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The complete solution is derived for an acoustic plane wave incident on a membrane
which is stretched over a line constraint, forming a wedge shaped fluid region of inte-
rior angle 2®. The exact two-dimensional solution is developed using Malyuzhinets
functions and integral transforms. Explicit formulae are presented for the acoustic
and structural diffraction coefficients for ¢ > 7/2 and numerical results are given for
the frequency and angular dependence of the membrane wave excitation coefficients
for identical membranes on either side of the vertex.

1. Introduction

Sound diffraction by edges of elastic structures immersed in an acoustic medium is
an important and challenging problem that has received considerable attention from
acousticians for the last four decades, starting with the papers by Malyuzhinets
(1958a) and Lamb (1959) on the diffraction by a thin elastic half-plane. In the case
of rectangular geometries (half-planes and their junctions at right angles) the prob-
lem has been exhaustively studied by applying the Wiener—-Hopf mathematical tech-
nique (relevant references can be found, for example, in Norris & Wickham (1995)).
The solution of similar problems for arbitrary angle geometry requires distinctly
different approaches which utilize other integral transforms such as Sommerfeld—
Malyuzhinets (Malyuzhinets 1955a, b, 1958, ¢, 1960; Williams 1959), Laplace (Senior
1959), or Kontorovich-Lebedev (Lebedev & Skalskaya 1962; Abrahams 1986, 1987).
Malyuzhinets’s technique proved to be the most convenient since it enables treating
with equal facility the diffraction by both rectangular (Malyuzhinets 1958a, 1971;
Malyuzhinets & Tuzhilin 1970) and arbitrarily angled structures (Tuzhilin 1973).

A closed form analytical solution to the particular case of the acoustic diffraction
by a fluid wedge with two plane elastic boundaries has been presented in Osipov
(1993). The general solution to the related class of boundary contact problems in-
volving the two-dimensional Helmholtz equation in a wedge shaped region supple-
mented with higher order boundary conditions has been given in Osipov (1994). The
procedure modifies Malyuzhinets’s method so as to allow for arbitrary polynomial
expressions as symbols of the boundary condition operators or, what is the same,
each problem-specific distribution of the associated Brewster angles in the complex
plane. A recent paper by Abrahams & Lawrie (1995) gives a theoretical treatment
of membrane waves at a corner of arbitrary angle based upon another extension of
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the Malyuzhinets technique. Their ansatz may be viewed as Osipov’s general solu-
tion for the particular case of third order boundary conditions in which all complex
Brewster angles have positive real parts analytically continued to the case of a real
membrane in which one of the three associated Brewster angles has its real part neg-
ative. Unfortunately, this leads to unphysical behaviour of the solution as a function
of the incidence angle since such a procedure adds a forbidden pole to this function,
resulting therefore in an unbounded response of the system at a particular value of
the incidence angle.

In this paper we study the diffraction of a time harmonic plane sound wave in
a wedge shaped fluid region bounded by a pair of plane membranes on which the
acoustic pressure is subject to third order boundary conditions. Based on the mod-
ified Malyuzhinets method (Osipov 1993, 1994), an accurate solution in the form
of a Sommerfeld integral is deduced and investigated analytically in the far-field by
applying the saddle point method, and also numerically, thereby demonstrating the
physical and practical validity of the solution. A similar problem for an angular joint
of thin elastic plates modelled by conventional fifth order boundary conditions is
analysed in Osipov (1997) and Norris & Osipov (1997).

2. Basic equations

The equations of motion and continuity for a membrane with fluid on one side are

0w 0w 0w Op

T ~™ae P @~ on (21)
Here, w is the displacement into the fluid, p is the acoustic pressure at the membrane
surface, 0/0s, 0/0n denote the tangential and normal derivatives with respect to the
membrane surface, and m, T, and p are the membrane density, membrane tension,
and the fluid density. We are interested in the time harmonic acoustic pressure field
p = p(r, d)e~“* satisfying (2.1) on the faces of a wedge and the Helmholtz equation
outside the wedge,

Vp+k*p=0, 0<r<oo, —-b<p<&, (2.2)
where k = w/c is the acoustic wave number. The incident field is supposed to be

pi(r, ¢, do) = Py exp (—ikr cos (¢ — o)), (2.3)

which represents a plane wave for ¢y € [—®, @] and a subsonic membrane surface
wave travelling inwards on ¢ = +& for the incident angle ¢y = +& F 63, where the
complex Brewster angles 85 are defined below. The incident wave and the membrane
are depicted in figure 1. Following Osipov (1994) we consider the boundary value
problem for p(r, ¢), which satisfies the Helmholtz equation (2.2) and the higher order
boundary conditions

0 190
—, == =0 0 =+, 24

‘Ci <6T’T8¢>p(r,¢) ) <r <o, ¢ ( )
where £ are differential operators by which the material properties of the boundaries
are being modelled. For the membrane, we have

o 190 M2 92\ 10
Lx (a’;%) = Fos (”?w 7o b 25)
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Figure 1. The membrane geometry.

ad T (o)

Figure 2. The integration contours.

where a = m/p is a length and M = ¢,,/c, where ¢,, = y/T/m is the membrane
wave speed. In general, these parameters may be different for each face of the wedge,
so we denote them as a4, M., where + signs correspond to the left (¢ = &) and
right (¢ = — @) faces, respectively.

The problem is defined by equations (2.2) in the fluid, (2.3) at infinity, (2.4), (2.5)
on the wedge faces, and the conditions at the tip » = 0, which we assume to be
pinned, implying that w vanishes there, or

10p
lim - — =
'rlir(l) T 3¢
The method developed here is also applicable to other edge conditions. A brief
discussion of this is given in the conclusion.

0, ¢=:=+0. (2.6)

3. General solution

(a) Field representation and functional equations

We seek the solution to the boundary value problem of (2.2) through (2.6) in the
form of a Sommerfeld integral

p(r9) = 22 / ekreoseg(a 4+ ¢) dov. (3.1)

2mi o
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Figure 2 depicts the integration contour v = 4 Uvy_, where 7, is a loop in the upper
half of the complex a-plane, beginning at 7/2 + ico, ending at —37/2 + ico, with
Im « lying above a well defined minimum, which we determine later. The contour v_
is the image of v, under inversion about the origin o = 0. Thus,

p38) = 5% [ eH(S(a+9) - S(-a+ ) da. (32)
Tl Y+

The ‘transform’ S(«) which is sought should be a meromorphic function of a complex

variable «, have a single pole with a unit residue at a point a = ¢ in the strip

IIy = {a : |Rea| < 9} to reproduce the incident field (2.3), and be bounded when

Im o — too satisfying the condition

|S(a+ ¢) — S(£o0)| — 0,
uniformly in ¢, to ensure the boundedness and continuity of the acoustic pressure
p(r, ¢) at the tip r = 0. Note that because of (3.2) the integral (3.1) is invariant under

the transformation S(a) — S(«) + const. Choosing appropriately this constant we
can set, without loss of generality,

S(ioco) = —S(—io0), (3.3)
which will be assumed hereinafter.
Inserting (3.1) into the boundary conditions (2.4) leads to a pair of integral iden-
tities
/e_ik”"wLi(a)S(a + &)da =0, 0<r<oo, (3.4)
Y

where the functions Ly (a) = L4 (—ik cos a, —ik sin ) will be referred to as ‘symbols’
of the boundary condition operators. From (2.5) we have

Li(a) = +ikay sina(l — M3 cos® @) — 1. (3.5)

For the class of functions prescribed above the integrands in (3.4) must be analytic in-
side the loops 7. ; as a consequence of this and Malyuzhinets’s theorem (Malyuzhinets
1958b), the integral equations (3.4) can be replaced by a set of functional equations
Nt
Li(a)S(a+ &) — Ly(-a)S(—a+ &) =2sina »_ C¥cos" ' a, (3.6)
n=1
with arbitrary constants C*, n = 1,2,... Ni. The orders of the trigonometric poly-
nomials in the right member of (3.6) are determined by the behaviour of the func-
tions L (a)S(a+ @) at infinity. In the case considered, because of the equation (3.5)
and the boundedness of S(+00), the terms in the left part of (3.6) may not grow
faster than O(|sina cos? a|) as Ima — +00, and that means Ny < 3. Then putting
Ima = oo in (3.6), we arrive at the relations

C§ = Flikay M2 (S(+ico) 4+ S(—ic0)),
which owing to (3.3) give
ct=o.
Thus, in accordance with general theory (Osipov 1994), satisfaction of the boundary
conditions (2.4), (2.5) reduces the problem to a system of functional equations (3.6)

with four arbitrary constants C:¥, n = 1,2, which are to be specified so as to meet
the other conditions.
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(b) The auziliary function V()

In order to solve the coupled functional equations (3.6) we follow the procedure
originally proposed by Malyuzhinets (1958¢). It consists in transforming the initial
system of functional equations (3.6) with variable coefficients L. () to that with
constant ones by substitution

S(a) = ¥(a)S(w), (3.7)

where S(a) denotes a new unknown function. The function ¥(a) is an auxiliary
function which is supposed to be a particular solution of the homogeneous system

Li(a)¥(a£ ®)—Li(—a)¥(—a+ &) =0. (3.8)
With this substitution, the functional equations (3.6) become
S(a+ &) — S(—a+ &) = fi(a), (3.9)
where
_ 2 sin o -1
fe(a) = STICET Z C# cos" ! a. (3.10)

A partial solution to (3.8), regular and free of zeros in the strip Iy, can be con-
structed by introducing its logarithmic derivative Y (a)) = ¥/(«)/ ¥(«). This satisfies
a pair of difference equations with constant coefficients

Y(a+ &) +Y(~a+ &)= giz; (3.11)
where
Ri(a) = _Li(Fa) _ ikay(l — ME cos®a)sina +1 (3.12)

Li(+a)  ikas(l — M3 cos?a)sina — 1
is the acoustic reflection coefficient for an infinite planar membrane with fluid on one

side. The solution of the difference equations in (3.11), regular in IIy, is deduced via
the modified Fourier transformation

ico . 1 ico .
Y(a) = / re)dt, () =5 / deY(a)da,  (3.13)
which differs from the conventional one only by a change of variables. This procedure
reduces (3.11) to an algebraic problem for the Fourier transform 7(t)

27 Ry(a)
whose solution, on inverse Fourier transformatlon, takes the form of a product of
special Malyuzhinets functions 9 ¢(a) (Osipov 1994),

V() = ¥y () ¥-(a),

i(a) = [[Wolat &+ Ir— s205)po(a + & — Ln + s26%))%, (3.15)

n=1

(3.14)

where s = sgn(Re6), which will be verified later. Notice that the function ¥(a)
above is free both of poles and zeros in the strip Il whether the real parts of 8% are
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positive or not, and this is in contrast to what is used by Abrahams & Lawrie (1995)

where the only precaution taken is to make this function free of poles in this strip.

As it will be evident from the analytical form of the solution (see equation (4.24)),

any zero of ¥(«) in that portion of the complex a-plane will produce a pole of the

solution at a point ¢o located inside the strip | Re ¢o| < &, thereby introducing an

unphysical singularity of the wave field for a particular value of the incidence angle.
The parameters 6, n = 1,2,3, are complex numbers defined by

Li(F6%) =0, Re6F € (—1im, im), (3.16)

and so because of (3.12) they can be interpreted as Brewster angles for the bound-
aries, that is, grazing angles at which an incident plane wave does not produce a
reflected one.

The function 1¢(a) originally introduced in Malyuzhinets (1958c¢) is an even and
meromorphic function of a complex variable a, which may be represented as (Zavad-
skii & Sakharova 1967; Osipov 1990a)

B 1 [t cosh(ta) — 1
Yola) = exp (_5/0 t cosh(tm/2) sinh(2tP) dt)’ (3:17)

if |[Rea| < /2 + 2@. It may be continued outside this strip by using its functional
properties (Malyuzhinets 1958¢):

Yo(a+29) a w
Va(a = 20) = cot (2 + 4) , (3.18)
T
Yola+ impsla—im) = g5 (m)cos (15, (3.19)
Yo(a+ S)pa(a— B) = P3(P)Pas(a). (3.20)
As a function of the complex variable «, at a set of points
a = taum, O = 37(2m — 1) + 26(2n — 1), (3.21)

n=1,2,3,..., ¥¢(a) has its zeros for m = 1,3, 5, ... and its poles for m = 2,4,6,.. ..
If & = nm/(4m) with m and n integer, ¥s(a) can be expressed through trigonometric

functions
L cos(La(g,1)) (-1
Yrrfam(@ ‘HH<cos<a/2n+ Tala,l >>) | (3:22)

g=11=1

for odd values of n, and

m

n (—1)! [e(@b+a/n
Y jam (00) = H Hexp( / ucotudu), (3.23)

g=11=1 (@)

for even n, where

n m

1 /21-1 2¢-1
a(gq,l) = §7r( _ A )

The representatlon (3.15) for the auxiliary function ¥(«) depends on the param-
eters s identifying the signs of real parts of 6, n = 1,2,3. To determine them, we
cons1der two related functions

Fe(X)=M2X34+ (1 - M3)X —i/kas, (3.24)
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whose roots X*, n = 1,2,3, are associated with the Brewster angles by the formula:
X* =sinf%. Solving the equation Fy(XF) = 0 gives

2 /1— M3
Xt = iﬁ . £ sin B, (3.25)
where

gt = —im =By, m—0By, By, ifM:i<l,
" ﬂ(:)ta %W_ﬁoi) —%F—ﬂg:, if]\4'2|:>1’

k 3v3M

. +y _ vk _ +

Sln(3ﬁ0 ) = ?, k]iai = '2‘(-1—_’M—i)373

For real and positive values of My, ay and k, the related function Fy(X) has ei-
ther three completely 1mag1nary roots when 0 < My <1 and 0 < k+ < k, or one
completely 1mag1nary root X and two complex ones X3 3 such that Re X3
~Re X5 > 0,Im X§ = Im X5 > 0, otherwise. The imaginary roots #3 have Im 7 <

0 and correspond to a subsonic structural wave which propagates unattenuated along
each membrane and decays exponentially into the fluid.

The analytical procedure which i 1s used here requires removing the ambiguity con-
cerning the values of parameters s if Re X = 0. To do this, we introduce a small
amount of dissipation in the membrane by giving the membrane tension 73 a small
negative imaginary part, thus shlftmg these roots from the imaginary axis in the
complex X-plane to get Re X1 5 >0, ReX$ < 0. In consequence of this, we have
Re6’fc3 € (0,7/2), Rebf € (—7/2,0) and the signs of the real parts of the 6E are
given by

sf=(-1)"Y n=123, (3.26)
thereby specifying the analytical form of the auxiliary function

7 () U5 (o) ¥y (@) ¥5 ()

A S N A (3.27)
V() =Ye(at &+ 37+ (—1)"0)ps(a+ & — 3w — (—1)"6;). (3.28)
To check this representatlon, one can express the symbols Ly («) as products
Li(a) = +ikas M2 (sin o + sin 03 (sin o = sin 65 ) (sin a + sin 6F), (3.29)
and rewrite equations (3.8) for ¥(a) as
U(a+ P)  (—sina+sinbi)(—sina £ sindy)(—sina + sin b7) (3.30)

U(—a+ @)  (sina+sinbF)(sina =+ sin63)(sin a + sin 05)

It follows from the functional properties of the function ¥4 () (see equation (3.18))
that

VieF ) _,
vE(—ax o)

and
VE(a+ @) _ Fsina— (=1)"sinf;
VE(—a+t P) Lsina—(—1)"sinbi’
leading to the equation (3.30) if account is taken of the analytical form of ¥(«) in

n=17273,
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(3.27). The lack of zeros and poles of ¥(«) in the strip II, results from (3.21) and
(3.26). Thus, on the assumption that the Brewster angles 6% are distributed accord-
ing to (3.26), the derived representation (3.27) completely determines the auxiliary
function ¥(a). In particular, when Im o — oo, due to the asymptotic properties of
the Malyuzhinets function (Malyuzhinets 1958¢; Osipov 1990a)

1 . T
Yo(a) = ﬁ%(%ﬁ) exp(—zipasgn(Ima))(1+0(1), p= 5z, (3.31)
the auxiliary function behaves as
U(a) = 395 (5m) exp(—ipasgn(Ima))(1 + o(1)). (3.32)
Finally, the maximum value of | Im(6)| must lie beneath the Sommerfeld contour

Y+

(¢) General solution of the functional equations

Consider the system (3.9). Its general solution, as with all linear non-homogeneous
equations, consists of a particular solution of the non-homogeneous system plus a
general solution of the corresponding homogeneous one. The particular solution of
(3.9) can be deduced by a Fourier transformation (3.13) to have the form

Ale) = A4 (@) + A-(a), (3.33)

where
1 [ ™
—F— T & ) .

As(0) =Fgg [ tan(fglat 8+ 9)) fu()dp
The construction of the functions A4 («) is essentially based on the fact that fi(«) are
odd and integrable functions of their argument when « € iR, because of (3.5), (3.8),
(3.10), and (3.32). We omit the corresponding mathematics since the correctness
of the representation (3.33) can be verified immediately by substitution into the
functional equations (3.9). For Im o — +00, the function A(«) vanishes in accordance
with the asymptotic estimate

A@) = ggee [ G + LB +o), (330

which results from (3.33) on accounting for
tan (%(a +4+ 45)) = +i(1 — 2eFHethED) | (3.35)

Moreover, due to convergence of the integrals (3.33) for a € IIy, the function A(a)
is regular in the strip Il and has no poles there.

In order to obtain the required singularity of the transform S(a), i.e. a simple
pole with unit residue at the single point & = ¢ in the strip IIy, it is necessary to
introduce a function (Malyuzhinets 1958¢)

1 cos(peo)
) = = : ; 3.36
7(2:90) = Gl — sin(do) (3:36)
which is a meromorphic solution of the homogeneous system
ola+x &,¢9) —o(—a+x D,¢0) =0. (3.37)
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Multiplying this by the constant ¥(¢o)~!, and adding it to A(a) gives the general
solution of the system of functional equations (3.9) as follows,

Q U(Qa ¢0)
S(a) = + A(a), 3.38
(@) = T+ A@) (338)
which is regular in I except at the point o = ¢g, and
S(a) = O(e*™**) as Ima — o0, (3.39)

owing to (3.34) and (3.36).
In terms of the transform S(«) this yields

S(a) = ¥(a < lp‘z fo +ZC+A+ )+ZC;A;(a)>, (3.40)

where

I e T sin Bcos™ 1 3
AE(a) = Fo /_ioo tan (E(a—l—ﬂ:{: 95)) IMGIICET) dg. (3.41)

In evaluating (3.41) we can relieve ourselves of having to use non-zero values of Re
by letting the small amount of dissipation introduced in T3 tend to zero such that
Im Ty 10, thereby obtaining the rules of bypassing the singularities of L1'(3) when
integrating over the imaginary axis. The range of integration can also be reduced
using (3.8), giving

) sin 05 cos™ 1 0

(sin(ua) F cos(uby)) Ly (F6Y) ¥ (F65 + @)

1 oo wsin(uB) sin Bcos™ ! 3
+5P ), ) sk LTS

T

where the principal value integral is over the simple pole at § = —6F. A similar
principal value contribution also occurs at § = Gi when 0 < My <1 and 0< ki <k
The integrals in (3.41) and (3.42) converge absolutely for |Im 3| — oo due to (3.5)
and (3.32). Equations (3.40) and (3.41) define a meromorphic function S(a) of the
complex argument « that is analytical in the strip Iy, apart from a point o = ¢ at
which it possesses a unit residue reproducing the incident field (2.3). As Im o — 00,
the function S(a), because of (3.32), (3.39), remains bounded,

A% (0) =

ag,  (3.42)

S(cioo) = FLigs (n/2) (““’S(“%) w5 [ E+0) dﬁ)- (3.43)

(o)
At the same time the limit of the Sommerfeld integral (Malyuzhinets 1960) implies
lin%)p(r, ¢) = 1Py(S(ico) — S(—ioc0)), : (3.44)

which means that the solution obtained provides an unambiguous limit for the acous-
tic pressure at r = 0, independent of the direction along which the observation point
approaches the tip.

We refer to S(a) given by (3.40) as the general solution of the functional equations,
since it contains four arbitrary constants CE, n = 1,2, satisfies (3.6) together with
the regularity condition (3.43) and demonstrates the prescribed singularity at a point
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a = ¢g, regardless of the values of these constants. In the next section we show that
the constants C¥ can be determined from contact conditions at the tip (2.6) plus
more refined conditions at infinity implying the correct behaviour of the scattered
field for r — o0.

4. Determination of constants

(a) Conditions at infinity

Consider the behaviour of the Sommerfeld integral (3.1) when r — oo. To this
end, we deform the contour 7y into a pair of contours I'.(£7), one of which goes from
m—e-+ioco through a = 7 to mw+¢&—ioo, whereas the other is symmetric to it about the
origin o = 0 (figure 2). Assuming that € is positive and arbitrarily small, one finds
that these contours belong totally to those portions of the complex a-plane (hatched
in figure 2) in which Imcosa < 0 (hereinafter labelled I7~). For this reason, any
integral with Sommerfeld’s kernel exp(—ikr cos ) taken over the contours I';(£)
vanishes as r — oo.

In the course of deforming <, certain poles of the integrand S(a + ¢) may be
captured which fall within the area enclosed by contours -+ at the top and bottom,
and by I'.(£7) at the left and right (this area, essential to the following, is designated
as I1°%). If among the captured poles were those located inside the regions where
Imcosa > 0 (we denote these parts of the complex a-plane as II't and have left
them blank in figure 2), then the residues at such poles would grow exponentially
with r — oo, giving rise to unphysical behaviour of the scattered field at infinity.
Thus, poles of such a type (named in Osipov (1994) as ‘forbidden’ poles) violate
conditions at r = +00 and must be removed from the solution.

Let us discuss singularities of the general solution S(a + ¢) given by (3.40). For
the function o(a + ¢, ¢), they are

450,
o =—¢+ bo+45 . (4.1)
26 — o+ 45D,

7 =0,£1,%2,..., among which the pole o = —¢ + ¢ corresponds to the incident
field from the construction of the general solution. The residues at these poles

W(aj + ¢) COS(N¢0) e~ ikrcosa;
¥ (o) cos(u(a; + ) ’

do not include the constants C¥ and coincide both in phase and in amplitude with
geometrical acoustics waves (Osipov 1990b). Hence, all the poles of o(a, ¢g) are
allowable from the physical point of view.

Singularities of the auxiliary function ¥(a + ¢) involving zeros of Wit (a + ¢) and
poles of ¥i%(a+ ¢) can be found from (3.21), (3.28) as follows:

pi(r,4) = Py (4.2)

—0 —7/2+ 6] + anm,
-0+ 7/2 -0 £ anm,
S —7/2+ 07 £ onm,
®+7/2 -0 + anm,

a=—-¢+ (4.3)
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g=1,3, m=2,4,6,..., and
—Q—ﬂ'/2—0;ianm,
— &+ 7/2+ 605 £ anm,
ds_ﬁ/z_ez_ianma

a=—¢+ (4.4)

m = 1,3,5,..., n = 1,2,3,... Simple estimates show that all the poles associated
with m > 3 in (4.3), (4.4) lie outside the strip II***, so we may restrict ourselves to
m = 1,2. Furthermore, one can verify that none of the poles (4.3) falls within I7°%*
because of Re O;t >0, ¢ = 1,3. As a consequence of this, we arrive at the conclusion:
no poles from families (4.3), (4 4) other than those with m = 1 can be captured in the
aforementioned contour deformation. Assuming Im 02 > 0 implies that among them
the forbidden poles which are shared by II® and II* are as follows: o = —¢ + a
where

0 +®+4(n-1)9, p=1,
0f —306—4(n—-1)d, p=2,
a;nz 2_ (n—=1) p (4.5)
6, — P —4(n—-1)P, p=3,
4

—0; +38+4(n—1)®, p

n =1,2,...,N,, with N, depending on the values of Re 05, ¢ and &. Other poles
of (4.3), (4.4) belonging to I1°° N I~ produce the residues of the integral (3.1) that
vanish when r — 0o, thus being consistent with the conditions at infinity.

Equations (4.1), (4.3), (4.4) cover all the singularities of S(a + ¢) given by (3.40).
To prove this, we have to show that the function A(a) does not add any new poles
to S(a) differing from those of ¥(a) and o(a, ¢o). Let us compare the analytical
properties of ¥(a) and 2(a) = ¥(a)A(e). By their construction, both are regular
solutions in IIy to the functional equations (3.8) and

)

2
Li(@)R(a+ &) — Li(—a)R(—a+ &) =2sina Y Cicos"'a,  (4.6)
n=1
respectively. By virtue of these equations being regarded as functional relations they
can be continued outside IIy. For example, these functions in the strips 7y, = {a:
@ < Re(*a) < 39} are related to themselves in IIy by the formulas

!p(a) _ Li(—a + @)

U(—a+28), ac i, 4.7
Li(a:FQ) ( ) +1 ( )

Li(—a + @)
Li(a F @)

251n 2sin(a ¥ 2) z:C’i cos™}( P), a€ Il;. (4.8)

2(a) = N(—a+29)

L:i:(a Fo

Since the functions ¥(—a £ 29), Q(—a + 29) are regular if a € II;;, singularities
of ¥(a), 2(c) in the strips II; must be at the points coinciding with zeros of
L (a¥F ®). Similarly, one can compare singularities of ¥(«) and £2(«) in any portion
of the complex a-plane, and check that their poles are located at the same points
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given by equations (4.3), (4.4) (though the residues may be different). This means
that despite its being a meromorphic function (outside IIy), A(«) has the poles which
are necessarily compensated by zeros of ¥(a) when multiplied by it, and therefore
does not contribute to singularities of the transform S(a).

Thus, to guarantee the correct behaviour of the integral (3.1) as r — 400 we have
to cancel the residues of its transform S(«a) at the forbidden poles (4.5) by equating

U(a;fmv ¢0)

¥(¢o)

For m > @ > ©/2, it follows from (4.5) that N; =1, N =0, N3 =1, Ny = 0 and
only two poles a = of; — ¢ and a = af; — ¢ of S(a + ¢) can lay in the forbidden
area II' = IT®° N II*; correspondingly, the system (4.9) consists of two algebraic
equations for the constants CZ, m = 1,2. If & < /2, then further poles from (4.5)
can enter ITf. However, it can be shown (Osipov 1997) that no additional equations
arise if the algebraic system (4.9) is satisfied for af, and of;. To put this another
way, once the constants CZ are obtained from the two equations (4.9) in the case
¢ € [r/2,n] for p=1,n=1 and p = 3,n = 1 they ensure that the residues of S(«)
at other poles with different values of p and n are nullified, thus providing the correct
behaviour of the solution at infinity for arbitrary values of @, including values from
the interval (0,7/2]. From the mathematical viewpoint this is a consequence of the
analyticity of the solution of the general boundary value problem (2.2)—(2.6) as a
function of a parameter @, i.e. a solution which is true for a non-zero interval of @
can be uniquely extended by analytical continuation from the initial interval to all
admissible values of the parameter.

Therefore, the conditions at infinity (2.3) are satisfied by the Sommerfeld integral
(3.1) with its integrand given by (3.40) if the four constants C*, n = 1,2, are chosen
so as to solve two linear algebraic equations resulting from (4.9) for n» = 1 and
p = 1,3. We reserve two upper rows for these equations in a complete system of
equations which is to be formulated to determine the constants:

+ Aal,) =0, n=12,...,N,, p=1,234. (4.9)

Ef, Ef, By Ep (ohy o
Ejy, By By Ep [ | CF |_| o (4.10)
B3, E3; B3 Ex Cr g3
Efi E, By Ep Cy 94
From (4.9) we have
COS COSs
= u.cos (o) o 1 cos(figo) (411)

(o) (cos(ub3 ) — sin(uuo))’ ~ W(go)(cos(ub; ) + sin(ugho))

To write down the elements of matrix E, it is necessary to continue the function
A(a) outside the strip Iy because the points a = af; — ¢, @ = af; — ¢ do not reside
in ITy. For instance, of, € I, of, € II_; if & > 7/4 and, consequently, based on
(4.7), (4.8), A(a) can be found from the relations

2sin(a F 9)
Li(—at d)¥(—a+2d)

Ale) = A(-a£29)+ (CE+C5 cos(aF @),  a€lly,
(4.12)
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which result from the functional equations (3.9) satisfied by A(c), and give
25sin 63 cos™ ! 0F

L (63)¥(2+6)

Ef, = AL (9 +65) -

By, = A, (9 +65),

4.13
B, = AH(-0—6;), (4.13)

2sin 0, cos™ 105
— —, n=12.
L_(=6;)¥(-2—0;) )

The functions A () and ¥(«) have arguments only in I, and hence they can be
evaluated dlrectly from equations (3.27) and (3.42). f 0 < My < land 0 < ki <k
additional principal value contributions occur at § = 92 for the term A} (& +6F) in
Ef and A7 (—®—0;) in E;,, respectively (the associated residues cancel one half of
the final terms in (4. 13)) In the case of & < 7/4 (a narrow angular region filled with
fluid) the matrix elements EZ,, m,n = 1,2, can be deduced in a similar manner by

mn?

successive use of the continuity relations (4.12).

By = A, (=% —0;) +

(b) Conditions at the tip
To complete the problem of determining the constants C, n = 1,2, two linearly

independent constraints on the solution are necessary in addition to the regularity
conditions (4.9). Note that the number K of the required constraints is in complete

agreement with the general relation (Osipov 1994)
K = entire £(Ny + N_ — 1), (4.14)

since the order of the boundary conditions operators L1 are N, = N_ = 3. For these
conditions we employ the conditions at the tip (the so called contact conditions)
which are given by (2.6) for a pinned membrane.

From the representation (3.2) we have

S om

T+

( +d) = e bresagino(S(a+ @) + S(—a+ ¢))da.  (4.15)
It is evident from the Malyuzhinets formula for the Sommerfeld integral (3.44) that
its limit when r — 0 is conditioned by the behaviour of its integrand as Im oo — o0.
In order to estimate this behaviour, rewrite the functional equations (3.6) as follows:

Li(— 2si
S(at ®)+8(—atd) = <1+ [Z((QC;))S(—ai $)+ Lil?ao)‘(cﬂc; cosa). (4.16)
When Ima — o0,
Li(—a) i F2i 1
L+ Li(a)  kaiM?sinacos?a + O<Cos4a>’

and equation (4.16) becomes

2sin«
Li(o)

because S(«a) is bounded at a = +ioco. Expanding L, (o) for large Im « yields

+2isina Cf 1
Slna(S(a:I: 45) +S( ot ¢)) m (Cg: =+ cosla —+ O(COS2 a)) . (4.17)

Sla+ @)+ S(—a+ &)= ——(CFf +CF cosa)+0(,;),

sin o cos? a
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Note that only the first term in the parenthesis contributes to the limiting value of
the integral (4.15) since the others tend to zero as Im oz — oco. Therefore, one has

0 iPyCs .
lim ;ﬁ( ,£8) L.i,]\-;; Ly e—‘kmw tana da, (4.18)
and calculating the expression
lim [ e *res®tan o da = —2ni, (4.19)
T=0
one arrives at the formula
}13(1) ;8(]5(7" ,£P) = Pl Cy. (4.20)
Thus, for a membrane pinned at the tip,
Cy =0, (4.21)
and the system (4.10) reduces to
B\ Ef By Ep\ [ Cf A
Ej Ep Ey Ep || CF | _| 9
| = , (4.22)
0 1 0 O Cy 0
0 0 o0 1 cy 0

giving the following expressions for Ci:

+g:1 B F 92 E1
Ef,E; — Ef E

Cf = (4.23)
Here, g1 2 and EZX,, m,n = 1,2, are specified by relations (4.11) and (4.13).

Once the constants C, n = 1,2, have been determined from equations (4.21),
(4.23), we obtain an accurate and unique solution to the diffraction problem (2.2)-
(2.6) formulated above, in the form of the Sommerfeld integral (3.1) where

S(a) = W(a)(géoz;:;) + A(a)), (4.24)
and
A(a) = CF AF (@) + CF 47 (). (4.25)

Here, o(a, ¢o) can be found from (3.36) everywhere in the complex a-plane. The
functions ¥(«a), A(a) are given by (3.27) and (3.41) if @ € IIy. Extension of these
functions outside the strip Il is achieved by repeated application of the functional
equations (3.8) and (3.9), and analytic continuation of S(«a) follows from the system
(3.6): for instance,

Li(—a+£ 9)

ot sin(a F @)
Li(aF )

S(a) = S(—a+29)+2C] Ti(aT d)’ a € Iy. (4.26)
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5. Far-field representations

(a) Diffraction coefficients

For kr > 1, the integral (3.1) can be evaluated asymptotically by deformation
of the contour < into a pair of of steepest descent paths y(£7) = {a : Rea =
+7 — gd(Ima)} (figure 2) passing through the saddle points a = +m, respectively
(Malyuzhinets 1958c), where

gd(z) = —3m + 2arctan(e”).

This yields a representation

p(r, @) = py(r, ) + pa(r, ¢) + p1(r,8) + p_(1, 9), (5.1)
in which
— _]_)0_ —ikr cos (U_(O‘_j__m )
palrg) =g [ etrmewasg) (TR Aot 9)) do, 62

whereas the other terms result from residues at poles of the integrand located in the
region
I°PP = {a: —m —gd(Ima) < Rea < 7 — gd(Ima), —o0 < Ima < +00}.
The total number of poles captured depends on the value of the angle @, increasing
rapidly with a decrease in it (see equations (4.1), (4.3) and (4.4)). In this paper we
have restricted ourselves to the case m/2 < & < m; the corresponding treatment
for smaller values of @ presents no crucial difficulties involving only more algebraic
manipulations (Osipov 1990b).
If & > m/2, three poles of o(a + ¢, do)

d)O,
a=—-¢+{ 26— ¢, (5.3)
-29 - ¢0,

may fall within I7°PP. The residues at these poles, given by (4.2), are easily evaluated
via the functional equations (3.8) for ¥(«)

v(£29 — ¢o)
(o)

where R4 ()x) represent the reflection coefficients (3.12), giving therefore the geomet-
rical acoustics field

Po(ry @) = H(m — |¢ — do|) Poe ™7 c05(#=%0)
+H(m — |28 — ¢ — ¢o|) PoRy (D — ¢)e ik cos(9+90-22)
+H(m — |28 + ¢+ ¢o|) PyR_ (D + ¢)e hreos(@+do+2®) = (5 5)

and H(z) =1ifz>0,0if 2 <0.
The terms p4 (7, $) denote the residues at captured poles of the function ¥(a+¢).
These poles coincide with the roots of the equation

Li(FP+d+a)=0, (5.6)

= —R+(9 F ¢o), (5.4)
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which lie within IT5PF:
F03,
a=—¢+ b+ +0F +7, (5.7)
+07 + 7.

The poles a = &+ $—¢F0; are the forbidden ones (see equations (4.5)), so they do not
contribute to the terms p, (r, ¢) owing to the regularity conditions (4.9). The points
a =20 —¢+7+05 from (5.7), because of the condition Refi < 0, are localized
within the area I7~, and therefore produce residues which decrease exponentially as
kr — 400 and thus can be neglected. The dominant contributions to p4(r,¢) are
due to the residues at poles « = £+ — ¢+ 7 + Gli which describe the membrane
waves excited at the tip by the incident field and then traveling outwards along both
sides of the wedge without dissipation if the material parameters of the membrane
are assumed to be entirely real, that is Re 9{‘ = 0. The corresponding expressions
may be summarized as follows,

pi(r,¢) = H(:d — & — RebF — gd(Im 0F)) Py Apelhmcos(PFo+6Y) (5 8)
where
4, . F2SEoFTF 0F) + 2C5E sin 65
=7 ikas cos 0F (3M% sin® 0F +1 — M3)’
Note that for more convenience the formula above is written in such a way that the
arguments of the functions ¥(+ & F 7 F6F) and A(£x S FrF0) in S(+SF 7 F6%)
take their values from II.

The integrals (5.2) can be evaluated by virtue of the steepest descent method.
Retaining the leading terms of the asymptotic expansion yields

exp(ikr — 13w /4)

(5.9)

pd(ra ¢) ~ POD(¢7 ¢0) \/m ) (510)
where
D(¢, ¢o) = S(¢+ m) — S(¢ —m), (5.11)
is the diffraction coefficient, and
S(¢+m) = U(b+m) (ﬁ%rj)‘f’—‘)) +A(¢:t7r)) .

This term describes the cylindrical wave arising due to diffraction of the incident
field by the tip. When calculating the diffraction coefficient in the expression for
the edge-diffracted field (5.10), one has to account for 7 + ¢ € I, —7 + ¢ € II if
pe(r—9,9),r+¢pell}, n+pell1ifpe(P—n,m— P), and 7w+ ¢ € II,
—r+¢ell,if g€ (—P,P— ), so as to choose the correct representation for the
functions S(¢ + 7) which can be evaluated using the continuation formula (4.26).

The diffraction coefficient must be reciprocal under the interchange of the source
and observation directions,

D(o,¢) = D(¢, ¢o). (5.12)

This symmetry can be exploited to simplify the structure of D(&, ¢o). Taking into
account the dependence of A(¢$) on ¢g through (4.11), (4.23) and (4.25), D(¢, ¢o)
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has the form,

_ cos(upo) f1(9) f2(9)
D(¢, ¢o) = @ () ¥ (o) (sin(u(qﬁ + 7)) — sin(udo) + sin(u(¢ — m)) — sin(uepo)
f3(®) fa(8)
cos(ub3) — sin(ugo)  cos(uby) + sin(uqﬁo))’ (5.13)

where f,, n = 1,2,3,4 can be evaluated but the main point is they are functions
of ¢ alone. Therefore, on account of reciprocity the diffraction coefficient must have
the structure,

4

_ hcos(ug) Dyp(o)
P90 = "50) 2 sld) - sinGudy) 14

where ¢y = ¢+, o = do— T, 3 = D+0F, 4 = — D — 05 . The coefficients D, (¢o)
are specified by equating both sides of (5.14) at the poles ¢ = ¢,, p =1,2,3,4. This
gives

Dy (¢o) = —¥(#1), D2(¢o) = ¥(92), D3(¢o) = By ¥(#3), Da(o) = B-¥(¢s),

where

25(£® T F 0%) + 20 sin 0F
By = - E 2 2 ok — A2)
ikay cos 03 (3M3 sin® 05 + 1 — M3)
Furthermore, using functional properties of the Malyuzhinets functions (3.19)
again implies that

(5.15)

v (¢) = ¢5(3m) [[ @+(4,65)Q-(4,6;)

om(Ggor s e o))
(5.16)

where
+ (o1
Q1(6,0) = Po(g = ( %W+9)),
Yo(¢p £ (2 — 37 —0))

and |Q+(¢,0)| = 1if 6 is purely imaginary because of the analytic property ¥¢(a*) =
Yi(a). If 0 < My < 1and 0 < ky <k, all six Brewster angles are purely imaginary,
and consequently the magnitude of the diffraction coefficient viewed as a function of
¢ can be expressed in terms of trigonometric functions only,

(5.17)

4

_ 2pcos(ud) D, (¢o)
|D(¢, $o)| = L /2) > sin(ug) — sin(udp)

p=1
3

x T ((cos(u6}) — sin(ue)) > (cos(ub;) +sin(ug)) /) ™" . (5.18)

n=1

(b) Numerical examples

We consider the case of two identical membranes, implying L. (o) = L_(—a),
0 =0, , and that ¥(«) is an even function of its argument. The following identities
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1.0 S —

0.8}

0.6 M=0.1 ®=112.5°

04+

0.2

0. P ! |

.o 10 20 3.0

Figure 3. The redistribution of energy for a membrane wave incident on the corner separating
identical membranes with M = 0.1, & = ?—571'. Reflected surface wave energy (————); transmitted
surface wave energy (—-—-—- — ); total surface wave energy ( ). The horizontal line at unity

indicates the entire energy in the system and the difference between it and the solid curve is the
radiated acoustic energy.

o
0.8

0.6 M=0.1 ®=157.5°

0.4]

0.2]

L E— - 2.0 3.0

Figure 4. The same as figure 3 but for & = %w.

are further consequences of the symmetric configuration,

E: + EF =0, (5.19)

n

which means that only two of the parameters EX,, need to be numerically evaluated.
It is possible in this case to interpret the solution in terms of symmetric and anti-
symmetric parts relative to ¢ = 0, but in general no such symmetry exists. The
integrals (3.41) were numerically evaluated by reducing them to integrals over a
semi-infinite range, as in (3.42), however, the principal value integrals were avoided
by using a contour deformation described in Norris & Osipov (1997).

An incident surface wave is converted at the corner into diffracted acoustic energy
plus outgoing surface waves on either membrane. Figures 3 through 8 illustrate this
redistribution of surface energy for a range of parameters: M = 0.1, 1, 5, & = gﬂ',
%ﬂ', and 0 < ka < 3. At least 90% of the energy is reflected from the corner for small
M with very little transmission when ka > 1, see figures 3 and 4. Figures 3 through
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M=1 ®=1125°

T

0 1.0 ka 2.0 3.0

1.0,
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Figure 6. The same as figure 5 but for ¢ = %7r.

M=5 &=112.5°

090602 04 06 0.8 1.0

Figure 7. The same as figure 3 but for M = 5.
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Figure 8. The same as figure 7 but for ¢ = %w.
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Figure 9. The membrane wave energies |A|? ( ) and |A_|? (- — - -) for a plane wave of

unit amplitude incident, with ¢ = gw and M = 1.

8 show that the relative significance of acoustic radiation increases with M, at the
cost of surface energy. For example, figure 8 indicates that at least 90% of the energy
is lost to acoustic radiation for ka > 0.1 when M = 5 and & = gﬂ’. The figures
also suggest that the energy redistribution is not strongly dependent upon @, in the
range gw < o< %w anyway.

A plane wave striking the corner of a system with ¢ = gvr and M =1 is considered
in figure 9 for three frequencies and a range of incidence angles. There is clearly
asymmetry in the amount of energy diffracted onto either membrane for a given angle
of incidence. It is useful to compare the results of figure 9 with those for a perfectly
flat membrane with a point constrained from moving (¢ = %7‘&') The point constraint
can be met by applying a point force normal to the membrane of magnitude sufficient
to cancel the unconstrained motion. Hence, the diffracted membrane waves must be
of equal amplitude. In contrast, the numerical results for the wedge geometry indicate
unequal amplitudes, in general. Comparison of subsonic and the supersonic results
in figure 10 shows that the diffracted membrane wave amplitudes display a greater
asymmetry in the latter case.
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1.0x10° |-

f/“‘\\\ ®=157.5°

1.0x10™

1.0x107
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1,ox1o‘o L 1 A RS TV |

ka

Figure 10. The membrane wave energies |A|? ( yand [A_]* (—-—— - — ) for a plane
wave of unit amplitude incident at ¢o = 34° for different values of M.

6. Conclusions

Using the modified Malyuzhinets technique, an accurate solution for the diffraction
of a time harmonic plane sound wave by a sharp ridge on a fluid-loaded membrane
pinned at its tip has been deduced in the form of a Sommerfeld integral. The solution
is defined completely in terms of the well-known special function 14 () of a complex
argument thus being accessible to both numerical and analytical calculations. In the
case that the sector filled with fluid is wider than , the far-field representation has
been presented showing the physical validity of the solution. It is worth pointing
out that the generalization of our approach to edge conditions other then (2.6) is
quite straightforward. The only requirement is that they must be a pair of linearly
independent relations, linear in terms of the edge values of the acoustic pressure,
membrane displacements and rotational angles. This will produce a system of linear
algebraic equations which differs from that for the pinned membrane (4.22) only in
the coefficients of the two lower rows of the matrix operator, thus remaining accessible
to solution in explicit form.

The work of A.N. was supported by the US Office of Naval Research.
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