s,

Nonlinear Elasticity of

A. N. Norris

Department of Mechanical and
Aerospace Engineering,
Rutgers University,
Piscataway, NJ 08855-0909

Granular Media

The finite and incremental elasticity of a random packing .of identical spheres is
derived using energy methods. We consider different models for the contact forces
between spheres, all of which are based upon or related to the fundamental Hertz

theory; we consider only the special cases of perfect friction (no tangential slip) or
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no fangenrial friction. The existence of a strain energy function for the medium
depends critically upon the type of contact. If the tangential contact stiffness is
independent of the normal force, then the energy is well defined for all values of the
macroscopic strain. Otherwise, the strain energy of the system is path dependent, in
general. However, the concept of a quadratic strain energy function is always well

defined for incremental motion superimposed on large confining stress and strain.
For all models considered, we derive the changes in wave speeds due to incremental
strains. For the models based upon an energy function we derive expressions for the
third-order elastic constants as a function of confining pressure.

1 Introduction

Consider a random packing of identical elastic spheres, which
is a simple model for a granular medium. There are three basic
problems of interest. First, we would like to know the depen-
dence of the macroscopic stress, ¢;, on the macroscopic strain,
oy = gyl éms). We would also like the inverse relationship, e,
= ¢;(0n,). This is linked with the issue of finding the finite
forces between the particles. The second task is to calculate the
incremental moduli for -small motion superimposed upon the
initial deformation. Finally, we would like to know how the
agsociated speeds of small amplitude waves change upon the
application of small additional stresses (Schwartz et al., 1994).
The concept of strain energy density for a hyperelastic material
allows one, in principle, to calcuiate all of these quantities.
Thus, the large stress/strain behavior is govemned by the finite
elastic response. Incremental motion is then govemed by the
second-order elasticity theory, or the elastic stiffnesses Cy, at
the prevailing finite strain e;. Finally, the linear variations in
wave speeds for subsequent static deformation, Aey, are linearly
dependent on the third-order elasticities, Cym. (Toupin and
Bemstein, 1961).

However, the existence of a strain energy function is not
always guaranteed nor even necessary for an elastic medivm.
Following Truesdell and Noll (1965} we use the term hyper-
elastic to refer to a medium for which there is a unique strain
energy which is a function only of the current value of the strain
tensor. We consider 2 medium o be elasric if there is a strain
energy, which may be path dependent but which is not hysteretic
along that path. In this paper we explore the concept of a strain
energy function for the granular medium, both for finite defor-
mation and for incremental motion. The key to the problem lies
in the mechanics of a typical representative contact. Consider
the following thought experiment: two solid spheres touch at a
point but are otherwise separated. A normal force is applied,
resulting in a finite contact zone, and a simultaneous approach of
the two spheres. Then a shear is applied to the pair of contacting
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spheres, causing little or no further approach of their centers,
but giving a lateral shift of the centers. Now consider the same
initial configuration, subject to the same displacements, but in
the reverse order. The energy expended in the two experiments
may or may not be the same, even though the solid material
is considered to be perfectly elastic (local deformations are
reversible). The crux of the matter lies in the kinematic differ-
ences caused by the contact of the spheres, Thus, the energies
are equal if there is no frictional resistance to the shear load.
However, when the contact zone is rough, it induces a resistance
to shearing, and the second experiment requires less energy
than the first. This type of micromechanical picture must have
an impact on the microscopic energy of an assemblage of
spheres. In particular, it should be clear that frictional contacts
will result in a macroscopic strain energy which depends upon
the loading path, and is therefore not hyperelastic. The simple
ideas exhibited in the two-grain experiment will be expanded
upon in this paper, and the consequences discussed. Path-depen-
dent effects are well known in granular media. For example,
Deresiewicz (1958a, b) has discussed the effect in the context
of simple cubic arrays of particles.

in Section 2 we review some general properties of the various
contact forces which we use in Section 3 to derive expressions
for the deformation energy of a single contact and, from that, the
deformation energy of the ensemble of spheres. In this article we
consider only the special cases of perfect friction (no tangential
slip) or no tangential friction ( perfect slip), although we briefly
touch upon finite friction in the Appendix. For those models
of contact forces which are derivable from a potential energy
function, we are able to obtain explicit expressions for the stress,
the second-order elastic constants, and the third-order elastic
constants as a function of macroscopic strain. We restrict our
consideration to those systems for which the change in stiffness
is a much iarger effect than the change in dimension, which is
to say, systems for which the third-order constants are much
larger than the second. This is a characteristic feature of weakly
consolidated granular media, and is discussed further at the end
of Section 3. For the contact forces which are not derivable
from a potential energy function, we show, in Section 4, that
the second-order elastic constants are still well defined, but not
the third (or higher) order. Strictly speaking, for these elastic
but not hyperelastic systems, one can stil} define third-order
elastic constants simply as the second derivative of stress with
respect to strain taken along a given path, and this, in effect, is
what we do in Eq. (67}. We derive the changes in wave speeds
due to an incremental strain in Section 5 and we show an explicit
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Fig.1 Schematic of two spheres, each of radius R, in contact with each
other. The radius of the initial unstressed circle of contact, b, may or
may not be zero, depending on the model being considered. The center
of one sphere is displaced relative to the other by a vector u which is
resolved into the component along the line of centers, 2w, and that
perpendicuiar to it, 2s. This deformation gives rise to a restoring force
F {not shown) with component N along the line of centers, and T perpen-
dicular to it.

example of hydrostatic confining pressure in Section 6. We
present some numerical examples compared against experimen-
tal data in Section 7. Our concluding remarks appear in Sec-
tion 8.

2 The Contact Forces

2,1 Contact Models. Consider two identical spheres each
of radius R pressed together. The force between the spheres
acts over a contact zone the radius of which is small compared
with R. Let 2w(=0) be the relative approach of the two spheres
along the line joining their centers. The relative tangential dis-
placement between the two spheres is 2s. See Figure 1. Simi-
larly, the force may be decomposed into a normal force A and
tangential force T. We are interested in the finite and infinites-
imal elasticity of an ensemble of spheres, for which the single
pair in contact under normal and tangential loads describes the
fundamental mechanics.

Our starting point is the incremental relations between the
forces and the displacements,

AN = D.(w)Aw, AT = D(w)As, (1)

where D, and D, are contact stiffresses, in the notation of Digby
(1981) and Winkler (1983). These are of the form

D, = C.a,{w), D.= Ca/(w), (2)
where C, and C, are actual stiffnesses (with units of pressure

A _ Bu(h + p)

Cn: H
I —v A+ 2u

C = 8p 16#(?\+u)’ (3)
2— v 3N+ dp

A, @ are the Lamé constants of the spheres and the Poisson’s
ratio is v. The lengths 4, and a, depend upon the specific type
of contact but do nor depend upon the material properties of
the spheres. Several models are discussed in the Appendix, and
the functional forms for a, and ¢, are summarized in Table 1.
All ' models considered in the present article either have smooth
contacts with reversible slip or rough contacts with no relative
slip. Both lengths are defined by the current value of w, but are
independent of s. Note also that the properties of each contact,
though caleulated within the approximations of ordinary linear
elasticity theory, lead to nonlinear restoring forces. As we shall
see, these nonlinear forces can, in turn, lead to extremely large
nonlinear elastic constants for the aggregate media.

All the models in Table 1 have a, = a,, with equality for
the infinitely rough contacts in models Ib, IIb, and IXIb. When
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¢, = a, the ratio D,/D, reduces 10 C,/C, = 1 + v/(2 — 2v),
which is approximately 1.17 for rocks (v = 1/4). This value
is not consistent with the velocity data of Domenico (1977 ) on
unconsolidated glass beads under pressure. Winkler (1983)
demonstrated that Domenico’s data yields a value for the ratio
D,/ D, ranging from 1.79 to 3.36, which is consistent with a
contact model with g, < a,. This is one possible justification
for a contact model that allows for frictionless sliding in tan-
gential deformation, as in the Digby model lla for which
a = 0.

2.2 - Path Dependence. The incremental rule for AT in
{1} does not hold for all deformation paths in the w — s space
when the contact is not perfectly smooth. Generally, the incre-
ment in AT depends upon whether w is increasing or decreas-
ing, with different rules applicable in each case. However, it can
be demonstrated (Johnson and Norris, 1995 ) that the distinction
disappears for the models of Table | if the uajectory is self-
repeating——that is, it retraces itself whenever w is decreasing,
Therefore, to be specific, in this paper we only consider paths
which are self-repeating in this sense.

Thus, T does not possess a unique functional form for models
Ib, IIb, b, and IV. Rather, it depends upon the path history
of the loading, and is only defined along a given path in the w
— § space. We distinguish the “‘path-dependent’” models, Ib,
Iib, IIIb, and IV, from the remaining models for which T is
uniquely defined at all values of w and s, i.e., it is a function
of these parameters. The path dependence vanishes only for
constant tangential stiffness. In order to integrate the force-
displacement equations for a single contact with path depen-
dence it is necessary to assume some relationship between w
and s = s(w}. We can then rewrite the incremental force rela-
tions (1) as

dN = Ca,{w)dw, dT = Ca(w)ds. 4)

The contact forces can be determined by integrating these
three equations subject to the initial conditions N = T = 0 at
w = {, yielding

N=CAw), T= Cff a{&)ds {5}
path

where 4, is a path-independent quantity having the dimension
of area:

An(w) = fo an(€)dE. 6)

The precise form of T therefore depends upon the path s(w).
For example, consider a linear relationship,

-c~{s- = ¢onstant, (7
dw

and the constant can vary from contact to contact. Equations
{5) become

N = CA,(w), T=Cal"(w)s, (8)
where af") also has the dimension of a length
1 W
a;'"(w) = —f al§)dg. (%
w o .

We emphasize that w and s are not independent variables in
Eq. (8). The constraint (7) implies that the spheres approach
one another along a constantly directed line.

Alternatively, one could assume that the line of action of the
force at each contact remains constant. That is,

a1 = constant, (10)

dN
and the constant can differ from contact to contact. The two
constraints (7) and (10) are equivalent only if the ratio D,/D,
is constant along the loading path. This is the case for the path-
dependent models Ib, IIb, and IIIb, but not for IV. We wil! use
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Table 1 The lengths a, and a, for different contact conditions, Models |, i, and It have
two subcases, corresponding to (a) simooth contact with reversible slip; and (b) rough
contact with no subsequent slip. See the Appendix for further details and definitions. -

Contact | Description an{w) a(w)
model
(2) {b)
I | Hertzian contact (Rw)? 0 Gn
i initial contact radius b (Dighy) | (RPw?+ £} + 8} | b a |
I ‘| ogival/spherical contact d = Raf {Rw +a9} —d 0 a,
{Spence,/Goddard)
v frictional sliding (special loading) {Ru)? (L 3y
(Mindtin and Deresiewicz}

(7} later for specific examples, but emphasize that the subse-
quent analysis applies to arbitrary self-repeating paths s = s(w).

The path-independent smooth models (Ia, Ila, and HIa)}, do
not require an assumption of the form s = s(w}, and can be
integrated directly to give forces with the same functional form
as in Eq. (8). Furthermore,

{O for Ia and Iila,
“ \bforma

ald = a

(11)

'3 Finite Energy, Strain and Stress

3.1 A Single Contact. LetF be the total force exerted by
a sphere at a single contact, and let u be the total displacement
of the center of the sphere from its original position. The sphere
then moves a further distance du. The work done by the sphere
associated with that contact, assuming it does not rotate, is

dW=¥-da = Ndw + T-ds. (12)

Alternatively, the potential energy for a single contact is 2dW,
when viewed in terms of the two spheres each contributing
dW. We speak of a ‘‘potential energy’’ function for the path-
dependent models with the understanding that we are restricting
our discussion 1o motion on one specific path. The work done
along that path is a conserved quantity; going down the path is
the reverse of going up.

For either the path-independent models, or assuming (7) for
the path-dependent ones, the explicit nature of N and T in (8)
and (12) implies that

W= CV,(w) + 3CalP(w)s?, (13)

where V, is a volume and a!® a length,

Vi(w) = f & fo " (),

w 4
ooy =% [ at [ aerae (14)
W o 0
We have set W = ( at the initial point, with no loss in generality.
Thus, W is one half of the energy stored in a single contact.
The result (13} is valid for all contact models, with the under-
standing that w and s = {s| are related for the path-dependent
models. For the others, we have the simplification that

0 for Ia and IlIla,
a? =g, = { (15)
b for lla.

The length a,, area A,, and volume V, are fundamental quanti-
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ties, as is the dimensionless quantity a,(w) which occurs later.
Explicit formulae for a;(w), A,, and V, are given in Table 2
for models I, IT and II1, {a) or (b).

3.2 The Ensemble of Spheres. We now turn to the ran-
dom packing of spheres, and make the standard kinematic as-
sumption relating the displacement of sphere m to the macro-
scopic deformation gradient f; (Digby, 1981; Walton, 1987;
Jenkins, 1991). The displacement of the center of a given sphere
is

u; = fyX;

where X is the position of the center of the sphere. Let # be
the unit vector joining the centers of two contacting spheres, at
X and X + 2Rh. The associated displacements are f+X and
f-X+2R{-h, and so the components of the relative displace-
ment are

or u= f-X, (16)

w=—fi-f AR, s=P-f- iR, {17)

where fi- [ «fi = n, fyn;, and P projects onto the tangent plane,

P,;;Eé,:,"-n;nj. (18)
The total strain energy density per unit volume is
1 1
U - — W = — f F‘d » 19
v 2 v = u (19)

contacls CONACs

where the sum is over all contacts on each sphere (each contact
is counted twice since W is only half the contact energy), and
V is the total volume of the sample. The effective medium
approximation we employ for this article is that statisticatly all
grains are “‘the same’’ and each may be repiaced by its ensem-
ble average: L onuesW (Wi, ;) = Nn{W[w(i), s(11)]) where N
is the number of grains in the volume V, n is the number of

Table 2 The quantities a,, A,, and ¥V, for the three contact modeis |, I,
and HIl; see Table 1.

Model | af,(w) Anlw) Vilw)
I £ = LRyt | Tue, = IRV2H? | Lyla, = ARV

A z_bz!uz
13 r;n" =b

I

4 .2 Y [a..wbgb‘
Bw (“ﬂ + a..) 5K

do e+ o)

2

a.

g

f

2,
taaw - P dnlon +d)f - 4F

o
B

B
Z(an+d}
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contacts per grain, and (. . .) denotes average over the distribu-
tion of directions it. Therefore, .

U= 5‘(—1‘;?“"5—_) (Ww(R), s(R)])
Q

_n(l - ¢) .
—m-—-vo <IF du>,

where ¢ is the porosity of the sample and V, is the volume of
4 single grain. In this article we explore the consequences of
assuming an isotropic distribution P(fi) = 1/4x although there
is some evidence that this is not necessarily the case (Jenkins
et al., 1989).

Before we compute U we must address the issue of whether
or not each sphere rotates under the action of the applied strain
(Schwartz et al,, 1984). If the neighbors of a given sphere
rotate, then there will be an erergy cost inless that sphere
rotates, 100. We now show that, within the context of our effec-
tive medium approach, each sphere will not rotate if the defor-
mation gradient is symmetric f; = f,,. First, let us consider a
rigid rotation of the system about an axis 0 by an amount 6. In
terms of the rotation matrix R each coordinate moves to a new
position r’ = R-r and the displacement is u = r’ —~ r. It is
straightforward to show that

qu:2sint99.' (21

Such a dgid-body rotation is an example of Eq. (16) which
gives o

(20)

VXw=(fn = fu, fis = firs for ~ fio). (22)

Therefore it is clear that if the macroscopic deformation gradient
is symmetric, there is no macroscopic rigid-body rotation. Un-
der such a deformation we may assume that each sphere does
nol Totate so as te match the positions of its neighbors. The
deformation gradient is then equal to the strain tensor. In order
to make explicit this assumption we rewrite (17) as

w=—f-e' Nk, 5= PeiiR, (23)

where ¢ is the symmetric part of the macroscopic strain,
=1(f+ 17), (24

and we shall write Pefi as a shorthand for the vector P- e fi
(w s unaffected). In summary, within the mean field approxi-
mation adopted here only the symmetric part of the macroscopic
deformation gradient influences the internal strain energy and
so we need consider only symmetric deformations.

We are now ready to calculate the deformation energy from
Eq. (20). We assume there are N spheres with an average of
n contacts per sphere. First, consider the case where each contact
follows the linear path defined by Eg. (7), so that

F=-CA.(—f e ARA + Cal’(~fi-e- AR)RPen,
du = R(de)- 1, (25)
The energy can now be obtained by substitution into Eq. (20)
followed by integration, yielding
U=(1~¢) {CAVo(~h+ e AR))
Vo
+ 3CRaP(—fi-e- AR)|Pet]?)), (26)
where (-} denotes the average over all directions A, V, is the
volume of a single sphere, and ¢ is the porosity of the sample,

_ N
e,

Strictly speaking, Eqs. (27) do not apply to the Digby model}

Vo =37R* 1 - (27)
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II because of the missing spherical caps, nor to the Spence/
Goddard model IIT because the ogive volume is not the same
as the sphere’s. We note that the same formula for U in (26)
may also be obtained more directly using Eqs. (13} and (23).

We may generalize (25) and (26) to the case of an arbitrary
path in w — s space, Let the path be parameterized by w = ¢,
s = 8(&). The path may differ from contact to contact and is
subject only to the constraints that it is self-repeating and the
end points are given by Eq. (23). Then, using Eq. (5),

F=-CA,(~f e AR)A +'C,f a{£)ds(&),
N patn

du = R(de)- i, (28)

and the energy U follows accordingly. In summary, the energy
U is defined for arbitrary strain e for the models with constant
tangential stiffness. However, for the path-dependent models U
is acquired under the specific loading path chosen.

3.3 Elasticity for the Energy Models. The energy can

also be defined by
u =f 0',}'0’8,'}, (29)

o

where o; = oy(e) is the effective stress, which can be calculated
separately by considering an average stress over many spheres.
This is the approach taken by Walton (see Eq. (3.15) of Walton,
1987). We note at this stage that o;; cannot be obtained by
simply differentiating U with respect to e, because the energy
is path specific in general. However, it is important to note that

oy = @ for models Ia, Ila, and HIa, (30)

Bey
and hence the strain energy function U(e) of (26) is all that is
required in order to determine the macroscopic stress for these
models. Thus, from Egs. (15}, (26), and (30),

R
Gy = (1~ ¢) % {C,a,R(;i—(n,-ij P ety
0

= C{A(~-R-e-fR)mm)). (31)

This gives the finite stress at any strain e for models Ia, 1lz,
and IIla.

If a further small strain, €;, is superimposed upon e then the
resulting stress can be found by simply substituting e; - ¢, for
e; in (31). Let the total stress be o + Ty, then 7; is 2 nonlinear
function of €, which can be expanded in a Taylor series about
€; = 0. The linear coefficients are, by definition, the coefficients
of linear elasticity at the finite strain e. These can be obtained
directly by inspection from the strain energy expansion. Thus,

1
U(e + E) = U(E) + T i€y + §C,?fk;6,'j€k,'

1
5 Clumn €5€0€mn + ..., (32)

where C¥y and Chyn, are the second and third order elastic
moeduli, respectively. They satisfy the usual symmetries associ-
ated with a material possessing a strain energy:

Chy = Chu, Chu= CHy;, (33)
C?fﬂmn = C}'fk.‘mm Cijkkfnm = Cﬁsjmn = Cﬁnufy (34)

The first identity is a statement of the symmetry of the stress.
Explicit expansion of the strain energy, using Eqs. (15),
(26}, (30), and (32) yields

nR? R .
Clu= (1 - ¢) A {{[Ca,(—fi-e- AR) — C,aJmmmnen,)
Q
+ Ca{Qu(f)}}, (35)
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where

Ouu(i) = :1:(5&"_,‘?’11 A Samnyg + Gyniny + Sum). (36)

Note that the part of the moduli CJ, attributable to the constant
tangential stiffness D, = Ca, is isotropie, i.e.,

nR* . .
Cho = (1 = ) 5~ Cila.(—i e AR)mmna)
g

Ca

+ “‘1‘“5‘ (3w — 6r'j6k.')} » (37)

where Iy = (8ad + 640, )/2 is the identity tensor. Similarly,
the third-order constants are given by

Clam = —(1 = qb)%cxa;(—ﬁ- e+ BR)mmman,). (38)

The tangential stiffness does not contribute to the third-order
moduli because it has been assumed to be a Hookean spring.

3.4 Finite Elasticity and Finite Strain. Here we make
explicit our earlier remark that we neglect the change in sample
dimensions as being a smaller effect compared to that due to
the change(s) in stiffness{es). Consider the sample subject to
a strain of order ¢ <€ 1. The change in the sample dimension is
AV/V = (e}, whereas the relative change in the stiffness of
the system is of order €C ../ C k... The relative magnitude of
the second and third-order moduli follows from Eqs. (37) and
(38) and Tables 1 and 2:

Second-order moduli
Third-order moduli

- ( an(WJ)
Ra,(w)

a;

Hence, the relative stiffness change far exceeds the relative
volume change. This is a fundamental characteristic of granular
media with Hertzian contact forces. It is manifested in the rela-
tively large change of elastic wave speeds as a function of
confining stress, which we discuss in detail in Section 5.

We have so far omitted any mention of the finite strain tensor,
defined as E = e + 3f7f. This is normally the fundamental
quantity of finite elasticity, in particular, a hyperelastic material
is a function of E. The strain energy is assumed to have a power
series expansion of symbolic form U = Uy + C,EE + G EEE
+ ..., where C;, G, represent second and third-order moduli.
Aliernatively, expanding in terms of f, we have

U= Uy + Creee + Cyeee + O(Caeff, Cieeff ). (40)

The scaling of the moduli in (39) indicates that the correction
term, Creff , is negligible in comparison with C;eee, and hence
it is entirely consistent to take the energy as U = U, + Cee
+ Cseee, correct to third order in the finite strain. Consequently,
there is no necessity to distinguish the finite strain E from the
linear strain e, even for the purpose of discussing nonlinear
elastic effects (up to the order considered here).

(39}

4 Energy and Elasticity for Path-Dependent Models

The previous results for the effective moduli are not immedi-
ately applicable to the path-dependent models because there is
no analog of Eq. (30) for determining o;. This difficulty can
be resolved by considering small departures from the path-
dependent loading, which is physically reasonable for small
wave motion or incremental deformation superimposed upon
the finite deformation e. The central difficulty is present at the
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level of the individual contacts, so it makes sense to start there
before considering the aggregate. | .

4.1 A Single Contact. The path-dependent strain energy
for a single contact, W of (13}, is not a function of w and s,
and hence cannot be differentiated arbitrarily. It is, however,
possible to consider variations in W for arbitrary unconstrained
changes in w and s about their equilibrium values, wg and s,.
Letw = wy + wy and s = § + 8, where [w;{ <€ |wy| and |s;]
< {8p|, and the extra displacements w, and s, are, in general,

unrelated to one another. We first note that
1

dW = N(w, s)dw + T{w, s)-ds (41)
and hence

W = Wolws, o) + No(wy, So)w,
wl E]
+ To(Wo, S0)* §; +f Nodw, + f T -ds,, (42)
) Q

where N =Ny 4+ N,and T = Ty + T,. The values of W,, T,,
Ny may depend on the loading history s{w) to that point. The
incremental force equations are, from (4),

dN, = Cua.(wy + wddw,,, dT, = Caa(w, + w,)ds;.

(43)
Expanding and integrating gives
Ni(wy, 503wy, 81)

= Cula.(wo)w, + ai(wedwi +...], (44)

T (wq, $o; wi, 51)

= Cladwo)s) + a/(w) _[:I wids +...].  (45)

The form of N, is unambiguous because of the fact that N is
always a function of w. On the contrary, the integral in T,
depends upon the loading path, or equivalently, upon the func-
tional relationship between wy and s,, if any. This integral is
second order in the additional displacements; the first-order term
Ca,(wy)s, does not depend on the loading history of (wy, s,).
Substituting for N, and T, into (42) we see that the incremental
strain energy is defined only up to second order in the incremen-
tal displacements, but not to third or higher order, i.e.,

Wiwy + wy, 8o + 8) = Wolwy, S¢) + C,A, (wedw,

i 1
+ CalP{wo)so s + 3Ca, (wo)wi + 3Ca(wg)st

+ path-dependent third-order terms in (w;, 5,). (46}
The third-order terms depend upon the path taken from (0, 0)
to {wy, s;). This distinguishes the path-dependent models Ib,
Ilb, Ik, and IV from the others which possess well-defined
strain energy functions. The concept of second-order elasticity
is valid for path-dependent models but we cannot use or define
third-order elasticity. We will now see how this functional re-
striction translates into the macroscopic strain energy, and also
the effective moduli for the granular medium,

4.2 The Granular Medium. We now consider a depar-
ture from the stress/strain state (o, €), such that the total strain
and stress are e + € and o + 7, respectively, where {€| < |e|
and {7{ < |o|. The force at a contact becomes F + G, where
|G| < {F|, and the associated incremental displacement 2v of
the pair of spheres relative to one another is given by

v = Re- R (47)
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The increment in energy for a single contact, along a specific
but arbitrary path, is therefore dW = (F + G)« dv, implying
that

W=W0+-F'v+f(}"a‘v, (48)

where W, is the (in general, path-dependent) energy fore = 0,

as given by Eqs. (13) and (17), for example. The total energy
density of the aggregate is

R R ,

U=Uy+ = 3 Freh+ v 2 | G-(de)-h, (49)

COntacts conlacts

where Uy is the strain energy at € = 0, given by (26).

We can now take advantage of the arbitrariness in €; o

express the total stress as

au
oyt Ty = 3—6,, . (50)
The effective stress at strain e is therefore
U
g = 51
7 66'} e=0 ( )

and the total energy density may be rewritten, from Egs. (49)
and (51),
U= Uo'{“O',jE,-j'*‘ U],_ (52)

where U, is defined as the ultimate term in (49). Finally, the
incremental stress is

aU]
= —_— 53
Ty Be, (33)
The macroscopic stress follows from Egs. (49) and (51) as
R
oy ==— 3 (Fim + Fn,). (54)

2V

CORLacls

This is an exact relation for point contacts, and it is commonly
used to derive the stress (Digby, 1981; Walton, 1987; Jenkins,
1991). The main point of note here is that the same formula
drops out quite naturally from the strain energy. Combining Eq.
(54} with Eq. (28), for F gives

gy = (1 - ¢’)% {%(f N (&) (nds; + n,-d&-)>
pal

- C,,(A,,(—ﬁ-e-ﬁR)nm,-)} v (55)

which is valid for arbitrary deformation paths, with the end
condition (23), for s. As a specific example, we consider the
Hnear s trajectory of Eq. (7), for which ( 55) reduces to

nRk
oy = {1 — )
if Ve
X {C,R<a$|)(_fl° e- ﬁR) % (n,-ij + an;k)€un[>
- C,,(A,,(wﬁ'e-ﬁR)n;nj)}. (56)

When the length a!" and the area A, for the contact models Ia
and Ib of Tabie 1 are used, Eq. (56) gives precisely the results
derived separately by Walton ( 1987) for Hertzian contact with
either smooth or infinitely rough contacts, Schwartz et al.
{1994) have based their theory of stress-induced anisotropy
upon this model. We also note that the stress o;; for the energy
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models, Eq. (31), is clearly a special case of (56), and follows
from the latter by simply replacing the variable length a!" by
its constant value appropriate to"the energy models, see Eq.
{11). Finally, by substituting {56) into (29} and integrating, it
can be checked that the energy agrees with (26).

The incremental behavior depends upon the additional strain
and stress in excess of e and o, the crucial quantity being the
extra contact force G. It follows from the preceding analysis
for the single contact that G is only path independent to first
order in the incremental strain. The associated linear form is

G = ~RC,a,(~h-e-ARY(—A- e-ﬁ)fl

+ RCa(—-n-e' iR)Peh. (57)
The integral in (49) can now be evaluated, yielding
?IRZ N ~ ~ )
Ur=(1 = ¢) — {Cla,(—h e AR~ € 7)?)
2V,
+ Cla,(—h-e-AR)|Pefi|?)), (58)
or
U, = % C?}‘ufsjfid, (59)

where
nR?
Chale) = (1 ~ ¢) —
Vo

X {{[Cra,(—Ti-e-AR) — Cia(—n- e AR)Imnmm)
+{Cal-i-e AR)Qu(R))). (60)

We wish 1o emphasize that Eq. (60) is always a well-defined
path-independent function of the macroscopic strain, e, even
for the path-dependent models. Of course, the stress o corre-
sponding to that strain e may well be path dependent. I the
special case of Hertz-Mindlin contacts, for which a,(w) =
a(w) = (Rw)'?, Eq. (60) reduces exactly to Eq. (4.6) of
(Walton, 1987) but without the necessity of invoking his as-
sumption that s/w = constant.

The incremental stress follows from Eqs. (53) and (59),
(61)

Ty = Cﬁklfkr-

Note that the moduli possess the usual symmetries associated
with an elastic material, (33)., The linear stress-strain relation
for 7; may also be found without using the concept of strain
energy, e.g. Walton (1987}, but rather from a force balance on
the macroscopic scale. This results in an identity which has the
same form as (54) but with oy, Fi replaced by 7, G;. It can
be easily checked that this yields the same stress as (61).

5 Sensitivity of Wave Speeds to Confining Strain and
Stress

The wave speeds for small motion superimposed upon the
large strain e are defined by the effective moduli C#, and the
effective density, p* = (1 — ¢)p, where p is the granular

density. If the wave or phase normal is m, im| = 1, and the
polarization direction is p, |p| = I, then the wave speed v
satisfies

p*u? = Cu(e)mmp; p;. (62)

Note that m and p are not independent, but must satisfy the
eigenvector relation Cha(eymmp, = p*v’p, . We are interested
in the incremental change in speed, Av, when the strain is
changed to e + Ae. The additional strain arises from a static
deformation, and need not be proportional to the original, finite
strain e.
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For the models with energy potentials we can use the standard
theory of acoustoelasticity {(Toupin and Bernstein, 1961),

p*sz = C}}‘Hmnljm,p,-pkllfm + (C,‘*f‘q,Af;,ﬁJf -+ Cg},uAf;q
+ C,’g.uAf_,q + C,?}‘HAfkq + C,?}‘kqAﬁ,,)p,-p;m_,-mk, (63)

where Af is the incremental deformation gradient and
C%ymn (@) are the third-order moduli, Based on Eq. {39) we can
safely and consistently ignore the terms in (63) involving the
second-order moduli as being of a smaller order than the third-
order moduli terms for the granular medium. Furthermore, using
the symmetries of Ci. in (38) implies

(64)

that is, the change in speed depends only upon the symmetric
strain increment defined in accordance with Eq. (24).

The analogous result for the path-dependent models can be
obtained by returning to the fundamental relation for the incre-
mental strain energy of a single contact, (46). At issue is how
the coefficients of w? and s? are altered as we change wy to wp
+ Awyg, and sp to s, + Asy. The change in the terms W, and
a"(wp) in (46) are path dependent, and require that the incre-
ment in §q be related to that for wy. However, this path depen-
dence does not effect the terms of interest, i.e., we simply
replace the arguments of g, and a, with wy + Aw, in the qua-
dratic terms. The increment in W involving the quadratic small
strain is therefore

pEAY 1= C ¥t eYymrup; Dilepn,

AW = ... +XCal(wo)wl + Cal(we)s)Aw,. (65)

When we translate this result to the aggregate, it is clear that
the change in the wave speed is of the form
priwt = B fumn (Y1000 prlSe g, (66)

where Bfu.. are simply the derivatives of Ci,(e), given by

B (e) = 2C0(E) (67)
e

The explicit form follows from Eqgs. (60) and (67),
3n
Be* ma = 1- -
Y { &) o

X {{[Cual{—fi»e- AR) — Coa/{—Mi~ e AR)Immmnn,n,)

+ Clai (—h- e AR) Qyarne . (68)
Comparing Eqs. (38) and (68} we see that
B = Chuma if and only if a, is constant. (69)

In general, the third-order tensor B ., does not have all the
symmetries of the third-order elastic moduli Chy.. in (33).
Thus,

B }f’k.'mn = Bffkrmm (70)

B ﬁs_mm = B."fklmm B ?}‘k.'m = B ."}‘krmn-

6 Example: Hydrostatic Confining Pressure

Consider a hydrostatic strain, e; = ey, ¢ < 0. The macro-
scopic stress o of (56) is hydrostatic, oy = —pé,, and the
confining pressure is

nR
p=( ~¢)3—%C,,An(—eR). (71)

This is true for both the energy models and the path-dependent
models, because it is independent of the tangential stiffness.
The effective moduli are isotropic with two second-order and
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{when applicable) three third-order moduli. The Lamé moduli,
for all models considered in this paper, are
A C.a.(—eR) — Ca,{—¢R),
n 3
x4 =] — " w tCua.(—eR) + 3 Cal(—eR)
a (=) 5omR =
K* %C,,a,,(-—eR).

(72)

If the model possesses a unique potchtial energy then the
third order moduli are i

Ci*u 15,
% —(1 —¢)n
= ———— Ca,(—eR) X \
Chz 140" ar(—eR) 3 (73)
¥ L.
123
Note that these are all negative and
ChoChChy = 15:3:1. (74)

Al other nonzero elastic constants are simply related to these
three {Green, 1973). There are many alternative systems of
notation for the third-order moduli, and Egs. (73) and (74) can
be converted accordingly. Green (1973) has provided a very
useful table for converting from one system of notation to an-
other. For example, Eq. (74} implies that the moduli of Toupin
and Bemstein (1961) are identical, i.e., v, = vy = vy, while
those of L.andau and Lifshitz (1986} satisfy A:B:C = 8:2:1,
wz,

A 4,

i Sl 22 LD
By = T30 Car(—~eR) X {1, (75
c 1/2.

Departures from linear elasticity for the path-dependent mod-
els requires the moduli B %..., which are of the form
B Yimn = Bijuims + Eij15m- (76)

Here, Bjunm., satisfy all the symmetries of third-order elastic mod-
uli, viz. Eq. (33), and

B 15C,a,(—eR) — C,a/(—eR),
3C,al(~eR) ~ 3C.a]{~eR),

Bz (1 = ¢)n %
By 1407 Coar{~eR) — Cia/(~eR),
B TC,a!(—eR).

(77)

We can now test the general expression {66) for the change in
wave speeds. We consider the change in the speed of longitudi-
nal and transverse waves, v., and v,, for which p is paralle] to
m and p is perpendicular to m, respectively. Noting that dp/
de = —3K*, where K* = A\* 4 2up*/3 is the effective bulk
modulus, it follows from Eq. (66) that

Pr _d_”__? - (Bl + 2BTn)
dp 3K* '

L dvi_ (B +2BY)

dp 3K (78)

where (Gfeel:.l, }.973) B:Al = (B”z - B|23 + B)/Z, B;kz;z - (B[“
— Byz + 2B)/4. The resuits for the elastic models simplify
because a! = 0; We have Bf,, + 2BY, = 21B and BS, +

2B = 1B.
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The speeds of propagation of small-amplitude compressional
and shear waves are -

A 4 Dk 1/2 w172
vc=(—;—i‘m) ,_v,=(%) .9
P P

respectively. The derivatives of the speeds with respect to pres-
sure can ther be worked out directly from the definitions of the
effective moduli in Eq. (72). It is then simply a matter of some
algebra to check that these da in fact agree with the expressions
in Eq. (78).

Note that Cua!(—eR) is the modulus determining all the
third-order moduli in (73) and (75). The additional modulus
Cia; (~eR) is required when the length a, governing shear de-
formation at the granular level is not constant, but depends upon
the loading. In the path-dependent models Ib, iIb, and IiIb, this
parameter is the same as a,, The behavior of a, is quite different
for each of models I, I, and III. Thus, as the applied strain e
tends to zero, we have Car(~eR) tending to «, 0, and the
finite value (2/an)C,, respectively, for medels I, I, and JII,

7 Numerical Examples and Experimental Data

In this section we present numerical calculations of the speeds
and the moduli as a function of confining pressure. For the sake
of specificity we limit our analysis to the Digby model, Ila. We
note that there is a scale invariance which guarantees that the
moduli, considered as functions of pressure, depend only on
the ratio of 5/R. We consider glass beads for which we assume
the elastic constants and the density to be those measured by
Johnson and Plona (1982). We take 7 = 9 as deduced by Bernal
and Mason (1960). The calculated speeds are presented in Fig.
2. This figure is essentially the same as that of Fig 5 of Digby
(19813}. We note that when & = 0 the sound speeds are propor-
tional to p'’® as discussed by Digby and others.

Also shown in Fig. 2 are the speeds of sound which Domenico
(1977) has measured in glass beads under confining pressure,
We have converted his values to more conventional units. Al-
though it is not perfect, we see that the Digby model with b =
0 provides a reasonable description of the sound speeds, with
no adjustable parameters. Winkler (1983) has pointed out that,
in the context of contact models treated via the present effective
medium theory, the Hertz-Mindlin model with 0 < a, < a,
would provide a better description. Goddard (1990) has further
critiqued the pressure dependence of the speeds. He has argued
that in a disordered packing there is a variation in the number
density of Hertzian contacts, which can lead to a sound speed
which varies more rapidly than p'’*, especially at lower pres-
sures. Experimental and numerical data of Jenkins et al. (1989)
and Cundall et al. (1989) at much lower confining pressures
(<140 kP2) than those considered here gave values for the
shear modulus of about one third that predicted by Dighy's
model. They also found many redundant grains, with an average
coordination number closer to five. The present model is not
appropriate to this type of “loose’” packing, where shear band-
ing is common, and the mean field assumption needs to be re-
examined. Thus, Jenkins et al. (1989) considered anisotropic
orientation distribution functions for the contacts, and they also
permitted the grains to rotate individually.

For the purposes of the present article, we consider the model
to give a reasonable semi-quantitative description of the acous-
tic properties of granular media. In Fig. 3(a) we plot the pres-
sure dependence of the second-order elastic constant C =X
+ 2u (the P-wave modulus) from Eq. (72). In Fig. 3(&), we
plot the corresponding pressure dependence for the third-order
constant, — B, using Eq. (75). The dimensionless rate of change
of P-wave speed, p*(dV }/dp) from Eq. (78), is plotted in Fig.
3(c). The following points emerge from these figures:

(a) When b = 0 the second-order elastic constants vanish,
and the third-order constants diverge, in the limit p—0
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Fig. 2 Compressional and shear speeds in unsintered glass beads as
a function of confining pressure. The continuous lines are calcufated
results based upon the Digby model of grain-grain contacts. We have
used the values n = 9, u = 49.9 GPa, » = 0.277, and Ps =248 gm-cm™,
The symbols represent the experimental data of Domenico {1977) which
should be compared against the b = 0 curves.

(b) When b * 0 the second-order elastic constants tend to
a finite value and the third-order constants tend to zero, in the
limit p — Q. This is obvious from Eq. (13} and Table 2: ¥,
is an even function of w for the Digby model and so there is
no third-order term in an expansion around w = G,

(c) Inthe range of pressure over which there is experimen-
tal data, the third-order elastic coefficients are much larger than
the second, thus justifying our neglect in the change of sample
size as the pressure is increased. This approximation is also
valid for small nonzero values of b/R.

(d) Typical values of p*(dV 2/dp) in Fig. 3(¢) are much
larger than the corresponding values for nongranular solids
which are in the range 5-10. (See, for example, Johnson et al.,
(1994 ) and references therein.) They are, however, much less
than values which have been seen in consolidated sedimentary
rocks (Johnson et al,, 1994). This may be due to the fact that
the asperities in grain-grain contacts are much smaller than the
average grain diameters and/or the ogival contact model is the
more appropriate one,

8 Conclusion

We have developed a simple theory of macroscopic elasticity
of granular systems based upon various models of the grain-
grain contact forces which have appeared in the literature. For
all models considered, the second-order elastic constants are
well defined at any given static state of stress. Thus the speeds
of sound are well defined at a given state of stress. The same
cannot be said of third or higher-order elastic constants; in
general, the change in sound speeds due to an incremental
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change in state of stress is dependent on the history in which
that change is applied. The exceptions occur for models of
grain-grain contact forces which are derivable from a potential
energy function, which guarantees that the solid is hyperclastic.
Here, the third-order elastic constants are well defined, as are
all higher order constants, independent of the path of the defor-
mation.

We have illustrated our results with some calculations rele-
vant to glass beads under confining pressure. The calculated
speeds of sound are in semi-quantitative agreement with the
existing data of Domenico (1977), as has been noted before
by others. For such a system we believe this lends credence
to the approximate validity of our calculations of the third-
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' Fig.3 Calculated elastic properties of granular media within the context

of the Digby model. Same values of input parameters as in Fig. 2 with ¢
= 0.38. (a) Second-order elastic constant Cy4 as a function of pressure.
{&) Third-order elastic constant, B, as a function of confining pressure.
{c) p*(dVi/dp) as a function of confining pressure. Note the differing
scales.

order constants. This theory can be extended to other states
of stress, as well as to other models of the contact forces.
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APPENDIX

Alternative Theories for Intergranular Forces

Oblique Loading on a Pair of Spheres. In a series of
papers Mindlin and Deresiewicz (Mindlin, 1949; Mindlin
and Deresiewicz, 1953; Deresiewicz, 1958) provided an ex-
haustive analysis of the mcchanics near the contact region of
two elastic spheres. This work extended the classical analysis
of Hertz (who verified his contact theory by experiment) 1o
account for tangential forces and oblique loading. Mindlin
and Deresiewicz (1953) showed that the relation between
the tangential force and the tangential displacement depends
upon the loading history.

Consider two spheres forced together under a load N. This
results in a circular contact zone of radius @ and a normal
displacement w,

1/3
a = (M) . w=a%R. (AD)

2C,

That is, the spheres approach twice the distance achieved by
slicing off caps of radius a on each. Equations (A1) imply that
N= %CnRuzws.'z_ (A2)

Let a, be the initial contact radius for applied force N,.
An oblique compressive force is now applied, resulting in a

tangential force T and total normal force N. The additional
force is applied incrementally in such a manner that its Jine
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of action is constant, and it lies outside the friction cone, that
is

dT

a=ﬁ>f. (A3)

where J is constant and fis the coefficient of friction between
the surfaces. The contact zone then grows to

a = (N/INg}"%ay = (1 +.8LY qq, (A4)
where ;
! T -
b= L =—-, AS
5 TR, (43)

Note that ) = § = 1, and the upper limit corresponds to
infinite roughness at the contact, and hence no slip. As the
contact zone grows a slip zone in the shape of a circular annulus
also grows inward, so that the adhered region is of radius ¢
where

c=(1—T/IfNY"Pa =[1 - (1 - 8)L)"a,. (A6)

Thus, ¢ = ay, as expected, with equality only for infinitely
rough surfaces.

The incremental change in the relative tangential displace-
ment between the two spheres, 25, is related to the applied load
by the differential relation (Eq. (82) of Mindlin and Deresie-

wicz (1953))
—— _l
dar C,(g + i 8) ‘

A7
ds a c (A7)

There are three limits of this general relation that are of
interest.

(i) First, if the surfaces are frictionless, then ¢ = 0 identi-
cally (there is no adhered region) and case Ia of Table 1 is
obtained.

(i1) Second, if the friction is infinite, or § = 1, then T
satisfies (1) with a, = a,. If we integrate this relation with the
initial condition that N, = 0 (which only makes sense for infinite
roughness), we recover Walton’s result {Eq. (2.5), of Walion
(1987))

T = {C.as. (A8)
Thus, Walton’s model corresponds to homothetic loading from
zero confining stress. This is mode! Ib in Table 1. The more
general relation in Eq. (A7) allows us to consider different load
paths and finite friction. However, we will use Walton’s formula
In practice.

(iit} Alternatively, if the normal load is kept fixed as the
tangential force is applied, then § = 0, and we have instead

(A9)

This is the case considered by Mindlin in Eq. (103) of Mindlin
(1949), and is model IV in Table 1.

dT = C,eds.

Normal Loading of a Pair of Spheres in Contact. The
models of the previous subsection can be generalized to account
for initial contact. Digby ( 1981 considered the case of a circu-
lar zone of radius & of initial contact between the spheres at
zero confining force. He showed that the comtact zone for a
compressive normal force N is a circular region of radius a
given by the formula

afa® = b*)"? = Rw. (A10)

This gives the formula for a, = a in Table 1, for model II.

Transactions of the ASME



'I‘he SpencelGoddard Contact Model. An ogival in-
denter, composed of a spherc with a conical tip of interior angle
7 —2a, 0 = a <€ 1, is pressed into a sphere of the same
radius. This type of contact geometry was discussed by Goddard
(1990), and is based on a class of solutions generated by Spence
(1968) for frictionless indentation of self-similar shapes on
planar surfaces. Thus, the normal force required to press the
ogival body a distance w against a planar surface of the same
material is

where a is the contact radius, w = Bya, Bo = (7/2)B, + 2B,,
and B, = @, B, = a/2R. These follow from Appendix D of Spence
(1968). The analogous force for the ogive/sphere contact is ob-
tained simply by the replacement B, = a/R, which combined with
(All) Jeads to the incremental form of the force equation, (1)
and {2), where a, is given in Table 1 under model UL
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