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Abstract

In this paper we introduce and validate a novel non-intrusive probe of the average kinetic energy, or granular temperature, of the particles
at the wall of a gas fluidized bed. We present data on the granular temperature of monodispersed glass spheres which span region B, and
extend into region A, of the Geldart powder classification. The underlying physics of the measurement is the acoustic shot noise excitation of
the surface of the fluid bed vessel by random particle impact. Quantitative determination of the average particle granular temperature is
obtained through independent measurement of the wall transfer function determining the coupling between the acoustic shot noise excitation
at one location and the response of an accelerometer at another location. We validate the concept and calibration of this acoustic shot noise
probe in the frequency range 10-20 kHz, through a comprehensive series of laboratory measurements with gasses and cylinders of significantly
different acoustic properties. We demonstrate its utility by presenting the first data on the dependence of the granular temperature on gas flow
and particle diameter and make the first observation of a change in the character of the fluidization transition from first order (hysteretic and
discontinuous) to second order (reversible and continuous) for Geldart B glass spheres as the A/B boundary is approached. We observe a
striking difference in the dependence of the granular temperature on gas flow between Geldart B and A glass spheres, that suggests a
fundamental difference in particle dynamics between spheres in the two Geldart regimes. Finally we use the vibrational probe to study the
time dependence of the granular temperature under bed collapse conditions when fluidizing gas is withdrawn rapidly from the system. We
show an exponential time dependence with a time constant of the order of 100 ms, and demonstrate the consistency of this result with a
Langevin equation for the sphere velocity with a time constant derived from the sphere fluctuation velocity and a collisional coefficient of
restitution of 0.9. From these results for the granular temperature and a kinetic model for a dense granular gas, we present estimates for the
inertial pressure, velocity of sound, viscosity, and diffusion constant of the dense phase of a gas fluidized bed as a function of particle diameter
and gas superficial velocity. The implication of these results for current models of gas fluidized beds, and the fundamental basis of the Geldart
classification is discussed.
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1. Introduction Although there have been important advances in under-
standing fluid bed phenomena, for example, modeling gas
and particle flow through individual bubbles [3] and mod-
eling the instability of fluidized beds [4], a fundamental, first
principles theory of the hydrodynamics of these dense two-

phase systems has yet to be achieved. However, the remark-

If the gas flow through a cylinder confining a bed of packed
particles is increased, the pressure drop across the bed
increases linearly until its magnitude is equal to the weight
of the bed. At this critical flow velocity the particle/gas sys-

tem makes a transition to a fluidized state which exhibits
many of the properties of aliquid [ 1]. As gas flow is increased
above the critical velocity, the pressure drop across the bed
remains constant. The bed height initially increases at the
same critical velocity, and continues to change continuously
above it. Gas-rich bubbles appear as a second phase within
the fluidized bed and their arrival at the surface gives the bed
the appearance of boiling. Fluidized beds play an important
role in continuous petroleum, chemical, and combustion
processes that are based on particle gas interactions [2].
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able and continuing increase in computational power is
encouraging with respect to advances in theory [5].

Less encouraging is the rate of advance in experimental
probes of fluidized beds. As summarized in a recent review:
“‘During the 50 or so years since the widespread introduction
of fluidized beds many experimental methods have been
devised to study their internal workings....... There remains,
however a need for monitoring equipment that can be used
reliably on an industrial scale under hostile conditions of
atmosphere, temperature and pressure. Some of the probes
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described above are suited to this type of operation but
question remains about the effect they induce on the local
hydrodynamics. Non-invasive techniques, such as radiation
attenuation and tomographic imaging, are generally to be
preferred but to date these suffer from problems of data inter-
pretation and from the sometimes low level of discrimination
they are able to offer’” [6]. It is hoped that the subject of this
paper, a novel and non-invasive acoustic probe of the particle
granular temperature at the wall of fluidized beds, will meet
the need to supply critical experimental insights and valida-
tion for recent theoretical models, as well as avoid the indi-
cated pitfalls.

Due to the complexity of the dynamics of the particle gas
system and, perhaps the absence of appropriate, non-invasive
experimental probes, the science of fluidization continues to
be dominated by useful empirical correlations based on well-
chosen dimensionless groups, rather than on fundamental
theory. Despite the evident technological success of this
approach, there remain surprising gaps. Batchelor noted in
1988, almost 50 years after the first commercial application
of fluidized beds in catalytic cracking, that while ‘‘there is a
general belief that a uniform fluidized bed may be unstable,
the underlying physical mechanisms are not yet clear’’ [7].

There is a growing theoretical [8,9] and experimental
[10-12] interest in the study of granular flow, in which fluid
forces are neglected. This research area has generated new
insights on the interaction between inertial and frictional
forces in the mechanics of flowing particles and introduced
physical concepts that may contribute to a fundamental theory
of fluidized beds. Both particle/particle and particle/fluid
forces are critical in the behavior of fluid beds, but some
granular flow concepts can be employed to simplify the com-
plexity and multiplicity of equations describing the dynamics
of particles, gas, and their interactions [ 13].

Particularly relevant to the present paper are recent theories
that isolate the generation, flow, and dissipation of the aver-
age particle kinetic energy or granular temperature as explicit
terms in the particle/fluid equations of motion [14,15]. The
concept of the granular temperature assists in closing numer-
ical computations. It can also supply insights into the study
of transport phenomena in such complex systems as, for
example, sound propagation, diffusivity and viscosity of
dusty gasses, developed from the kinetic theory of dense
gasses [14-17]. It can also serve as a starting point for the
study of wall erosion phenomena [18-20]. Unfortunately,
despite indications of increasing theoretical interest in the
granular temperature concept [5], there are few, if any,
reports of the measurement of the granular temperature.

In this paper we introduce acoustic shot noise, as the fun-
damental physical mechanism underlying a novel non-intru-
sive, quantitative probe of the average granular temperature
at the wall of a gas fluidized bed. The new probe is consid-
erably more sensitive than the traditional probes of fluidiza-
tion, and, as will be seen, has supplied a number of new
insights:

(i) the first evidence for a change in the order of the
fluidization transition for glass spheres as sphere diameter is
reduced;

(i1) the discovery that well above minimum fluidization,
the average granular temperature is inversely proportional to
the square of the particle diameter and directly proportional
to the square of the gas superficial velocity; and

(iii) the discovery that the dependence of the granular
temperature on gas superficial velocity exhibits systematic
differences between glass spheres that are in the Geldart A
and Geldart B fluidization classifications [21-23] and thata
fundamental feature of so-called acratable Geldart A particles
is a significantly enhanced granular temperature just above
minimum fluidization.

Finally, we show the utility of the new probe by the first
measurements of the time dependence of the granular tem-
perature during bed collapse experiments [24,25] where the
fluidizing gas is removed rapidly from the system. We find
that the granular temperature decays exponentially, and from
the exponential time constant we have obtained the first in-
situ measurement of the energy loss per collision (coefficient
of restitution) of the collision of glass spheres within a gas
fluidized bed.

2. Granular temperature

We define a particle distribution function with respect to
velocity, f (¢), where f (¢(r.t) )de is the probability of find-
ing a particle with the vector velocity ¢ at location r at time
t. For elastic particle collisions f (¢(r,t)dc is given by the
Maxwellian velocity distribution which is a steady-state solu-
tion to the Boltzman equation [26,27]. For the macroscopic
particles found in a fluidized bed, particle collisions are ine-
lastic and a Maxwellian function is not a solution to the
Boltzman equation, but can serve as a starting point for a
perturbation expansion [15,28]. If we denote the particle
velocity as ¢(r,t), its ensemble average defines the particle
drift velocity, V(r,t), at the location r, where V(rt)=
<c(r,t) >. V(r,t) is an obvious visual feature of a fluidized
bed since it describes the downward convective flow of
spheres at the wall. The sphere fluctuation velocity, w(r,t) =
c(r,t) —V(r,t), is much too rapid to be a visual feature, but
is the major contribution to the granular temperature.

The granular temperature, 7%, defined as the ensemble
average of the squared fluctuation velocity, is given by
3T*= <w(r,t)?> = <c(rt)?> — [V(rt) ]2 For fluidized
beds [V(r,t)]* < <c*>, and hence the mean square of the
sphere velocity, <c¢*>, dominates the granular temperature,
T*. With the assumptions of spatial uniformity and isotropy,
T* can be expressed by one component of <¢?>. For later
convenience, we choose the velocity component normal to
the wall, v,(r,?), and thus write T*=(<w(r?)%>/3) =
<u,(rp)?> =02

The concept of a granular temperature exploits the analogy
between the random motion of a dense dusty gas of particles
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in a fluidized bed and the thermal motion of molecules. In
the kinetic theory of gasses the thermal temperature 7 results
from imposing equipartition of energy on the Maxwellian
distribution. In contrast, T*, is not a thermodynamic property
but is a steady state constant determined by the complex
interaction between the viscous and inertial forces exerted on
a particle by its local gas and particle environment. Since
particle collisions within a fluid bed are inelastic, the granular
temperature can only be a dynamic constant through the
power supplied to the bed by the fluidizing gas. Furthermore,
in contrast to molecular gasses where the mean free path is
many orders of magnitude greater than the particle diameter,
dusty gasses exhibit inter-particle separations and particle
mean free paths which are of the same order as the particle
diameter.

Despite these important distinctions, the granular temper-
ature concept has been described by Campbell [29] as the
‘‘single most important key to understanding the behavior of
rapid granular flows”’. It plays an increasingly significantrole
in recent theoretical work on the properties of fluidized beds
and transfer lines, and on general granular flow.

There are few reported measurements of the granular tem-
perature. To quote again from Batchelor [7], ‘it should be
possible to make measurements of...the non-dimensional
mean square particle velocity fluctuation in a uniform flui-
dized bed...[but] there are few published data’’. Particle
velocity data is available from laser Doppler velocity meas-
urements, but the focus has been on mean flow velocity,
V(r,t), in dilute systems [30,31]. Comparable data on T* is
lacking. Other optical techniques such as optical fiber corre-
lators appear to have been again restricted to measurements
of V(r,t) [32,33]. There continues to be a surprising gap
between the growing theoretical importance of the granular
temperature and its measurement.

3. Acoustic shot noise

The acoustic shot noise probe of the granular temperature
is based on a quantitative analysis of the response of the wall
of a vessel to random particle impact. We utilize power spec-
tral analysis for the derivation, in particular the fundamental
theorem of Wiener and Khintchine which states that, for
stationary random functions, the power spectrum of a random
function is the Fourier transform of its autocorrelation func-
tion [34,35]. Given the novelty of our experimental
approach, we focus on the fundamental physics of acoustic
shot noise, its relation to the average particle fluctuation
velocity at the wall of a fluidized bed, and its experimental
validation. Mathematical rigor has not been ignored in this
paper, but it has not been emphasized. We believe that a more
rigorous mathematical analysis would not result in changes
in the magnitudes of derived physical quantities by a signif-
icant factor.

For particles with mass m colliding with the wall with
normal velocity, v,, the momentum exchange with the wall

due to elastic particle impact is Ap=(2mv,). The power
spectrum of the particle force depends not just on Ap, but
also on the duration of the collision, or impact time, {2, which
determines its frequency content. Landau and Lifshitz [36]
derive the magnitude of {2 for the case of a spherical particle
of diameter D, impacting a flat surface of the same material
with normal velocity v,. Using their analysis, we find, for
particle sizes from 50 to 500 um, and particle velocities of
1-100 ¢cm/s, a Fourier transform of the particle impact force
of constant magnitude below 300 kHz. In the language of
power spectrum analysis, the power spectrum due to random
particle impact of these particles is white noise for frequencies
below 300 kHz. This is a simplifying, but not critical, assump-
tion in the mathematics. It is exact for the present experiments
since all the vibrational data are restricted by accelerometer
and signal processing constraints to the frequency range
0-25.6 kHz. In that frequency range, we can accurately rep-
resent the time dependent force of one particle by a Dirac
delta function, 8(¢). For random elastic particle impacts on
an area AA of the internal wall of a cylinder, the resultant
force F(t) in this frequency range is thus given by

F(t)= )iZmU"B(t—ti) (D

i=1

We further assume that the arrival times of the particles, z,
are randomly and uniformly distributed such that there are
vT impacts in the time interval T, where v is the mean rate
of arrival of the particles on the area AA. The time average
of Eq. (1) is then given by <F(t)> =2 my,v. This rela-
tionship should be familiar as the starting point for the cal-
culation of the pressure exerted on the wall of a vessel by the
impact of the molecules in a gas. The frequency dependent
force of random particle impact, which is the source of acous-
tic shot noise, will be obtained from the power spectrum of
F(1).

The power spectrum corresponding to Eq. (1) is given by
Se( f)=[1/W] <F(f)?>> where F(f) denotes the Fourier
transform of F(t), the brackets < > indicate a time and
ensemble average over the arrival time of the particles, and
W is the time interval over which the autocorrelation function
of F(t) is averaged. If we assume a uniform distribution
function of the random arrival times, the power spectrum of
the force due to random particle impact on the area, AA, of
the wall of the vessel at R=R; can be easily shown to be
given by:

Se(fiR) = (2mUn)2V = (4umUr31AA) | & (2)

where we have expressed the mean rate of arrival of the
particles, v, by the dilute gas expression, v = pyv, AA. The
quantity p,, = mpy, is the bed mass density and p, is the volume
number density of particles in the bed. The particles in a fluid
bed are far from dilute, but the average arrival rate can be
shown, within a factor of the order of unity which depends
on the roughness of the wall relative to the particle size, to
be given by v =pyv,AA.
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Eq. (2) is the power spectrum for acoustic shot noise which
at acoustic frequencies is a white noise source exhibiting no
explicit frequency dependence. Eq. (2) is the starting point
for determining quantitatively the sound generated by hail on
a roof or the vibrational energy imparted to the wall of a
fluidized bed by random particle impact. Gas molecules have
small masses and large velocities, and their acoustic shot
noise contribution to dynamic pressure in the acoustic fre-
quency range is 10 orders of magnitude below their contri-
butions to the static pressure, and only measured with great
difficulty. However, if the human ear were considerably more
sensitive, acoustic shot noise due to molecular impact on the
ear drum would contribute a constant background hiss to our
hearing. For the large masses of particles within fluidized
beds conditions are different. The dynamic pressure noise in
a fluidized bed can be shown to be only about an order of
magnitude less than the particle contribution to static pressure
[37], and easily measured with readily available instrumen-
tation. Despite the simplicity of the derivation of Eq. (2), it
does not appear to be as widely known as the mathematically
equivalent shot noise power spectrum produced by the ran-
dom arrival times of electrons in electronic devices [34].

Acoustic shot noise is frequency independent in the exper-
imental frequency range considered in this paper. However,
the response of the cylinder to this random force can depend
strongly on frequency. In the following section we consider
the effect on the RMS acceleration at a specific location on
the cylinder wall to acoustic shot noise averaged over the
fluid bed/wall interface.

4. Response of cylinder wall to acoustic shot noise

We introduce the transfer function, H(¢t—t',R,), that relates
the time response of the wall acceleration, a(t,0), at R=0,
to the force, F(1',R;), at time ' and location R; through the
usual convolution integral. For a force pulse generated by an
impact hammer at location R, the transfer function is most
simply expressed in frequency space by: a(f) =a(f,0) =
H(f.R)F(f.R;), where a(f,0) is the Fourier transform of the
acceleration at location R=0, and H(f,R;) and F(f,R,) the
Fourier transform of the transfer function, and force at loca-
tion R;. From the Wiener—Khintchine theorem [34], we note
that

S.(f0) = [H(f,R) |2Se(£,R) (3)

From Eqs. (2) and (3), the acceleration power spectrum
atlocation R =0, due to random particle impact over the entire
surface of the cylinder confining the fluid bed is given by

N
5.£0) =Y |H(fR) | *[4mp DA (3a)
i=1

We average over the surface area of the cylinder, A, and
obtain,

S.(£0) = < |H() |*> <dmp,pi>A (4)

where,

lN
<|H(H|*> E—A;ZlH(ﬁR.)leAi

i=1
1 N
==Y [HGR)|* (4a)
i=1
and

N
<4 s sl ———— H(f,R)) |*4mp,vAA,
MPeln (A<IH()‘)|2>),21| (£R;) | “Amp,v

(4b)

We have detected no significant change in S,(f,0) with a
change in the height of the fluid bed by factor of 50%, sug-
gesting either that the weighting due to |H(f,R,)|* is not
significant, or that 4mp,v3 varies little over the bed. In the
following we shall consequently replace the weighted aver-
age <4mp,v3> by the bed average: 4mp,v2, and write

5.(£0) = <[H(f) |*> (4mpru;A) (5)

Eq. (5) is the fundamental equation of this paper. It makes
possible the quantitative coupling of the acoustic shot noise
excitation of the wall of the vessel confining the fluid bed
with the measurement of the average particle granular tem-
perature within the bed.

The acceleration power spectrum in Eq. (5) can be meas-
ured at an arbitrary wall location adjacent to the bed. The
averaged transfer function, < |H(f)|*>, then depends upon
the selected location. As will be seen, < |H(f)|1?>, can be
estimated from a mechanical model of the response of the
cylinder confining the bed. However, for quantitative meas-
urement of the average granular temperature through Eq. (5),
as well as a critical test of the mechanical theory underlying
the measurement, we determine < {H(f)|*> experimentally
through impact hammer excitation.

5. Experimental determination of cylinder transfer
function

The fluidized bed was contained within cylinders con-
structed of either Pyrex glass with an i.d. of 7.366 cm (2.9
in) and a wall thickness of 0.254 cm (0.10 in), or aluminum,
with an 1.d. of 7.62 cm (3.0 in) and a wall thickness of 0.635
cm (0.25 in). The materials and dimensions of the cylinders
were chosen to test Eq. (5) against significant changes in
<|H(f)|*>. They also serve to minimize electrostatic
effects due to charging of the glass spheres. For both cylin-
ders, gas (dry helium or argon) was introduced into the fixed
bed through a gas distributor made of a high density poly-
ethylene porous membrane 1.9 cm (3/4 in) thick with
40— 60 um pores. The pressure drop across the gas distrib-
utor was about a third of the pressure drop across the packed
bed.

The quantity < |H(f)|*> was determined with the bed
fluidized. A piezoelectric accelerometer (Bruel and Kjaer
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4374) was attached to the cylinder with wax at a location
15.3 cm above the gas distributor and 3 cm below the bed
height for the packed bed, and its charge output converted
into a voltage by a charge amplifier (Bruel and Kjaer 2635).
The spatially-averaged transfer function defined by Eq. (5),
< |H(f)|*>, was determined by hammer impact ( Bruel and
Kjaer 8203) at N locations such that NAA; =A (in our meas-
urements, N=100—200). At the center of each elemental
area on the cylinder surface, AA, at location R;, 20 hammer
impacts were averaged, and | H(f,R;) | was obtained with a
two channel signal processor (Bruel and Kjaer 2032). Sub-
sequent average of |H(f,R;)|* over the surface area of the
cylinder was then used to obtain < |H(f) |*>.

6. Experimental validation of acoustic shot noise
excitation of the cylinder wall

It is critical to note that the power spectra of non-coherent
noise sources add and, consequently, the experimental value
of S,(f,0) will, in general, have contributions other than the
acoustic shot noise power spectrum given by Eq. (2). In order
to utilize Eq. (5) to measure T*, we have to find a frequency
band in which acoustic shot noise is the dominant contribu-
tion to the response of the accelerometers.

We determined empirically the appropriate frequency
range in two ways. The first is through the frequency depend-
ence of the experimental quantity, R(f)

R() = S.(£,0)

T <|HPI*> (6)

which should be independent of frequency if Eq. (5) is cor-
rect. Fig. 1 exhibits the measured acceleration power spec-
trum, S,(£,0), for the 3.0 in i.d. aluminum cylinder for glass
spheres with D =297 um, fluidized with helium gas. We note
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Fig. 1. The measured acceleration power spectrum, S,(f,0) over the range
0-25.6 kHz for the 7.62 cm (3.0 in) i.d. aluminum cylinder containing glass
spheres with D =297 um, fluidized with helium gas. Also shown are the
ratios, G(f), between S,(f,0) and the measured average transfer function,
< |H(f)1?>, and R(f), of the acceleration power spectrum, S;*(£,0), taken
with argon fluidization and the acceleration power spectrum SE°(£,0), taken
with helium fluidization. Both G(f) and R(f) are dominated by a white noise
source in the frequency range 10-20 kHz.

that S,(f,0) exhibits resonant peaks at frequencies corre-
sponding to the resonances of the cylinder and the contained
gas over the entire frequency range. In addition, we note that
S.(f;0) increases by a factor of 100 over the range 0-20 kHz.

In contrast, the ratio R(f) is constant within a factor of 2
over the same range and between 10 and 20 kHz is approxi-
mately independent of frequency. In this frequency band, the
resonant peaks in S,(f;0) simply reflect resonant peaks in
<|H(fH1>>, and since their quotient, R(f) =[S,(f.0)/
<|H(f)|*>1] is a weak function of frequency, we will
assume R(f) =Sg(f) = (dmprl A)

The second approach to determining the appropriate fre-
quency range is through changes in the fluidizing gas. Argon
has a sound velocity of 319 m/s at 0 °C, compared with a
sound velocity for helium of 965 m/s. The factor of three
difference in sound velocity leads to a factor of three differ-
ence in the frequency of associated acoustic resonances for
the two gasses. Supporting evidence that S,(f,0) is dominated
by acoustic shot noise in the frequency band 10-20 kHz is
obtained from the quantity G(f), where

_ S(A0)
G =S r0) @)

is the ratio of the measured acceleration power spectrum for
two different fluidizing gasses, argon and helium. G(f) would
be a constantif Eq. (5) were accurate. G(f) is thus a sensitive
measure of the contribution of acoustic resonances to S,(f,0).
Again from Fig. 1, we note that while G(f) exhibits reso-
nances below 10 kHz, it is again weakly dependent on fre-
quency in the band 10-20 kHz. It is interesting to note that
in addition to their acoustic properties, argon and helium
differ in viscosity (210 and 189 micropoise (uP), respec-
tively, at 0 °C), a difference which accounts for the observed
10% shift in fluidization on-set derived from the RMS accel-
eration obtained for identical glass spheres fluidized by argon
or helium gas.

From these two sets of experimental data we define 10-20
kHz, as the frequency band where acoustic shot noise is the
dominant contribution to the acceleration power spectrum
and where Eq. (4) can be used to determine the particle
fluctuation velocity normal to the wall, v,. Similar experi-
mental results and conclusions have been obtained for the
glass cylinder.

In the fluidization experiments S,(f,0) was obtained from
the output of two accelerometers diametrically opposed and
located at the same height above the gas distributor, utilizing
the same charge amplifier and signal processor as in the
impact hammer calibration, the only difference being the
excitation source, impact hammer in one case, acoustic shot
noise in the other, The experimental quantity of interest is the
average RMS acceleration, a, which is the average of the
square root of the integral of §,(f,0), taken over the frequency
band 10-20 kHz for each accelerometer. There was no sig-
nificant difference in the quantity, a, when the number of
samples used to define S,(f,0) was varied from 1000 (32 s
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sampling time) or to 20 (0.6 s sampling time). In practice,
100 time samples were used (3.2 s sampling time). In no
case did the RMS acceleration of the two accelerometers in
the frequency range 10-20 kHz, differ by more than 10%.

With two accelerometers it is possible to probe for the
degree of coherence or common signal between the two vibra-
tional probes. The coherence ranges between O and 1. While
coherences of the order of 0.6-0.5 were observed below 10
kHz corresponding to the acoustic and structural resonances
shown in Fig. 1, above this frequency the average coherence
is well below 0.1, again confirming random particle impact
on the wall as the dominant contribution to the power
spectrum.

The dominant visual feature of a fluidized bed is the
upward movement of bubbles and the consequent convective
flow of particles at the wall. In contrast, the particle motion
that contributes to acoustic shot noise cannot be easily
observed, but is the dominant feature of the high frequency
portion of the wall power spectrum. The choice of 10-20 kHz
as the measurement range for the RMS acceleration restricts
the measured phenomena to those which occur in times faster
than 0.1 ms, for example the impact time of particle at the
wall. In contrast, the transit of bubbles past the accelerometers
which occur in times of the order of 0.1-1 s corresponds to
power spectral features below 10 Hz, in the same frequency
range as that of the pressure fluctuations across a fluid bed
[38]. Itis important to note that while bubbles do not directly
contribute to the RMS wall acceleration in the range 10-20
kHz they may contribute indirectly through their contribution
to the average particle granular temperature.

Of course an additional critical test of the model is the
independence of the derived particle normal velocity, v,, on
the construction of the cylinder and the material from which
is made, which will be considered in the following section.
A more subtle test of the model, to be discussed in a later
section, is the fact that while large and significant changes in
the wall construction of the cylinder have no change on the
derived value for v,, small percentage changes in particle
diameter at and across the Geldart A/B boundary produce
very significant changes in the dependence of the granular
temperature on superficial gas velocity. All these experimen-
tal results strongly support the hypothesis that the accelera-
tion power spectrum in the frequency range 10-20 kHz is
dominated by acoustic shot noise due to random particle
impact on the wall and as such can be quantitatively described
by Eq. (5).

7. Summary of acoustic shot noise formulae

For the convenience of the reader, we now summarize the
equations which we have utilized to convert a vibrational
signal at the wall of the fluid bed to quantitative information
on the particle granular temperature. The mean squared (MS)
value of the acceleration, a®, over the frequency range

J1 <f<fs is given by:

A
a®*=MS acceleration: f,,f, = jsa(ﬁO) df (8a)
A

For all the experimental data to be presented we take f; = 10
kHz and f, = 20 kHz, as discussed earlier. However, as noted
that there are other sources of noise, both mechanical and
electrical, which will be reflected in a noise contribution to
the above integral. We designate that contribution as, S,(f),
and the noise contribution to the MS acceleration, a,. In
general the experimental MS acceleration, a,, is given by

2
ai,sj[samm +5.(D] df=a>+a2 (8b)
fi

where a2 is determined by the electronic and, possibly, vibra-
tional noise that is independent of acoustic shot noise and
independent of gas flow. In our experiments electronic noise
was dominant. In what follows we define a® = (a2, — a?).
We define the quantity I* in the same frequency range by

r

12=f<|Hg)|2> dr (9)

N
and then from Eqgs. (5) and (8)

2 173 ! 3 1/3
— — 2/3 10
Yn (4[2Ampm) (Dp(],/ 3p,1n/ 3X277'12A) (@) (10)

where, in the second expression, we consider spherical par-
ticles of diameter D, mass density p,, and solids fraction
(1—¢,) such that p,=p, (1—¢,). Eq. (10) is the funda-
mental acoustic shot noise formula of this paper relating the
measured values of a, I, A, m, p,, D, and p, to the RMS
particle velocity v,. The granular temperature is then given
by T* =12

Table 1 gives the geometry of the glass and aluminum
cylinders as well as the magnitude of /Z obtained from Eq.
(9). We note that the quantity /°A for the aluminum cylinder
is 10 times less than that for the glass cylinder. As expected,
the experimental data for v, derived from the measured RMS
acceleration, a, through Eq. (10) is independent of this
difference.

The factor of 10 difference between the experimental mag-
nitude of ”A for the aluminum and glass cylinders can be
ascribed to the factor of 2.5 difference in their wall thickness.

Table }
Geometry and average transfer function for aluminum and glass vessels

Aluminum Glass
Inner diameter (cm) 7.62 (3.0) 7.366 (2.9")
Wall thickness (cm) 0.635 (0.25") 0.254 (0.1")
Height (cm) 28 28
Outer area (cm?) 782 693
?:10-20kHz (kg™ 257 ") 3.02x 107 3.22x 108
PA (m?kg=?s™!) 2.36Xx10° 2.23x107
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Fig. 2. Plot of experimental average transfer function, < | H(f) 12>, for the 7.62 cm (3.0 in) i.d. aluminum cylinder for glass spheres with D =297 um fluidized
with helium gas as a function of frequency over the range 10-20 kHz. Also shown are the results of a theoretical calculation due to Norris for < |H(f)|?>,
where the only free parameter is the Q (quality factor or measure of resonance band width) of the cylinder resonances. The average of < |H(f)|*> over the

band 10-20 kHz is also indicated for experiment and theory.

Norris [39], has modeled the thin walled cylinder as a plate,
and shown that
2) 1/2:|

12A KI:(fZ

where K is a numerical constant (K= 7/3/4), o is the Pois-
son ratio of the cylinder material, p is the density of the
cylinder material, C, is its extensional sound velocity, and &
is the wall thickness of the cylinder. Eq. (11) exhibits an
inverse cubic dependence on h. The only free parameter in
Eq. (11) is the quantity a, which is the cylinder damping.
This quantity is related to the quality factor Q of the cylinder
resonances by a= 1/Q, or to the logarithmic decrement (LD)
of the cylinder resonances by a = LD/ 7. Excellent agreement
is found between the measured value of I’A in Table 1 and
Eq. (11) with characteristic values of a = 30-70. The inverse
third power on wall thickness exhibited by Eq. (11) suggests
that a local measurement of acoustic shot noise can be
obtained by local thinning of the wall. In the rough walls
found in field environments localization of the transfer func-
tion may serve the same purpose [40,41].

Norris [39] has also constructed a dynamic model of a
thin-walled cylinder using thin shell theory. This model
exhibits structural resonances and yields reasonable quanti-
tative agreement with measurements of I?A in the frequency
range of interest. Fig. 2 compares his calculated mean squared
transfer function < |H(f)|>> defined by Eq. (4) with the
experimental data for the same quantity where the only free
parameter is the Q (quality factor or measure of resonance
band width) of the cylinder resonances. There is a satisfactory
agreement in magnitude as well as a qualitative agreement in
structure between the calculated and measured value of
<IHH1*>.

—fHa-
ap*h’C,

(1D

8. Experimental determination of granular temperature

All the experimental data are based on the RMS accelera-
tion, a defined by Eq. (8), as a function of gas flow through
the bed. The gas flow is characterized by the gas superficial
velocity, U, defined as the quotient of the gas flow through
the bed in volume units per second to the cross-sectional area
of the cylinder confining the fluidized bed. The physical gas
velocity within the fluid bed is, of course, a random variable
with a magnitude that is considerably larger than U..

The particles initially utilized in the present experiments
were glass spheres (1600 Series, Spacer Grade Microbeads,
Cataphote Inc., Jackson, MI, 90% true [ maximum variation
of +6% from average diameter] ) of average diameter 595,
420, 297, 210, 149, 105, 88, 74 and 63 um and density
p,=2.46 gm/cc. As shown in Fig. 3, these spheres span
region B, and extend into region A of the Geldart plot, a
remarkably useful classification of the fluidization character-
istics of powders [21-23]. As noted earlier, this semi-empir-
ical classification summarizes the behavior of fluidized beds
made up of particles with a given density and average diam-
eter. Region B, has the descriptor bubbles readily since for
these particles, the gas superficial velocity, U, at minimum
fluidization conditions, U, = U, is less than the gas super-
ficial velocity at minimum bubbling conditions, U;= U,
For Geldart B particles, U,,; > U,,,, and the bed bubbles at
minimum fluidization velocity. Region A, has the descriptor
aeratable, since for these particles, U, ;< U,,, and the fixed
bed fluidizes before bubbling. From empirical observation
Geldart [22] determined the quantity U, in the A region,
and equating this quantity to U; (see Eq. (14)) one obtains
for mono-dispersed spheres the A/B boundary as D( um)*p,
(gm/cc) =296. Thus for glass spheres with p, =2.5 gm/cc,
the A/B boundary is at D(um) = 120 um. Somewhat arbi-
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Fig. 3. Geldart’s semi-empirical classification of the fluidization character-
ization of powders based on particle average density and particle average
diameter is exhibited. Region A is designated aeratable since such powders
fluidizes before bubbling. Region B is designated bubbles readily since
such powders bubble at minimum fluidization conditions. The monodis-
persed glass spheres considered in this paper span region B and extend into
region A. We also present data on a fluid bed catalytic cracking catalyst
(FCCU) with a wide dispersion in shape and a log—norma) distribution in
particle diameter whose average density and diameter put it into region A,

trarily we place D(um) > 105 pum in Geldart B, and less
arbitrarily, D(um) <88 um in Geldart A.

Our measurements suggest that the Geldart classification
is reflected in the dependence of the granular temperature on
gas superficial velocity. As indicated in Fig. 3, we have dis-
covered a remarkable change in the character of the fluidi-
zation transition as the A/B boundary is approached, from a
hysteretic first order fluidization transition to a reversible
second order fluidization transition. Reversible transitions
continue to be found for the Geldart A particles as indicated
by the open squares in Fig. 3.

An equally remarkable difference in the magnitude and
functional dependence of the granular temperature on gas
superficial velocity between Geldart A glass spheres and the
Geldart B glass spheres has been discovered (see discussion
following Figs. 7 and 8). This change may be understood as
a reflection of enhanced coupling of the fluidization gas to
the particles within the bed in the region U, < U, < U,,, due
to the repression of bubbles.

The Geldart classification refers to average values of par-
ticle density and diameter. The glass spheres that are the focus
of this paper differ significantly from fluidized catalytic
cracking unit (FCCU) catalyst particles which, as shown in
Fig. 3, also fall in region A. Such catalyst particles have a
wide dispersion in both particle size and shape. This signifi-
cant difference may be the source of the factor of 20-30
increase in bed collapse time [24,25] we observe (see Fig.
11) between such catalyst particles and the monodispersed
glass spheres with the same average density examined in this
paper.

In contrast, we have found no significant difference
between the steady state behavior of the granular temperature
for the Geldart A glass spheres and the Geldart A FCCU

catalyst (compare Fig. 6 and Fig. 8). This result supports the
concept that the difference between region A and region B,
is not the bed collapse time, but rather fundamental differ-
ences in the role of gas/particle and particle/particle inter-
actions within the fluidized bed [5].

The minimum fluidization velocity, U, can be estimated
by equating the viscous pressure drop, AP, across the fixed
bed to the pressure drop given by the weight of the bed [1].
For fluid beds with a Reynolds number of the order of unity,
the pressure drop, AP, across the packed bed of height L,
and solid fraction (1 — €, consisting of particles of diame-
ter, D, due to flow of gas with viscosity, u,, at velocity Uy,
obeys the semi-empirical expression

éf_ 150(1 — Eml') zl-LgUmf
Loy D’

(12)

We equate the pressure drop given by the first term of Eq.
(12) to the pressure drop due to the weight of solids of
particle density p, in the fluidized state,

AP
=€) pg (13)

me
where g is the gravitational constant (9.8 m/s?). Using
empirical values for €, (€,,=0.3825), U, 1s given by:

_ D’pg

= 14
ml 1650[.Lg ( )

As will be considered later in this paper and shown in Fig.
11, the minimum fluidization velocity, U, predicted from
Eq. (14) is within 10-20% of our experimental estimate of
U..p, based on either the saturation of the pressure drop across
the bed, the increase in bed height, or the vibrational meas-
urement of 7* for glass spheres for which 63 <D <595 um.

Vibrational measurements of 7* have turned out to be a
very convenient and sensitive probe of the fluidization tran-
sition. However, as shown in the following section, the use
of T* or the particle fluctuation velocity v, defined by Eq.
(10), to characterize the transition from a fixed to a fluidized
bed, reveals a complexity that cannot be captured by the
single parameter, U, .

9. First order fluidization transition for Geldart B glass
spheres: 210 <D <595 um

For each diameter sphere we have studied the fluidization
transition over two paths: Path 1, and Path 2. In what follows
we assign the terms up and down to increasing and decreasing
gas flow. For Path 1 transitions, the fluidization transition is
started from conditions of zero gas flow, U,=0 for at least
10 s, {1st up, 5th up}. For Path 2 transitions, U, is never
reduced to zero {2nd down, 3rd up, 4th down}. We have
found that for spheres with diameters in the range,
210<D <595 um and Path 1 transitions, the fluidization
transition always exhibits a discontinuous jump in u,,. In con-
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trast, we have found for Path 2 transitions of spheres in this
diameter range, the derived value of v, is continuous and
reversible.

Fig. 4 exhibits examples of this phenomena: Fig. 4(a) and
(b) for glass spheres of diameter D =297 pm fluidized with
helium in the glass cylinder, and in Fig. 4(c) and (d) for
glass spheres of diameter D =210 um fluidized with helium
in the aluminum cylinder. For both cylinders we show the
RMS acceleration, a, defined by Eq. (8) and the ratio of the
particle fluctuation velocity, v, defined by Eq. (10), to the
gas superficial velocity, Us.
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As noted, the discontinuous transition for Path 1 transi-
tions, 1st up and 5th up, exhibited in Fig. 4, is a characteristic
feature of the monodispersed glass spheres we have observed
for 210 < D <595 um. The solid triangles in Fig. 3, corre-
spond to these transitions. For these diameter spheres the
fluidization transition for Path 1 conditions is always first
order [42] with a discontinuous jump in both the RMS accel-
eration, a, or the derived sphere velocity, v,. In contrast, for
Path 2 transitions where U #0, and either increasing or
decreasing gas flow (2nd down, 3rd up, 4th down), the flui-
dization transition determined by a and v, is continuous and
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Fig. 4. (a)RMS acceleration as a function of gas superficial velocity for monodispersed glass spheres with D =297 pm fluidized in the glass cylinder with
7.366 cm (2.9 in) i.d. with helium gas. As described in the text, the reversible transitions shown in Runs 2, 3 and 4 correspond to transitions where the gas
superficial velocity is never set to zero. The hysteretic transitions shown in Runs 1 and 2 and Runs 4 and 5 correspond to transitions where the gas superficial
velocity is set to zero for a few seconds, before Run 1, and after Run 4. (b) Ratio of sphere fluctuation velocity normal to the cylinder wall, v, derived from
the data in Fig. 4(a), using Eq. (10), to the gas superficial velocity, as a function of gas superficial velocity for monodispersed glass spheres with D =297 um
fluidized in the glass cylinder with 7.366 cm (2.9 in) i.d. with helium gas. As described in the text, the reversible transitions shown in Runs 2, 3 and 4
correspond to transitions where the gas superficial velocity is never set to zero. The hysteretic transitions shown in Runs 1 and 2 and Runs 4 and 5 correspond
to transitions where the gas superficial velocity is set to zero for a few seconds, before Run 1, and after Run 4. (¢) RMS acceleration as a function of gas
superficial velocity for monodispersed glass spheres with D=210 um fluidized with helium gas in the aluminum cylinder with 7.62 cm (3.0 in) id. As
described in the text, the reversible transitions shown in Runs 2, 3 and 4 correspond to transitions where the gas superficial velocity is never set to zero. The
hysteretic transitions shown in Runs 1 and 2 and Runs 4 and 5 correspond to transitions where the gas superficial velocity is set to zero for a few seconds,
before Run 1, and after Run 4. (d) Ratio of sphere fluctuation velocity normal to the cylinder wall, v, derived from the data of Fig. 4(a) using Eq. ( 10), to
gas superficial velocity, as a function of gas superficial velocity for monodispersed glass spheres with D= 210 um fluidized with helium gas in the aluminum
cylinder with 7.62 cm (3.0 in) i.d. As described in the text, the reversible transitions shown in Runs 2, 3 and 4 correspond to transitions where the gas superficial
velocity is never set to zero. The hysteretic transitions shown in Runs | and 2 and Runs 4 and 5 correspond to transitions where the gas superficial velocity is

set to zero for a few seconds, before Run 1, and after Run 4.
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reversible as shown in Fig. 4, and may be described as second
order.

Hysteresis in the fluidization transition has not been pre-
viously observed for particles in the Geldart B region,
although it is a dominant feature of pressure and bed height
monitors of the fluidization transition of Geldart A catalyst
particles [43]. Our observation of path dependent transitions
is independent of significant changes in the cylinder wall
material and we do not believe that it is associated with
surface charges or coatings. One explanation for this behavior
is that Path 1 transitions for the monodispersed glass spheres
are associated with sphere/sphere contact and van der Waals
forces between the spheres. For Path 2 transitions, there is
gas is always flowing and sphere/sphere contact is not pres-
ent. However, as will be discussed the magnitude of the van
der Waals energy [44] is such that it only plays a role for
sphere diameters with diameters below = 10 wm, the Geldart
C region of Fig. 2.

A more plausible explanation is that glass spheres for
which 210 <D <595 um, arrive at an untapped spatial con-
figuration for the dense phase under the influence of gravity
that is significantly different from the equilibrium dense
phase of the fluidized state. To return to the language of
thermodynamics, this model would ascribe the hysteresis of
the Path 1 transitions to a significant difference in particle
configurational entropy between the state of the dense phase
at U;= U, ,and at U,=0.

10. Second order fluidization transition for Geldart B
glass spheres: D=105 and 149 gm

Strikingly different behavior has been found for the flui-
dization transitions of glass spheres with diameters D =105
and 149 um. As shown in Fig. 5, the fluidization transition
as measured by RMS velocity v,, is always continuous and
reversible irrespective of either: the fluidizing gas, the mate-
rial of the confining cylinder, or the starting conditions of
particle contact with respect to U,. For glass spheres with
these diameters, the fluidization transition is thus always sec-
ond order. As shown in Fig. 5, we can fit v,/ U by a function
of U, that rises rapidly at U,/ U= 1, and which saturates to
a constant value at U,/ U, ;> 2.

As will be seen we have observed the same second order
transitions for the Geldart A glass spheres we have examined
as indicated in Fig. 3. Thus for glass spheres 63<D<
149 um, the untapped configurational entropy of the dense
phase is the same at U, and at U,=0. We have found no
reference in the literature to this remarkable dependence of
the reversibility of the fluidization transition on the sphere
diameter. Our use of aluminum and glass cylinders and glass
spheres rules out the contribution of electrostatic effects either
between the spheres or at the wall. It is significant that this
change in the order of the transition occurs at the A/B bound-
ary of the Geldart plot and continues into the Geldart A
region.

1.5 prrr T e e e e e

All Transitions: 1-5 for 3
D=148;, U _a=1.6cm/s, Run 69 |3

¢ D=108u, U_a=1.4cm/s, Run 68 [J
o D

10} ool

{¥,/U )4 D(1)/110) = {1-6xp[-2(U,-U, J/U, 3}

149,18t Up, #69
149y,2nd Dn, #89

(v, /U )*(D(n)/110)

P
Fast Frame: Da149y
105p,1st Up, #68
108p,2nd Up, #68
105p,3rd Dn, #e8 E
108u, 4th Dn, #88
105, 5th Up, #68 =

PP P P P

0.0 1.0 2.0 a.0 4.0 5.0 6.0 7.0

PremeEd>O00
-
-»
=
a
2
>
c
1

.

Fig. 5. Ratio of sphere fluctuation velocity normal to the cylinder wall, v,,
to gas superficial velocity, multiplied by the ratio of sphere diameter in
microns to the empirical constant D,=110 um for monodispersed glass
spheres with D=149 and 10Sum fluidized with argon gas in the glass
cylinder with 7.366 ¢cm (2.9 in) i.d. The data is displayed as a function of
gas superficial velocity U, normalized to the minimum fluidization velocity,
Upe As described in the text, all the transitions are reversible independent
of whether the gas superficial velocity is never set to zero (Runs 2, 3 and 4)
or set to zero for a few seconds, before Run 1, and after Run 4. The empirical
curve, {1 —exp( —2[(U,/Uys) — 1)} was chosen to fit the rapid rise in (v,/
U)(D/110um) for (U/ Uye) = 1, its saturation for (U,/U,,¢) = 1, and its
independence of sphere diameter, D.

We have attempted to measure directly the fluctuation
velocity by fast frame video and computer enhanced imaging
to follow particle motion between collisions. For 149 pum
glass spheres fluidized in argon at U,=4 cm/s we have
obtained v, = 3.3 cm/s from this data. The agreement with v,
obtained from the vibrational data shown in Fig. 5, is excel-
lent. However the statistical scatter in the optical data is con-
siderable ( +50%), and unavoidable due to wall curvature
and the low index of refraction of the glass spheres.

11. Granular temperature of Geldart B glass spheres

In Fig. 6 we exhibit the quantity ( (v,/U) (D(u)/110))
as a function of U,/ U, for 1st Up, Path 1 transitions for the
suite of glass spheres displayed in the Geldart B region of
Fig. 3. The experimental data for (v,/U,) scales with the
sphere diameter, D, and is well approximated by an empirical
function of (U,/U,,) which rises and saturates rapidly as a
function of (Uy/ U,¢). For (U Ue) > 12

Un _ & _ _2(U5—Umj)
(FS)'(D)[I e"p( Ui )] (1)

Eq. (15) introduces a new parameter into the characterization
of the fluidized state, the diameter scaling constant D,. For
the monodispersed glass spheres we have studied, D, =110
pm.
FromEgq. (15), for U,/ U= 1 (v,/ U,) is a linear function
of (U~U,y)
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Fig. 6. Ratio of sphere fluctuation velocity normal to the cylinder wall, v,
to gas superficial velocity, multiplied by the ratio of sphere diameter in um
to the empirical constant D, = 110 um. The data is displayed as a function
of gas superficial velocity for monodispersed glass spheres falling into the
Geldart B region of Fig. 3 with D=1595, 420, 297, 210, 149, and 105 um.
As described in the text, all the transitions are Run 1, st Up. The empirical
curve, {1 —exp( —2[(U,/Uys) — 1) } was chosen to fit the rapid rise in (v,/
Ug) (D/110um) for (Uy/ Uyy) =1, its saturation for (Uy/ Up,) > 1, and its
independence of sphere diameter, D.
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We have used Eq. (16) to determine experimentally U, and
find that it agrees with U,,; determined from pressure drop
across the bed, or the onset of bed expansion. As noted U,
determined by Eq. (16) agrees with that predicted by Eq.
(14) within 20% for the Geldart B glass spheres.

For U,/ U= 2, the right-hand side of Eq. (15) is a con-
stant and v, is a linear function of U,, which is inversely
proportional to the sphere diameter with a proportionality
constant given by the quantity D,

V= Us(%) (17)

Rathbone et al. [45] using fiber-optic doppler anemometry
derived average particle normal velocities at the wall of
v, =0.15 m/s for a fluidized bed consisting of 600-850 um
particles of sand at gas superficial velocities, U;= 0.7 m/s.
These measurements yield v,/U,=0.2 in reasonable
agreement with the magnitude predicted by Eq. (17),
va/ U,=0.15 for an estimated average particle diameter of
<D> =725 um.

For U= U, the granular temperature of the dense phase
spheres at the wall, from Eq. ( 17) is given by:

mf
and, for U,/ U ;> 2:
D? DA\ U, Y
T = <i?>= (DZ)U2 (—' —U—) U2, (18b)
mf

and if we replace U by Eq. (14) we obtain at U,/ U, ;=2

D szg)z
TH*=<p?> =4 o2 18
g ( )(165% (15e)

The quadratic dependence of the granular temperature on
U, in Eq. (18a) is expected on dimensional grounds, the
inverse quadratic dependence of T* on D and consequent
introduction of the scaling constant D, has not been reported
in previous experiments or obtained theoretically. Koch [ 14]
considered a dilute monodispersed gas of elastic particles
translating through a viscous gas. If we make the implausible
assumption that the particle drift velocity is much less
than the gas velocity, we obtain from this model, T* =
(U¥3/D*3), which is considerably different from Eg.
(18b).

We can utilize Eq.(18) to determine the critical particle
diameter D,,, where the sphere kinetic energy, KE, is equal
to the van der Waals interaction energy, Q. From Eq. (18c)
we obtain at U,/ U =2

3 D szg)
KE=2| Zp,0% |T* = (mp, D} X Ca 19
2[6p° ] (7o )( 1650, (19)

Substituting p, =2.5 gm/cc, p, =200 uP, and D, =110 um,
we obtain KE=8X107% (D/D,)® ergs. From Fuchs [44]
Q=2—5X10""3 ergs for quartz, and hence KE < Q for D <
34 um=D,,. In Fig. 3 the transition between the Geldart
A and Geldart C regime where cohesive forces dominate
fluidization occurs at a sphere diameter of 20 um.

The results shown here for the granular temperature, may
supply insights into the relative role of gravitational and iner-
tial effects in the mechanics of the dense phase of a fluidized
bed made up of Geldart B particles. For example we can
define an inertial or granular pressure, P* = p_T*, from Egq.
(18). The ratio of the inertial pressure to the gravitational
pressure across a layer whose thickness is one sphere diam-
eter, p, gD, is

(-

The quantity Fr will be recognized as the Froude number, a
non-dimensional hydrodynamic parameter that characterizes
the relative importance of inertial forces compared to gravi-
tational forces [46]. At U,/U,s=2, replacing U, by Eq.
(14) gives,

Dyp
Fr_(W) (4gD) =2.7X107°D (pum) (20b)

where we have substituted u,=200 uP, D,=110u,

=2.5gm/cc, g=9.8 m/s For the glass spheres that span
Geldart’s region B, at UJ/U,=2, Fr=16—0.3 for
D=600— 100 um, suggesting comparable magnitudes of
inertial, gravitational, and of course, viscous forces, in the
dense phase of this fluidization regime.

Eq. (20) would predict that inertial forces would play a
decreasing role for particle diameters that are in the Geldart
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A region. However, we note that for these particles the bed
fluidizes before bubbling, and one might anticipate a higher
granular pressure due to enhanced gas flow in the dense phase.
As will be seen in the next section, the experimental data
support this conjecture.

12. Granular temperature of Geldart A particles:
monodispersed glass spheres and FCCU catalyst
particles

As indicated in Fig. 3, we have made measurements on
monodispersed glass spheres with diameters D= 88, 74, and
63 um respectively, which extend the granular temperature
measurements into the A region of the Geldart diagram. In
this Geldart region the minimum fluidization velocity is less
than the minimum velocity for bubbling. Such spheres should
exhibit significantly different fluidization properties than Gel-
dart B powders and presumably significantly granular tem-
perature. It is gratifying that the experimental data support
this conjecture. The data reveal a dramatic change in the
dependence of the granular temperature on gas superficial
velocity with the 20% change in particle diameter required
to cross the A/B boundary in the Geldart diagram (105 — 88
um).

In Fig. 7 we show the results of four experimental runs on
glass spheres with D =63 um. The data are reversible, similar
to the measurements that had been made on glass spheres on
the B side of the A/B boundary of Fig. 3. However, as noted,
we find a remarkable change in both the functional depend-
ence of (v,/U,) (D/D,) on U/ U, and its magnitude in the
range 1 < U/ U, <2.

Fig. 8 compares the fluctuation velocity for spheres with
D =63, 74, and 88 pum and we note similar scaling with the
particle diameter, D, as was observed for the Geldart B glass
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Fig. 7. Ratio of sphere fluctuation velocity normal to the cylinder wall, v,,
to gas superficial velocity, multiplied by the ratio of sphere diameter in um
to the empirical constant D, = 110 um for four experimental runs for Geldart
A monodispersed glass spheres with D=63 um. All the transitions are
reversible, independent of whether the gas superficial velocity is not set to
zero (Runs 2, 3 and 4) or set to zero for a few seconds, before Run 1, and
after Run 4. The exhibited curve is the empirical one shown in Fig. 6.
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Fig. 9. The difference (A) between the derived ratio of sphere fluctuation
velocity normal to the cylinder wall, v,,, to gas superficial velocity, multiplied
by the ratio of sphere diameter in wm to the empirical constant D, =110 wm
for Geldart A monodispersed glass spheres with D =634 and the empirical
curve used to fit the data for the Geldart B glass spheres shown in Fig. 6.
The quantity A can be approximated by a straight line up to U,/ Ups=2.6
and an exponential for U,/ U= 2.6.

spheres. The data shown in Fig. 8 suggests a similar universal
functional dependence on (U,/U,) for Geldart A glass
spheres, but one that is dramatically different from that
observed for Geldart B glass spheres.

In Fig. 9 we show the difference, A (U,/ Uyy), between the
solid curve given by Eq. (15) and the experimental data for
D=63 um (Run 72). We see that A is reasonably approxi-
mated by a function of (Uy/U,,) that exhibits a linear rise
for 1 <(U,/U,¢) <2.5 to a maximum which is followed by
an exponential fall-off to (v,/U;) (D/D,) =1 with a decay
constant of the order of 2. As noted in Fig. 9, the simplest
interpretation of the form of A (U,/ U,) is that it arises from
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the suppression of bubbling up to U/U_ =25 (we note
bubbles at top of bed at U,/ U,;= 1.6), and an exponential
shift to a bubbling regime comparable to Geldart B spheres
at (Uy/ Uyye) = 10.

At the point of the maximum for A (U,/ U,), (v,/ Uy) (D/
D,) =2.5 implying an increase in the granular temperature
by a factor of 9 over the Geldart B spheres. Thus, for the
Geldart A glass spheres, near U,/ U, = 2, the Froude number
Fr (Eq. (20) is given by Fr=2 X 10~ 2D(um). For Geldart
A glass spheres with D=88—63 um, we note that
Fr=2->1, implying a greatly enhanced role for inertial
forces for Geldart A glass spheres compared to that extrap-
olated from the Geldart B regime.

We have also obtained granular temperature data for
another class of Geldart A particles, FCCU catalysts. We have
examined two such catalyst particles, Quasar 4452 and Aczo
Advance 817, with similar physical properties: density, 1.5
gm/cc and alog—normal distribution in particle diameter with
a median diameter of 70 um and o of 35 wm. Scanning
electron micrographs (SEM) show that both catalysts are
non-spherical with very rough surfaces. Fig. 10 exhibits
(va/ Uy) (D/D,) for these catalysts, and we note qualitative
and semi-quantitative similarity with the data shown in Fig.
8 for the Geldart A glass spheres. Again all the transitions are
reversible. There is a similar peak in (v,/U;) (D/D,) and a
similar exponential fall off at high values of U,/ U, for both
the catalyst particles and glass spheres, suggesting that this
behavior is a general feature of Geldart A particles which is
independent of particle roughness or dispersion.
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Fig. 10. Ratio of sphere fluctuation velocity normal to the cylinder wall, v,,
to gas superficial velocity, multiplied by the ratio of sphere diameter in um
to the empirical constant D, =110 pm for two catalytic cracking catalysts.
These catalysts, Quasar 4452 and Aczo Advance 817 have similar physical
properties and their mean diameter and density places them in the Geldart
A classification of Fig. 3. All the transitions are reversible independent of
whether the gas superficial velocity is not set to zero (Runs 2, 3 and 4) or
set to zero for a few seconds, before Run 1, and after Run 4. The experimental
data is compared to the empirical curve used to fit the data for the Geldart
B glass spheres shown in Fig. 6. The fitted curve is exponential with similar
constants as that utilized in Fig. 9. The transition to the exponential occurs
for U/ Upe=1.5.
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It is noteworthy that the decay constant of the exponential
for the catalyst particles is the same, within experimental
error, as that observed for the glass spheres. In contrast, the
magnitude of the peak in (v,/U,)(D/D,) for the catalyst
particles is approximately 30% larger than that observed for
the glass spheres, possibly reflecting either the lower density
of the particles, or the effect of the wide dispersion in particle
sizes. The Froude number near U, from Eq. (20) is again
of the order of 1. However, we note from Fig. 10, that the
transition to the exponential occurs near U/ U ,=1.2-1.5,
about a factor of two less than that observed for the Geldart
A spheres.

No significant difference was observed between U, deter-
mined by pressure drop, bed height, or (v,/U) for either the
Geldart A or B glass spheres. For the catalyst particles,
Une=0.65 cm/s, was derived from the (v,/U;) measure-
ments. This value of U, is about a factor of three larger than
the minimum fluidization velocity defined by either the bed
pressure drop or the bed height. This significant difference
may be due to the broad dispersion in particle diameter, sur-
face, and/or shape found in the FCCU catalyst particles.

Fig. 11 summarizes the measurement of U, for the glass
spheres as a function of particle diameter. There is general
agreement with Eq. (14) based on a mean viscosity of
200 pP and p,=2.5 gm/cc. Two transitions are observed for
the glass spheres. For sphere diameters between D =210 and
D =149 um, the fluidization transition becomes reversible
and remains so. For sphere diameters between D= 105 and
D =88 um the dependence of (u,/U)(D/D,) on U,/ Uy
changes dramatically as shown in Fig. 8. Both transitions
appear to be correlated with the Geldart A/B boundary.

In the experimental literature, the most significant differ-
ence between Geldart A and Geldart B particles has been the
difference in the time scales of bed collapse [22,24]. In the
following section we shall discuss our measurements of bed
collapse for Geldart B and A glass spheres, and Geldart A
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catalyst particles. We shall also present the first measure-
ments of the time dependence of the granular temperature
during bed collapse for Geldart B spheres.

13. Bed collapse measurements: Geldart A and B,
monodispersed glass spheres and Geldart A, FCCU
catalyst particles

Collapse tests have been widely used to characterize the
properties of the dense phase of a fluid bed. In such tests, the
supply of gas to the bed is abruptly cut off and bed height
and other fluidization parameters are monitored as a function
of time. In his review, Grace [24] presents measurements of
bed height as a function of time for a fluid catalytic cracking
catalyst with a median diameter of about 60 pm fluidized at
1.9 cm/s. These catalyst particles have a normal dispersion
in particle diameter (o = 18 wm) and unspecified roughness
and shape. Based on mean particle diameter, they fall into
region A of the Geldart classification (Fig. 3). The bed height
for such catalyst particles is an approximate linear function
of time and decays to its value at minimum fluidization in
about 18 s for collapse under double over-vented conditions.
Itis generally accepted in the literature that such long collapse
times are characteristic of Geldart A powders; in contrast,
Geldart B particles collapse very rapidly when the gas supply
is cut off [22].

We have examined both bed height and granular temper-
ature as a function of time for the Geldart A and B glass
spheres, and Geldart A fluid catalytic cracking catalyst in our
own apparatus. Bed height was determined by fast frame
video imaging using a NAC HSV-400 Color High Speed
Video at 200 color images a second illuminated by a 250 ms
strobe. The catalytic cracking particles (Quasar 4452) had a
log-normal distribution with a mean diameter of 70 um
(=35 um).

The bed collapse measurements are shown in Fig. 12(a)
and, on an expanded scale, in Fig. 12(b). As anticipated, the
collapse curve for the catalyst particles exhibited a similar
time dependence to that observed by Grace [24]. The time
scale for the collapse, = 12 s, is comparable to Grace’s data
and to that observed in pressure drop measurements by Chen
and Weinstein [25]. As indicated in Fig. 12(a) and (b), the
collapse curves for monodispersed Geldart A glass spheres
with D=74 pm exhibited collapse times T, = 0.6 s which
are more than an order of magnitude shorter than for the
catalyst particles, and only a factor of two greater than that
observed for the Geldart B glass spheres with D =105 um
(T.=035s).

Bed expansion is another parameter used to probe the dif-
ference between the Geldart A and B regions. As indicated
in the expanded scale of Fig. 12(b), Geldart A glass spheres
exhibit slightly more expansion for the same value of
(Uy/ Upg) (1.09 compared to 1.07). In contrast, FCCU cat-
alyst particles exhibit considerably more expansion than the
Geldart A glass spheres (1.20 compared to 1.09). If we define
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Fig. 12. (a) Time dependence of bed height, BH(¢), after doubly vented
bed collapse for Geldart A and B monodispersed glass spheres. The data
was obtained by a strobe illuminated fast frame video as described in the
text. (b) Expanded scales for the time dependence of bed height, BH(1),
after doubly vented bed collapse for Geldart A and B monodispersed glass
spheres and Geldart A FCCU catalyst particles. The data was obtained by a
strobe illuminated fast frame video as described in the text.

the collapse velocity, V., as the change in bed height with
collapse from U/ U, ABH, divided by the collapse time,
T... , we obtain for the Geldart A glass spheres with D=74
um, V=3 cm/s, and for the spheres with D =105 um at
the A/B boundary, V.,=35 cm/s, about an order of magni-
tude more rapid than the collapse velocity for the catalyst
particles.

The fundamental distinction between Geldart A and B
glass spheres is clearly not the decay time of bed collapse,
but rather the remarkable change in the dependence of the
granular temperature on gas superficial velocity exhibited in
Figs. 7-9. This view is consistent with the concept that the
dynamics of Geldart A particles are fundamentally different
from Geldart B particles and this difference plays a key role
in the suppression of bubbling [5,47]. Finally, Fig. 12 sug-
gests that the long time scales observed for catalyst particles
in bed collapse may be a granular effect on particle motion
arising from the wide dispersion in particle size, shape, and
roughness, and one which may not be an intrinsic feature of
Geldart A particles.
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14. Time dependence of granular temperature during
bed collapse

The time dependence of the granular temperature of the
glass spheres during bed collapse has also been measured.
Before we consider these results in detail we consider the
several time scales associated with bed collapse. One time
scale is the time it takes for the bed height to fall to its fixed
bed value during bed collapse, T, which, for the monodis-
persed glass spheres that lie adjacent to the Geldart A/B
boundary, ranges from 0.3 to 0.7 s (Fig. 12(b)). Another
time scale is the dependence of the average pressure drop
across a fixed bed consisting of glass spheres of the same
height as the experimental fluid bed. For glass spheres of
diameter D, fluidized with helium, at close packing
(€,=0.385), in a bed of height L, a simple one-dimensional
calculation leads to an exponential time dependence with a
time constant T,=(LY/7°D,), where D,=13x10°
(D(m)/100)* cm?/s, is the gas diffusion coefficient for
the packed spheres. For L;=18 cm, and D =150 pm, T, = 11
ms.

The time dependence of the granular temperature for the
Geldart B glass spheres during bed collapse under double
vent conditions [24] is shown in Fig. 13 for 295 um
glass spheres fluidized in helium in the glass cylinder at
U,/ U= 5. The relative time sequence in Fig. 13 is charac-
teristic of all the data we have obtained for the time depend-
ence of the RMS acceleration, a(t), and the pressure drop at
the gas distributor, p(¢). In these measurements, the RMS
acceleration, a(t), has been obtained by band pass filtering
over the band 10-20 kHz, and converted to RMS values of
acceleration at time . Activation of the solenoid valves is
indicated by the electrical transient at 650 ms. The pressure
drop across the bed p(t) starts to fall about 100 ms after
solenoid activation and initially falls to 1/e of its initial value
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Fig. 13. Time dependence of plenum pressure drop, p(t), and RMS accel-
eration, a(t) taken over the band 10-20 kHz as described in the text, during
bed collapse for monodispersed glass spheres with D =297 pm fluidized
with helium gas at U;= 11 cm/s. The electrical transient at pressure release
is indicated. The fitted curve to a(¢) is an exponential with a time constant
of 74 ms.

in approximately 7 ms, and approximately 90 ms later the
plenum pressure drop, p(t), falls to zero.

The maximum in a(#) in the time interval between the first
change in p(¢) and its fall to atmospheric pressure seen in
Fig. 13 is found for all the data. The peak in a(¢) is produced
by an initial increase in 7 in the dense phase that may result
from the rapid collapse of the bubbles and the transfer of gas
to the dense phase. The time dependence of a(t) after the
peak has been found to be exponential. In the example shown
in Fig. 13, a(¢) =a(0) exp( —1/T,) with a time constant,
T,~74 ms. A weak dependence of T, on U, is observed,
which can be fit by a constant and a quadratic term with large
scatter. For glass spheres with D =149, 210 and 295 um, in
helium and argon gas, for U,/U;=1-2, we obtained an
exponential time constant, T, = 60—100 ms.

The quantity 7, is thus significantly larger than T,( =11
ms), the time it takes for the average pressure within the bed
to fall to zero, and considerably less than T,; ( =300 ms),
the time for bed collapse shown in Fig. 12(b). We will
assume that T, is a measure of the time dependence of the
sphere kinetic energy and explore the consequences of that
assumption by considering a simple model for the time
dependence of the granular temperature.

15. Langevin equation of particle motion

The observed experimental steady state of constant 7* for
the dense phase of the fluid bed, requires power to supply the
loss of energy due to inelastic particle/particle collisions. To
estimate this power we utilize a Langevin equation [48-50]
for the vector velocity ¢ of the sphere,

m%+m—:—=F(r,z) 1)

P

where F(r,t) is a vector random force on the particle arising
from gas/sphere interactions, and 7, is the relaxation time of
the sphere velocity. We take the scalar product of both sides
of Eq. (21) with ¢ and time/ensemble average to obtain an
expression for the steady state granular temperature, 7*:

2
T*+Y—=ic;c—>—=(—71’—)<F-c> (22)
3 3 3m
where V= <¢>. In the following discussion we shall con-
tinue to neglect (V?/3) with respect to T* as discussed
earlier. The quantity <F-c¢ > is the work done on one sphere
per unit time. The power input into the bed, dE/ds, is thus
given by,

dE/dt=ALp,<F-c> (23a)

where A is the cross-sectional area of the bed, L is the bed
height at the gas superficial velocity U,. An alternative
expression for the power input into the bed required to main-
tain a steady state granular temperature in the dense phase is
given by an equivalent pressure drop across the fluid bed,
AP ke»
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dE/dt= (AU,) (AP,.) (23b)

We equate Eq. (23a) and (23b) and, with Egs. (18b) and
(22), obtain for U,/ U, ;> 2,

3Pl <vg> (Ls( 1-¢) 3po)(D£)
— U, 24
U, D? T,) ° 24)

p

AP.=

To estimate the magnitude of AP, we take the ratio of
Eq. (24) to the viscous pressure drop, AP, across a fixed
bed with the same voidage utilizing Eq. (12). We obtain for
the ratio of AP, to AP, for U/ U, =2

2
v L) &

The numerical factor, K=50(1—¢,)/€, contains the
dependence on bed voidage. For the range of voidage found
in fluidized beds, K changes by a factor of 2, from K= 550,
at U/ Upye= 1, to K= 260, at U,/ Uy=2. We define (DZ/7,)
as a kinetic energy diffusion constant, and we note from Eq.
(25) that the ratio of the two pressure drops is a measure of
the ratio of inertial (D?/T, ») and viscous (u,/p,,) diffusion
constants.

From Eq. (25), for U,/ Uy=2, D,=110 um, u, =200
P and p,=2.5 gm/cc, for Geldart B glass spheres

APy /AP, =6/7, ms (26a)

As shown in Fig. 8, Geldart A glass spheres exhibit a factor
of 2.5 increase in (v,/U,)(D,/D) for U,/ U, ;=2 and hence
for these spheres.

AP, /AP, =~30/7, ms (26b)

We next estimate the quantity 7,,.

From the Langevin equation (Eq. (21)), the time depend-
ence of the granular temperature T*, when the power input
into the bed (gas flow) is turned off, is given by

T*(t) =T*(0)exp(—2t/1,) (27)
Since from Eq. (10) a(f) a [T*(1)]*'4,
a(r) =a(0)exp(—1t/T,) =a(0)exp(—3t/27,) (28)

From Eq. (28), and the experimental value, T, = 60-100 ms,
we obtain an estimate of the Langevin kinetic energy relax-
ation time, 7, = (37,/2) =90-150 ms.

The magnitude of 7, can also be estimated from a consid-
eration of the inelastic collisions between spheres. The loss
of energy of the sphere in one collision defines a coefficient
of restitution, e, which measures the kinetic energy loss in
one collision. We define T} as the time for one collision, and
equate the energy loss in that collision to the loss predicted
by the Langevin equation in a collision time:

Sa-ep = (29)
Tp

The time for one collision, 7 is of the order of D/v,. For

Geldart B spheres at U,/ U,;= 2, T; can be approximated by

D _ 16504,

Un 2D,pog

Substituting D, =110 um, w,=200 uP, and p,=2.5
gm/cm?, we obtain from Eq. (30) T;~ 6 ms.

We substitute 7; = 6 ms, and 7, = 90-150 ms, into Eq. (29)
and obtain e,=0.86-0.92, in excellent agreement with the-
oretical and experimental estimates of the coefficient of res-
titution for hard sphere collisions for materials with
comparable hardness [51,52].

It is interesting to note that the above argument can be
reversed to independently deduce the sphere fluctuation
velocity. We substitute e,=0.9, and 7, =90-150 ms in Eq.
(29) and estimate 7;=5-8 ms. For D=210 um, and the
assumption that v, = D/ T, we estimate v, = 2—4 cm/s, in sat-
isfactory agreement with the value derived from acoustic shot
noise through Eq.(18), v,=3 cm/s.

We return to Eq. (26a,b). For 7, = 90-150 ms, we obtain
from Eq. (26a), for the Geldart B glass spheresat U,/ U= 2,
(AP /AP .) =4-T%, and for the Geldart A glass spheres,
(AP /AP, =20-40%. Clearly the inertial contribution
to particle dynamics cannot be neglected for particles in either
Geldart classification, but there is a remarkable enhancement
of the Froude number in the Geldart A regime.

The factor or factors that determine the scaling constant
D, remain a significant challenge for theory. The analysis
shown here suggests that the significant theoretical quantity
is not D,,, but rather D}/ 7,,. For Geldart B spheres in the dense
phase and U,/ U, =2, from the Langevin equation, and our
experimental result for 7%, the time average power per unit
volume due to sphere/sphere and sphere gas interactions, .#
is given by

3pU\(D;
T o e (31)

p

(30)

I:

From Eq. (31) the steady state generation and dissipation of
kinetic energy in the dense phase is also proportional the
constant (DZ/7,).

‘We may also use the Langevin equation to obtain the rela-
tion between the power spectrum for the random velocity,
c(t) and the power spectrum for the random force, F(r.r).
We assume that this power spectrum is independent of fre-
quency and given by Sg(f) =Z. It can be easily shown from
the same argument that leads to the fluctuation—dissipation
theorem [48], that the quantity & is given by

2m*T*\ (2m*UA\(D?
el S bl v 32)
» P

Again the ratio D7/ 7,, rather than D, alone appears to be the
fundamental parameter.

16. Kinetic theory of dense gas of granular temperature
T*

We use these new results for T* to calculate the inertial
pressure, sound velocity, viscosity and diffusion constant of
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the dense phase of a gas fluidized bed through a somewhat
simplistic extension of the kinetic theory of dense hard sphere
gasses [ 53]; amore rigorous treatment is given by Gidaspow
[15]. We believe that the derived functional dependence of
these quantities on gas superficial velocity, particle diameter
and density, is accurate, although the magnitudes of the
derived quantities are only known within a factor of order of
unity. We continue to assume that the fluctuation velocity is
isotropic at the wall, a necessary assumption, but one whose
limitations can only be obtained by further experiment.

17. Kinetic theory of dense gas of granular temperature
T*: inertial pressure P*

The inertial pressure of the dense phase, P*, is readily
derived from kinetic theory as P* = p,, T*and from Eq. (18b)
for U/ U2,

D? D2\ U?
P*=PmT*=Pme(E)=mei\<B—2 7 f) (33)

We note for constant p,,, P* is inversely proportional to D?
and directly proportional to UZ. Based on the data presented
in Fig. 11, we utilize Eq. (14) to obtain at a fixed value of
(Us/ Umf)

2 2

D U

P*z(mez)(—Log‘) ( S) (34)
1650/.Lg Ut

For 500 um glass spheres fluidized in a gas with viscosity,
te =200 uP, at (U,/U,,p) =1, P*=20 dynes/cm*. At con-
stant (U,/U,), P* is directly proportional to D%

Table 2

Campbell and collaborators [ 37,54,55] presentdata on the
particle normal stress on the wall of a fluidized bed by a
capacitive technique in which a perforated 12 mm diameter
membrane is inserted in the wall of the fluid bed with gas
pressure and particle normal stress on its front surface and
only gas pressure on its back surface. The displacement is
directly proportional to the difference in pressures on the two
sides and hence proportional to the particle normal stress. The
measurements of Campbell and collaborators are local and
may be susceptible to local flow conditions, unlike the present
measurements which average over the entire dense bed. Their
elegant concept of separating the small particle pressure from
the orders of magnitude larger gas pressure, by permitting
gas flow, but not particle flow, behind the membrane may
also have dynamic limitations.

We assume that the normal stress is of the same order as
the granular pressure P* and also assume an isotropic
fluctuation velocity so that T*=p2 Table 2 exhibits the
average value and standard deviation of the quantity (v,/U;)
(D(w)/110) for glass spheres of 500 and 1200 wm diameter
obtained from the paper of Campbell and Wang [54]. From
Eq. (17), we would predict (v,/U,)(D(u)/110) =1, and
the last column shows that the data derived from the normal
stress measurements is in agreement with this prediction
within a factor of 2.

Polashenski and Chen [ 56] have also made normal stress
measurements by a technique similar to that of Campbell and
collaborators and express their results in terms of the granular
temperature at the wall. Table 3 is derived from Fig. 13 of
their paper, and exhibits the average value and standard devi-
ation of the quantity (v,/U,) (D(p)/110) for sand particles

Fluctuation velocity normal to wall, v,,, estimated from wall normal stress measurements of Campbell and collaborators [37,54,55]

Particle diameter, D P* U, vy (vl Uy) (0n/ Ug) (D(pum) /110)
(pm) (mm water) (cm/s) (cm/s)

1200 1.2 80 9.36 0.12 1.28
1200 18.6 150 38.65 0.26 2.81
1200 18.6 250 40.53 0.16 1.77
500 3 25 14.55 0.58 2.65
500 73 40 22.7 0.57 258
500 20 60 394 0.66 2.98
500 21 120 38.49 0.32 1.46
Average 0.38 222
Standard deviation 0.22 0.70

Table 3

Scaling of particle normal velocity derived from wall granular temperature of Polashenski and Chen [56]

Material <D(um) > Range U, < (v U)(D(pm)/110) > Standard deviation of
(m/s) in range of U < (v, /Ug)(D(um)/110) >
in range of U
Sand 283 0.2-0.8 1.1 0.3
Sand 1063 0509 1.7 0.4
FCCU catalyst 94 0.1-04 0.6 0.1
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with <D > =283 and 1063 pm, and FCCU catalyst particles
with <D> =94 um. Again we find agreement withEq. (17)
within a factor of 2.

The inertial stress/granular pressure measurements of the
granular temperature are based on the zero frequency average
of Eq. (1). The granular temperature measurements of the
present paper are derived from a measurement of the acoustic
shot noise power spectrum (Eq. (2)) over the frequency
band 10-20 kHz. It is a remarkable validation of the acoustic
shot noise probe as a measure of the wall granular tempera-
ture, that such different measurements are in such reasonable
agreement.

Finally we note from Eq. (34), that P* increases rapidly
with increasing gas flow to the fluidized bed. At face value,
this implies a necessary expansion of the dense phase and
hence increasing gas flow through the dense phase. This con-
clusion is at variance with some two phase models for the
fluidized state where it is assumed that, with increasing gas
flow, the dense phase of the fluid bed remains at minimum
fluidization conditions and that excess gas flows through the
bubbles [57,581. If Eq. (34) is an accurate description of the
particle inertial pressure in the dense phase, models for gas
flow through a bubbling fluidized bed may require revision.

18. Kinetic theory of dense gas of granular temperature
T*;: inertial sound velocity, C*

The inertial sound velocity, C* is given by C*’=
dP*/dp,,=T*. From Eq. (18b) for U,/ U_,;> 2, we obtain

DU, U,
C*=(D,/D)U,= (—L‘f)(——) (35)
D MUy,
Based on the data presented in Fig. 11, we again utilize Eq.
(14) to obtain

C*= D(———D °”°gg)(—Ui) (36)
1650, /\ U,
At constant (Uy/U,), C* is linear in D. C* is of the order
of 3—4 cm/s for 74-100 wm glass spheres at U,/ U= 5.
There are a variety of sound waves that have been predicted
and in some cases observed in fluidized beds {59-62]. Of
course, the sound velocity that is measured in a specific exper-
iment depends critically on the coupling between source and
medium, and detector and medium. It is interesting to note
that the bed collapse velocity, V., =ABH/T,,, which we
have observed for Geldart A and B monodispersed glass
spheres is in excellent agreement with the magnitude of C*
defined by Eq. (36).

19. Kinetic theory of dense gas of granular temperature
T*: inertial viscosity, p*

The inertial viscosity of a dense hard sphere gas, u*, is
given by wu*=(/3m/2/27D*)(T*)%5, where we have

assumed a collision cross-section given by 7D?. From Eq.
(18b) for U,/ U,;>2 we obtain

m* = (y3pD,/ 12y2) U 37)

We note that the inertial viscosity is proportional to the super-
ficial velocity and independent of diameter. Based on the data
presented in Fig. 11, we again utilize Eq. (14) to obtain

.Uf* = (\/3DopoUme£) ~ Dz( Dop(ZJg Us ) (38)
122 AU 16167 \Upy

At U/ U =2 for a fluid bed consisting of glass spheres

with D=290 pm, fluidized with helium (uy.=190 uP),

(u*/ pye) =200. At constant (U,/U,), the ratio,

(u*/ pye), increases as D2,

Gidaspow, Tsuo and Luo [63] calculate values of u* for
circulating and bubbling fluidized beds of 500 um glass
spheres and obtain magnitudes of the order of 3—10 P for gas
superficial velocities of the order of 5 m/s. For glass spheres
at U;=5m/s we find pu* = 1.4 P from Eq. (37).

There is only limited experimental data on the viscosity of
fluidized beds. Early experimental data obtained from paddle
wheel measurements in fluidized beds by Furukawa and
Ohmae [64] quote similar magnitudes of p*, but at consid-
erably lower values of U,. Rotating cylinder measurements
of Schugerl [65] gave viscosities of the order of 10 P at
U, = 1-10 cm/s for smooth glass spheres with the data again
approximately independent of sphere diameter (D = 50-200
pm). However, u* from Eq. (37) is two to three orders of
magnitude smaller at these values of U,. Recent experimental
data on the viscosity of a catalytic cracking catalyst refer-
enced by Gidaspow and Huilin [66] gives a value of
n*=0.2Pat U;=300 cm/s. From Eq. (37) u*=0.3 P for
po=1gm/ccand U;=300cm/s.

20. Kinetic theory of dense gas of granular temperature
T*: inertial diffusion constant, D*

The inertial diffusion constant of a hard sphere gas, D*, is
given by D*=(D/2)(T*)%% where we have assumed a
mean free path given by D/2. From Eq. (18b) for U,/
Uns=2, D*=(D,/2) U and is independent of sphere diam-
eter D. For U;=0.1 cm/s, D*=7xX10"* cm?/s. Zik and
Stavans [67,68] utilized a vibrated rather than fluidized bed,
and found at a sphere convective velocity of 0.1 cm/s, a
diffusion constant of 3X 10™* cm?/s, in reasonable agree-
ment with the value predicted by Eq. (18) from the dense
gas kinetic model.

For completeness we again utilize the data presented in
Fig. 11, to obtain from Eq. (14)

Dypog Us)

D*=(Do/2)UszD"(-———— -

: 9
3300, /\U, (39)

At constant (U,/U), D* has a quadratic dependence on D.
From Eq. (39) for 300 um glass spheres fluidized with
helium at (U,/U¢) =2, D*=7X 1072 cm?/s.
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21. Conclusions

The usefulness of the granular temperature concept has
been questioned, particularly since ‘there appears to be no
direct evidence that thermalized particle motion occurs in
fluidized beds’” [69]. This paper presents new experimental
data on the granular temperature 7* and demonstrates its
usefulness in characterizing a wide variety of fluid bed phe-
nomena for monodispersed glass spheres that span the Gel-
dart A and B regions.

We have introduced a novel experimental probe of the
average granular temperature, 7%, in the dense phase at the
wall of a fluidized bed, acoustic shot noise. We have validated
this experimental probe in a variety of ways:

(1) directly, through the robustness of the measured value
of T* with respect to significant changes in the elastic and
acoustic properties of the materials of the cylinder confining
the bed, and the acoustic and viscous properties of the flui-
dization gas;

(ii) indirectly, through the internal consistency of the data
for monodispersed glass spheres falling within either Geldart
region A or B;

(iii) indirectly, through the remarkable change that occurs
in the magnitude of T™ near minimum fluidization as the
Geldart A/B boundary is crossed for glass spheres with
D=105 and 88 um;

(iv) directly, through comparison with values for the gran-
ular temperature derived from particle normal stress on the
wall.

We have demonstrated the versatility of the probe through
the first measurements of the time dependence of T* in bed
collapse measurements.

We have demonstrated the utility of the granular temper-
ature concept characterizing fluidization phenomena in sev-
eral ways:

(i) the discovery of the universal dependence of T* on
sphere diameter and gas superficial velocity for glass spheres
that lie in the Geldart B region;

(ii) the discovery of a dramatic change in the fluidization
transition for Geldart B spheres as the Geldart A/B boundary
is approached;

(iii) the discovery of an equally dramatic change in the
dependence of the granular temperature on gas superficial
velocity as the Geldart A/B boundary is crossed and meas-
urements made within the A region.

This data supports the concept that the distinction between
Geldart A and B fluidization regimes lies in a fundamental
difference in gas particle dynamics rather than an ad-hoc
inhibition of bubbling.

The scaling of the experimental data we have obtained for
the granular temperature has introduced a new characteristic
length, D,, which for the glass spheres, D, = 110 um. When
D, is combined with a Langevin velocity relaxation time, 7,
a kinetic energy diffusion constant is introduced, D%/,
which determines the power required to maintain the fluid
bed in a steady state. The dependence of both these parame-

ters on the mechanical properties of the materials that com-
prise the spheres, and the physical properties of the gasses
that fluidize them, awaits more fundamental theory.

Finally, our new experimental data for the average value
of T* at the wall of a fluidized bed makes it possible to probe
formulae derived from kinetic theory for the steady state of
dense gasses: inertial pressure; inertial sound velocity; iner-
tial viscosity; and inertial diffusion constant. Our experimen-
tal data for T implies that the simplest two phase model for
the fluidization state neglects the dominant role of inertial
forces strongly coupled to gas flow in the dense phase, and
may need to be modified to include increasing gas flow
through this phase with increasing gas superficial velocity.

22. List of symbols

A area of cylinder

a(f,0) Fourier transform of acceleration at
location R; =0: a(f) =a(f,0)

a(t) time dependence of RMS acceleration
(over band 10-20 kHz) during bed
collapse

a’ mean squared acceleration over

£
frequency band f; = f,: a*= J’ S.(f,0) df
A
a: mean squared noise over frequency

£
band f; - f,: a2 = fS,,(f) df
A

BH(1) bed height as a function of time

c vector velocity of particle

C. extensional sound velocity of the
cylinder material

c* inertial sound velocity of a dense hard
sphere gas held at a granular temperture
of T* (Egs. (35) and (36))

e coefficient of restitution for glass
sphere

D diameter of glass sphere

dE/dt steady state power input into fixed bed

D, gas diffusion constant

D* inertial diffusion constant of a dense

hard sphere gas held at a granular
temperture of 7* (Eq. (39))
D diameter scaling constant

F(f.R) Fourier transform of force at location
Ry a(f0) =H(f,R) F(fR)

F(r,t) vector random force on particle in fluid
bed

F(1) dynamic force at wall for particle
impact

fle(r,t)) velocity distribution function of particle

at location, r, and time, ¢
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G
g
H(f,R)

|H(fR) |?
<|H(1*>

12

<4mp,v3>

p(n)
P*

P

Q

r
R()
S.(/0)

SO (£0)

Se(H

Sr(f)

Sa(H

T*=
(<w(rp?>/3)
Tcol
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Froude number

magnitude of Sg(f) when it is
independent of frequency

ratio of S2°(£,0) to SE°(£,0)
gravitational constant ( = 9.8 m/s)
transfer function from force at R, to
accelerometer R, =0

modulus squared of H(f,R,)

average of |H(f,R;) |? over the area of
the cylinder containing the fluid bed
(Eq. (4a))

wall thickness of the cylinder

integral of < |H(f)|*> over frequency

band
£

fi—f 12=j< [H(f)|*> df

S
numerical constant in Eq. (11)
bed height at minimum fluidization
bed height of packed bed of spheres
with diameter D and solids fraction
(1-¢€)
particle mass
weighed average of 4mp, v} over the
cylinder with respect to |H(f,R,) |*
(Eq. (4b))
time dependence of plenum pressure in
bed collapse measurement
inertial or granular pressure of particles
(Egs. (33) and (34))
time averaged power per unit volume
due to sphere/sphere and sphere/gas
interaction (Eq. (31))
quality factor of the cylinder
resonances: a=1/Q
vector location of particle
ratio of S,(£,0) to < |H(f) |*>
power spectrum of acceleration at
R; =0 due to random particle impact
acceleration power spectrum of an
accelerometer at R =R, for a bed
fluidized with argon (helium) gas
power spectrum of F(¢) for random
particle impact on area AA
power spectrum for F(r,z)
acceleration noise power spectrum
granular temperature of particle

time for bed collapse

time constant for gas leaving a fixed
bed

mean time between sphere/sphere
collisions

exponential time constant of a(¢) in
bed collapse measurement

Greek letters

gas superficial velocity at onset of
bubbling (minimum bubbling velocity)
gas superficial velocity at onset of
fluidization (minimum fluidization
velocity)

gas superficial velocity

average particle velocity

RMS value of v, (r,t) where

V2= <u (rt)?>

component of w normal to wall
c(r,t)-V(r,t) = particle fluctuation
velocity

bed collapse velocity =ABH/T,,
time interval for average of
autocorrelation function

a cylinder damping constant

(1) Dirac delta function

AP pressure drop across fluid bed

ABH changes in bed height after bed collapse

AU/ Upy) excess of (v,/U,) (D/D,) over Eq.
(15)

AA Differential wall area

Ap momentum exchange with wall
(2 mvy)

AP, pressure drop attributed to maintaining
particle kinetic energy constant

AP viscous pressure drop across fixed bed
at minimum fluidization

€ms void fraction at minimum fluidization
velocity

€, void fraction in fluidized bed: p,,=p,
(1—-¢)

Mg viscosity of fluidizing gas

u* inertial viscosity of a dense hard sphere
gas held at a granular temperature of
T* (Egs. (37) and (38))

v=pyu,AA mean arrival rate of particles on wall
area AA, p,v,AA

Po volume number density of particles
within fluid bed

P mass density of particles within fluid
bed, p,=mp,

Do density of particle, p,, = p, (1 — &)

log Poisson ratio of the cylinder material

T relaxation time of the sphere velocity

02 particle impact time with wall
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