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A simple formula was recently proposed by Williafids Acoust. Soc. Am99, 2022—-20321996)]

for imaging pressure and velocity on a vibrating circular cylindrical shell using the far-field pressure
measured along a meridional semicircle. The method is examined and some new results are
obtained. The procedure is generalized to handle cylindrical surfaces of noncircular but convex
cross section. It is demonstrated that Williams’ formula predicts a supersonic surface intensity
which gives the same meridional energy flux as the exact radiated far-field pressure. A modification
of Williams’ formula is suggested which uses pressure data from several neighboring semicircles,
although complete spherical coverage is not required. The modified imaging formula is based upon
the first two terms in an asymptotic expansion in the dimensionless wave number. The leading-order
term vyields the original formula, and the second term results in a boundary layer type of correction
in the circumferential direction. Numerical examples are presented which compare the exact
supersonic acoustic intensity on a cylinder with that from the original and the modified formula.
These indicate that the circumferential on-surface resolution is significantly enhanced by combining
data from neighboring semicircles, even when the total far-field spherical coverage is small.
© 1997 Acoustical Society of Amerid&80001-496@07)05110-3

PACS numbers: 43.30.Jx, 43.20.Rz, 43.40.Rj, 43.35SHC-B]

INTRODUCTION tion pattern is a compact operator, and its inversion is an
ill-posed process, implying that far-field reconstruction of
ace data is itself an ill-posed problem.

Recently, William§ showed that a very simple but ap-

Acoustic holography provides a powerful tool for visu- urf
alizing and understanding the vibration on a structure usin&

pressure measured in the near or far field. Near-field data is . te techni ield isingl te i .
preferred, in the sense that it includes information about th roximate technique yields surprisingly accurate imaging.

evanescent, subsonic pressure field which does not radiate ge method is_specifically for circular cylindrical surfa_C(_as,
the far field. The theory and practice of near-field acousti@d uses far-field pressure data measured on meridional

imaging has developed considerably in the past decade, bg(_amicircles to ir_ngge the sqrface pressure.and veIocity in the
ginning with Williams et al® who presented the details for S2Me plane. Williams provided an extensive comparison of

the specific case of the circular cylindrical geometry, includ-t€ €xact and approximate images, using simulated data and
ing the necessary wave-number filtering. Veronesi andwear—flelq versus far-field expenmeqtal data. He also showed
Maynard subsequently described a method for reconstructth@t the imaging formula can be derived from the exact equa-
ing data on nonseparable surfaces using singular value gtions fpr the circular cylindrical ggometry. Overall, the accu-
composition. Borgiottiet al? discussed numerical applica- facy is remarkable over a wide frequency rangea (
tions of the SVD technique for surfaces conforming to a=0-3—-16.0). The only limitation is that the surface data
nonseparable closed surface, and they provided accuracy &hould be bandlimited in the circumferential, or azimuthal,
timates based on the dynamic range of the data. direction, roughlyn=<ka/3.5 However, the numerical and ex-
Far-field acoustic holography for cylindrical and non- Perimental comparisons are surprisingly good even for a
separable surfaces has received less attention. This may Beint drive on the cylinder.
ascribed to the loss in information caused by the radiation  In this paper we will examine the imaging formula from
process: short wavelength or subsonic surface data does ndslightly different perspective. It will be demonstrated that
radiate, and one is left with the filtered supersonic datathe formula is a simple consequence of a high-frequency
Sarkissiaft proposed a general scheme for reconstructindgipproximation. This is implicit in Williams’ analysis also,
surface velocity on arbitrary surfaces from far-field data. Thebut here we show how the high-frequency nature of the ap-
method relies upon impedance eigenfunctions for the surroximation makes it equally applicable to cylinders of arbi-
face, which form a complete and orthogonal basis for thdrary nonseparable cross section. As with many high-
far-field radiation pattern. This functional basis is also re-frequency approximations, this one also proves to be
lated to the singular value decomposition of the impedanceccurate for frequencies such thed is not large, even of
operator’ However, except for separable surfaces, the set obrder unity. The approach taken here is based upon the
basis functions must be determined numerically, with in-Helmholtz surface integral, which allows us to find the
creasing difficulty at higher frequencies. Furthermore, the raleading-order asymptotic approximation for the far-field pat-
diation operator which maps surface data to a far-field radiatern function. This is derived in the next section, followed by
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Herea(¢) is the radius of curvature at the positigh and
the () is the angle for the normal, see Fig. 1. Uét)
denote the arclength on the curve defining the cross section,

i.e., dl/dp= b2+ (db/d)Z, then

dl
a(p)=—, Y(p)=¢—tan?

1db 4
dy’ bdg) @
Equation(3) reproduces Williams’ formul@Eqg. (17) of Ref.
6] for the special case of a circular cylinder
(b=a=constant. Williams also obtained a simple formula
for the supersonic radial velocity on the circular cylinder
a discussion of energy conservation. An improvement, baseldEq. (18) of Ref. €. The analogous result for the general
upon the next term in the asymptotic series, is presented ioross section is

Sec. |l for the specific case of a circular cylinder. The new -
scheme uses data from neighboring circles to give improved 2(z,)= € N K fwde(sin 0)3?2
’ 2ma(¢) Jo

FIG. 1. The cylinder cross section and geometrical parameters.

circumferential accuracy. Finally, the method is illustrated ps C
by examples and alternative numerical implementations are ik(b()si
¢)sin 6+z cos 6)
discussed. Xe F(6,¥(¢)), (5
wherep; is the fluid density and= w/k the acoustic wave
speed.
I. THE SIMPLE IMAGING FORMULA _ Williams® derived his for_mulas for the circular_cyl?nder _
o using an exact representation for the supersonic fields in
A. Derivation terms of the far-field pressure. Here we present an alternative

We will work primarily with cylindrical polar coordi- derivation which does not rely upon an azimuthal modal ex-

natesx:(p,Z, d)) but also use Spherica| p0|ar coordinakes panSion eXpIICItIy We start with the Helmholtz integral for-
=(r,0,¢) wherer?=p?+z2 andz=r cosé. The acoustic Mula of the radiated acoustic pressure in terms of the pres-

pressure is assumed to radiate from sources on or within 8ure and normal velocity on the cylindrical surface,

cylinder of constant cross secti@ defined by the radiup "
=h(¢) and sufficiently long in the direction that end ef- p(p,Z,(ﬁ):j dlf dz'|p(b(¢'),z',¢")
fects may be ignored, see Fig. 1. We assume that the cylinder c J==
cross section is convex and smooth. The far-field pattern g
function F is defined by X%(p,z,d);b(d)’),z',(ﬁ')
ikr 1
p(r!01¢):TF(0v¢)+ o) r_z)v r—oo, (1) —iwpfv(b(¢’),z’,¢’)g(p,z,¢;b(¢’),z’,q§’) ,

wheree™'“! dependence is assumed. Our objective is to im- , ©)
age the acoustic field on the cylindrical surface ugindtis ~ Whereg(p,z,¢;p’,z',¢")=(4mR) '}, R=|x—x|. This
well known that only those components of the surface presimplies that the far-field form function has the exact repre-
sure and velocity which are supersonic can radiate to the fagéntation

field.” Let f(b(¢),z,¢) represent a quantity on the surface —ik "

p=Db(¢), such as pressure or velocity. It may be partitionedr (9, ¢) = —f d|J dz' e k@' coso+b(g")sin b cosd—¢"))

into supersonic and subsonic parts(®(z,¢) and f (© dm e )

X(2,), respecively, such that=f 9+ f © and X[py co(b($').2' ') +sin 6 cosd
(s) N , . sink(z=2")] —4(d"))pb(g',2",¢")]. )
red f’“’dz ro@.z.9) m(z—2') @ By transforming inz, we obtain

The supersonic surface pressure and normal velocity on F(0,4)= __'kf dl e ikb(¢')sin 6 codp—¢')
p=Db(¢) are defined in the same way pS(z,¢) andv(® ’ 4w Jc

X(z,¢), respectively. The basic formula that we will derive
is for p¢®, which approximatep® (the hat denotes an ap-
proximant of a quantity —(¢p"))P(k cosb,¢’)], 8

X[ picV(k cos6,¢’)+sin 6 cod ¢
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where the transforms are I”:(e,¢(¢)):e—iwl4e—ikb(¢)sin 0

P(k;,®) » p(b(¢),z,¢) -
( ) :f_ dz e-‘kzZ( ) 9) X \/WPW cos 6, ¢), (14

V(k;, ) v(b(¢),z, )
The supersonic surface fields can also be expressed in terms
of the z transforms as P(k cos 6, p) = e m4gikb(4)sin 0
( p(z, ¢)) k J'w 2 FO.0(6) a5
=5—| do X\t , .
k 0
U(S)(Z,¢) 2 0 a(¢)S|n

Substituting from Eq(15) into Eq. (10) yields the imaging
formula (3). The velocity formula(5) follows in the same

), (10 way using the leading-order term of the cylindrical wave
approximation(11).

P(k cos 6, )
X sin aeikz cos 6

V(k cos 6, ¢)

since Eqs(9) and(10) are together equivalent to E@). Our

objective is to derive approximations ®(k cosé,¢) and

V(k C050,¢). With this in mind we make two assumptions. B. Conservation of radiated energy

(i) First, we assume the normal velocity and pressure are o

related by a “cylindrical wave” approximation, which is The flux of energy across the cylindrical surface at a

most easily expressed in terms of the transformed variablgR0iNt is defined as the time averaged power flow:
as 1(z,¢)= 3R p(b(¢),z,p)v* (b($),2,¢)], (16)

and the supersonic acoustic intensity is defined as the contri-

. sin 6.
V(k cos6,¢)= pf—CP(k cos#, ¢)[ 1- 2ika(p)sin 0 bution from the supersonic components:
19(z,¢) =R pV(z,4)0* (2,¢)]. (17)
o(;z) ] (11)  Similarly, one can define a subsonic flux?(z,¢), using
(ka sin 6) the subsonic surface fields‘®(z,¢) and v(®(z,¢). Note

that 1(z, ) # 1 (z,¢) +1©)(z,¢) in general. However, by

This may be justified by the high-frequency approxlmatlonthe definition of the supersonic component, E2), it fol-

for the z-transformed pressu(p, .k, ,¢) near the surface,

wherep, is the distance fronC in the normal direction, lows that
P(pn Ky )= Pk, )€l VK Ko f 4z 19(z,¢)g"(z,¢)=0 (18)
a 1 i
y (¢) 1+O(— . (12 for any surface field§ andg, and hence
— S c
Thus usingV(py, .k, ,¢) = (iwps) “1dP/dp,, and evaluating f_mdz (2 ¢) f_xdz ! (z,¢)+f_mdz (2. 4).
on the surfaced,,=0), we get Eq(11). This approximation (19

i?. justified further for the circular cylinder in the Appent_jix. Assuming that all sources lie on or within the surface implies
(ii) Second, we assume that we may perform asymptotic ®Xhat the total subsonic flux is zero, and hence

pansions in the large parametea sin 1. This was al-
Ecle%dy implicit in the cylindrical wave approximation of Eq. f le dz |(Za¢):f le Az 192, ¢)=TI( ).

. C — o C — o

Equations(3) and(5) can now be derived. First, substi- (20
tuting from Eq.(11) into the exact formul#8) and retaining

only the leading order term, we have wherell(w) is the total energy radiated to the far field,

1 2w T
= —ik ikb(g')si ' I(w)= f d fda in 6|F(6,)|%. 21
F(0,¢)=Efcd|eﬂkb<¢ Jsin 0 codé~#)[ 1 4+ cog (@) 2p1 CJo ¢ dosin |F(6,9)] (21)

_ We now demonstrate that the imaging formulas have the
—¥(¢"))]sin 6P(k cos 0,¢"). (13)  useful property that they conserve energy. Replapitgand

We now apply the stationary phase approximation to thig’ © by th_e mtegra_l expressions of EQL0), then mt_egratmg
integral, based upon the assumption tkatsin 1. There In the axial coor(_jlnatcz and using k_nown_ properties of the
are two points at which the phase is stationary, given by th&'rac delta function, we obtain the identity

implicit relations #(¢')=¢ and y(¢')= ¢+ 7. However, o k (= _

the integrand vanishes at the latter point and we get zero fﬁmdz 19(z, ) = Efo dé sin R P(k cos 6, ¢)
contribution there. The remaining stationary phase point

gives XV*(k cosf,¢)]. (22
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As a first approximation, the cylindrical wave, or local im- based upon the Helmholtz integral. The case of variable
pedance condition, of Ed11) combined with Eq(22) im-  b(¢) can be treated similarly. The Appendix summarizes the

plies same analysis using the explicit circular functions.
. K . Here, the asymptotic parameter turns out tdkhesin 6,
f dz 19(z,¢)= f dé sirfg|P(k cos 6, ¢)|? which may not be large if is near O orr. However, we will
—o 4mp; CJo proceed by ignoring these limiting values, and start by con-
sidering the integral
X|1+0 2) . (23 -
(ka) f(¢): dd’, g((ﬁ/)efikasinacoSd)fd)’), (27)
0

If we now substitute the leading-order approximation for

P(k cosd,¢) from Eq. (15), we obtain whereg( ) is assumed to be reasonably smooth. Our objec-

w 1 w _ 5 tive is to obtain the two leading-order terms in the
Jlde“S)(Z, @)= Wjo dé sin 6|F(6,%(#))|°>.  asymptotic expansion df(¢). The integral(27) can be put
f (24) into a form suitable for asymptotic approximation by intro-

) ) ducing the dimensionless large parameter2+ka sin 6, so
Hence using the relatiodl =ady [see Eq(4)], we see that  hat with a change of variable

the surface energy flux of the approximate imaged field,
ix2/2

* ~ _2 —in2/4 » €
a(¢)J7wdz 9(z,¢), (2 H@)=ge ") I asaned

d+2 sinl( %) } (28

exactly equals the differential power radiated per unit azi-Expanding the integrand abaxst=0 in terms of inverse pow-
muthal angle in the far field in the directiof( ). Thus we  ers of\ gives
have energy conservation for each meridional patch of width
dl and of infinite length;—c <z<o. According to Eq(19), 2 _oa 2 X
the exact supersonic flux corresponding25) is not neces- f(d)=xe f_)\dx e 9(¢)+2-9'(4)
sarily the same as the net flux from the patch. The identity
only holds for the entire surface. However, the cylindrical X2
wave approximation implies that each patch radiates inde- + ﬁ[g(¢)+49"(¢)]+0(7\3)]
pendently of all others. In this regard, we note that
Sarkissiafl introduced the idea of far-field eigenfunctions, 2 , i
which have a one-to-one relation with the on-surface eigen- = Xe‘”‘ ’4[ Ky(1)g(¢é)— —ZK)'\(l)[g(¢)
functions of the real part of the impedance operator. Accord- A
ing to the present level of approximation, the patches and the
velocity on them represent orthogonal subspaces of these +4g”(¢)]+0()\3)}, (29)
eigenfunctions.
The following is a simple consequence of the preceding
analysis, where

© “ A i w2
f dIJ’ dz 19(z,¢)=11(w). (26) Kx(a)=f dx e, (30)
C —© Y

In summary, Williams’ formulas and their generalization to The functionK, («) may be expressed in terms of known

arbitrary cross-sections predict a supersonic acoustic intefignctions, but for our purposes it suffices to take the large
sity which gives the same local energy flux on a longitudinalijmit, K_.(a)=e€'"\27/a, so that

patch as the differential far-field intensity, and the same glo-

bal energy flux as the exact radiated pressure. In this sense , A 2 1

he i - f | . f(d)):el(wm—kasm 0) g(d’)_

the imaging formulas are energy preserving. kasin @ 2ika sin 6

Il. AN ASYMPTOTIC CORRECTION FOR THE
CIRCULAR CYLINDER

A. Analysis

X

1
+O((ka sin 0)3’2)]' 3y

Equation(8) for F involves two distinct integrals for the
The preceding analysis showed that Williams’ formulaintegrandsV and P, and Eq.(31) can be applied to each
is based upon the leading-order asymptotic approximation ahtegral separately. However, we would like to obtain an
the exact integra(8) for F. In order to improve upon this expression fof= which contains only one of the two inte-
result we now explore the possibility of extending the for-grands. This can be achieved to within the desired
mula by retaining the subsequent term in the asymptotic exasymptotic accuracy by using the cylindrical wave approxi-
pansion. For simplicity, we restrict the analysis to the circu-mation of Eq.(11). Substituting from(11) into the integral
lar cylinder b=a) but use the same methodology as before(8) and using the asymptotic approximati(8i) we obtain

1
9'(#)+79()
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. —— fka sin 6
F(glqb):efl(kasm 6+ l4) > P(k cos 0,¢)

“2ikasing| ek CcosO.) )

1
+-P(k cos8,¢) | +O| ————
i ¢) (ka sin 6)%?

(32

This is the first-order correction of the leading-order approxi-
mation of Eq.(14). It is interesting to note that there is still
no contribution to the far field from the stationary phase
point at¢+ 7. That is, the approximatio(82) is still local,
although it now involves the second derivative of the surface
pressure transform.

B. Discussion and examples

Equation(32) was derived as an asymptotic correction
of the leading-order term, and as such, we may formally
invert it as

. o 2w
— qi7l4pqika sin 6
P(k cosf,¢)=¢€""¢e Vka sno

1
X[\ 1+ 8ika sin 0) F(0.4)

®
tn

1
* Jika sin HF'4’¢(0’¢)

1
+0Of ————= |. 33
(ka sin 6)%? 33

This gives the following approximation for the supersonic
surface pressure,

Ia(s)(z ¢):eiw/4,/ k J'ﬂ- dé gik(asin 6+2z cos6)
2mwalo \/sin 6

1 F s(6,0)
; b
X| | sin 6+ —Sika)F(a,(bH ~ika |’
(34)
The corresponding approximation for the supersonic surfacglG. 2. The supersonic acoustic intensity fgr=0.5a and ka=3, com-
velocity is, from(11) and(33), puted using(a) the simple formulas of Eqg3) and (5), (b) Egs. (34) and

(35), and(c) the exact result.

ei wl4 k -
5(3)(z,¢)= _f do+/sin gek(@ sin 6+z cos6)
piC Y 2ma)o . . .
The exact supersonic surface pressure can be obtained using

_ 3 Fos(6,0) the identity (A11). Figures 2 and 3 compare the predicted
sin 6— m) FOO.0)+ =g |- supersonic acoustic intensity according to the simple formu-
las of Williams, Egs(3) and(5), and the “improved” ver-
(39 sions(34) and(35), with the exact supersonic acoustic inten-

We will test the accuracy of the imaging formulas for a Sity for a source gp’=a/2 forka=3. The amplitudes of the

X

monopole at §,z,¢)=(p’,0,0), p’ <a, for which approximations are lower near the center of the image (
o = ¢=0) than the exact intensity, but the “improved” imag-
F(6,¢p)=e kp'sindcosé (36)  ing formula does appear to give better resolution.
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FIG. 3. The same data as shown in Fig. 2, k&5 0.5a andka=3. (a)—(c) . . . )
correspond to the same items in Fig. 2. FIG. 4. The approximate, “improved approximate,” and exact supersonic

acoustic intensity(a), (b), and(d), respectively, forp’=0.5a and ka=9.
The data in(c) were obtained by solving Eq439) by finite differences.

Before presenting the bad news regarding the “im-
proved” imaging formulas{34) and (35), we note that the iy 51 for instance, which is clearly unrepresentative of

low values of the maximum amplitude of the imaged inten-ye actyal intensity. The problem with the derivativesFof
sity can be expected from the simple nature of the algorithmea pe ayoided as follows. Ignoring the smaller-order terms,
Thus as the monopole source approaches the surfanz) can be written as

(p’'—a) both the pressure and the velocity on the surface

become singular, but the simple imaging relation predicts |5—M_2|5,¢¢= PO)(k cos 8, ), (39)
finite values. In fact, using Eq$3), (5), and (36) with p’

=a, it gives where

- k m m 2
19(0,0 =—f dé(sin 6 1’2f de’(sin 6')%? p(O _gitkasinorma [T
(0,0 Amap; Clo ( ) . ( ) PO(k cosb,¢)=¢e Y

1
for p'=a. (37) F(0,¢) (40

1
~3ap; c X(l_ 8ika sin 0

Hence the ratio of the imaged to the true intensity is and

190,00 2k

_X (39) w?=—31+2ika sin 6. (41
190,00 3a

(a—p')? asp —a.

This is consistent with numerical simulations by Willidns @ (b)
who found that the imaged intensity is generally well below '
the actual supersonic acoustic intensity in magnitude, al
though it gives the correct overall pattern or image. The re
sult (38), combined with the conservation of energy for the & °
simple imaging algorithm implies that the energy not imagec -'
at the “hot spot” must be redistributed elsewhere on the -2
surface. It is clear from the numerical examples, suchas Fic =2~~~ .5 4 B e - —
2, that the energy redistribution does not occur within a dis-
tance of one acoustic wavelength. We can only infer that thi @ )
approximate formula leads to an enhanced “background” 2
imaged intensity. 1 1

Figures 4 and 5 show the comparison of the imaginc = . ol i ‘ P
formulas at higher frequencies using gray scale mosaic _, 2 . ' ;
similar to Fig. 3. These figures illustrate a serious problerr _,
with the “improved” approximation of Eqs(34) and (35): 5 5
The second derivatives & with respect top tend to domi- -1 -5 0 05 1 -1 05 0 05
nate and make the correction far larger than the leading-order
approximation. This results in the dumbbell appearance of FIG. 5. The same as in Fig. 4 but fpf =0.9a andka=09.

2

2
1

0

-1

-2

p

-2

-
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FIG. 6. The approximate, “improved approximate,” finite difference solution, and the exact supersonic acoustic ir@n§iy,(c), and(d), respectively,
for p’ =0.9a andka=18. The difference scheme uses 30 equally spaced pointsm6< ¢=< /6.

Apart from the factof 1—1/(8ika sin 6)]~%, which is close

to unity in general, the functiof?®(k cos6,) is exactly Pj— T
the leading-order approximation of E¢L5), or Williams’ r(AP) )
formula. The images in Figs(d and 5c) were obtained by 1=12,.M. (42)
solving Eq.(39) on a grid of 30 equally spaced points

using finite differences as described below. The improvedhe results shown in Figs.(@) and Jc) for —m<¢<m
resolution illustrates that the second derivativesFofnen- ~ Were obtained using this scheme combined with periodic end
tioned previously are indeed the culprit for the poor imagesconditions, which implygo= ¢y and ¢y 1= ¢;. The re-

in Figs. 4b) and b), and that a naive inversion of the basic SUltS in Figs. €), 7(c), and &b) were computed for the
formula (32) can lead to significant error. sector — 7/6< ¢< /6 using similar periodicity conditions

The price paid by solving Eq39) is that the imaging to evaluate the Zche(rj‘ng at th(fe eng p;]omti. Other e.ndI cor|1d|—
formula is no longer strictly local. One can argue that if We::ogs \\I/vverre rt}e?e nair:iv ltthtir? Oer : t ?t rtme P?hmencr?ditsionu-
are using all the data for w< ¢< then we may as well ons were not senstiive to the precise form ot the co ons

. sed.
use the exact modal algorith@ee the Appendix However, The results of Figs. @), 7(c), and 8b) indicate that
the se cond-lorbder equatll()ag) (;]ar:jb.e(ssolved’, "; prm_mple,]?n_ better circumferential resolution can be expected if the
any Interval by severa methods: reens .unctlons, Inltesimple differencing algorithm is adopted. The improvement
differences, etc. We will assume for simplicity that the far-

. ° ] -~ in the resolution is quite remarkable even with very few
field data is obtained on a set of semicircles evenly spaced i@micircles of data only seven in Fig(b8 Some under-

b, say ;= b1+ (] _1)Ajf" 1=12,..M, whereAAgb |sAthe standing of the effect of using E¢39) can be obtained by
azimuthal spacing. LeP;=P(k cos,¢;) and P{?’=P©  noting that at high frequencies the real par.ofs large and

X (k cos6,¢), then Eq.(39) is approximated by the central positive, implying that the second derivative term (39)
difference scheme acts as a singular perturbation, analogous to a boundary layer

[Isj+1_2|5j+lsj—l]:|51(0)!
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FIG. 7. The results of Fig. 6 depicted by gray scale mosaic.
effect. By ignoring the fact that the range éfis finite, and
replacing the domain by the full line, with zero boundary
conditions at+, we may write the solution t¢39) as
P(k cos6,¢)= %f do’e #e= ¢ 1pO)(k cos g, ¢').
(43)

Integrating by parts yields
P(k cos 8,$)=P(k cos 6, )

L (7 4o e nd [ PO
+5 d¢’e #?[PJ)(k cos,
0 ,
FIG. 8. The approximate(a), and finite difference solution(b), for the

o+ ') — ﬁfg)(k cos 0, p— ¢r)] (44) Z?Sltjasggl.’ameters as Fig. 6, except that only seven equally spapeihts

This form clearly shows the leading-order teRf?), and the
boundary layer correction, within a region of azimuthal

thickness 1/Re=0(1/yka sin 6).

the asymptotic approximation, yielding a direct and local im-
aging formula, Eq.(33), which introduces a correction to
Williams’ formula. However, as the numerical examples il-
lustrate, this “improved” scheme is actually worse than the
1. CONCLUSION original, and the cause of the problem lies with the second-

The imaging formula of Williams is practical and very order derivatives with respect tb, which is also related with

useful because it provides a simple means to map the fath€ ill-posed nature of the inverse problesee the Appen-
field pressure back to a cylindrical surface. The power of théliX)- The proper interpretation of the asymptotic correction is
method is that it is local, and does not require full circum-aS & nonlocal effect, which must be solved as such. One
ferential coverage. Data from each semi-circular scan is bacRPProach is to use finite differences for sets of several neigh-
projected independently. In this paper we have seen that tH¥ring semicircles. The numerical examples for a monopole
same formula can be generalized to cylinders of arbitrany?€@r the surface indicate that even with very few semicircles
cross section, with the main results being E@.and (5). one can gain S|gn|f|cant. resolut!on in the C|.rcum.ferent|al di-
The cross section need not be a separable surface. In fact, tFfRFtion, as compared with the simple local imaging formula.
derivation relies upon a local, high-frequency approximation
which illustrates that the formula is really the leading order” CF O WLEDGMENTS
of an asymptotic approximation. We also obtained the first My thanks to Earl Williams for comments. This work
two terms in the asymptotic series for the special case of was supported by the Office of Naval Research.
circular cylinder. One can, in principle, continue the
asymptotic series for arbitrary cross section. APPENDIX: THE CIRCULAR CYLINDER

The two-term approximation can be interpreted in two  The special case of constab{¢)=a is considered
ways. By the nature of its derivation it gives the surfacehere. It may be easily shown, using modal expansions for
pressure transforr® as the solution of a differential equa- instance, that the-transformed surface velocity can be ex-
tion, Eq.(32). This can be formally solved, in the spirit of pressed in terms of the surface pressure as
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sin @ (2=
V(k cosh,¢)= HJO do'G(0,0—¢')P(k cos6,¢’),
(A1)

where

©

S HY" (ka sin 6)
H'Y(ka sin 6)

n=—oo

G(6,4—¢) gin(é-2")

(A2)

Assuming that ka sin>1 we can use the following
asymptotic approximation for the Hankel functions,

_ 2 (4n%>—1)
(1) — (—i\N+1ai(x+7/4) . — 4 ...
H/(x)=(—1)"""e wa 1+i +
(A3)

8x
By retaining the first two terms in the expansion of
—iH® (y)HB(y) for y>|n|, we obtain

~ 1
G(0,¢p—d')=(dp—¢ )(1—m)+“' (A4)
Equations(Al) and (A4) together imply Eq.(11) for the
special case of the circular cylinder.

Substituting from(A1) into the Helmholtz integra(8)

and using standard identities for Bessel and Hankel funcp
tions, we obtain the exact relationship between the far-field

form function and the surface pressure transform,

2m

1
F(0,¢)=E . d¢'P(k cosb,¢’)

©

gin(é—9')

. A5
n=== m(i)" *H{"(ka sin 6) (A%
This derivation is related to, and motivated by, that of
Williams.® The distinction is that Williams essentially ob-
tained P(k cos#,¢) directly. There is a slight complication
with his approach, which is based upon the fact that th

near-to-far-field radiation operator is compact. In order to

appreciate this difficulty, define the functions{ (¢
—¢',0) as

N
L (@=¢00= X [m()" HY

X (ka sin )17 teln(@=9"), (AB)
then Eq.(A5) is equivalent to
2m

=5, d¢’ P(k cosd,¢ )LV (p—¢',0),
(A7)

whereLM=limy_..L{" . It follows from the small argument
or large order form of the Hankel functiongd{Y(x)
=(—Um)(2X)"(n—1)!+---, that the function L& (¢

F(0,¢)

=1,2,...m. For large m the dominant contribution to
F(6,¢) comes fromn=m, which would not be picked up if
we used the truncated form afb.

Let Fy(6,¢) be the function obtained using the trun-
cated functiorL{" in the integral in Eq(A7) instead ofL(").
The same function is obtained by using th’-21 modal
expansion oP(k cosf,¢'), sayPy(k cosé,¢’), as the inte-
grand in Eq.(A7), i.e.,

(0 ¢):ifzwd¢' P(k cos 8,6 )LP(d— o', 0)
NP = 5 PN :

2

1
= d¢’ Pn(k cosf,¢" )L (d—¢',0)
0

21

1 (2=

a d¢’ Py(k cosf,¢ )LV (p—o',0),

(A8)

and conversely,

1 2w 1
Nk cose,q’)):zfo d¢’ Fn(0,¢" )Ly V(o—¢',0).
(A9)

However, we cannot take the limit 6f— o in this equation,
because, althoughy— P andFy—F, the limit of L ¥ as
N—-oo does not converge at any point, and hence it is not a
well-defined function. In summary, angp-mode limited
form of F(6,$) can be inverted to give the corresponding
m-mode form of P(k cosé,¢). The inversion process is
stable form=N, where N~ka sin 6, and is unstable for
largerm, even though the dominant contribution Focould
be from modes withm>N. The lack of an explicit integral
ormula for P(k cosé,¢) is a consequence of the fact that
the integral operator in E§A7) is compact, and as such, has
no inverse. The ill-posedness of this type of inverse problem
is common, and methods exist to regularize the proBlem.

If ka sin#>N >1, then the following approximations
can be obtained fromA3),

Lg\‘il)((]&_ ¢/’0):2,n_eti(kasin 0+ ml4)

+1/2
*|kasin 0 [5(¢_¢ )(1
1 )+5"<¢—¢'>+___
~8ika sin ) — 2ika sin ’
(A10)

—¢’,0) is convergent and well defined. We note in passingWWe have also used the approximation ER)((7x)~ &(x) for
that the precise form function requires the infinite sum, insufficiently large\. The approximations of Eq32) for F in
general, and is not defined by the integral using the truncatetérms ofP follows from Eq.(A7) combined with Eq(A10)
version L(Nl), where N is approximatelyka sing. As a  for L&l) in the limit N—<. However, as remarked above, we
counter example, consider a set mf monopoles, equally cannot take the same limit fduf\,’l), although formally do-
spaced azimuthally ap;=2j/m with amplitudese'™?i, j ing so yields Eq(33) from Egs.(A10) and (A9).
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