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ABSTRACT

A pair of identical elastic spheres is simultaneously pressed against one another and sheared sideways
causing both normal and tangential relative displacement of their centers. The contacting surfaces are
assumed to be rough and the contact zone is modeled using the theories of Hertz and Mindlin. Because we
focus our attention on the case of perfect adhesion, we are able, for the first time, to derive a rule for the
variation in tangential force T as a function of the displacement components. T displays a memory effect
through its dependence upon a, the radius of the contact zone which is uniquely related to the normal
displacement, and s, the tangential displacement. Thus, AT = CigAs if a is not decreasing, and C, is a
material parameter. Otherwise, AT = C,A(as) — C,s*Aa where s* is the value of s when the contact zone was
most recently at the same radius. The consequences for work and energy are explored in detail. We derive
a simple analytical formula for the work done in going around an arbitrary closed path. Applications to
acoustic wave propagation in a granular medium are discussed. © 1997 Elsevier Science Ltd

Keywords : B. contact mechanisms.

1. INTRODUCTION

The theoretical treatment of the elastic forces between two grains that are in contact
at a point of asperity has a long history. Hertz showed that if the grains are compressed
along the axis between centers of curvature there is a contact zone, circular in the
case of spherical grains, which increases as the compression, w, is increased. An
accessible derivation of these results can be found in Landau and Lifschitz (1986).
This changing contact zone gives rise to a restoring force, N, normal to the contact
zone, which is a highly nonlinear function of w. Subsequently, Mindlin (1949) con-
sidered the transverse force, AT, that results from an additional transverse dis-
placement of the spheres, As. The combination of these results gives rise to a transverse
force, T, which is a path dependent functional of the deformation history, s(w); the
normal force, N, is a simple function of w alone. It is the purpose of the present article
to present new results for the path dependent T, with special attention given to the
role of decreasing normal compression, w; this result is presented in eqn (14). We
derive a simple formula, eqn (25), for the work done in going around an arbitrary
closed loop in the w—s plane.

According to the Hertz-Mindlin (H-M) theory, if w is increased, holding s fixed,
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T does not change. It is more or less intuitively obvious that if w is decreased at
constant s, then in general 7 should also decrease because the zone of contact has
diminished. Nonetheless, one finds in the literature applications of H-M theory that
T 1s assumed not to change when w decreases. Elata (1995) has shown that a strict
application of these models violates conservation of energy in the sense that it is
possible to go around a loop in the w—s plane and get energy out of the system with
every single circuit. Moreover, the value of T changes by a fixed amount with each
circuit of the loop. We show that this does not, of course, really happen ; with one
very specific and narrow exception the work done by an external force is always
positive for any closed loop.

The Mindlin result shows that the traction on the contact zone diverges near the
edges. Therefore, unless the coefficient of static friction is infinite, there will be a slip
zone. Mindlin and Deresiewicz (1953) have derived the consequences of a finite value
of the coefficient of static friction, u. Because their model is now quite complicated,
they are of necessity limited to a consideration of relatively simple trajectories in the
w-s plane, which they must consider on a case-by-case basis. In the present article,
because we consider the simpler problem of no-slip on the contact zone, we are able
to derive results which are valid for an arbitrary path of deformation. To the best of
our knowledge, nothing like this exists in the current literature. In this context, Elata
(1995) has shown that as long as d7/dN < pu there will be no tendency to slip.
Therefore our results are directly applicable to certain deformation paths even if u is
finite.

The organization of the article is as follows. We review the salient features of the
H-M theory in Section 2. In Section 3 we derive a formula for the transverse force,
T, which is valid for an arbitrary deformation path, including decreasing w. We derive
a result for the work done when the system is taken around a closed loop in Section
4. With the possible exception of the first loop, the work done is always positive, is
the same regardless of the direction in which the loop is taken, and is the same with
every successive circuit; the “first loop™ exception is clearly delineated. We give a
simple application of our results to acoustic waves in Section 5 and we summarize
our results in Section 6.

2. REVIEW OF THE THEORIES OF HERTZ AND MINDLIN

Consider two elastic grains in contact at points of asperity. For simplicity, we
assume the two principal radii of curvature for each grain are equal to a common
radius, R, and we assume the elastic constants of the two grains are the same. We
imagine that the grains are compressed along their common centers by a relative
amount 2w and are sheared by a relative amount 2s. The resultant forces and the
work done are crucially dependent upon the order in which this is done, that is to
say, upon the path taken: w = w(¢), s = s(1) where ¢ is some convenient parameter.

The component of the force which is normal to the contact circle, N, depends only
upon the normal displacement, w. Hertz showed that the change in N with w is

AN = C,a(w)Aw (1)
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where C, is given in terms of the elastic constants of the material, C, = 4u/(1 —v) and
a(w) = \/E% is the actual radius of the contact circle. Therefore N(w) = %C,, Rw?3.
This part of the force is not only path independent but it is conservative as well ; we
need consider it no further.

Mindlin (1949) has considered the elasticity problem of a transverse displacement
under the assumption that there is perfect adhesion between the grains within the
contact circle and perfect slip outside. He has shown that the application of an
additional transverse displacement acts independently of the normal in the sense that
N does not change if w is held fixed. Basically, the problem is reduced to the elastic
deformation under a transverse far-field displacement of two half-spaces which are in
welded contact over a circle of radius a, the size of which is determined from the
application of a normal force (above). Let the contact circle lie in the x—y plane and
let the transverse displacement be in the x-direction. One has

ulx,y,+ o) = +As, 2)

where As is the size of the transverse displacement, in addition to any pre-existing
transverse displacement. Mindlin utilizes the key observation that the symmetry of
the problem requires that

ux(x9y9z) = _ux(x’y9_z)s (3)

and therefore continuity of displacement requires that the points on the contact circle
do not move:

u(x,y,0) =0. 4)

(Outside the contact circle there is displacement, which is discontinuous across z = 0.)
This, plus the condition that the surface outside the contact circle is traction free, is
enough to guarantee a unique solution. The result is that the traction on the surface
everywhere points in the x-direction with a magnitude which is axially symmetric:

C, As <
—— r<a,

At(r) =42n /a? —r? (%)
0 r>a,

where C, = 8u/(2—v). The resultant additional transverse force, A7, is simply the
integral of (5) over the area of the contact circle :

AT = Ca(w)As  (for fixed w). (6)

Observing that eqn (5) predicts a traction which is divergent, Mindlin and Deresiewicz
(1953) considered the effects of a finite coefficient of static friction. The resultant
traction does not, of course, diverge. In the present article we consider only the special
case of purely elastic forces which correspond to an infinite coefficient of friction. Our
model assumes that once adjacent points come in contact they cannot slip past each
other. Adjacent points that are not in contact, either because they have never been in
contact or because the normal force has been reduced to the point where they now lie
outside the contact zone, are free to slip. With this simplification we are able to derive
simple expressions for the traction as a function of path-dependent deformation, s(¢),
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w(f). We note that this is not possible for the more general Mindlin-Deresiewicz
theory ; each path must be calculated anew on a case-by-case basis.

We hasten to mention that our assumptions are somewhat overly restrictive. Elata
(1995) has shown that if s and w are simultaneously changed then there is no tendency
to slip if d7/dN < u where y is the coefficient of static friction.

3. PATH DEPENDENT TANGENTIAL FORCE

First, let us imagine that we are at some point w, s corresponding to a traction 7.
How do the forces change as the deformation evolves along some path w(?), s()? A
change As, leads to a change AT, given by (6), with no change in N. A change in w,
either positive or negative, leads to a change in N given by (1) ; if Aw is positive there
1s no change in 7. At this point, if w has increased, the radius of the contact circle has
also increased. Therefore, any further change in transverse displacement, As,, results
in a change in traction given by (5) evaluated at the new, larger radius. Similarly for
AT,, given by (6). Within the context of linear elasticity applied to this problem, the
“old” traction due to any previous transverse displacements is still frozen in at the
values of those smaller radii.

We consider an arbitrary path w(z), s*(f) subject only to the constraint that w is a
nondecreasing function of the conveniently chosen parameter ¢; the obvious choices
are [ = wor even ¢ = a. It is convenient to view this process in the a—s plane (Fig. 1).
We start at point A and proceed toward point B along the path w(z), s“(t). We
discretize the path in an obvious manner. The traction is

| B

a ! \ sd
S
/
aj+1 /
a,
a *

j-1 A

A S A

Fig. 1. Path in the o-s plane.
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where we use the shorthand that any term for which r > q; is zero, as in (5). Also,
J
s“(j) =sa+ Y Ast (®)
i=1
and

/
T(j) = To+C, Z a;As?. )
i=1

This last we write in integral form as

ds 5 (10)

T(t):TA"‘FCIJ\ dr

alw(1)]
N

We are now in a position to consider what happens when the normal compression
decreases and the transverse displacement changes but the path taken down, w(),
s%(1), is different than the path going up (see Fig. 1). We emphasize that the parameter
t is defined such that w(r) is single valued, the same for both trajectories, implying
that ¢ could be either w itself or a, but it is not an arc-length parameter. We have
drawn the figure such that s? > s but this is not a necessary condition ; the two curves
could cross each other arbitrarily. Clearly, even if s is held fixed T must decrease
because the contact circle has decreased. At any point, the traction consists of a sum
of terms as in eqn (7). When w is decreased, holding s fixed, the contact radius also
decreases, from a(w) to a(w’), say. It is obvious that the traction must vanish in the
annular region between the initial and current radii, by the assumptions of the model.
It is not obvious, but true nonetheless, that any contribution to © of the form
a//aj —r* where a(w’) < a; < a(w) is completely eliminated for all r and replaced by
a//[a(w)]* —r?. This is because the only solutions to the equations of elasticity with
the boundary conditions (2) and (4) are of the form (5); there are no terms of the
form 1/./a} —r* limited to 0 < r < a(w"), for example. The coefficient a is the same
as before in order to guarantee that s does not change.

The protocol for moving down from point B back towards point C along the curve
w, 5% is as follows. When a is decreased from q,, | to g, any contribution to t such as
a//at, , —r? is replaced by a/./a? —r* (contributions corresponding t0 a;, >, @i 3" "
having already been eliminated). Then an additional transverse displacement As? is
applied which results in a contribution

C,  As -
AT(r) =21 /g2 —p? ) (1
0 r>a;

This process is repeated going down the staircase, starting at point B. We find
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STCEERCISS [5% +y \/;S:.} (12)
and
Té(j) = To+C, [a,-(s;*—s;) +y a,-Asr]. (13)
This last we write in integral form as
T = T 6| [ a1 Gar vl -+ |
= T+ Calw () —(0). (14

This result is path dependent in an unusual way : it depends only upon the current
value of s and upon the path going up to the current value of a, but not at all upon
the path for values of a greater than the current value. The resultant transverse force
is exactly the same as if one went up the path s* and then changed s to 5% holding w
(and therefore a) fixed. We see immediately from (14) that at any point where the
two paths cross, 57 = 5%, we have 79 = T* The incremental change in 7 is modified
from (6)

AT = C, [a(w)As+H(—Aw)a(%[s—s*]Awi|, (15)

where H is the Heaviside function and s* is the most recent upward trajectory.

Equation (15) summarizes the contact law for rough elastic spheres, and can be
considered the central result of the paper. It may be deduced in a more geometrical
manner, as follows. As the point proceeds from A to the point A* with the same value
of a = a, on the downward path, see Fig. 1, the contact zone is first increased and
then decreased back to its initial state. The consequent change in 7 must therefore
depend only on the value of a, and the change in s between A and A*,

TA‘ = TA+ClaA(SA1 —'SA). (16)

Our starting point is therefore equivalent to the realization that eqn (14) must hold,
i.e. the closing and subsequent opening of the additional contact area along this path
does not influence the change in 7. However, according to the rule of eqn (6) for the
upward path, the change in 7 depends upon the area under the curve in the a—s plane.
Thus, the difference Tz — T, is equal to C, times the area under the curve between A
and B. Equation (16), on the other hand, implies that the change in 7 between A and
A* is proportional to the rectangular area under the horizontal joining A with A*,
see Fig. 1. The only way to reconcile these facts is that the change in T on the
downward path must exactly cancel the area above the horizontal AA* and under
the curve ABA*. This must hold for arbitrary s* and s*, and therefore the incremental
areas at equal values of @ must cancel, implying the incremental rule
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AT = CialAs+ C(s—s*)Aa forAa< 0. (17

Combining eqns (6) and (17) yields
AT = CaAs+ H(—Aa)C (s —s")Aa, (18)

which is equivalent to (15).

4. WORK AND ENERGY

The form of the incremental rule (18) suggests that we consider the Legendre
transform of 7°:

Q=Cas—T. (19)
This has the property, implied by (18), that
AQ = Cs*Aa, (20)

where s* = s for Aa > 0, otherwise s* is the value of s* on the most recent section of
the path with the same value of @ where Aa > 0. The parameter Q helps simplify some
general results for the tangential force 7 and the associated work. Thus, let us first
consider a circuit in the w—s or a—s planes, see Fig. 2. If the circuit starts and finishes
at the lowest point, a = a,,,, then the initial upward path defines the value of s* for
the downward part of the circuit. Consequently, the value of Q, and hence T returns
to its initial value after the circuit is completed. This is true regardless of the direction

Fig. 2. Closed path or loop.
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taken, clockwise or counterclockwise in Fig. 2. However, if the circuit starts at some
other point, the value of T upon return to the starting point can differ from its initial
value. This is the case, for example, if the starting point is C in Fig. 2 and that point
has been reached along the path indicated. The value of T is different upon its first
return to C, and different depending upon whether the circuit was traveled clockwise
or counterclockwise, as follows from (14). For second and subsequent circuits of the
loop the value of s* on the downward leg has already been set up by the upward
section of the loop and therefore 7 repeats itself at each and every point on the circuit.

We now turn to the total work done in deforming the contact between the spheres.
The total work done by the external agent is twice the individual work done on each
sphere. Starting from the origin, w = s = 0, this is

W=JF'dr
0

= ‘[Ndw-kj Tds
0 0

4 ‘
—CR"w 4 C, J

=15 0asds—J‘Ost

4 a 1 , 1
=—C —f—EC[as‘—QH—iCl (2s* —s)s da. 21
4]

15 " R?

Eliminating Q, and separating the integral into up- and down-going contributions
yields

5

4 ; 1 1 1
W=—C, “ +Ts— =Cas*+ = C[J s*da+ 3 C[J (2s*—s)sda, (22)
Aa>0 Aa<0

15" R? 2 2
where s* refers to the most recent upward path. The work is clearly path dependent,
although the path only affects the work done by the tangential force.

Let us now consider the work done by going completely around the closed loop of
Fig. 2,

W|00p = Wﬁnal - Wi- (23)

The normal force contribution to W,,,, vanishes because of its path independence. If
s* and s¢ define the up and down sections of the circuit, respectively, then (22) implies
that

1

Wioop = ECIJ ™ (57— 5*)2da+ cj (s* —s)s%da+ (Trpm — Tsi  (24)
Qpnin Aa<0

where s, is the value of s at the beginning (and end) of the loop. The value of W,
depends, in general, upon the sense, clockwise (cw) or counterclockwise (ccw), In
which the loop is traversed.

An interesting special case occurs if the loop commences at a,;, or if it is the second
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max -

S i
Fig. 3. Closed circuit starting at the point A which has been reached by the vertical and horizontal paths
indicated. The work done in the first traversal of the loop is given by eqn (27). For this particular loop

shown, the work is negative for a counterclockwise path because the initial value s; exceeds s at all other
points.

or subsequent circuit. Then Ty, = T, and s* = s*, in which case we have the simple
and general result

amax

1
Wieop = EGJ (s‘—s")’da. (25)

amm

In particular, W, > 0, and the work done by the external agent is the same whether
one goes around the path clockwise or counterclockwise. For subsequent circuits, we
observe that (25) holds regardless where we define the “start” of the loop. Where
does the work go? Referring to the staircase of Fig. 1, we observe that whenever w
and a are decreased with no change in s there is a stress relief in 7. The microscopic
elastic deformation energy associated with 7(r) decreases in this process. Since this
energy is not transferred to the external agent (because s does not change), it is
radiated away as acoustic energy and ultimately transferred to the heat bath. The
details depend upon the rate at which w is decreased and upon the attenuation
mechanism of the acoustic waves.

The work done by the external agent in a closed circuit is not necessarily positive
for the first loop, as the following rather general example illustrates. Consider a
starting point in the a—s plane reached by first increasing a with s = 0 and then s is
changed with « held fixed. We assume the path then describes a circuit with a always
less than or equal to the initial value and with only two values of s for g, € @ < @y,
as in Fig. 3. Let 57 and 5* be the down and up-going parts of the circuit, respectively.
Therefore, because s* = 0 for the first loop up to @m.. eqn (14) implies
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Toma—T, = —C, J "5 da, (26)
and consequently it follows from (24) that
1 [
['Vloop = ECtJ [(Sd)z + (su) —2s" S] a. (27)

In contrast to the previous result of (25) the work now depends upon the sense of
the path. Thus, the difference between the value of (27) for clockwise (cw) versus
counterclockwise (ccw) paths is

ch - chw = ClsiJ (S> —S<c )da (28)

umm

where s, and s_ are the greater and lesser values of s for each value of a. Thus,
We > W, for the loop of Fig. 3. Regarding the sign of W), consider, for example,
a circuit in the region s > 0 with s* < s“ < s, Then W, is negative if the circuit is
followed in the counterclockwise sense, because then the integrand of (27) is every-
where negative. The work done in subsequent loops is given by (25) and is non-
negative. The fact that W, < 0 for the initial circuit indicates energy is returned to
the external agent from pent up forces, or internal stresses, in the contact. This energy
1s returned only in the first cycle, after which the external agent must provide energy
to the system. Of course, the energy returned to the external agent in the first cycle is
always less than the work done in first loading the system up to the start point.

5. EXAMPLE: ACOUSTIC WAVES IN A GRANULAR MEDIUM

What are the implications of these results for acoustics? We focus on two possible
effects for steady state and transient motion in a compacted medium composed of
rough spherical grains. Assuming a mean field approximation, the acoustically
induced relative motion of an adjacent pair of spheres is defined in an affine manner
by the local quasistatic strain field of the averaged medium. We first consider steady
state or cyclic motion for which eqn (25) applies. Therefore for a linearly polarized
wave there is no loss of energy due to this mechanism. Of course there are acoustic
situations in which the local displacement is elliptically polarized, such as in a Rayleigh
wave. Let us therefore consider a path in the a—s plane given by

a—ay\ | [(s—s\
(Aa)+<AS)_1. (29)

It is straightforward to evaluate (25) using this path:

8
W i(elliptical loop) = gCl(As)zAa. (30)

Equation (30) is a specific illustration of the general issue that even if the path is not
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linearly polarized, the dissipation per cycle is proportional to 4°, where 4 is the
amplitude of the wave. Since the stored energy is proportional to 47, this means that,
in the same amplitude limit, linear acoustics are recovered with no (linear) dissipation.
This result is true for any “small” closed loop. It is easy to see that such a traveling
wave would decay, not exponentially with distance, but much more slowly, inversely
with distance for large distances: lim,_ oA oc x™'.

As a linearly polarized wave passes a pair of contacting grains the work done in
each cycle is zero with the positive exception of the first half-cycle when a decreases
below its static value. Let us assume, for simplicity, that the initial state was reached
by compressional followed by tangential shear, similar to the state of affairs at point
A in Fig. 3. We consider single frequency motion starting at ¢ = 0:

a—a, S—

= A;" = —sin(wt) H(?), 3D

where Aag > 0 with no loss in generality. Therefore eqn (27) applies in the first half of
the first period of the motion, with a., = ay—Aa, @ = ap, and s =35, =5,
+ (a—ay)/Aa As. Evaluation of (27) yields to leading order

Il

1
— = Cs0AsAa

W(first half-cycle) >

= — ﬁ AsAa, (32)
2a,

where T is the initial value of the tangential force. Equation (32) can be positive or
negative, indicating work put into the system, or energy released from the initially
stressed contact.

Consider two possible paths caused by the passage of a small amplitude wave as
indicated in Fig. 4 The work done is positive for a path such as BB because As < 0 in
that case, and similarly the work is negative for the small motion AA. We note that
the energy is released or dissipated only on the first half-cycle, and the motion is
conservative for subsequent cycles. Also, if the granular medium contains a random
orientation of contacts then the net sum of all these energetic effects will be reduced
because they will tend to cancel one another on average.

6. SUMMARY

We have considered the static elastic deformation of spherical grain—grain contacts
within the context of linear elasticity, as originally delineated by Hertz and by Mindlin.
Our focus has been on examining arbitrary transverse (s) and normal (w) relative
displacements under the assumption that there is no slip of the grains when they are
in contact but the path of deformation s(w) is arbitrary. We have derived simple rules
for the path dependent transverse force, T'; we have shown that when w decreases,
the value of T depends upon the current value of s and upon that part of the path
taken when w was increased to its current value, but not at all upon the path taken
for values of w greater than the current one: eqn (14). We have derived a simple
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0 s, S

Fig. 4. Small amplitude acoustic wave induces motion along the self repeating path AA or BB. Work is
done only on the part of the first cycle with a < a,, and the value is given by eqn (32). Hence, W < 0 for
the path AA and W > 0 for BB.

integral formula, eqn (25), for the work done per cycle by an external agent which is
valid for “most” closed loops when the path of w increasing is different from that of
w decreasing.
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