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A new method is proposed for attenuating structural wave reflections at the edges of
plates and bars by using a graded impedance interface. Experimental data show that as
much as 60-80% damping of energy in a 1” thick steel plate is achieved for frequencies
from 2-10 kHz, using this approach. The measurements also indicate a trend towards
greater damping for higher frequencies. The results observed in the experiments are
explained using an S-matrix formulation based on Mindlin’s theory for flexural waves. The
classical, or Kirchhoff, flexural theory does not predict the observed levels of damping,
indicating that shear effects are important in this attenuation mechanism. Numerical
simulations indicate that the observed lower reflectivity is caused by energy dissipation
within the composite material at the free end, coupled with relatively large amplitude
vibrations caused by the impedance gradation.
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1. INTRODUCTION

It is well known that energy reflection in inhomogeneous elastic materials is caused by a
mismatch in the impedance properties between different regions. The free edge of a finite
plate or a finite bar is an extreme case of an impedance mismatch which causes complete
reflection of incident energy. A gradual change in impedance at the edges, the basic idea
of a graded impedance interface, along with a damping material at the end is thus likely
to reduce energy reflection. An infinite plate situation is often required in order to perform
certain critical experiments in elastic wave propagation, for example experiments on
Anderson localization of bending waves [1, 2]. In general, the approximation of infinite
plate behavior is difficult to obtain because of the energy reflected from the boundaries.
In reference [2] a minimal graded impedance interface was used to reduce the energy
reflection to 50% of the incident energy. Appropriate windowing was used in order to
reduce the effect of the edge reflections on the processed data. However, windowing of data
is not always possible. Moreover, one would like to avoid windowing because of the
spurious effects that may be introduced into the response.

In this paper we examine in detail the procedure of using graded impedance interfaces.
We present results of comprehensive experiments with different types of materials used to
construct efficient graded impedance interfaces. Our experimental results indicate that
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when a certain type of graded impedance interface is used as much as 60-80% of the energy
is damped for frequencies from 2-10 kHz. The trend indicates that even greater damping
is achieved for higher frequencies. The attenuation achieved is much superior to the
attenuation in the common method, e.g. reference [3], of embedding the edges in sand. It
has been found that when the edges of a 1” thick steel plate are embedded in sand at most
30% of the energy is damped for frequencies above 2 kHz. Another common method is
to damp energy using constrained viscoelastic layers (see, for example, references [4, 5] and
other papers in the proceedings of reference [5]). This method is, however, not suitable to
obtain infinite plate behaviour due to the presence of damping materials on the plate
surface.

The damping of flexural energy by using graded impedance interfaces, as seen in the
experiments, is a surprising result. In order to understand the mechanics underlying the
observations the reflection process is modeled for a bar with graded impedance interface
using two different dynamic theories: those of Kirchhoff and Mindlin, respectively. The
theoretical formulation uses S-matrix reflectivity analysis, and is exact within the context
of the theory considered. The comparisons between the observations and the theoretical
predictions are discussed in Section 3.

2. EXPERIMENTAL SETUP AND PRELIMINARY RESULTS

2.1. EXPERIMENTAL CONFIGURATION

The experimental setup consists of a 0-61 m x 0-:61 m x 2-:54 cm steel plate set on a
0-508 m x 0-508 m plywood frame of 1-9 cm thickness. A thin flexible rubber tubing was
placed between the frame and the plate. A Bruel & Kjaer hammer (type 8203) was used
as the excitation source and the area excited was less than 1 mm? The vibration was
detected using a B&K accelerometer (type 4393) mounted on a B&K magnet or using a
B&K accelerometer (type 4384) mounted on a Wilcoxon magnet. The experiments were
performed using the B&K 4393 accelerometer unless specified otherwise. The detector was
placed at the center of the plate and the plate excited at several locations around the
detector, on a circle of 1in radius. This method has been adopted in order to measure
the driving point admittance. The excitation pulse is 0-025-0-04 ms in duration, and its
frequency content is flat within 10% from 0-10 kHz. The mounting resonance of the
B&K 4393 accelerometer/magnet system is above 25 kHz and that of the B&K 4384
accelerometer/magnet system is at 16 kHz. The signals from both the force transducer and
the accelerometer were analyzed using a dual channel signal analyzer (B&K 2032). The
signal analyzer output the transfer function H(f) = {a*(/)F(f)D>/{F*()F(f)), where
a(f) is the Fourier transform of the measured acceleration and F(f) is the Fourier
transform of the excitation force. The angular brackets denote averaging over repeated
excitation-detection measurements and * denotes complex conjugation. In general, the
averaging process also reduces electronic noise.

The basic experimental parameter of concern is the driving point admittance, defined
as |H(f)/(2nf)|. Figures 1 and 2 show the drive admittance for a bare plate and for a
plate with its edges embedded in oil-soaked sand, respectively. There is a mounting
resonance at 16 kHz in both the experiments and hence data is shown only till
10 kHz. Figures 1 and 2 also show the average value in the 2-10 kHz range, which
was compared with the magnitude of the driving point admittance for an infinite plate, i.e.,
(84/Dph)~"[3, 6]. The ratio is 4-3 for the bare plate, and for the plate with edges embedded
in sand it is 1-74. The decrease in ratio when the edges were embedded in sand indicated
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Figure 1. ——, Driving point admittance at the center of a 2 ft x 2 ft x 1 in steel plate; — ———, average of the

driving point admittance for 2-10 kHz (68-76); , driving point admittance of an infinite plate (16).

a significant damping of energy, although it is noted that distinct sharp resonant modes
were still present, indicating that edge reflections are significant.

A 1-D model of waves reflecting on a finite bar is employed in order to quantify the
amount of damping in the measurements. The details of the model are given below. The
model estimates an effective 1-D reflection coefficient at the frequency of a specific peak
by using the half-power bandwidth of the peak. It is well known that the square of the
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Figure 2. ——, Driving point admittance at the center of a 2 ft x 2 ft x I in steel plate with edges embedded

in 3 in of sand soaked in terrestic oil; — — ——, average of the driving point admittance for 2-10 kHz (27-78); —,
driving point admittance of an infinite plate (16).
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Figure 3. Reflected energy for a 2 ft x 2 ft x 1 in steel plate and the same plate with edges embedded in 3 in
of sand soaked in terrestic oil. The two cases are: O, bare plate; @, plate with 3 in sand at the edges.

absolute value of reflection coefficient R gives the fraction of incident energy that is
reflected. In Figure 3, | R|* is plotted for the peaks in Figures 1 and 2, where | R| is calculated
using the formula derived in the next section. In Figure 3, symbols are placed at frequencies
corresponding to the peaks in driving point admittance. For frequencies greater than 2 kHz
it is noted that less than 30% of the incident energy is damped when the edges of a steel
plate are embedded in sand. The damping in fact decreases for higher frequencies. The
attenuation achieved by graded impedance interfaces is much superior as illustrated in later
sections. It is noted that the present method for estimating a reflection coefficient is based
on single point admittance measurements. More accurate methods exist to determine
bending wave reflectivity [7, 8], using correlated intensity data from two or more
accelerometers. The model described below offers an alternative procedure based upon
resonance data from a single site, and is adequate for the present purposes.

2.2. 1-D REFLECTIVITY MODEL

The measured data for the drive point admittance exhibits the global effects of the
system. In particular, it displays resonances associated with the modes of the finite plate
or bar, which are absent in the infinite plate or bar. From the point of view of traveling
waves, the resonances are caused by the multiple reflections in the system, and their
strength depends strongly on the reflectivity of the edges. If there is no reflection, then there
will be no modal resonances. Resonances are a sign of non-zero reflectivity. In this
subsection a simple model is developed that allows interpretation of the drive point
admittance in terms of an effective reflection coefficient.

The central idea is to relate the half-power bandwidth of the resonance peaks with the
effective reflection coefficient at that frequency. For simplicity, a 1-D model is used for
a bar under flexure, as shown in Figure 4. Time harmonic, e, excitation occurs at the
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T
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Figure 4. A 1-D flexural model.
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center of the bar, and flexural waves are radiated from the source in both directions.
The radiated flexural motion comprises both a propagating wave and an evanescent wave.
The reflections of the evanescent wave are small and hence are not considered. The
reflection coefficient for the propagating wave is taken to be R, in general a complex
quantity.

The total transverse displacement at a point on the bar is the sum of the incident wave,
i.e., the wave coming directly from the source, and the multiple reflections from the edges.
The displacement due to the incident wave propagating to the right and its associated
multiple reflections is

[eikx 4 R =M 4 R2CL+D 4 RIGGL- 4 o]

R e1kL » \
1 R2 i2kL € l‘ (1)

1 ikx
1R +

where k is the flexural wave number and L is the length of the bar. Similarly, the
displacement due to the incident wave traveling to the left and its associated multiple
reflections is

(1/(1 _ R eiZkL)) ety 4 (R ei/(l‘/(l _R? eizkl_)) ek (2)
The evanescent wave to the right is ie ** and the evanescent wave to the left is ie*. The
total transverse displacement at the center of the bar is then obtained by substituting x = 0
in expressions (1) and (2) and taking their sum, subtracting the contribution of one incident
wave and adding the contribution of one of the evanescent waves. The ratio of the driving
point admittance at the center of the bar to that for an infinite bar is thus

(i+ 1+ Re™)/A - R+ 1 (€)

At resonance the second term in the numerator of expression (3) is much larger than
the first term, and hence the magnitude is approximated by

1+ Re*| 1 <1+|R|2+2|R|cos(kL—¢)>” @

\[‘ — ReWt _\ﬁ 1 + |R]> — 2|R|cos (kL — ¢)

where R is considered to be |R| e . It is clear from expression (4) that the driving point
admittance at the center of a bar has peaks when kL = 2nn + ¢, n = +1, £2,- - - . Hence,
using the classical flexural wave theory to express the wavenumber k in terms of w, it
follows that to a first approximation the resonance frequencies of the bar are given by,

w, = 2nr + ¢ (EI/m)"? /L, n=4+1,42,---. ®)

Here, m is the mass per unit length of the bar and EI is the flexural rigidity. The peak value
of expression (4) is (1/\/2) [(1 + |R])/(1 —|R])], and hence at the half-power frequencies
near resonance,

(6)

1+ |RP +2|R|cos (kL —¢) _1[1+|R|Y
1 +|RP—2|R|cos (kL — ¢) — 2\1 —|R]
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Figure 5. Graded impedance interface at the edge of a steel bar.

This simplifies to
kL =2nm+ ¢ +cos™ 'Y, n=4+1,4+2,---. 7
where Y is given by

(I —|RP)

V=1 =GR —4IRF + 6IR" ®

The frequencies associated with the half-power points follow from equation (7) as
i, w; = w, + (1/LHYEI/m)"*[(cos™ Y +2Q2nrw + ¢p)cos ' Y], n==+1,42,---. (9
The half-power bandwidth, defined as B = (w; — wi)/(2n), is therefore
B=2/w,/[nL(EI/m)*cos™' Y, n=+1,+2, . (10)

Note that the bandwidth B is a function of both the resonance frequency of the bar, w,,
and the reflection coefficient |R|. Conversely, equation (10) can be solved to obtain |R|
from the measured values of w, and B. This is the procedure adopted for both the plate
and bar measurements.

3. GRADED IMPEDANCE INTERFACE

3.1. EXPERIMENTAL RESULTS

The materials used for the graded impedance interface were chosen so that the
impedance varies gradually at the edges of a steel plate, as shown in Figure 5. The
properties of the materials are given in Table 1. The properties of steel and aluminium were
obtained from reference [9]. Young’s modulus and shear modulus of lucite were empirically

TABLE 1

Properties of materials

Young’s Shear Impedance
modulus, £ modulus, p Density, p W Ep)
Material (GPa) (GPa) (kg/m?) Loss factor, n  x10°kgm=2s~!
Steel 207 80.2 7800 0.01 40.18
Aluminium 69.5 26.73 2695 0.01 13.69
Lucite 5.4 2.03 1182 0.04 2.53
Composite 0.15 0.058 1500 0.1 0.47

(Soundcoat, GP-3)
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Figure 6. ——, Driving point admittance at the center of a 2 ft x2 ft x lin steel plate with 1in x 2 ft x 1in
Al bars, lucite bars and 0-5in x 2 ft x 1 in composite strips at the edges; ————, average of the driving point
admittance 2-10 kHz (16-56); ——, driving point admittance of an infinite plate (16).

obtained from the natural frequencies of a block of the same material determined from
experiment and finite element analysis. The loss factor of lucite is obtained from reference
[10]. The composite is a viscoelastic damping material normally used for surface coating.
The moduli £ and p in the plane of the composite material are known to be 0-5 GPa and
0-19 GPa, respectively, as quoted by Soundcoat, Inc. However, the moduli £ and p of the
composite in the direction normal to the plane of the material are not available. The
moduli normal to the plane would be lower than the moduli in the plane. The values shown
in Table 1 for the composite moduli normal to plane are assumed based on empirical
consistency with the Mindlin theory. The loss factor for the composite is as quoted by
Soundcoat, Inc.

Experiments were performed with several different material combinations. Figure 6
shows the raw data for the driving point admittance of the steel plate when the entire
graded impedance interface depicted in Figure 5 is in place on the plate edges. The
gradation materials are attached at 2ft x lin surfaces. Aluminium and Lucite are
attached using Soundcoat B-flex epoxy and the composite is glued using Pliobond. The
epoxy bond is solid at room temperature and has a damping coefficient less than that of
Lucite. It is noted that for frequencies above 2 kHz the peaks are broad and the average
value in the 2-10 kHz range is only 1-04 times that of the finite plate value mentioned
earlier. The driving point admittance data shown in Figure 6 increases steadily
above 15kHz due to the presence of the accelerometer mounting resonance above
25 kHz. The effective reflection coefficients for the peaks, calculated using equation (10),
are plotted in Figure 7. This Figure also shows the reflection coefficients obtained for
reduced levels of graded impedance interface, corresponding to one or two layers. More
than 60% of the energy is damped for frequencies above 2 kHz when the entire graded
impedance of Figure 5 is used. The data of Figure 7 illustrate quantitatively how more
damping is obtained as the level of gradation in the graded impedance interface is
increased.
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Figure 7. Reflection energy for different levels of graded impedance interface at the edges (experimental data
fora 2 ft x 2 ft x 1in steel plate). The four cases are: O, bare plate; A, plate, Al (1in x 2 ft x 1in); 1, plate,
Al (1in x 2 ft x lin), Lucite (1 in x 2 ft x 1in); @, plate, Al (1in x 2 ft x 1 in), Lucite (1in x 2 ft x 1in),
composite (0-5in x 2 ft x 1 in).

The effectiveness of the graded impedance interface is further exemplified in Figure 8,
which shows the reflectivity for several combinations of materials. It is noted that the
composite material acts more efficiently as a damper of energy when a graded impedance
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Figure 8. Reflected energy for different levels of graded impedance interface including composite, at the edges
(experimental data for a 2 ft x 2 ft x 1 in steel plate). The three cases are: @, plate, Al (1 in x 2 ft x 1 in), Lucite
(lin x 2ft x 1in), composite (0-5in x 2ft x 1'in); [J, plate, Al (lin x 2ft x lin), composite
(0-51in x 2 ft x 1in); A, plate, composite (0-5in x 2 ft x 1 in).
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Figure 9. Reflected energy for different levels of graded impedance interface at the edges (experimental data
for a 2 ft x 1in x 1in steel bar). The four cases are: O, bare bar; A, bar, Al (1in x 1in x lin); [, bar, Al
(I'in x l'in x l'in), Lucite (lin x l'in x lin); @, bar, Al (lin x 1in x 1in), Lucite (1in x lin x 1in),

composte (0-5in x 1in x 11in).

interface is present. Measurement of the driving point admittance on bars yielded similar
overall results as the plate. The effective reflection coefficients for bars with various graded
impedance layers are shown in Figures 9 and 10. The gradation materials are attached at
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Figure 10. Reflected energy for different levels of graded impedance interface including composite, at the edges
(experimental data for a 2 ft x 1in x 1 in steel bar). The three cases are: @, bar, Al (1in x 1in x 1in), Lucite
(0-5in x lin x 1'in); [J, bar, Al (lin x lin x lin), composite
(0-5in x lin x 11in); A, bar, composite (0-5in x 1 in X 1 in).

(lin x l'in x 1in),
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the 1 in x 1 in ends. The mounting resonance in admittance data for bars is at 16 kHz and

hence the reflection coefficients are calculated only for peaks with frequency lower than
10 kHz.

3.2. THEORETICAL DISCUSSION OF THE RESULTS

In an attempt to understand and quantify the measured data two models were
considered for the bending wave reflection coefficient from the edges of a bar with different
levels of graded impedance interface. The models are both one-dimensional, corresponding
to reflection from the end of a semi-infinite bar with an end section of varying properties.
The two flexural theories used, the Kirchhoff theory and the Mindlin theory, are briefly
reviewed in Appendix A. The reflectivity analysis is performed using an S-matrix
formulation for flexural waves theory, which is also explained in detail in Appendix A.
The geometrical parameters are as in the experiments on bars, i.e., square cross sectional
area, 1in x 1in.

The calculated square of the reflection coefficient is plotted in Figure 11 for the model
based on Kirchhoff theory. It is significant that the Kirchhoff theory fails to predict the
level of energy damping seen in experiments (as in Figure 9). The squared reflection
coefficients for the model based on the Mindlin theory are compared with the
corresponding experimental results in Figures 12—-15 for different levels of gradation in
the graded impedance interface. There is satisfactory agreement in the magnitude and the
frequency dependence between the Mindlin theory results and the experimental results.
The valleys observed in the Mindlin theory results, however, are not seen in the
experimental results, which may be because of the few resonances in the frequency range
of the valley.

The fact that the thin beam Kirchoff theory is not adequate is not surprising because
of the small wavelength/thickness ratios of the materials in Table 1. At 10 kHz these range
from about 6-2 for steel down to 1-5 for the composite. The major difference between the
Kirchhoff and Mindlin theories is that shear effects are more accurately modeled by
the latter, and it is therefore concluded that shearing motion is an important source of
the energy loss in this problem.

R

0 5 10 15 20 25
Frequency (kHz)
Figure 11. Reflected energy calculated using Kirchhoff theory. The four cases are: ————, steel bar
(2ftx 1in x lin); ----, steel bar (2ftx lin x lin), Al (lin x lin x lin); ——--—, steel bar
(2ft x 1in x lin), Al(lin x 1in x lin), Lucite (lin x lin x 1in); ——, steel bar (2ftx1in x lin), Al

(lin x I'in x 11in), Lucite (1 in x 1in x 1 in), composite (0-5in x 1in x 1 in). All the materials are attached at
l'in x I in ends.
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Figure 12. Reflected energy: @, steel plate (2 ft x 2 ft x 1in), composite (0-5in x 2 ft x 1in) glued at
2 ft x 1 in surfaces (experiment); , steel bar (2 ft x 1 in x I in), composite (0-5in x 1in x 1in) attached at
lin x 1in ends (Mindlin theory).

3.3. EFFECT OF IMPEDANCE, DENSITY AND DAMPING VARIATION IN A GRADE ON ITS REFLECTION
COEFFICIENT

In order to understand better the experimentally observed phenomenon, reflectivity

analysis is now performed for a steel bar (1 ft) with a graded impedance interface at the
end, using the S-matrix formulation based on Mindlin flexural theory as described in
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Figure 13. Reflected energy: @, steel plate (2ft x 2ft x 1in), Al (lin x 2ft x 1in), composite
(0-5in x 2 ft x 1in) attached at 2ft x 1in surfaces (experiemnt); ——, steel bar (2ftx1in x 1in), Al

(lin x l'in x 11in), composite (0-5in x 11in x I in) attached at 1 in x | in ends (Mindlin theory).
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Figure 14. Reflected energy: @, steel plate (2 ft x 2 ft x 1in), Al (1 in x 2 ft x 1 in), Lucite (1 in x 2 ft x 1 in)
attached at 2 ft x 1in surfaces (experiment); ——, steel bar (2 ftx 1in x lin), Al (1in x 1in x 1 in), Lucite
(l'in x l'in x 1 in), attached at 1 in x I in ends (Mindlin theory).

Appendix A. The grade is assumed to consist of 100 gradiation layers each 0-02 in in
thickness and a final layer of Soundcoat GP3 composite (see Table 1), a damping material,
0-51in in thickness. The gradation is specified by the density and impedance in each
layer. The geometrical parameters are as in the experiments on bars. That is, square
cross-sectional area, 1in x 1in. Three types of impedance variation in the grade are
considered for analysis, namely, exponential decrement, linear decrement and flipped
exponential decrement, as shown in Figure 16. The flipped exponential curve is obtained
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Figure 15. Reflected energy: @, steel plate (2 ft x 2 ft x 1in), Al (1 in x 2 ft x 1 in), Lucite (1 in x 2 ft x 1 in),
composite (0-5in x 2in x 1| in) attached at 2 ft x 1 in surfaces (experiment); ——, steel bar (2 ft x 1 in x 1 in),
Al (1in x 1in x 1in), Lucite (1 in x 1in x 1 in), composite (0-5in x 1 in x I in), attached at 1 in x 1 in ends
(Mindlin theory).
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Figure 16. Impedance variation in a grade of 100 layers in between steel and composite. The three cases are:
, exponential variation; ————, linear variation; and ----, flipped exponential variation (see text for
explanation).

by flipping the exponential curve both about the linear and about the perpendicular to the
linear line. The impedance of the layers in the grade varies gradually from that of steel
to that of composite.

In the exponentially decreasing impedance gradation the ith layer impedance is
Z§ M0y 70 where Z, and Zy, are the impedances of steel and composite, respectively.
The average impedance in this grade is closer to the impedance of the composite than it
is to the impedance of steel. In the linearly decreasing impedance gradation the ith layer
impedance is Zo(1 — i/101) + Z,,1(i/101). The average impedance in this grade is equal to
the average of impedances of steel and composite. In the flipped exponentially decreasing
impedance gradation the ith layer impedance is Z, + Zio — Z{"%Z{, 'Y, The average
impedance in this grade is closer to impedance of steel then it is to impedance of composite.

The square of the reflection coefficient based on Mindlin flexural theory is plotted in
Figure 17 as a function of frequency for three grades with the types of impedance variation
mentioned above. The density in all the three grades is assumed to be flipped exponentially
decreasing. Damping is present only in the composite. Figure 17 indicates that the grade
with exponentially decreasing impedance has the least amount of reflectivity and the grade
with flipped exponentially decreasing impedance has the greatest amount of reflectivity
except for a very small band of frequency. At the higher frequencies, especially, the grade
exponentially decreasing impedance has significantly lower reflectivity than the grade with
flipped exponentially decreasing impedance. As much as 80% of the energy is damped at
higher frequencies for the grade with exponentially decreasing impedance.

The reason for lower reflectivity for a grade with exponential impedance decrement
compared to a grade with flipped exponential impedance decrement is due to a larger
amplitude near the free end in the former case. This fact is clearly evident if the amplitudes
of the propagating waves in the layers are examined. Thus, Figure 18 shows the
propagating wave ampltiudes in an exponentially decreasing impedance gradation at
frequency 12-58 kHz, and in a flipped exponentially decreasing impedance gradation at
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Figure 17. Reflected energy calculated using Mindlin theory for a steel bar (1 ft x 1in x 1in), grade of 100
layers (0-021in x 1in x 1in), composite (0-5in x 1in x 1in). The density variation in the grade is of flipped
exponential form. The impedance variation in the grade for the three cases is as follows: ——, exponential form;
————, linear form; - - - -, flipped exponential form. Damping is present only in the composite.
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Figure 18. Amplitude of propagating waves in a steel bar (1ft x 1in x lin), grade of 100 layers
(0-02in x lin x 1in). The density variation in the grade is of flipped exponential form. The four cases are: X
amplitude of wave propagating in positive direction with frequency = 12-58 kHz, the impedance variation in the
grade is of exponential form; — — —, amplitude of wave propagating in negative direction with frequency
= 12-58 kHz, the impedance variation in the grade is of exponential form; ——, amplitude of wave propagating
in positive direction with frequency = 17 kHz, the impedance variation in the grade is of flipped exponential form;
and ----, amplitude of wave propagating in negative direction with frequency = 17 kHz, the impedance
variation in the grade is of flipped exponential form. Loss factor in the gradiation layers is same as that of steel.
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Figure 19. Amplitude of propagating waves with frequency = 12-58 kHz in a steel bar (1 ft x 1in x 1in),
grade of 100 layers (0-02 in x 1 in x 1in), composite (0-5in x 1in x 1 in). The impedance variation in the grade
is of exponential form and the density variation is of flipped exponential form. The two cases are: , amplitude
of wave propagating in +ve direction; ———, amplitude of wave propagating in —ve direction. Damping is
present only in composite.

17-00 kHz. It is of note that the end amplitude of the former case is ten times larger than
the latter. In both these cases there is no composite, and hence no source of energy
dissipation, at the end. However, Figure 19 shows propagating wave amplitude at
12-:58 kHz in an exponentially decreasing impedance gradiation with composite placed at
the end. The amplitude of the reflection propagating wave is clearly of much smaller
amplitude than the incident wave. Thus, the large amplitude at the end of the impedance
gradation enables significant energy dissipation within the composite.

The effect of the density variation in a grade was analyzed for grades with the same three
types of variation, shown in Figure 16, that were considered for impedance variation. It
was found that there is little difference in the average reflection coefficient in a unit
frequency band for the three types of gradation and hence the results are not plotted. The
only significant change is in the number of peaks in the reflection coefficient curve obtained
per unit frequency band. The reflection coefficient curve of flipped exponentially decreasing
density gradation has the most number of peaks per unit frequency band and the reflection
coefficient curve of exponentially decreasing density gradiation has the least number of
peaks.

Finally, the effect of dissipation within the gradation layers was considered. A singificant
effect is achievable (15% more damping) in an exponentially decreasing impedance
gradation as shown in Figure 20. The two curves in Figure 20 are the reflection coefficient
of an exponentially decreasing impedance grade without damping in the gradation layers
and the reflection coefficient of the same grade with exponentially increasing damping
variation in the gradation layers. It was found that the effect of damping in gradation
layers of a linearly decreasing impedance gradation and a flipped exponentially decreasing
impedance gradation is only marginal.
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Frequency (kHz)

Figure 20. Reflected energy calculated using Mindlin theory for a steel bar (1 ft x 1in x 1in), grade of 100
layers (0-02in x 1in x lin), composite (0-5in x 1in x lin). The impedance variation in the grade is of
exponential form and the density variation is of flipped exponential form. The two cases are: ——, loss factor
in the gradation is equal to that of steel; and — — —, loss factor in the gradation is exponentially increasing
from that of steel to that of composite.

4. CONCLUSIONS

A graded impedance interface at the edges of plates and bars leads to a large attenuation
of structural wave reflections at the edges. As much as 60-80% damping of energy is
achieved in a 1 in thick steel plate for frequencies from 2-10 kHz, using one realization
of this approach. The attenuation of reflected energy in this mechanism is far superior to
that obtained by a viscoelastic material or sand alone at the edges. Moreover, the
attenuation is achieved over a wide band of frequencies and the attenuation is in fact better
for higher frequencies. This attenuation mechanism is expecially useful when the
simulation of an infinite plate is desired.

The flexural vibration of a bar with a graded impedance interface at the edges is modeled
both by using the Mindlin flexural theory and the Kirchhoff flexural theory along with
the S-matrix formulation. It has been found that the Mindlin theory predicts the level of
energy damping observed in experiments, whereas the Kirchhoff theory predicts much
lesser energy damping. The shear effects are modeled more accurately in the Mindlin theory
and they seem to be important in this problem.

Numerical simulations indicate that the lowered reflectivity is caused by energy
dissipation within the composite material at the free end. However, the degree of energy
loss is crucially enhanced by the relatively large amplitude of the freely propagating waves
caused by the impedance gradation. The numerical results show that the type of impedance
variation in a grade has a significant effect on the amplitude at its end. The type of density
variation in a grade, however, has little effect on the average level of reflectivity. It is also
possible to obtain decreased reflectivity by introducing additional damping in the
gradation layers, although the damping profile must be carefully matched to the impedance
variation, otherwise the effect is not appreciable. These results indicate that numerical



WAVES IN PLATES AND BARS 123

simulation based on Mindlin’s theory can be used for the design of bending wave
attenuation devices.
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APPENDIX A: THEORETICAL FORMULATION

A.l. KIRCHHOFF THEORY

The equations of motion for a uniform bar are well known and can be found in many
textbooks, for example, Timoshenko [11]. The Kirchhoff theory models the mechanics in
a bar using a single field variable, the transverse displacement, w(x, ). The solutions to
the equations of motion for a time dependence of exp(—iwt) represent propagating waves
explik;x] and exp[ —ik,x], and evanescent waves exp[ —k,x] and exp[k,x]. The flexural wave
number, k;, is

k¢ = me?/EI (Al)

where m is the mass per unit length and ET is the flexural rigidity of the bar. The slope
is ow/0x and the bending moment and the shear force are

M, = —EI 3*w/0x?, V.= —EI 0*w/0x’. (A2)
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A.2. MINDLIN THEORY

The Mindlin theory models the mechanics in a bar using two variables, a rotation,
Y (x, t), in addition to the transverse displacement, w(x, t). For a time dependence of
exp(—iwt), the 1-D equations of motion reduce to [12]

(@)0x> + KWW, =0 (820x* + k2w, = 0, (A3)

where w = w; + w; is the total transverse displacement. The rotation, i is defined in terms
of w; and w; as

W = A(k)) 0w /0x + A(k,) Ow,/0x, (A4)
where
Ak)y= -1+ Kk, j=1,2. (A5)
The wave numbers k, and k, are given by
ki =305 + k) £ K+ 5k — k) (A6)

where

k=ole. k=0l  o=@m", @:Laéwii “

and k, is as defined in equation (Al). The parameters E, p, and v in equation (A7) are
the modulus of elasticity, density and Poisson’s ratio of the material, respectively. The
parameter g = n*uh/12, in equation (A7), is a modified shear modulus where y is the shear
modulus and / is the thickness of the bar. The parameter m = ph, in equation (A7).

Since ki > 0 always, the solutions to the first equation of motion (A3) are the
propagating waves exp[ik;x] and exp[—ik;x]. The solutions to the second equation of
motion (A3) are exp[ik,x] and exp[ —ik,x], which may be either propagating or evanescing
depending on whether w is above or below the cutoff frequency, \mcx /h, respectively.
Finally, the bending moment and the shear force are

M, =EIoy,)ox, V.= g@w/ox + y,). (A8)

A.3. REFLECTIVITY ANALYSIS USING THE S-MATRIX METHOD

The S-matrix relates the waves going into a control volume and the waves coming out
of the same control volume [13]. It is defined as

(V] = [STV™, (A9)

where [S] is a 2N x 2N matrix [V°"] is a 2N-vector representing the outgoing waves
and V" is a vector representing the incoming waves. N is 2 for flexural waves according
to either Kirchhoff or Mindlin theory. In the S-matrix formulation, distinct control
volumes are identified and S-matrices are determined for each of them. The overall
S-matrix is then computed from these S-matrices. For the present problem, the S-matrices
are required for a junction of two different materials, for a region of uniform material,
and for a free end.
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Figure 21. Waves at a junction for a wave incident from the left.

The S-matrix, [St], for a combination of two adjacent control volumes, say 4 and B,
whose S-matrices are [S,] and [Sg] respectively, can be expressed as

_ L[ SHu—sistyStSE4 SEI— i) sist
(S1] = OIS = [S;* Fsiu-sishsts o sta—sishose | A9

The convention,

IS s
-[2 3

is used in obtaining equation (A10), where Si, S,, S5 and S; are N x N sub-matrices.

A.3.1. S-Matrix for a junction

At a junction, in general, there are waves incoming from both sides, and each incoming
wave leads to a set of reflected waves and transmitted waves. First consider the incoming
waves in the forward direction, as illustrated in Figure 21. The vectors a*, b™ and a~ in
Figure 21 are N-vectors representing the magnitude of the incident waves, the transmitted
waves and the reflected waves, respectively, and N = 2. The first component in these
vectors is the magnitude of the propagating wave and the second component is the
magnitude of the evanescent wave, in Kirchhoff theory, and the magnitude of the wave
which may be propagating or evanescing, in the Mindlin theory. The * sign indicates that
a wave propagates or evanesces in the positive x-direction and the ~ sign indicates that
a wave propagates or evanesces in the negative x-direction. The vectors a- and b* are
defined in terms of the vector a*, using a 2 x 2 reflection matrix, [R/], and a 2 x 2
transmission matrix, [T,], respectively:

a- =[Rja", b =[T/Ja". (A12)
The subscript f'in [R,] and [T,] indicates that these matrices are for incoming waves in the
forward direction.

There are four continuity conditions at a junction, requiring that the displacement, the
slope, the bending moment, and the shear force are continuous. The consequent solution
for [R/] and [T,] when Kirchhoff theory is used is explicitly derived in reference [14]. When
the Mindlin theory is used, the four continuity conditions simplify to the equations

1 1 1 1 1 1
R/ = T, Al3
|:k11A11 k21A21:| + |:_k11A11 _k21A21:|[ f] |:k12A12 k22A22:|[ ./]’ ( )

klzlAll k%lA2l + klzlAll k%lAZI [R]
kll(l +A11) k2](1 +A21) —kn(l +A1]) _kzl(l +A21) !

kir412D>/D; k3 A» D, D,
B L/ L/ LV Al4
|:k12(1 + Ap)i/it kn(1 + An)in/ i [T/]. ( )
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Figure 22. Waves at a junction for waves indicent from the left and the right.

where k;, i, j = 1, 2, are wave numbers, 4;, i, j = 1, 2, are constants depending on the wave
numbers according to equation (AS), D;, i = 1, 2, are flexural rigidities and g, i = 1, 2, are
modified shear moduli, as defined previously. The first subscript in the wave numbers and
in the constants depending on the wave numbers refers to the number of the wave and
the second subscript refers to the material. The subscripts in the flexural rigidities and in
the modified shear moduli refer to the material. The continuity conditions lead to unique
solutions for [R/] and [T,], which are quite lengthy and hence are not written out explicitly.
The reflection and transmission matrices for an incoming wave in the backward direction,
[R,] and [T,], respectively, are evaluated using a similar procedure.

The S-matrix for a junction control volume can now be easily obtained by using the
results derived so far in this section. The general case of a junction with waves incident
from both sides is illustrated in Figure 22. According to the definition of the S-matrix in
equation (A9), the S-matrix of a junction, [Sj.], is determined by

b* +e¢* | _ o 42"
[a‘ 4 d‘} = [Sﬂm][c_:|. (A15)
Using the definitions of the transmission and reflection matrices, it is easy to see that
[T/][R,]
Sin] = . Al6
[Sy] [[R,]m] (A16)

A.3.2. S-Matrix for a region of uniform material

The general case of a region of uniform material of length 4 with incoming and outgoing
waves at both ends is illustrated in Figure 23. The points ‘1’ and ‘2’ are the end points
of the control volume. The vectors b* and d~ are N-vectors representing the magnitude
of the outgoing waves and the vector a* and ¢~ are N-vectors representing the magntiude
of the incoming waves, where N = 2. According to the definition of the S-matrix in
equation (A9), the 2 point S-matrix, [S,,], is determined by

b* a’
R )

+ —» —
a N ’\f\yb
[ [ ]
d - 1 24/\/\ c
T T
x=0 x=d
X —»

Figure 23. Waves in a region of uniform material.
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Figure 24. Waves at a free end.

Noting that the reflection matrices are zero and the transmission matrices are diagonal,
it is easy to see that

eilqd 0 0 O

0 eikzd 0 0
S, ] = . AlS8
[S2/] 0 0 R 0 ( )

0 0 0 eh

where the wave numbers k, and k, are k,; and ik,, respectively, in Kirchhoff theory, and
are given by equation (A6), for Mindlin theory.

A.3.3. S-Matrix for a free end

At a free end, as shown in Figure 24, there is an incoming wave only in the forward
direction, requiring that [T,] and [R;] in the right hand side of equation (A16) are zero.
Since all the energy is reflected, [T/] is also zero, and hence, only [R/] is non-zero. [R/] is
obtained using the boundary conditions that the bending moment and the shear force are
both zero. The solution for [R,], when Kirchoff theory is used, is derived in reference [14].
When the Mindlin theory is used the boundary conditions simplify to

k121A11 k%lAZI k121A11 k%lAﬂ
kn(] + An) k21(1 + Azl) —kn(l + An) _k21(1 + Azl)

}[R/] =0, (Al9)

where k; and Ay, i,j =1, 2 are as defined in section A.3.1. The matrix equation (A19) is
easily solved for [R/]. The solution, however, is not written out here explicitly due to the
lengthiness of the expressions.



