] to Deschamps’ complex point-source fields.

Two time-domain expansions were then obtained by applying the analytic Fourier transform to each of the
frequency-domain expansions. These time-domain expansions express the field of the source region in terms of
pulsed beams.

For all expansions the basis functions are directionally localized and the expansion coefficients are obtained from
the values of the field on a sphere, e.g., the far-field sphere. These new expansions can be useful for analyzing time-
harmonic as well as transient radiation generated by a general source in an inhomogeneous medium. Numerical
implementation of the time-domain beam formulas still has to be performed to investigate their usefulness.
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