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Contact conditions are deduced for a pair of thin plates in welded contact at an angle
and under fluid loading. The conditions take into account the interaction between the plates
through not only flexural but also longitudinal motion, and include the possibility of an
applied force and moment acting at the junction. The two-dimensional conditions are
shown to be consistent with the principle of acoustic reciprocity for the configuration, and
they guarantee unique solutions if certain constraints are satisfied by the plate longitudinal
impedances. The conditions also have implications for the junction admittance matrix.
Simple examples are presented of the application of the contact conditions to acoustic
interaction with plate configurations that are almost flat.
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1. INTRODUCTION

Let two thin elastic plates be joined at an angle so that they coincide with the directions
f=2F in the cylindrical co-ordinate system (r, f, z), with the Oz-axis aligned with the
straight edge of the junction. The joint is assumed to be welded, that is, the kinematic and
dynamic quantities are continuous there. The junction may be subject to an applied force
and moment, as indicated in Figure 1, which could arise from an internally connected
structure. An acoustic medium of density r and sound velocity c fills the region =f =QF.
The kinematic and dynamic conditions at a plate junction of this type are well known,
but they have to date been applied only to dry configurations, see for example references
[1–3]. Fluid-loaded structures with rectangular [4, 5] and arbitrary angle geometries [6]
have been analyzed neglecting the longitudinal motion in plates. In these cases the acoustic
diffraction problem can be formulated entirely in terms of the fluid pressure (or potential)
and the transverse displacement of the structure, which is proportional to the normal
derivative of the pressure. A proper description of the problem must account for the
existence of in-plane longitudinal and shear motions in the structure, which are coupled
to the transverse displacement only at the junction.

The goal of this paper is to deduce the correct contact conditions required to complete
the formulation of diffraction and radiation problems for fluid-loaded configurations in
which the plates interact through not only flexural but also longitudinal and shear wave
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motion. The desired conditions should involve only the pressure or the transverse
displacement, and its tangential derivatives, and should be independent of in-plane
displacements and forces. For simplicity, attention is restricted to the two-dimensional
configuration of Figure 1, for which all shear motion in the plates is decoupled from the
acoustic field.

Consideration is given for scattering of incident waves and radiation emanating from
applied loads at the joint. In either case the acoustic pressure in the fluid, p(r, f), satisfies
the Helmholtz equation,

1
r

1

1r
r
1p
1r

+
1
r2

12p
1f2 + k2p=0, 0Q rQa, −FQfQF, (1)

where k=v/c, and the plates are described classically via the boundary conditions

((14/1r4)− k4
2)j2(r)+ (1/D2)p(r, 2F)=0. (2)

Figure 1. Geometrical and physical parameters at the welded junction.
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Here j2(r)=31/(v2rr)(1p/1f)(r, 2F) denote the displacements of the plates, D2 are the
bending stiffness of the plates, and k2 identify the wave numbers associated with flexural
motion of the plates in vacuum. The plus/minus subscripts relate the qunatity to the upper
or lower boundary, respectively. The dependence e−ivt for time harmonic motion is
understood throughout the paper. With no loss in generality consideration is restricted to
vq 0, because the Fourier transform f(v) of any physical parameter which is a real-valued
function of t must satisfy f(−v)= f�(v), where the bar denotes the complex conjugate
quantity.

The basic question addressed here is how to express the contact conditions for the
welded joint in terms of the fundamental variables j2 and their derivatives with respect
to r. These conditions supplement equations (1) and (2), and together with the incident
field they complete the problem definition. One begins with the derivation of the contact
conditions. The implications of the conditions regarding reciprocity, uniqueness and
energy will be explored, and some simple applications to almost flat configurations occupy
the remainder of the paper.

2. DERIVATION OF CONTACT CONDITIONS

2.1.  

The transverse and in-surface plate velocity components are w2(r) and u2(r), defined
such that the total velocities on either plate are

v� 2(r)=w2(r)n� 2 + u2(r)l� 2. (3)

Here, n� 2 =3e� f =f=2F denote the unit vectors normal to the boundaries and directed
towards the fluid, whereas l� 2 = e� r =f=2F are the unit vectors aimed lengthwise. Let z2(r)
be the longitudinal displacements, then the velocities and displacements are simply related
to one another by the formulae

w2(r)=−ivj2(r), u2(r)=−ivz2(r). (4)

The kinematic constraint at the junction of the welded plates requires that the total
velocity and the rotational velocity are continuous there, implying respectively

v� 2(0)= v� −(0), w'+(0)=−w'−(0), (5, 6)

where the prime denotes the derivative with respect to r. This completes the kinematic
conditions at the junction.

2.2.  

The internal forces and moments in the plates are illustrated in Figure 1. The shear forces
S2(r) are the resultants of the stress components n� 2, sl� 2, the longitudinal forces T2(r) are
the resultants of the stress components l� 2; sl� 2, and M2(r)n� 2 × l� 2 are the resultant
moments. The constitutive relations are

T2 =C2z'2, M2 =−D2j02, S2 =M'2, (7–9)

where C2 are the longitudinal stiffnesses. The classical theory gives C2 =E2h2/(1− n2
2),

and D2 =C2h2
2/12, where E2, n2 and h2 are plate Young’s modulus, Poisson’s ratio, and

thickness, respectively.

f
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The governing equation for the transverse momentum yields equation (2) with
k2 =v1/2(m2/D2)1/4, where m2 = r2h2 are the plate densities per unit spanwise length and
r2 are the material densities, while the in-plane momentum balance implies

C2z02 +v2m2z2 =0. (10)

Thus, the in-plane variables z2, u2 and T2 are dynamically uncoupled from the transverse
variables j2, w2, M2, S2, and the fluid pressure p. The only coupling occurs at the
junction. Furthermore, the in-plane quantities satisfy the one-dimensional wave equations
with the general solution

z2(r)= z(1)
2 eivr/c2 + z(2)

2 e−ivr/c2, (11)

where c2 =zC2/m2 and z(1)
2 and z(2)

2 are constants. The total in-surface forces and
velocities are

T2 =T(in)
2 +T(sc)

2 , u2 = u(in)
2 + u(sc)

2 , (12)

where T(in)
2 and u(in)

2 are introduced to allow for the possibility of excitation from incoming
longitudinal waves on either plate, and T(sc)

2 and u(sc)
2 are the scattered or outgoing waves.

Thus, using equations (4), (7), and (11), produces the relations

T(in)
2 −Z2u(in)

2 =0, T(sc)
2 +Z2u(sc)

2 =0, (13)

where Z2 =m2c2 are the longitudinal wave impedances.
The possibility of a force F� and moment M0 is considered acting at the junction, as

depicted in Figure 1. The equilibrium conditions at the junction require that the total force
and moment acting there are zero,

S+n� + +T+l� + +S−n� − +T−l� − =−F� , M+(0)−M−(0)=−M0. (14, 15)

2.3.     

For the purposes of the scattering and radiation problems one desires junction
conditions defined in terms of the transverse displacements and their derivatives in r. The
vector equations (5) and (14) may be simplified by introducing components relative to an
orthonormal basis. For example, when projected onto orthogonal directions e� r =f=0 and
e� f =f=0 the condition (5) is

0 sin F

−cos F

cos F

sin F10w+(0)
u+(0)1=0sin F

cos F

cos F

−sin F10w−(0)
u−(0)1. (16)

Hence,

u2(0)= (sin 2F)−1(w3(0)+w2(0) cos 2F). (17)

For any given incident longitudinal wave motion, that is, known values of T(in)
2 or u(in)

2 , the
scattered in-plane velocities and stresses at the junction, u(sc)

2 (0) and T(sc)
2 (0), now follow

directly from w2(0) using equations (13) and (17). These radiate away from the junction
according to the one-dimensional wave solutions of equation (11) with z(1)

2 =(−iv)−1u2(0)
and z(2)

2 =0.
Using the same projection method the force condition equation (14) may be rewritten as

S2(0)=−(sin 2F)−1(T3(0)+T2(0) cos 2F+F3), (18)
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where F2 =F� l� 2 are the components of the applied force along each plate. Alternatively,
equations (13), (17), and (18) give the shear forces as

S2(0)= (Z+ +Z−)(sin 2F)−2(w2(0)+w3(0) cos 2F)−Z2w2(0)− (sin 2F)−1F(eff)
3 , (19)

where the effective force F� (eff) is defined as

F� (eff) =F� +2Z+u(in)
+ (0)l� + +2Z−u(in)

− (0)l� −, (20)

and F(eff)
2 =F� (eff)l� 2, or

F(eff)
2 =F2 +2Z2u(in)

2 (0)+2Z3u(in)
3 (0) cos 2F. (21)

Eliminating the shear forces from equation (19) using equations (8) and (9) yields
relations between the transverse displacements and velocities. Together with equations (6)
and (15), these provide the four contact conditions sought which are now presented in
terms of the transverse deflection only:

j'+(0)+ j'−(0)=0, D+j0+(0)−D−j0−(0)=M0, (22, 23)

D2/(iv)j12 (0)+Z2j2(0)− [(Z+ +Z−)/sin2 2F](j2(0)

+ j3(0) cos 2F)=F(eff)
3 /(iv sin 2F). (24)

The final pair of equations account for the longitudinal interaction of the plates through
the welded joint. In summary, one now has the same number of tip conditions, four, that
one obtains in the absence of longitudinal wave effects. The four conditions only involve
the transverse displacements and their derivatives.

3. GENERAL PROPERTIES OF THE CONTACT CONDITIONS

3.1. 

First the consistency between the contact conditions, equations (22)–(24), and
reciprocity is analyzed. This requires that the pressure is invariant under the interchange
of the acoustic source and receiver directions, assuming plane wave incidence and far-field
observation in the absence of any applied loads, i.e. for M0 =0, F� (eff) = 0 (reciprocity does
not hold with loads present). Assume that the functions j2(r) and h2(r) are the plate
flexural displacements induced by an acoustic plane wave incident from two different
directions f0 =f1 and f0 =f2, respectively. It has been shown [6] that in order to ensure
the reciprocal solution the contact conditions must be consistent with the general relation

J+(f1, f2)+ J−(f1, f2)=0, (25)

where

J2(f1, f2)=D2(j2(0)h12 (0)− j'2(0)h02(0)+ j02(0)h'2(0)− j12 (0)h2(0)). (26)

Using equations (22)–(24) one can verify that equation (25) does indeed hold. This means
that the contact conditions (22)–(24) with M0 =0 and F(eff)

2 =0 will guarantee the reciprocal
solution regardless of the specific values of both material and geometrical parameters of
the configuration considered.

3.2. 

The question of uniqueness is now discussed. Let (p1, j1) and (p2, j2) be two
solutions of the same scattering or radiation problem. The difference, (p, j) where
p= p1 − p2, j= j1 − j2, must satisfy the same Helmholtz equation (1), boundary
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conditions (2), and junction condition (22). The difference satisfies the homogeneous
versions of equations (23) and (24), that is, with M0 =0, F� (eff) = 0, and also u(in)

2 =0. One
first needs to define the flexural and longitudinal powers,

Pflex
2 (r)=w*2S*2 −w'*2 M*2, Plong

2 (r)= u*2T*2, (27, 28)

where f*=Re (fe−ivt). It can be shown [6] that the difference solution satisfies the identity

Im k2

2vr g
+a

−0 g
F

−F

=p(r, f)=2r dr df+ �Pflex
+ (0)+Pflex

− (0)�=0, (29)

where �g�=(v/2p) f2p/v
0 g(t) dt is the average over a cycle. Since Im k2 q 0 by assumption,

the following condition is sufficient for a unique solution [6]:

�Pflex
+ (0)+Pflex

− (0)�e 0. (30)

The average powers can be written

�Pflex
2 (0)�= 1

2 Re (w2(0)S�2(0)−w02(0)M�2(0)). (31)

These can be simplified using equations (6) and (15) with M0 =0, and using equations (17)
and (18) with F� (eff) = 0 to express w2 and S2 in terms of u2 and T2, respectively. This yields

�Pflex
+ (0)+Pflex

− (0)�=−�Plong
+ (0)+Plong

− (0)�. (32)

Equation (32) can be further reduced using equation (13), to

�Pflex
+ (0)+Pflex

− (0)�= 1
2 =u+(0)=2 Re Z+ + 1

2 =u−(0)=2 Re Z−. (33)

Thus, contact conditions of the form (22) through (24), combined with the restrictions

Re Z2 e 0, (34)

are sufficient to ensure the unique solution of the diffraction and radiation problems for
the configuration of interest.

3.3.   

Consider the radiation problem with the loads M0 and F� present but no incident waves,
giving the solution (p, j). Since there is no incident wave excitation one can use exactly
the same procedure which led to equation (29) to obtain the same identity for the radiation
solution. The distinction is that now the loads M0 and F� are arbitrary and also the solution
p is non-zero. The latter now implies that

�Pflex
+ (0)+Pflex

− (0)�E 0. (35)

Proceeding in the same manner as before, but with M0 and F� (eff) =F� non-zero, one finds
that

�Pflex
+ (0)+Pflex

− (0)�=−�Plong
+ (0)+Plong

− (0)�+ 1
2 Re w'+(0)M�0

−(2 sin 2F)−1 Re (w+(0)F�− +w−(0)F�+). (36)

It can be shown that the kinematic conditions imply that

(sin 2F)−1(w−(0)l� + +w+(0)l� −)= v� (0), (37)

and hence,

1
2 Re v� (0)F− 1

2 Re w'+(0)M�0 e 1
2 =u+(0)=2 Re Z+ + 1

2 =u−(0)=2 Re Z−. (38)
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This can be interpreted in the following manner. The energy flux for the radiated
longitudinal wave in each plate is F2(r)=−u*2T*2. Based on equation (13) the averaged
flux is �F2(r)�= 1

2 =u2 =2 Re Z2, which is independent of r. Define Win as the rate of work
done by the applied loads M0 and F� . The inequality equation (38) says that the power input
to the system must equal or exceed the power that is radiated as longitudinal energy, or

�Win�eF+ +F−. (39)

Alternatively, define the junction admittance matrix [A] such that

{v� (0), −w'+(0)}T = [A]{F� , M0}T. (40)

Then the inequality equation (38) implies that [A]+ [A�]T is positive semi-definite.

3.4.      

The junction conditions have relatively simple forms in terms of the sum and differences
ws and wd defined by

ws = 1
2(w+(0)+w−(0)), wd = 1

2(w+(0)−w−(0)). (41)

Similar definitions are assumed for us , ud , Ss , Sd , Zs , Zd , F(eff)
s , and F(eff)

d . Two alternative
versions of equations (17) and (19) are now presented that are useful in the separate
limiting cases when the wedge angle F is close to either p/2 or p.

First, the four identies in equations (17) and (19) are expressed as

wd =cot2 F(Zs )−1(Zdws +Sd −(sin 2F)−1F(eff)
d ),

Ss +(sin 2F)−1F(eff)
s =cot2 F(Zs )−1(Z+Z−ws −ZdSd +(sin 2F)−1ZdF(eff)

d ),

us =cot Fws , ud −(2Zs sin2 F)−1F(eff)
d =−cot F(Zs )−1(Zdws +Sd ). (42)

Thus, when F= p/2 the right members of equations (42) vanish, implying that the contact
conditions are identically wd =0, Ss =−1

2F� (eff)e� r =f=0, us =0, and ud =(2Zs )−1F� (eff)e� f =f=0, as
expected for the flat junction of two plates.

Alternatively, equations (42) may be written as

ws =tan2 F(Zs )−1(Zdwd +Ss +(sin 2F)−1F(eff)
s ),

Sd −(sin 2F)−1F(eff)
d =tan2 F(Zs )−1(Z+Z−wd −ZdSs −(sin 2F)−1ZdF(eff)

s ),

ud =−tan Fwd , us −(2Zs cos2 F)−1F(eff)
s =tan F(Zs )−1(Zdwd +Ss ). (43)

The limiting case of F= p corresponds to two parallel semi-infinite plates jointed only at
their ends, and equations (43) imply that the junction conditions reduce to ws =0,
Sd =−1

2F� (eff)e� f =f=0, ud =0, and us =(2Zs )−1F� (eff)e� r =f=0.
Finally, one notes that if there are no incident longitudinal waves, then the longitudinal

wave energy is purely radiative, and it follows from equation (42) that

�F+�+ �F−�=cot2 F(Zs )−1(=Sd −(sin 2F)−1Fd =2 +Z+Z− =ws =2). (44)

Alternatively, using equation (43) gives

�F+�+ �F−�=tan2 F(Zs )−1(=Ss +(sin 2F)−1Fs =2 +Z+Z− =wd =2). (45)

These imply, respectively, that the longitudinal energy flux vanishes in the absence of any
applied force for the special cases of F= p/2 and F= p.
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4. APPLICATIONS TO ACOUSTICAL AND FLEXURAL WAVE SCATTERING

4.1.       

The four contact conditions of equations (22)–(24) serve as the starting point for
attacking acoustic and structural wave scattering problems for the wedge configuration.
A consistent procedure for solving these types of problems will be presented in a separate
paper. However, as an example of how the contact conditions can be applied, the case of
an ‘‘almost’’ flat junction is considered subject to incident acoustic or flexural waves with
no applied loads at the junction and no incident longitudinal waves. One is interested in
how the slight kink effects the interaction between acoustic and longitudinal energy for
acoustic incidence, and between the flexural and longitudinal waves for flexural incidence.
Both interactions vanish for a perfectly flat junction, and therefore it is of some use to
estimate the leading order effects for slight kinks.

Perturbation methods are used based on the small parameter e=cot F, for =e =�1. One
assumes the asymptotic expansions

w2 =w(0)
2 + ew(1)

2 + e2w(2)
2 +· · · , u2 = u(0)

2 + eu(1)
2 + e2u(2)

2 +· · · ,

p= p(0) + ep(1) + e2p(2) + · · · , · · (46)

The junction conditions (42) imply a sequence of identities, the first few being

w(0)
d =0, S(0)

s =0; w(1)
d =0, S(1)

s =0;

w(2)
d =(Zdw(0)

s +S(0)
d )/Zs , S(2)

s =(Z+Z−w(0)
s −ZdS(0)

d )/Zs , (47)

and

u(0)
2 (0)=0, u(1)

2 (0)= (Z3w(0)
s 3S(0)

d )/Zs , · · · (48)

Let m= p/(2F), and u= mf, then equation (1) becomes

1
r

1

1r
r
1p
1r

+
1
r2

12p
1u2 + k2p=

(1− m2)
r2

12p
1u2, 0Q rQa, −

p

2
Q uQ p

2
. (49)

The parameter (1−m2) is small, of order e:

1− m2 =−(4/p)e−(12/p2)e2 + · · · (50)

Thus, one again obtains a sequence of equations, the first two being

92p(0) + k2p(0) = 0, 92p(1) + k2p(1) =−(4/pr2)(12p(0)/1u2). (51)

Here, 92 denotes the 2D Laplacian, and the equations are all valid in the half space
−aQ xQa, 0QyQa, where e� x=−e� u =u=0, e� y = e� r =u=0.

The Helmholtz equation (51) and the junction conditions (47), combined with the leading
order versions of the continuity condition and of equations (6) and (15), implies that the
leading order fields p(0), w(0)

2 , S(0)
2 , etc., are those for a pair of flat joined plates. This can be

‘‘easily solved’’, in principle. For example, if the plates are identical and the excitation is
from an incident acoustic plane wave then the zeroth solution is quite trivial. Even when
the plates are dissimilar, the general solution can be found in semi-analytic form [7].

4.2. 

Assuming the plates are identical, so that Z+ =Z− 0Z, etc. one lets c0 = c2. The
leading order wave field is assumed to have the x-dependence exp (ikxx), so that
w(0)

s =w(0)
2 0w0 is the leading order transverse velocity at the kink, and

S(0)
d =v−1k3

xDw0. (52)
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As a first example consider a plane acoustic wave incident at the angle f0, with
kx = k sin f0. The leading order longitudinal motion is therefore, from equations (46) and
(48),

u2(0)1 ew0(13 (c/c0)(V2/M3)), (53)

where M=1/sin f0 q 1 is the supersonic surface Mach number of the acoustic wave,
V=v/vc and vc = c2zm/D is the coincidence frequency. Hence, at low frequencies
relative to the coincidence frequency, one has simply u2(0)1 ew0. This is exactly what one
might expect purely on the basis of quasi-static kinematics of the kink junction.

As a second example a sub-sonic flexural wave incident with horizontal wavenumber
kflex is considered. Then by the same analysis one finds that u2(0) are of exactly the same
form as equation (53), where now M= k/kflex Q 1 is the subsonic Mach number. At low
frequencies or under heavy fluid loading, equation (2) implies that

Dk5
flex − rv2 1 0, (54)

or M1 e−1/5
c V3/5, where ec = rc/(vcm) is a fluid loading parameter. Note that the

coincidence frequency vc depends upon the plate thickness, but that ec is a function only
of the material parameters. Equation (53) then becomes,

u2(0)1 ew0(13 (c/c0)e3/5
c V4/5)1 ew0. (55)

The behavior of the flexural wave in the low frequency regime is therefore similar to that
for the acoustic wave.

In summary, the leading order interaction with the longitudinal motion is given by
equation (53) for acoustic or flexural wave incidence. In either case the converted
longitudinal energy can be easily determined as

�F+�+ �F−�1 e2=w0 =2(1+ (c2/c2
0 )(V4/M6)) Re Z, (56)

and at low frequencies equation (55) implies that the converted longitudinal energy is
distributed equally between the two plates.

Finally, we note that the related problem of estimating the leading order (in e)
conversion between acoustic and flexural or longitudinal and flexural motions is
considerably more complicated. The problem lies with equations (47) which define the
junction conditions for the leading order correction for the transverse motion, w(2)

d and S(2)
d .

In order to find these we must solve the fluid loaded flat plate radiation problem with given
discontinuities in the transverse displacement and shear force at x=0. This amounts to
finding the generalized Green’s function for the fluid loaded flat plate, which can be
achieved using transform techniques, but the analysis is not as simple or elegant as the
example considered here.

5. CONCLUSIONS

The contact conditions which account for both the flexural and longitudinal interaction
between two thin elastic plates through a welded junction have been examined. It has been
shown that equations (22)–(24) will provide reciprocal solutions to diffraction problems
involving an angular joint of thin plates in contact with an acoustic medium. A set of
constraints (34) on the longitudinal wave impedances Z2 has been deduced which is
sufficient (but not necessary!) to guarantee a unique solution to a related diffraction
problem. Generally, these constraints are satisfied by the impedances associated with the
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plates. Some simple applications of the contact conditions to almost flat plates under
acoustic and flexural wave incidence shows that the leading order longitudinal velocity is
cot (F) times the transverse velocity on a perfectly flat junction. This leads to the estimate
that the fraction of energy converted from acoustic or flexural motion into longitudinal
motion is O((F−(p/2))2) for nearly flat junctions.
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