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Abstract—A new system of equations governing nonlinear dynamics of fluid-permeable poro-
elastic media is derived on the basis of Hamilton’s principle for reversible effects and the Onsager—
Sedov approach for irreversible effects. The equations are in Eulerian variables, suitable for
dealing with fluid and solid phenomena simultaneously. The classical (Murnaghan-like) equations
of nonlinear elasticity, as well as the governing equations of the ideal and Navier-Stokes fluids
are shown to be special cases of the general governing system. It is well-known that the Navier—
Stokes equations of compressible fluid provide a correct self-consistent basis for studying a wide
variety of nonlinear effects in fluids. The authors believe that the governing system proposed
here provides the same opportunities for various nonlinear effects in poro-elastic fluid-penetrable
media. Copyright ©1996 Elsevier Science Ltd

1. INTRODUCTION

It is common practice to formulate nonlinear equations of solids in reference or Lagrangian co-
ordinates. Fluid dynamics, on the other hand, is more naturally considered in current or Eulerian
coordinates. The reasons are clear: in solids the material particles adhere to one another, so that the
reference description always provides a continuous mapping to the current configuration of parti-
cles. Not so for fluids, where large scale shearing can separate neighboring particles in the reference
system. The same is true of fluid-solid composite media, because the fluid can slide past solid par-
ticles. The use of Eulerian coordinates for such media therefore appears to be the most convenient
procedure, and may be the only feasible one.

The purpose of this paper is to establish the governing equations for fluid-solid media in Eulerian
coordinates by means of Hamilton’s principle for conservative media and the Onsager—Sedov tech-
nique for irreversible effects. The idea is to start with a well defined Lagrangian density, from which
all equations should follow. Although this approach is potentially the most reliable and flexible its
usage for the Eulerian description of continuous media demands some care. However, we believe
this is the most general and consistent approach to formulating nonlinear equations of fluid-solid
continua. In particular, it allows one to study the internal structure of shock waves and flutter-like
phenomena, among others.

We note that there are many excellent articles on the fundamental equations of fluid-permeable
solids. Nonlinear treatments are usually framed in terms of a mixture theory [1,2] for which the
starting point is a set of balance laws for mass, momentum, etc. Here we take one step back
and invoke a stationarity principle, that of least action, to generate the equilibrium equations.
Conservation of mass is considered fundamental for each species, but no other balance laws are
invoked. Mixture theories can also be formulated from an energy stand point [3], and nonlinear
poroelasticity has been developed from a thermodynamic point of view [4]. However, we are unaware
of a treatment based on the Hamiltonian principle of least action as developed here.

In many cases discrete and distributed mechanical systems show a behavior which can be treated
as conservative. It seems reasonable to study such behavior using a proper generalization of the
Hamilton variational principle. Following some preliminary definitions in Section 2 we begin in
Section 3 by considering the procedure of [5-8] for performing variations in Eulerian variables.
The remainder of Section 3 describes the derivation of the governing equations for a conservative

75



76 M. A. GRINFELD and A. N. NORRIS

system from Hamilton’s principle. We build upon these results in Section 4 and include dissipative or
irreversible effects, associated with fluid viscosity for instance. The starting point is a generalization
of Hamilton’s principle using the Onsager—Sedov method. Some general results concerning energy
are discussed. Finally in Section 5 we provide a variational derivation of the dynamic equations of
classical hydrodynamics and of Murnaghan’s equations of nonlinear elasticity [9]. We also present
three examples of the application of the governing equations to two component media including
fluid-filled poroelastic solids.

2. NOTATION AND THE EULERIAN DESCRIPTION OF
TWO-COMPONENT CONTINUA

The use of the Eulerian description has several advantages for analyzing two-component media,
and fluid-permeable solids in particular. In the Eulerian description time ¢ and the coordinates z* )
(Latin indices like i, j, k, [ take the values 1, 2, 3) are used as independent variables. For the sake of
simplicity the reader can think that the system is referred to the Cartesian coordinates, although
we prefer to use a covariant form of the equations (in particular, this form makes general equations
much more eloquent and expressive, and it allows one to switch easily between geometrically
different coordinate systems). We use the notation z;;, 2V, V; for the co- and contra-variant metrics
and covariant differentiation (in the Cartesian system z;; = z/ = 6; and co- and contra-variant
components appear to be equal while covariant differentiation reduces to the partial V; = 3/9z). In
order to distinguish between different characteristics of the two components we use extra-subscripts
a, b taking values 1 or 2 or the subscripts s or f when emphasizing the solid or fluid nature of the
component. In particular, we use the notation u(z, t), p.(z,t), and vi(z, t) for the displacements,
densities and velocities of finite deformations of the components. Introducing the ‘material’ time
derivative D,/Dt = 9/3t + v,V associated with the ath constituent we get by definition

; D i 0 - ;
v (z,t) = _I;ti = (5; + vgv,) uy. )
The following pair of identities are immediate consequences of equation (1):
oui(z, 1) . . duliz, 1) .
o = Ve valzt) = —'aaT—B.' ja ()

where A';,(z, 1) = 8% — V jul and B}, (z, 1) is the inverse of 4',, i.e. B'j, A, =65
The fields p,(z, t) and vi(z, t) obey the well-known formula of mass conservation for each phase:

0 .
e+ ) =0, 3)
The differential form of the mass conservation result (3) is equivalent to the following algebraic one:
Pa =P, detIAfjal, C))

where p; is the mass density in the reference configuration. Differentiating equation (4) we get the
following relationship:

0pP4 ;
St = ~PaBl. ®)
i#.d

3. THE HAMILTONIAN APPROACH FOR TWO-COMPONENT MEDIA
IN THE EULERIAN VARIABLES

Assuming the absence of external mass and surface forces we choose the Action S corresponding
to a ‘cold’ multi-component substance in the following standard form:
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1
S = IdtJde(z, t)L, 6
1)} Q

where L = T — E and T and E are the kinetic and internal (elastic) energies of the substance per
unit mass, and p(z, ) is the mass density of the substance, which is equal to the sum of the partial
densities p,(z, t) of the constituents:

p(z,1) = D pulzt). )

In what follows we assume that the kinetic energy density is an algebraic function of velocities of
the constituents v, (z, ¢) while the internal energy density is a function of the displacement gradients
V jul(z, t) and the partial densities p,(z, ?):

T=TW,), E=E(Vju,p) L=L{psv, V). (8)

The present analysis applies to any number of constituents, a = 1, 2, .. ., but for practical purposes
we will be concerned with two-component media.

Dynamic equations and natural boundary conditions of the actual motion can be obtained as
the conditions of vanishing of the first variation of the Action S for all ‘admissible’ trajectories
(Palz, 1), Vi(z, 1), ¥,(z,1)). In addition to some natural demands of sufficient smoothness, all ad-
missible fields have to obey certain ‘mechanical’ constraints. First of all, as always, all admissible
dynamical fields have to coincide with the actual fields in the initial (at ¢ = #;) and final (at ¢ = ¢;)
configurations. Other crucial constraints follow from the fact that the fields (p,, v, #,) are mutu-
ally dependent since, say, the two former fields can be found from the latter by means of spatial
and time differentiation. This fact implies certain linear differential relationships for the variations
of these fields, and the independent variations should be carefully extracted in the first variation
of the Action 6S. In order to make this point more transparent let us consider a one-parameter
family of the admissible fields

Pa= Pz, T), Vi=Vizt,T), U, =ul(z1T), )

where T is the parameter of variation. By definition, the Eulerian variations of these fields are the
following functions of z and ¢:

0P, B
5pa(zr t) - aT (Z, t: T) =0 - RH(Z' t)
i v, i
vi(z, 1) = 2(z,1,T) =G,z 1) (10)
oT r=0
Sul( t)——aii‘( LT) = Qi(z1)
u,(z, —a_rz,, r=o— (2, t).

With the help of equations (2), (4) and (5) one can easily establish the following explicit formulae
for the variations R,(z, t), GX(z, t) in terms of the variation Q%(z, ¢) and its derivatives:

J
fo(z, t) = B.lgna (a—gz + %Mjavﬂw) , R,(z, 1) = "PaB.}iavl'er (11)

In order to establish a system of governing equations one ought to substitute the one-dimensional
fields (9) into (6), differentiate the integral, and then extract the independent variation Q' using
the relationships (11) and integration by parts (in space and time). Then, equating to zero the co-
efficients of Q! in the integrand we arrive at the desired master system. However, this approach,
although absolutely correct conceptually, requires very laborious computation when the Eulerian
description is used. In what follows we use a somewhat different technique which seems to be much
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more convenient when dealing with the Eulerian description. In this technique the virtual veloc-
ities fi(z, ¢, T) of the constituents are treated as independent variations rather than the functions
Su'(z, t). The virtual velocities fi(z, 7, T) are defined implicitly by the relationship

fiz 1) = —gi—ui,(z, 1, T), (12)

where D, /DT is the material derivative associated with the parameter 7 : D,/D1 = 0/37 + fiv,.
The following statement is crucial for overcoming future computational obstacles.

LeEMMA 1. The operators D,/Dt and D,/DT commute on u’{f (z,t, T):

Eg&]i (E_PQ__Da&)f_.D_a[é_%_
[Dz’DT“ DiDr DtD:) %7 =0. (13)

Proof. Differentiating equation (2) we get

D, D, (o, D ouly oul, DB},
L =—|—*F - —_t —— 14
Dt Dt ( ot Bla ot By + o Dt (14)
One can easily derive the following relationships:
D,B, ; D, A"
da __ _Bl Bm ma
DT .na®l.la DT
D A%, DV, y
Dt Dr - 4 «Vmfa

Da aulu 0 Dau afa v, ! aﬁ‘ AI

Drar 2 Dt o T T
Inserting these into the RHS of (14) we arrive at the desired result:

Do, _ 3f} ou/

i oy _ fh
DT at ( ’nf ) da a = + V'nvmfa

af :
ot )

O

We remind the reader of the following formulae for a derivative of the integral over a domain
occupied by a moving body consisting of particles of the same material:

D,L D,L

4 Jde,,L Jdea %IdﬂpaL=Jdea Dr 15)
Q 0
Combining (6) and (15) we get the following formula:
1
Jdt——JdQZp,,L JdtJdQZpa (16)

The fundamental equations of the system follow by equating the latter to zero, which we will now
proceed to do. First, we note the identity

D,
D = Dr ~ U —fOVe, a7

which combined with (13) yields the relatlonshlps

D,,vf, - Dbﬂ k _ rk i

Daib = —psVifF = (fF = f5)Vips (18)

o
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D
D_.(;Vp”qb = A,V fy - (ff = fOYVeV g

Hence, the integrand of equation (16) becomes

Zpa

=330 [ . (D”f b (ff - f;‘)vkv;;) — Ly, (sVafk + (ff = £5V401)
a b

+Lv,u, (A'qrbvpflf - (flf( - ff)VkV,,uqb)]. (19)

The individual terms can be simplified, yielding sequentially

fz' D fi
D

Dy fi
—th Ly Igtb
=S D (P ) Dy (£ )
= %prt (prvbfl;) %pbf’;Dt prv;,
2. D paLopsVifE = 3. [ Vi (posLo VitE) = fEVk (PPLpy) | (20)
a b b

2.2 Pl g Ay Vo ff = 2. [Vp (va,u,,bA;,,;,f;f) = JiVp (pLVpuqullrb)]
a b b
D D PeZin S = £ =D pZu(ff -
a b b
where Zy, are arbitrary, and
o1 )
F'=— Zpaf;
P
is the ‘mean’ virtual velocity. Combining (19) and (20) we get the relationship
e = 2 oo (s - eusiy (k) - pLavok Uk -
za:pa DT = % 5Dy Lyfy) - pots D prvj, pL, Vv (fy
+EVPPbLp,) = PLY 1y ViV plign(f§ = F¥) = pLy, Vieps (ff — F¥)

= JETp P LSy Ays) + DLy A 1) = Tippr L S @1

Now, let us insert equation (21) into (16) and eliminate all spatial divergence terms—viz. the
final two terms in equation (21) (here and in the following we tacitly assume that all integrals over
boundaries vanish: the reader can easily figure out several conservative boundary conditions of this

sort), yielding
t D D
a5 _ 0 _b(ﬁ ,-)_ f__b(i )
Jdt.]’d %: [Pb Dt p[,LV;’fb be[, Dt \ p; Lv‘”
to Q
—pLy Vivh(ff = F*) + fEVi(ppyLy,) ~ Ly, Vips(ff —
= F5V0PLY s Ays) — Lo VoV it fE = F) . 22)

Using the second of the two relationships (15) we get

1=t

t
I dt j QY py2 (ﬂLv;, f,;') j dQpLyfi| . 23)
o Q b De Aps

1=n

LJES 35-1-F
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The last substitution vanishes because the initial and final configurations of all admissible trajecto-
ries are the same. In view of (23) the first integral in equation (22) disappears. Now, by separating
independent virtual velocities f in (22) and setting dS/dT = 0, we obtain the following governing
system of evolution:

D . .
ovpe (2L0) =003 (LTl Lo Fipa) = PLT 1% = PLo Y108 = L9 1 i
+Vi(pPsLp,) = V APLY iy Aiis) + 06 D, L9 10y ViV jlhia,
a
which we can rewrite as
D .
P (—Lv;,) = psVil = p (LyVivh + Ly, Vips + L 1y ViV jttis)
+VilppsLp,) = V j(PLY uy Ajeip)- (24)

This is the first significant result of the paper. In the next section we will generalize this to include
dissipation.

4. THE HAMILTON PRINCIPLE FOR IRREVERSIBLE PROCESSES

IN TWO-COMPONENT MEDIA

4.1 The governing equations

Let us consider irreversible processes in two component media. In order to include into consid-
eration the Darcy and Navier-Stokes dissipation we assume the presence of the viscous mass force
Pi .. and of the viscous stress tensor P, ;.. Also we extend the Hamilton principle and formulate it
in the following nonholonomic form:

d alia i aum)_
szJdeL+IdtJdQZ(mD ) A ) =0 (25)

Copying the derivation of the system (24) we arrive at the following generalization of the governing
system:

Dy (p .
pba (;[;Lv;') = priL - P (Lvivlvll) + Lph Vin + ijukhvivjukb)
+VilposLp,) — V; (pLVjukhAkib) + Pll;.vu +V P”ws (26)

This reduces to equation (24) for conservative systems.
4.2 Energy relations and general properties

For each constituent, a, define the elastic stress tensor
Pl, = —pLy uyAvig + PPaLy, 5}, @7)
and the ‘interaction’ force, or momentum supply in the terminology of mixture theory [1,2]
G =p,ViL-p (LVLV,'V{; + Lp,Vips + Lv,u,,,ViVjuka) ; (28)

then the equilibrium conditions (26) become

D
_b (p_va,) ( + Pivis’) + G;: + Pll).vi.\" (29)
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Note that the sum of the interaction forces at a point is zero:

>G=0 (30)

The sum of the elastic and viscous stresses, Py + P,{ "v,-.,., can be considered the total stress in phase
a. We caution that these definitions are not unique because the vectors G, could be changed by
adding divergence-like terms.

Define the total energy density per unit mass of the system

£ = % :—fk;v/,f - L 31
and define the flux vector for component a
Fl = ~ViPla+ o (= VI)WiLy, (32)
where
V=13 o (33)
Py

is the mean velocity. Then it follows from equation (26), with the details in the Appendix, that
2 (pa Dt + v]fa) Z (PC‘I visV Paj.lvisvjvia) . (34)
a

This is the pointwise energy dissipation relation. It is interesting to note that the flux vector of
phase g contains a term proportional to the relative velocity of a with respect to the mean flow.

Integrating the balance law (34) over the domain Q and using equation (15) leads us to the
following identity:

Jdef Jdﬂz uvu avtsv vlfl) (35)

which is the energy-dissipation relation for the volume Q. In the absence of dissipation we can
establish the energy conservation equation

Idﬂpf——Jde(Za—Lv’,ﬁ—L)=O. (36)
7o
Alternatively, let £ be the Lagrangian density per unit volume:

L=pl, (37

in terms of which the governing equations (26) become

LVZ j , i i
Pr— = p5ViLp, = LyVivh = L9, ViV itk = V (LY g Aiy) + Pryie + V5 Pl (38)

Dt

This form of the equilibrium equations is perhaps simpler. It is interesting to note that if L is
additive in the following sense:

L= Z PaLs(pa, vfp Vjuka); (39)
q
then the equations (38) reduce to
De i P 4
phELb,vf, =V, ( Lhm6 — poLy, V/ukbAkxb) + Pb vis T Vj b.vis (40)

These equations are coupled only through the viscous terms. Thus, an additive volumetric La-
grangian density leads to decoupling.
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4.3 Dissipation effects: constitutive relations

For the stresses P,{"v,-J we limit ourselves with the traditional choice of the rheology

i i jl
Pyys= Dy Vv, 41)
where the tensor of viscous coefficients D;,j " is symmetric with respect to the first and second pairs
of indices and to interchange of these pairs. Also, based on equation (34), it should satisfy the
following dissipation inequality:

D kIV(iij)V(kVIb) > 0. 42)

In order to establish a constitutive relation for the viscous body force P} ;. we impose the following
‘natural’ demands:
(a) Dissipativity

Z PI; vis¥ib < 0 (43)
b
(b) Additivity
Pys= 2. Fy @4
a
(c) The ‘action—reaction’ equality
F,=-F, (45)
(d) Linearity in the velocities
Ey= 3 Do 46)
[4

Constraint (a) is a natural consequence of the energy identity (34), while the conditions (b) and
(c) imply that

2. Pl =0, 47)
b
which is similar to the general result (30).

We now examine the implications of these constraints for two-component media. First, equa-
tion (45) implies that

Fi=F,=0, F,=-F) (43)
Combining (46) and (48) we get
Diyvj+ Dy =0
Diyvji + Dyyyvp =0
(Dll!2l + Dlzjn) Vit + (Diljzz + Dlzjlz) vz =0. 49)
Equations (49) lead us to the following formulas of the coefficients DZ,C:
D}y =D, =0, D} = D;jz.z. =0
Dy =-Djy =x{. Dip=-Di=x5 (50)

Combining equations (48)—(50) we obtain the relationships
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i i _ nif i — i if
Fy = -8 =Diyvj+ Dinvp = X{vii + X2 Vj2
i )
Pl.vi.r - F21
i N -7 i _ i
le'.r = F12 - —FZI = —Pl.vi.\"
Hence,
: . . "j ij
Pyvit + Py yvin = By (v — vi) = = (X1 vj1 + X2 v2) (v — i)

The inequality (43) will be guaranteed provided x'ij = —x;j = D, a positively definite matrix.
Indeed, in this case we get

P} ovit + Py v = =D (vy — vp) (vj — vj2) < 0.
With the above-mentioned choice we obtain the following constitutive equation:
Pli.vis = _Dij(vil — i), PZ vis = D"(V,z - Vvi1), P{ivis = —'Dij(via = Vip). (51)

Inserting the constitutive relations (41) and (51) into (26) we arrive at the following master system:

or e (£Ly) = psVil = p (LyTi + Ly Vibs + Ly Vi) + VilpprL)
=V J(PLY g Aiip) — DV (Vi — via) + V5 (D,, kavu,) (52)
or equivalently
pb%’; (%Lv'b) = VPl 4 Gy = DY (v —vip) + V, (D;',{"v‘i’_‘.vkv,,,), (53)

where the interaction force is
Gi= =G\ =py (LyViv] + Lp,Vibu + L9 1, ViV jttka)
~Pu (LyVivh + Loy Vi + L9 10y ViV jtis) (54)

5. EXAMPLES

5.1 One-component models

Example 1. Nonlinear elastic solid. The governing system of a nonlinear one-component solid can
be derived from the master system (53) if we neglect viscous forces and choose the Lagrangian

L=T-E= —;-vivi—E(Vjuk). (55)
In this case P/* (from equation (27)) is the Cauchy stress tensor
i 9E
Pr= paV ukAk'

and there are no viscous or interaction terms. The equilibrium equations (53) are simply

Dv
=Y _ ji
&y V,P". (56)
Example 2. The Navier-Stokes fluid. The governing system of a nonlinear one-component viscous
fluid can be derived from the master system (52) if we ignore the drag force Pi, and choose the
Lagrangian and the viscosity tensor DV/¥ in the following form:
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L=T-E= -12-viv; —E(p), D™ =v,878% +v, (%6 + 56/%) 7)

where v,, v, are the volume and shear viscosities, respectively. The elastic stress is hydrostatic, defined
by a pressure p:

. N oF
Pl = —p§ii = p? =, 58
p P=p5, (58)
and the viscous stresses P:.{‘ are
P = v, V*u Y + v, (ViV + VIV). (59)
The equilibrium equations (53) are now
Dv ; i
P ="Vt VPl (60)

As always, when combined with the mass conservation equation (3) the system (59), (60) is closed
in terms of p, V.

5.2 Two-component models

Let us assume that the kinetic energy T is a quadratic form of the velocities v*:

1 .
T=3 > KijapVivi. (61)
ab
Using (61) we get
ar 1 e e gy 1 ;
3 -2 Z Kijap (5f5acvi + Vi,(sfach;,) =3 Z (Kchb + Kjlhc) V. (62)
¢ b b

In the case of isotropic two-phase medium we get

K = k¥, DU =AY, (63)
Combining (62) and (63) we get
oT
Fv i > kucvia (64)
4 a

where the symmetric matrix k. is defined as

koo = % (ic’ac + iécu) .

Example 3. Liquid two-component mixture. We obtain the simplest possible model of a two-
component liquid mixture by choosing the Lagrangian and viscosity tensors in the following form:

1 .
L=T<-E =52 ks~ E(po)
ab

DY = AsY
DN = v,, 678 + v, (88 + 6757%). (65)
The partial stresses are hydrostatic:
ji " oE
B =-py6, pr=pprz—, (66)
Pb

and the interaction forces are given by
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G;; =ppV; (5 Zka(:v:zvic - E) a4 Z kahvjavi"]]) + pEp;, Vips
ac a
= z Vie (pbkcaviv,{ - pakcbvivi) + paEp,,Vipb - prpa ViPa. (67)
c

Inserting these into the master equations (53) we obtain the following system of equilibrium equa-
tions for the two-liquid mixture:

D _ .
pb—D% ("% Zkabvia) = Z Vie (pbkcaViV{; - pakcbvi";;) + paEp, Vipy - PEp Vipa — Vi(pprph)
a [
— AW = vig) + V; [vis8! Visk + vy (Vv + Tva) . (68)

Example 4. Solid two-component mixture. The simplest model of a two-component solid mixture
corresponds to a Lagrangian of the form

1

L=T-E-=
2

zkabvivib - E(Viuja). (69)
ab

Inserting (69) into (53) we obtain the following master system for a two-component solid elastic
mixture:

D 1 / '
Pb'D—I; (ﬁ ; kabvia) — bV (5 %kacvzvu-) +p Zﬂ:kabvthiV;/,
= —psViE + PE9,uy ViV juis + V {(PEV iy Ai) = D (vib = via) + V (DZIV("["V"V’“) - (79

Example 5. Fluid-permeable elastic solid. We choose subscript s for the solid and f for the liquid
component. The simplest model of two-component solid mixture is obtained by choosing the
Lagrangian in the following form:

1, . .
L=T-E=3 (asVivis + 2keegvivig + kypvivig) = E(Vitgs, py). (71)

Inserting (71) into (53) yields the following master system:

D, (p . A
p.vﬁ;’ (;; (kssvix + k.vaif)) = pPs (kf.\'vjs + k/fvjf) viv_jf =Py (ks.vvj.\' + ksfvjf) Vivﬁ

—PsViE + pEv ., ViV juis + V j(pEv u, Ajys)
D1 9, () o

D . ;
pfF{ (;p; (kffvif + k,fv,-s)) = pf (km-Vj.,- + k_gfvj_f) V,-v§ - Ps (kfsv,a‘. + kffvjf) V,-v?
—PsViE + pEp Vips = VilpprEy,)
=D vy = vi) + Y, (D Veviy) (73)

6. CONCLUSION

We have established a general framework for dealing with fully nonlinear problems for two-
component media. The central result is equation (26) which gives the equilibrium equations in
Eulerian coordinates for an arbitrary Lagrangian density. These governing equations are a direct
consequence of the generalized Hamilton’s principle in the presence of dissipative effects, i.e. the
Onsager-Sedov principle of equation (25). We have illustrated the application of the general gov-
erning equations to specific examples of single and two-phase continua. In particular, the standard
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theories of solids and fluids are included. The full potential of the theory is its applicability to
multi-phase continua.
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APPENDIX A

Here we derive the energy identity (34). We start with

aL
ap Dy
= Zpa (Z Ve, D: ( ) Z o b %ijumavju”,) . (A1)

We next simplify each of these terms in turn. First, using (17),

Dy oL oL
S (55) - Soibiag St - 0wy

zpa
a

Vp
k| PrDp [ p oL 3L ps Dy p L 3L
= F=ol By o By 2 YV — |,
%Vb [ p Dt (Ph vk ovk p Dt py (” t') ’av’,j
which implies that
D D 3L\ LD
ka r b p b D e ,
af) =P 2= VOV, A2
ZpaZVbD’( V’E) %vp [Dt (Phav,,) av,,Dtp] p%‘- 5 = V) Iavk (A2)

and V' is defined in (33). By making use of the governing system (26) we get the following result:

D oL ;
Z ﬁpb D’t) (-pp—bé-v—k) = Zv}, [p;,V,-L -p (ng V;v’,; + LYy ViV jtai, + LphV,-p;,)
] b h

-V (pLV/“khAklh) + VilppsLy,) + P, mh + VA l\b]‘ (A3)
Use of equation (3) gives us

Dy p ZDbPa _ P Doy

Dtp, < Dt py Dt
= Z [_puvlvz - (Vf, - V;,)leu + pule;,]
o
=V (p(VZ - V’)).
implying
3L Dy p . oL .
Lnl -VH). A4
%V VoDt oy 2ok Vi (ot~ 71) (A4

Combining equations (A.2), (A.3), and (A.4) gives us the first sum in the left member of equation (A.1):
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Now consider the other terms in (A.1). Using the mass conservation equation (3) again gives

2. 2. palos Dln)fb =3 paLy, [—prkV§ ~ - Vﬁ)Vkpb]
a b a b

=3 oLy [ V¥ Va6 - Vilonr})]. (A.6)
b

Also, by using of the last part of equation (18) (with the change of the parameter T for ¢) we get the following equation:

Z ZPaLVjum%;'Vj”Ib = ZZPaLijb {A',,thvz - (v},f - vff)Vijuu,]
a p a b

= S PLy iy [ A1V %5 ~ VAV jrty + VELY jupy). (A7)
b

By combining (A.1), (A.5), (A.6), and (A.7) we obtain the relation (34), where the flux vectors are defined in (32).



