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A simple formula was recently proposed by Williams@J. Acoust. Soc. Am.99, 2022–2032~1996!#
for imaging pressure and velocity on a vibrating circular cylindrical shell using the far-field pressure
measured along a meridional semicircle. The method is examined and some new results are
obtained. The procedure is generalized to handle cylindrical surfaces of noncircular but convex
cross section. It is demonstrated that Williams’ formula predicts a supersonic surface intensity
which gives the same meridional energy flux as the exact radiated far-field pressure. A modification
of Williams’ formula is suggested which uses pressure data from several neighboring semicircles,
although complete spherical coverage is not required. The modified imaging formula is based upon
the first two terms in an asymptotic expansion in the dimensionless wave number. The leading-order
term yields the original formula, and the second term results in a boundary layer type of correction
in the circumferential direction. Numerical examples are presented which compare the exact
supersonic acoustic intensity on a cylinder with that from the original and the modified formula.
These indicate that the circumferential on-surface resolution is significantly enhanced by combining
data from neighboring semicircles, even when the total far-field spherical coverage is small.
© 1997 Acoustical Society of America.@S0001-4966~97!05110-2#

PACS numbers: 43.30.Jx, 43.20.Rz, 43.40.Rj, 43.35.Sx@SAC-B#
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INTRODUCTION

Acoustic holography provides a powerful tool for vis
alizing and understanding the vibration on a structure us
pressure measured in the near or far field. Near-field da
preferred, in the sense that it includes information about
evanescent, subsonic pressure field which does not radia
the far field. The theory and practice of near-field acous
imaging has developed considerably in the past decade
ginning with Williams et al.1 who presented the details fo
the specific case of the circular cylindrical geometry, inclu
ing the necessary wave-number filtering. Veronesi a
Maynard2 subsequently described a method for reconstru
ing data on nonseparable surfaces using singular value
composition. Borgiottiet al.3 discussed numerical applica
tions of the SVD technique for surfaces conforming to
nonseparable closed surface, and they provided accurac
timates based on the dynamic range of the data.

Far-field acoustic holography for cylindrical and no
separable surfaces has received less attention. This ma
ascribed to the loss in information caused by the radia
process: short wavelength or subsonic surface data doe
radiate, and one is left with the filtered supersonic da
Sarkissian4 proposed a general scheme for reconstruct
surface velocity on arbitrary surfaces from far-field data. T
method relies upon impedance eigenfunctions for the
face, which form a complete and orthogonal basis for
far-field radiation pattern. This functional basis is also
lated to the singular value decomposition of the impeda
operator.5 However, except for separable surfaces, the se
basis functions must be determined numerically, with
creasing difficulty at higher frequencies. Furthermore, the
diation operator which maps surface data to a far-field ra
2098 J. Acoust. Soc. Am. 102 (4), October 1997 0001-4966/97/102
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tion pattern is a compact operator, and its inversion is
ill-posed process, implying that far-field reconstruction
surface data is itself an ill-posed problem.

Recently, Williams6 showed that a very simple but ap
proximate technique yields surprisingly accurate imagi
The method is specifically for circular cylindrical surface
and uses far-field pressure data measured on meridi
semicircles to image the surface pressure and velocity in
same plane. Williams provided an extensive comparison
the exact and approximate images, using simulated data
near-field versus far-field experimental data. He also show
that the imaging formula can be derived from the exact eq
tions for the circular cylindrical geometry. Overall, the acc
racy is remarkable over a wide frequency range (ka
50.3– 16.0). The only limitation is that the surface da
should be bandlimited in the circumferential, or azimuth
direction, roughlyn<ka/3.6 However, the numerical and ex
perimental comparisons are surprisingly good even fo
point drive on the cylinder.

In this paper we will examine the imaging formula fro
a slightly different perspective. It will be demonstrated th
the formula is a simple consequence of a high-freque
approximation. This is implicit in Williams’ analysis also
but here we show how the high-frequency nature of the
proximation makes it equally applicable to cylinders of ar
trary nonseparable cross section. As with many hig
frequency approximations, this one also proves to
accurate for frequencies such thatka is not large, even of
order unity. The approach taken here is based upon
Helmholtz surface integral, which allows us to find th
leading-order asymptotic approximation for the far-field p
tern function. This is derived in the next section, followed
2098(4)/2098/10/$10.00 © 1997 Acoustical Society of America
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a discussion of energy conservation. An improvement, bas
upon the next term in the asymptotic series, is presented
Sec. II for the specific case of a circular cylinder. The ne
scheme uses data from neighboring circles to give improv
circumferential accuracy. Finally, the method is illustrate
by examples and alternative numerical implementations
discussed.

I. THE SIMPLE IMAGING FORMULA

A. Derivation

We will work primarily with cylindrical polar coordi-
natesx5(r,z,f) but also use spherical polar coordinatesx
5(r ,u,f) where r 25r21z2 and z5r cosu. The acoustic
pressure is assumed to radiate from sources on or withi
cylinder of constant cross sectionC defined by the radiusr
5b(f) and sufficiently long in thez direction that end ef-
fects may be ignored, see Fig. 1. We assume that the cylin
cross section is convex and smooth. The far-field patte
function F is defined by

p~r ,u,f!5
eikr

r
F~u,f!1 OS 1

r 2D , r→`, ~1!

wheree2 ivt dependence is assumed. Our objective is to im
age the acoustic field on the cylindrical surface usingF. It is
well known that only those components of the surface pre
sure and velocity which are supersonic can radiate to the
field.7 Let f „b(f),z,f… represent a quantity on the surfac
r5b(f), such as pressure or velocity. It may be partitione
into supersonic and subsonic parts,f (s)(z,f) and f (c)

3(z,f), respectively, such thatf 5 f (s)1 f (c) and

f ~s!~z,f!5E
2`

`

dz8 f „b~f!,z8,f…

sin@k~z2z8!#

p~z2z8!
. ~2!

The supersonic surface pressure and normal velocity
r5b(f) are defined in the same way asp(s)(z,f) andv (s)

3(z,f), respectively. The basic formula that we will derive
is for p̂(s), which approximatesp(s) ~the hat denotes an ap-
proximant of a quantity!

FIG. 1. The cylinder cross section and geometrical parameters.
2099 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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p̂~s!~z,f!5eip/4A k

2pa~f!
E

0

p

duAsin u

3eik„b~f!sin u1z cosu…F„u,c~f!…. ~3!

Herea(f) is the radius of curvature at the positionf, and
the c(f) is the angle for the normal, see Fig. 1. Letl (f)
denote the arclength on the curve defining the cross sec
i.e., dl/df5Ab21(db/df)2, then

a~f!5
dl

dc
, c~f!5f2tan21S 1

b

db

df D . ~4!

Equation~3! reproduces Williams’ formula@Eq. ~17! of Ref.
6# for the special case of a circular cylinde
(b[a5constant!. Williams also obtained a simple formul
for the supersonic radial velocity on the circular cylind
@Eq. ~18! of Ref. 6#. The analogous result for the gener
cross section is

v̂ ~s!~z,f!5
eip/4

r f c
A k

2pa~f!
E

0

p

du~sin u!3/2

3eik„b~f!sin u1z cosu…F„u,c~f!…, ~5!

wherer f is the fluid density andc5v/k the acoustic wave
speed.

Williams6 derived his formulas for the circular cylinde
using an exact representation for the supersonic fields
terms of the far-field pressure. Here we present an alterna
derivation which does not rely upon an azimuthal modal
pansion explicitly. We start with the Helmholtz integral fo
mula of the radiated acoustic pressure in terms of the p
sure and normal velocity on the cylindrical surface,

p~r,z,f!5E
C
dlE

2`

`

dz8Fp„b~f8!,z8,f8…

3
]g

]n
„r,z,f;b~f8!,z8,f8…

2 ivr fv„b~f8!,z8,f8…g„r,z,f;b~f8!,z8,f8…G ,
~6!

whereg(r,z,f;r8,z8,f8)5(4pR)21eikR, R5ux2x8u. This
implies that the far-field form function has the exact rep
sentation

F~u,f!5
2 ik

4p E
C
dlE

2`

`

dz8 e2 ik„z8cosu1b~f8!sin u cos~f2f8!…

3@r f cv„b~f8!,z8,f8…1sin u cos„f

2c~f8!…p„b~f8,z8,f8…#. ~7!

By transforming inz, we obtain

F~u,f!5
2 ik

4p E
C
dl e2 ikb~f8!sin u cos~f2f8!

3@r fcV~k cosu,f8!1sin u cos„f

2c~f8!…P~k cosu,f8…#, ~8!
2099Andrew N. Norris: Far-field acoustic holography
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where the transforms are

S P~kz ,f!

V~kz ,f!
D 5E

2`

`

dz e2 ikzzS p„b~f!,z,f…

v„b~f!,z,f…

D . ~9!

The supersonic surface fields can also be expressed in t
of the z transforms as

S p~s!~z,f!

v ~s!~z,f!
D 5

k

2pE0

p

du

3sin ueikz cosuS P~k cosu,f!

V~k cosu,f!
D , ~10!

since Eqs.~9! and~10! are together equivalent to Eq.~2!. Our
objective is to derive approximations toP(k cosu,f) and
V(k cosu,f). With this in mind we make two assumption
~i! First, we assume the normal velocity and pressure
related by a ‘‘cylindrical wave’’ approximation, which i
most easily expressed in terms of the transformed varia
as

V̂~k cosu,f!5
sin u

r f c
P̂~k cosu,f!H 12

1

2ika~f!sin u

1OS 1

~ka sin u!2D J . ~11!

This may be justified by the high-frequency approximati
for thez-transformed pressureP(rn ,kz ,f) near the surface
wherern is the distance fromC in the normal direction,

P~rn ,kz ,f!5P~kz ,f!eiAk22kz
2rn

3A a~f!

a~f!1rn
F11OS 1

kaD G . ~12!

Thus usingV(rn ,kz ,f)5( ivr f)
21]P/]rn , and evaluating

on the surface (rn50), we get Eq.~11!. This approximation
is justified further for the circular cylinder in the Appendi
~ii ! Second, we assume that we may perform asymptotic
pansions in the large parameterka sinu@1. This was al-
ready implicit in the cylindrical wave approximation of Eq
~11!.

Equations~3! and ~5! can now be derived. First, subst
tuting from Eq.~11! into the exact formula~8! and retaining
only the leading order term, we have

F̂~u,f!5
2 ik

4p E
C
dl e2 ikb~f8!sin u cos„f2f8)@11cos~f

2c~f8!…#sin uP~k cosu,f8!. ~13!

We now apply the stationary phase approximation to t
integral, based upon the assumption thatka sin u@1. There
are two points at which the phase is stationary, given by
implicit relations c(f8)5f and c(f8)5f1p. However,
the integrand vanishes at the latter point and we get z
contribution there. The remaining stationary phase po
gives
2100 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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F̂„u,c~f!…5e2 ip/4e2 ikb~f!sin u

3Aka~f!sin u

2p
P~k cosu,f!, ~14!

or

P̂~k cosu,f!5eip/4eikb~f!sin u

3A 2p

ka~f!sin u
F„u,c~f!…. ~15!

Substituting from Eq.~15! into Eq. ~10! yields the imaging
formula ~3!. The velocity formula~5! follows in the same
way using the leading-order term of the cylindrical wa
approximation~11!.

B. Conservation of radiated energy

The flux of energy across the cylindrical surface a
point is defined as the time averaged power flow:

I ~z,f!5 1
2Re@p„b~f!,z,f…v* „b~f!,z,f…#, ~16!

and the supersonic acoustic intensity is defined as the co
bution from the supersonic components:

I ~s!~z,f!5 1
2Re@p~s!~z,f!v ~s!* ~z,f!#. ~17!

Similarly, one can define a subsonic flux,I (c)(z,f), using
the subsonic surface fieldsp(c)(z,f) and v (c)(z,f). Note
that I (z,f)ÞI (s)(z,f)1I (c)(z,f) in general. However, by
the definition of the supersonic component, Eq.~2!, it fol-
lows that

E
2`

`

dz f ~s!~z,f!g~c!~z,f!50 ~18!

for any surface fieldsf andg, and hence

E
2`

`

dz I~z,f!5E
2`

`

dz I~s!~z,f!1E
2`

`

dz I~c!~z,f!.

~19!

Assuming that all sources lie on or within the surface impl
that the total subsonic flux is zero, and hence

E
C
dlE

2`

`

dz I~z,f!5E
C
dlE

2`

`

dz I~s!~z,f!5P~v!,

~20!

whereP(v) is the total energy radiated to the far field,

P~v!5
1

2r f cE0

2p

dfE
0

p

du sin uuF~u,f!u2. ~21!

We now demonstrate that the imaging formulas have
useful property that they conserve energy. Replacingp(s) and
v (s) by the integral expressions of Eq.~10!, then integrating
in the axial coordinatez and using known properties of th
Dirac delta function, we obtain the identity

E
2`

`

dz I~s!~z,f!5
k

4pE0

p

du sin uRe@P~k cosu,f!

3V* ~k cosu,f!#. ~22!
2100Andrew N. Norris: Far-field acoustic holography
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As a first approximation, the cylindrical wave, or local im
pedance condition, of Eq.~11! combined with Eq.~22! im-
plies

E
2`

`

dz I~s!~z,f!5
k

4pr f cE0

p

du sin2uuP~k cosu,f!u2

3F11OS 1

~ka!2D G . ~23!

If we now substitute the leading-order approximation
P(k cosu,f) from Eq. ~15!, we obtain

E
2`

`

dzÎ~s!~z,f!5
1

2a~f!r fc
E

0

p

du sin uuF„u,c~f!…u2.

~24!

Hence using the relationdl5adc @see Eq.~4!#, we see that
the surface energy flux of the approximate imaged field,

a~f!E
2`

`

dz Î~s!~z,f!, ~25!

exactly equals the differential power radiated per unit a
muthal angle in the far field in the directionc(f). Thus we
have energy conservation for each meridional patch of w
dl and of infinite length,2`,z,`. According to Eq.~19!,
the exact supersonic flux corresponding to~25! is not neces-
sarily the same as the net flux from the patch. The iden
only holds for the entire surface. However, the cylindric
wave approximation implies that each patch radiates in
pendently of all others. In this regard, we note th
Sarkissian8 introduced the idea of far-field eigenfunction
which have a one-to-one relation with the on-surface eig
functions of the real part of the impedance operator. Acco
ing to the present level of approximation, the patches and
velocity on them represent orthogonal subspaces of th
eigenfunctions.

The following is a simple consequence of the preced
analysis,

E
C
dlE

2`

`

dz Î~s!~z,f!5P~v!. ~26!

In summary, Williams’ formulas and their generalization
arbitrary cross-sections predict a supersonic acoustic in
sity which gives the same local energy flux on a longitudi
patch as the differential far-field intensity, and the same g
bal energy flux as the exact radiated pressure. In this s
the imaging formulas are energy preserving.

II. AN ASYMPTOTIC CORRECTION FOR THE
CIRCULAR CYLINDER

A. Analysis

The preceding analysis showed that Williams’ formu
is based upon the leading-order asymptotic approximatio
the exact integral~8! for F. In order to improve upon this
result we now explore the possibility of extending the fo
mula by retaining the subsequent term in the asymptotic
pansion. For simplicity, we restrict the analysis to the circ
lar cylinder (b5a) but use the same methodology as befo
2101 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
r

i-

h

y
l
e-
t

n-
-
e

se

g

n-
l
-
se

of

x-
-
,

based upon the Helmholtz integral. The case of varia
b(f) can be treated similarly. The Appendix summarizes
same analysis using the explicit circular functions.

Here, the asymptotic parameter turns out to beka sinu,
which may not be large ifu is near 0 orp. However, we will
proceed by ignoring these limiting values, and start by c
sidering the integral

f ~f!5E
0

2p

df8 g~f8!e2 ika sin u cos~f2f8!, ~27!

whereg(f) is assumed to be reasonably smooth. Our obj
tive is to obtain the two leading-order terms in th
asymptotic expansion off (f). The integral~27! can be put
into a form suitable for asymptotic approximation by intr
ducing the dimensionless large parameterl52Aka sinu, so
that with a change of variable

f ~f!5
2

l
e2 il2/4E

2l

l

dx
eix2/2

A12x2/l2
gFf12 sin21S x

l D G. ~28!

Expanding the integrand aboutx50 in terms of inverse pow-
ers ofl gives

f ~f!5
2

l
e2 il2/4E

2l

l

dx eix2/2H g~f!12
x

l
g8~f!

1
x2

2l2
@g~f!14g9~f!#1O~l23!J

5
2

l
e2 il2/4H Kl~1!g~f!2

i

l2
Kl8~1!@g~f!

14g9~f!#1O~l23!J , ~29!

where

Kl~a!5E
2l

l

dx eiax2/2. ~30!

The functionKl(a) may be expressed in terms of know
functions, but for our purposes it suffices to take the largel
limit, K`(a)5eip/4A2p/a, so that

f ~f!5ei ~p/42ka sin u!A 2p

ka sin u H g~f!2
1

2ika sin u

3Fg9~f!1
1

4
g~f!G1OS 1

~ka sin u!3/2D J . ~31!

Equation~8! for F involves two distinct integrals for the
integrandsV and P, and Eq.~31! can be applied to each
integral separately. However, we would like to obtain
expression forF which contains only one of the two inte
grands. This can be achieved to within the desir
asymptotic accuracy by using the cylindrical wave appro
mation of Eq.~11!. Substituting from~11! into the integral
~8! and using the asymptotic approximation~31! we obtain
2101Andrew N. Norris: Far-field acoustic holography
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F̂~u,f!5e2 i ~ka sin u1p/4!Aka sin u

2p F P~k cosu,f!

2
1

2ika sin u S P,ff~k cosu,f!

1
1

4
P~k cosu,f!D 1OS 1

~ka sin u!3/2D G .

~32!

This is the first-order correction of the leading-order appro
mation of Eq.~14!. It is interesting to note that there is sti
no contribution to the far field from the stationary pha
point atf1p. That is, the approximation~32! is still local,
although it now involves the second derivative of the surfa
pressure transform.

B. Discussion and examples

Equation~32! was derived as an asymptotic correcti
of the leading-order term, and as such, we may forma
invert it as

P̂~k cosu,f!5eip/4eika sin uA 2p

ka sin u

3F S 11
1

8ika sin u D F~u,f!

1
1

2ika sin u
F ,ff~u,f!

1OS 1

~ka sin u!3/2D G . ~33!

This gives the following approximation for the superson
surface pressure,

p̂~s!~z,f!5eip/4A k

2paE0

p du

Asin u
eik~a sin u1z cosu!

3F S sin u1
1

8ikaDF~u,f!1
F ,ff~u,f!

2ika G .
~34!

The corresponding approximation for the supersonic surf
velocity is, from~11! and ~33!,

v̂ ~s!~z,f!5
eip/4

r fc
A k

2paE0

p

duAsin ueik~a sin u1z cosu!

3F S sin u2
3

8ikaDF~u,f!1
F ,ff~u,f!

2ika G .
~35!

We will test the accuracy of the imaging formulas for
monopole at (r,z,f)5(r8,0,0),r8,a, for which

F~u,f!5e2 ikr8sin u cosf. ~36!
2102 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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The exact supersonic surface pressure can be obtained
the identity ~A11!. Figures 2 and 3 compare the predict
supersonic acoustic intensity according to the simple form
las of Williams, Eqs.~3! and ~5!, and the ‘‘improved’’ ver-
sions~34! and~35!, with the exact supersonic acoustic inte
sity for a source atr85a/2 for ka53. The amplitudes of the
approximations are lower near the center of the imagez
5f50) than the exact intensity, but the ‘‘improved’’ imag
ing formula does appear to give better resolution.

FIG. 2. The supersonic acoustic intensity forr850.5a and ka53, com-
puted using~a! the simple formulas of Eqs.~3! and ~5!, ~b! Eqs. ~34! and
~35!, and~c! the exact result.
2102Andrew N. Norris: Far-field acoustic holography
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Before presenting the bad news regarding the ‘‘im
proved’’ imaging formulas,~34! and ~35!, we note that the
low values of the maximum amplitude of the imaged inte
sity can be expected from the simple nature of the algorith
Thus as the monopole source approaches the sur
(r8→a) both the pressure and the velocity on the surfa
become singular, but the simple imaging relation predi
finite values. In fact, using Eqs.~3!, ~5!, and ~36! with r8
5a, it gives

Î ~s!~0,0!5
k

4par f cE0

p

du~sin u!1/2E
0

p

du8~sin u8!3/2

5
k

3ar f c
for r85a. ~37!

Hence the ratio of the imaged to the true intensity is

Î ~s!~0,0!

I ~s!~0,0!
5

2k

3a
~a2r8!2 as r8→a. ~38!

This is consistent with numerical simulations by Williams6

who found that the imaged intensity is generally well belo
the actual supersonic acoustic intensity in magnitude,
though it gives the correct overall pattern or image. The
sult ~38!, combined with the conservation of energy for th
simple imaging algorithm implies that the energy not imag
at the ‘‘hot spot’’ must be redistributed elsewhere on t
surface. It is clear from the numerical examples, such as F
2, that the energy redistribution does not occur within a d
tance of one acoustic wavelength. We can only infer that
approximate formula leads to an enhanced ‘‘backgroun
imaged intensity.

Figures 4 and 5 show the comparison of the imagi
formulas at higher frequencies using gray scale mosa
similar to Fig. 3. These figures illustrate a serious proble
with the ‘‘improved’’ approximation of Eqs.~34! and ~35!:
The second derivatives ofF with respect tof tend to domi-
nate and make the correction far larger than the leading-or
approximation. This results in the dumbbell appearance

FIG. 3. The same data as shown in Fig. 2, i.e.,r850.5a andka53. ~a!–~c!
correspond to the same items in Fig. 2.
2103 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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Fig. 5~b!, for instance, which is clearly unrepresentative
the actual intensity. The problem with the derivatives ofF
can be avoided as follows. Ignoring the smaller-order term
~32! can be written as

P̂2m22P̂,ff5 P̂~0!~k cosu,f!, ~39!

where

P̂~0!~k cosu,f!5ei ~ka sin u1p/4!A 2p

ka sin u

3S 12
1

8ika sin u D 21

F~u,f! ~40!

and

m252 1
412ika sin u. ~41!

FIG. 4. The approximate, ‘‘improved approximate,’’ and exact superso
acoustic intensity,~a!, ~b!, and ~d!, respectively, forr850.5a and ka59.
The data in~c! were obtained by solving Eq.~39! by finite differences.

FIG. 5. The same as in Fig. 4 but forr850.9a andka59.
2103Andrew N. Norris: Far-field acoustic holography



FIG. 6. The approximate, ‘‘improved approximate,’’ finite difference solution, and the exact supersonic acoustic intensity,~a!, ~b!, ~c!, and~d!, respectively,
for r850.9a andka518. The difference scheme uses 30 equally spaced points on2p/6<f<p/6.
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Apart from the factor@121/(8ika sin u)#21, which is close

to unity in general, the functionP̂(0)(k cosu,f) is exactly
the leading-order approximation of Eq.~15!, or Williams’
formula. The images in Figs. 4~c! and 5~c! were obtained by
solving Eq. ~39! on a grid of 30 equally spacedf points
using finite differences as described below. The improv
resolution illustrates that the second derivatives ofF men-
tioned previously are indeed the culprit for the poor imag
in Figs. 4~b! and 5~b!, and that a naive inversion of the bas
formula ~32! can lead to significant error.

The price paid by solving Eq.~39! is that the imaging
formula is no longer strictly local. One can argue that if w
are using all the data for2p<f<p then we may as wel
use the exact modal algorithm~see the Appendix!. However,
the second-order equation~39! can be solved, in principle, on
any interval by several methods: Green’s functions, fin
differences, etc. We will assume for simplicity that the fa
field data is obtained on a set of semicircles evenly space
f, sayf j5f11( j 21)Df, j 51,2,...,M , whereDf is the

azimuthal spacing. LetP̂j5 P̂(k cosu,fj) and P̂j
(0)5 P̂(0)

3(k cosu,fj), then Eq.~39! is approximated by the centra
difference scheme
2104 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
d

s

e

in

P̂j2
1

m2~Df!2
@ P̂j 1122P̂j1 P̂j 21#5 P̂j

~0! ,

j 51,2,...,M . ~42!

The results shown in Figs. 4~c! and 5~c! for 2p<f<p
were obtained using this scheme combined with periodic
conditions, which implyf05fM and fM115f1. The re-
sults in Figs. 6~c!, 7~c!, and 8~b! were computed for the
sector2p/6<f<p/6 using similar periodicity conditions
to evaluate the scheme at the end points. Other end co
tions were tested and it was found that the numerical so
tions were not sensitive to the precise form of the conditio
used.

The results of Figs. 6~c!, 7~c!, and 8~b! indicate that
better circumferential resolution can be expected if
simple differencing algorithm is adopted. The improveme
in the resolution is quite remarkable even with very fe
semicircles of data, only seven in Fig. 8~b!. Some under-
standing of the effect of using Eq.~39! can be obtained by
noting that at high frequencies the real part ofm is large and
positive, implying that the second derivative term in~39!
acts as a singular perturbation, analogous to a boundary l
2104Andrew N. Norris: Far-field acoustic holography
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effect. By ignoring the fact that the range off is finite, and
replacing the domain by the full line, with zero bounda
conditions at6`, we may write the solution to~39! as

P̂~k cosu,f!5
m

2E2`

`

df8e2muf2f8uP̂~0!~k cosu,f8!.

~43!

Integrating by parts yields

P̂~k cosu,f!5 P̂~0!~k cosu,f!

1
1

2E0

`

df8e2mf8@ P̂,f
~0!~k cosu,

f1f8!2 P̂,f
~0!~k cosu,f2f8!#. ~44!

This form clearly shows the leading-order termP̂(0), and the
boundary layer correction, within a region of azimuth
thickness 1/Rem5O(1/Aka sinu).

III. CONCLUSION

The imaging formula of Williams is practical and ver
useful because it provides a simple means to map the
field pressure back to a cylindrical surface. The power of
method is that it is local, and does not require full circu
ferential coverage. Data from each semi-circular scan is b
projected independently. In this paper we have seen tha
same formula can be generalized to cylinders of arbitr
cross section, with the main results being Eqs.~3! and ~5!.
The cross section need not be a separable surface. In fac
derivation relies upon a local, high-frequency approximat
which illustrates that the formula is really the leading ord
of an asymptotic approximation. We also obtained the fi
two terms in the asymptotic series for the special case
circular cylinder. One can, in principle, continue th
asymptotic series for arbitrary cross section.

The two-term approximation can be interpreted in tw
ways. By the nature of its derivation it gives the surfa
pressure transformP as the solution of a differential equa
tion, Eq. ~32!. This can be formally solved, in the spirit o

FIG. 7. The results of Fig. 6 depicted by gray scale mosaic.
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the asymptotic approximation, yielding a direct and local im
aging formula, Eq.~33!, which introduces a correction to
Williams’ formula. However, as the numerical examples
lustrate, this ‘‘improved’’ scheme is actually worse than th
original, and the cause of the problem lies with the seco
order derivatives with respect tof, which is also related with
the ill-posed nature of the inverse problem~see the Appen-
dix!. The proper interpretation of the asymptotic correction
as a nonlocal effect, which must be solved as such. O
approach is to use finite differences for sets of several ne
boring semicircles. The numerical examples for a monop
near the surface indicate that even with very few semicirc
one can gain significant resolution in the circumferential
rection, as compared with the simple local imaging formu

ACKNOWLEDGMENTS

My thanks to Earl Williams for comments. This wor
was supported by the Office of Naval Research.

APPENDIX: THE CIRCULAR CYLINDER

The special case of constantb(f)5a is considered
here. It may be easily shown, using modal expansions
instance, that thez-transformed surface velocity can be e
pressed in terms of the surface pressure as

FIG. 8. The approximate,~a!, and finite difference solution,~b!, for the
same parameters as Fig. 6, except that only seven equally spacedf points
are used.
2105Andrew N. Norris: Far-field acoustic holography
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V~k cosu,f!5
sin u

r f c E0

2p

df8G~u,f2f8!P~k cosu,f8!,

~A1!

where

G~u,f2f8!5 (
n52`

`

2 i
Hn

~1!8~ka sin u!

Hn
~1!~ka sin u!

ein~f2f8!.

~A2!

Assuming that ka sinu@1 we can use the following
asymptotic approximation for the Hankel functions,

Hn
~1!~x!5~2 i !n11ei ~x1p/4!A 2

px F11 i
~4n221!

8x
1••• G .

~A3!

By retaining the first two terms in the expansion o
2 iH n

(1)8(y)/Hn
(1)(y) for y@unu, we obtain

Ĝ~u,f2f8!5d~f2f8!S 12
1

8ika sin u D1•••. ~A4!

Equations~A1! and ~A4! together imply Eq.~11! for the
special case of the circular cylinder.

Substituting from~A1! into the Helmholtz integral~8!
and using standard identities for Bessel and Hankel fu
tions, we obtain the exact relationship between the far-fi
form function and the surface pressure transform,

F~u,f!5
1

2pE0

2p

df8P~k cosu,f8!

3 (
n52`

`
ein~f2f8!

p~ i !n11Hn
~1!~ka sin u!

. ~A5!

This derivation is related to, and motivated by, that
Williams.6 The distinction is that Williams essentially ob
tainedP(k cosu,f) directly. There is a slight complication
with his approach, which is based upon the fact that
near-to-far-field radiation operator is compact. In order
appreciate this difficulty, define the functionsLN

(61)(f
2f8,u) as

LN
~61!~f2f8,u!5 (

n52N

N

@p~ i !n11Hn
~1!

3~ka sin u!#71ein~f2f8!, ~A6!

then Eq.~A5! is equivalent to

F~u,f!5
1

2pE0

2p

df8 P~k cosu,f8!L ~1!~f2f8,u!,

~A7!

whereL (1)5 limN→`LN
(1) . It follows from the small argumen

or large order form of the Hankel functions,Hn
(1)(x)

5(21/p)(2/x)n(n21)!1•••, that the function L (1)(f
2f8,u) is convergent and well defined. We note in pass
that the precise form function requires the infinite sum,
general, and is not defined by the integral using the trunca
version LN

(1) , where N is approximatelyka sinu. As a
counter example, consider a set ofm monopoles, equally
spaced azimuthally atf j52p j /m with amplitudeseimf j , j
2106 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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51,2,...,m. For large m the dominant contribution to
F(u,f) comes fromn5m, which would not be picked up if
we used the truncated form ofL (1).

Let FN(u,f) be the function obtained using the trun
cated functionLN

(1) in the integral in Eq.~A7! instead ofL (1).
The same function is obtained by using the 2N11 modal
expansion ofP(k cosu,f8), sayPN(k cosu,f8), as the inte-
grand in Eq.~A7!, i.e.,

FN~u,f!5
1

2pE0

2p

df8 P~k cosu,f8!LN
~1!~f2f8,u!

5
1

2pE0

2p

df8 PN~k cosu,f8!LN
~1!~f2f8,u!

5
1

2pE0

2p

df8 PN~k cosu,f8!L ~1!~f2f8,u!,

~A8!

and conversely,

PN~k cosu,f!5
1

2pE0

2p

df8 FN~u,f8!LN
~21!~f2f8,u!.

~A9!

However, we cannot take the limit ofN→` in this equation,
because, althoughPN→P andFN→F, the limit of LN

(21) as
N→` does not converge at any point, and hence it is no
well-defined function. In summary, anym-mode limited
form of F(u,f) can be inverted to give the correspondin
m-mode form of P(k cosu,f). The inversion process is
stable for m<N, where N'ka sin u, and is unstable for
largerm, even though the dominant contribution toF could
be from modes withm.N. The lack of an explicit integral
formula for P(k cosu,f) is a consequence of the fact th
the integral operator in Eq.~A7! is compact, and as such, ha
no inverse. The ill-posedness of this type of inverse probl
is common, and methods exist to regularize the problem9

If ka sinu @N @1, then the following approximations
can be obtained from~A3!,

LN
~61!~f2f8,u!52pe6 i ~ka sin u1p/4!

3F 2p

ka sin uG61/2Fd~f2f8!S 1

6
1

8ika sin u D6
d9~f2f8!

2ika sin u
1••• G .

~A10!

We have also used the approximation sin(lx)/(px)'d(x) for
sufficiently largel. The approximations of Eq.~32! for F in
terms ofP follows from Eq.~A7! combined with Eq.~A10!
for LN

(1) in the limit N→`. However, as remarked above, w
cannot take the same limit forLN

(21) , although formally do-
ing so yields Eq.~33! from Eqs.~A10! and ~A9!.
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Finally, we note that the numerical examples use
following representation for a monopole located at (r,z,f)
5(r8,0,0),r8<a,

p~s!~z,f!5
ik

2 E0

p

du sin ueikz cosu (
n52`

`

einfHn
~1!

3~ka sin u!Jn~kr8sinu!. ~A11!
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