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A time harmonic line force or moment is applied at the junction of two plates in welded
contact, with or without unilateral fluid loading. The objective is the 2×2 matrix of
admittances relating the applied force and moment to the deflection and rotation at the
load. The structural asymmetry leads to coupling between force and rotation, and between
moment and deflection, even in the absence of fluid loading. The impedance matrix is
derived for sources with linear phase variation of the form eikyy for real ky . The dry plate
problem is addressed first, and displays the possibility of a resonance when the drive is in
phase with a flexural Stoneley wave, which is defined here. The fluid-loaded problem is
attacked by expressing the vibration of either plate and the acoustic response in the fluid
as transforms, the integrands of which are derived using the Wiener–Hopf technique. It
is found that the wet response shows the same general behaviour as for the dry plates, but
without the possibility of a structural resonance. Numerical examples are presented
showing the frequency dependence of the admittance matrix for joined steel plates in water.
The general theory for distinct plates under fluid loading also provides a new formula for
the line admittance of a uniform plate in a fluid.
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1. INTRODUCTION

The line admittance function for a fluid-loaded structure is one of the basic elements
required for understanding and computing the interaction of acoustic and structure-borne
sound. Over 20 years ago Nayak [1] published numerical computations for a steel plate
in water. Subsequently, these results were complemented by Crighton [2], who gave explicit
analytical solutions for the force and moment admittance, and also provided useful
asymptotic approximations valid for heavy fluid loading. Both authors considered the
classical thin plate model for flexural waves. Subsequent papers [3–6] provided alternative
derivations of Crighton’s [2] basic result. However, of these only Smith [5] provided any
significant new insights. He showed that the Wiener–Hopf analysis of Crighton [2] can be
easily circumvented using contour integration, and he also discussed generalizations of
Crighton’s formulae.

This paper deals with the analogous problem for a line force and moment applied at
the junction of a pair of plates. The situation is depicted in Figure 1. Both plates are
modelled by classical bending theory, and are assumed to be in welded contact at the join.
The plates may be dry (in vacuo) or wet, i.e., fluid loaded on one side, zq0 in Figure 1.
We sill consider the dry and wet problems separately, and derive the response at the drive.
The method of solution is quite different in each case, and far more involved for the latter.
However, there are some interesting features of the dry plate problem that are not present
in the fluid-loaded situation. We will see that resonances associated with interfacial flexural
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Figure 1. The plate junction, applied loading, and co-ordinate system.

waves are possible. The related but simpler problem of a phased line load on a uniform
plate under fluid loading has recently been solved by Photiadis [7].

The main results of the paper concern the admittance matrix for a pair of plates in
fluid. This solution is fundamental to problems involving acoustic and structural wave
interaction with junctions. For instance, the scattering of a flexural wave from a
three-member junction comprising the junction in Figure 1 with an internal member
attached at x=0 can be solved in a relatively simple manner once the admittance matrix
is known. For example, Photiadis [7] has used the solution for a uniform plate to find the
acoustic and structural response for a flexural wave obliquely incident on a rib.
Fluid-loaded problems of the type depicted in Figure 1 are necessarily tackled using the
Wiener–Hopf technique [8]. For instance, Brazier-Smith [9] considered the diffraction of
acoustic and structure-borne waves at plate junctions, and obtained numerical results using
the Wiener–Hopf analysis. His method of solution relies upon numerical evaluation of
many unknown constants, and is not readily adapted to finding the deflection and rotation
at a line load. The procedure followed here is more direct than Brazier-Smith’s, and leads
to semi-explicit formulae for the admittance matrix relating the deflection and rotation to
the force and moment. Unfortunately, the contour integration method of Smith [5] does
not lend itself to the present problem. The method of solution used here is closely related
to that of Norris and Wickham [10] who obtained a semi-analytic solution for the problem
considered by Brazier-Smith [9]. There are two central steps involved in this approach.
First, the Wiener–Hopf factorization of the dispersion functions is obtained as a finite and
easily computed integral. The factorization also leads to explicit expressions for the plate
displacement near the edge. Relatively simple matrix equations can then be derived,
depending on the explicit edge constraints. In this paper we deal with a concentrated
loading at the junction itself. We also include the possibility of a phase term eikyy along
the junction −aQyQa. The previous analyses [9, 10] were for the case of ‘‘normal’’
incidence, ky=0.

The fluid loaded problem is defined in section 2, and the simpler case of a pair of
plates in vacuo is considered and solved in section 3. The general solution for fluid loading
is developed in section 4, with the more mathematical details relegated to appendices.
Several interesting limiting cases are discussed in section 5, including light and heavy fluid
loading.

2. FORMULATION OF THE PROBLEM

2.1.  

The two plates may have different densities, elastic properties, and thicknesses, but each
is uniform and its motion is modelled by the classical theory of dynamic flexure. The plates
lie in the plane z=0 and meet along x=0. All motion is time harmonic motion of
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frequency vq0, with the term Re{·e−ivt} understood but suppressed. The plate equations
are

Bj9
292w(x, y)−mjv

2w(x, y)=−p(x, y, 0), 6xQ0,

xq0,

j=1,

j=2,
(1)

where w(x, y) is the plate deflection in the z-direction, and p(x, y, z) is the acoustic
pressure in the fluid, which occupies the half-space 0QzQa. Also, m1,2 are the areal
mass densities, and B1,2 the bending stiffnesses of the distinct plates. The pressure and
deflection are related by the continuity condition

rv2w(x, y)=
1p
1z

(x, y, 0), −aQx, yQa, (2)

where r is the fluid mass density per unit volume. Finally, the pressure satisfies the
Helmholtz equation

92p+k2p=0, −aQx, yQa, 0QzQa, (3)

where k=v/c is the acoustic wavenumber, and c is the fluid sound speed.
Elimination of w(x, y) between the two boundary conditions (1) and (2) gives a single

equation for the pressure,

L1p(x, y, 0)=0, xQ0, −aQyQa, (4a)

L2p(x, y, 0)=0, xq0, −aQyQa, (4b)

where the operators are defined as

Lj=1+aj $k−4
j 0 12

1x2+
12

1y21
2

−1% 1

1z
, j=1, 2, (5)

with

k4
j =v2mj /Bj , aj=mj /r, j=1, 2. (6)

Thus, k1,2 are the flexural wavenumbers of the plates, and a1,2 are the ‘‘null frequency’’
lengths. We are interested in a line source situated right at the junction of the two
plates. Equations (4) hold for all non-zero values of x, but not at x=0, where certain
conditions need to be imposed. First, the deflection, w, and the rotation, w,x01w(x, y)/1x,
are both continuous at the junction. We consider an applied phased line force in the
positive z-direction, F0 eikyy, and a phase line moment about the y-axis (in a right-handed
sense), M0eikyy, such that

Mx (0+)−Mx (0−)=−M0 eikyy, (7a)

[Sx (0+)−Mxy,y (0+)]−[Sx (0−)−Mxy,y (0−)]=−F0 eikyy. (7b)

The bending and twisting moments and the shear force on either plate are given by the
classical relations

Mx (x, y)=−Bj [w,xx (x, y)+njw,yy (x, y)], (8a)

Mxy (x, y)=Bj (1−nj )w,xy (x, y), Sx (x)=Mx,x−Mxy,y , (8b, c)

where nj is the Poisson’s ratio and j=1 and 2 for xQ0 and q0, respectively. We note that
Sx−Mxy,y is the effective shear force acting in the positive z direction, or the
Kelvin–Kirchhoff force [11]. Equation (7b), for example, may be derived by considering
a free body diagram for a segment −e/2ExEe/2, and letting e:0. In this limit the
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inertial effects of the plate and the pressure loading from the fluid, −mv2w(0)e and
p(0, 0)e, respectively, both tend to zero, leaving the force balance given. This argument
implicitly assumes that the pressure is bounded at the junction, which can be verified a
posteriori.

Finally, we note that the pressure, in addition to satisfying the boundary conditions on
the plates, and the Helmholtz equation (3) in the fluid, is subject to a radiation condition
as zx2+y2+z2:a. The plate deflection also satisfies a radiation condition as =x =:a.
The problem then has a unique and physically meaningful solution.

2.2.  

The equations can be simplified by removing the multiplicative factor eikyy from
all quantities. The problem is then essentially two-dimensional. Thus, we assume that p
and w have the explicit dependence

p(x, y, z)=p̄(x, z)eikyy, w(x, y)=w̄(x) eikyy. (9)

The boundary equations (4) for pressure become

L� 1p̄(x, 0)=0, xQ0; L2p̄(x, 0)=0, xq0; (10)

where the operators are now defined as

L� j=1+aj $k−4
j 0 12

1x2−k2
y1

2

−1% 1

1z
, j=1, 2. (11)

The Helmholtz equation (3) becomes

0 12

1x2+
12

1z2+k�21p̄=0, −aQxQa, 0QzQa, (12)

where

k�2=k2−k2
y . (13)

The jump conditions at the plate junctions (7) and (8) can be written as

B2[w̄,xx (0+)−(1−h2)k2
y w̄(0+)]−B1[w̄,xx (0−)−(1−h1)k2

y w̄(0−)]=M0, (14a)

B2[w̄,xxx (0+)−(1+h2)k2
y w̄,x (0+)]−B1[w̄,xxx (0−)−(1+h1)k2

y w̄,x (0−)]=F0, (14b)

where

hj=1−nj , for j=1, 2. (15)

Also note that the deflection w̄ and its first derivative w̄'=dw̄/dx are both continuous at
the junction.

2.3.    

The main focus of this paper is to determine the admittance matrix, Y(p), which relates
the forces and velocities according to

$−ivw̄(0)
ivw̄'(0) %=$Y(p)

11

Y(p)
21

Y(p)
12

Y(p)
22%$ F0

M0%, (16)

or equivalently, the impedance matrix, defined by

$ F0

M0%=$Z(p)
11

Z(p)
21

Z(p)
12

Z(p)
22%$−ivw̄(0)

ivw̄'(0) %, (17)
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and therefore

Z(p)=(Y(p))−1. (18)

The superscript (p) is used to denote the matrices as ‘‘physical’’, i.e., in the sense that
they are normally understood and defined. Equation (16) can be written succinctly as
vi=SjY(p)

ij fj , where i and j take the values 1 and 2. The average power that the drive puts
out over a single cycle is 1

2Re Si, j ( f*i Y(p)
ij fj ), where * denotes the complex conjugate. This

must be non-negative for arbitrary complex values of f1 and f2, implying that the elements
of the admittance matrix satisfy the inequalities,

Re Y(p)
11 e0, Re Y(p)

22 e0, (19a, b)

Re Y(p)
11 Re Y(p)

22 −Re Y(p)
12 Re Y(p)

21 e0, (19c)

Re Y(p)
11 Re Y(p)

22 +Im Y(p)
12 Im Y(p)

21 e0. (19d)

We also note that the off-diagonal elements of the matrices are related by

Y(p)
21 =Y(p)

12 , Z(p)
21 =Z(p)

12 , (20)

which can be derived from the principle of mechanical reciprocity as follows. Consider an
effective shear force F0 applied at the junction. The resulting horizontal displacement at
points through the thickness section at x=0 then depends upon the rotation, or Y(p)

21 F0 from
equation (16). Now consider a pair of equal and opposite horizontal forces applied at the
junction, equivalent to a couple M0. The resulting deflection of the junction is proportional
to Y (p)

12 M0 from equation (16). General reciprocity in linear elasticity implies that the
displacement in the n2 direction at x2 due to a force F applied at x1 in the n1 direction is
the same as the displacement in the n1 direction at x1 due to a force F applied at x2 in the
n2 direction. Application of this to the pair of loadings immediately implies equation (20).

It is more convenient for our purposes to define related matrices Y and Z such

that

$ w̄(0)
−iw̄'(0)%=$Y11

Y21

Y12

Y22%$−M0

iF0 %, (21)

and

Z=Y−1. (22)

The two sets of matrices are easily related to one another as, for example,

$Y(p)
11

Y(p)
21

Y(p)
12

Y(p)
22%=v$ Y12

−iY22

iY11

Y21%, $Z(p)
11

Z(p)
21

Z(p)
12

Z(p)
22%=1

v $ Z21

−iZ11

iZ22

Z12%. (23a, b)

The reciprocity identities (20) imply that the alternative form for the admittance satisfies

Y22=−Y11 \Y−1=−(det Y)−1Y, (24)

and hence the matrices Y and Z are proportionate.
The remainder of the paper will deal with the question of finding Y and Z. We begin

with the simpler case of dry plates, which will be used later for comparison with the wet
results.
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3. THE DRY JUNCTION IMPEDANCE

3.1.  

It is both instructive and useful in its own right to consider the admittance
matrix for line forces and line moments applied at the junction of two dry plates, i.e.,
in vacuo. In the absence of the fluid loading the only waves of relevance are the propagating
and evanescent flexural waves on either plate. The deflection w(x) can therefore
be expressed as a sum of the wave types which satisfy the radiation condition of
propagation away from the junction. Also, the deflection and its first derivative are
continuous at x=0.

The dry plate equations are given by equation (1) with p00. The dispersion relation
for straight-crested waves of the form ei(jx+kyy) on uniform and infinite plates of either
material is

(j2
j +k2

y )2−k4
j =0, j=1, 2. (25)

The complex j-plane comprises two infinite subsets H+ and H−, which are defined to
cover the upper and lower halves of the plane, respectively. Their intersection is a thin strip
about the real line which by definition excludes all the material wavenumbers, such as k1

and k2. This can be realized by allowing v to have a small positive imaginary part.
Let jj1 and jj2 be the two roots in H+, such that

j2
j1+j2

j2=−2k2
y , j2

j1j
2
j2=k4

y−k4
j . (26)

It is then a simple matter to see that the general solution must be of the form

w̄(x)=
j12w̄(0)−iw̄'(0)

j12−j11
e−ij11x+

j11w̄(0)−iw̄'(0)
j11−j12

e−ij12x, xQ0, (27a)

w̄(x)=
j22w̄(0)+iw̄'(0)

j22−j21
eij21x+

j21w̄(0)+iw̄'(0)
j21−j22

eij22x, xq0. (27b)

Substituting these into the joint conditions given by equations (7) or (14) yields a pair of
coupled equations for the unknowns w̄(0) and w̄'(0) in terms of the applied line force F0

and moment M0. The coefficients in these linear equations immediately give us the elements
of the impedance matrix Z. Thus, using the identities (26),

Z(dry)=

$ B1(j11j12−n1k2
y )−B2(j22j21−n2k2

y )
−B1(j11+j12)j11j12−B2(j21+j22)j22j21

B1(j11+j12)+B2(j22+j21)
B2(j22j21−n2k2

y )−B1(j11j12−n1k2
y )%. (28)

The admittance then follows from the fact that Y and Z are proportionate (see equation
(24)), or

Y(dry)=−(det Z(dry))−1Z(dry). (29)

3.2. - 

The excitation of beams corresponds to the strictly two-dimensional limit of the present
theory. When ky=0 the roots become jj1=kj and jj2=ikj , and the dry admittance and
impedance matrices are

Y(dry)=
(B1k

2
1+B2k

2
2 )−1

(1+q)2−(1+q2)r2 S, Z(dry)=
1
2q

(B1k
2
1+B2k

2
2 )S, (30)
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where

S=$ −i2qr
(1−i)k2[1+q−(1−q)r]

(1+i)k−1
1 [1+q+(1−q)r]

i2qr %, (31)

and

q0k2/k1=(a/b)1/4, r0(bq2−1)/(bq2+1). (32a, b)

The dimensionless parameters a and b are defined as the density and stiffness ratios,

a=m2/m1, b=B2/B1. (33a, b)

We will find these parameters useful in the general theory for wet plates.

3.3.       

The dry plate system can exhibit a resonance if the line is driven at a wavenumber ky

for which interfacial flexural waves can exist. These are solutions to the homogeneous
equations of motion (no applied forces or moments) that are exponentially decaying on
either side of the junction of the plates. Therefore, if they exist all four wavenumbers
jij must be positive imaginary. Alternatively, the wavenumber ky must exceed both k1

and k2 in magnitude. The wave speed along the y-axis is thus slower than either flexural
wave speed. The wave is analogous to a Stoneley interface wave at the boundary
joining two homogeneous elastic half spaces, and for that reason we call it a flexural
Stoneley wave.

The condition for the existence of a flexural Stoneley wave can be expressed in terms
of the impedance matrix. We require that equation (17) is satisfied with F0=M0=0, but
with either or both of w̄(0) and w̄'(0) non-zero. The condition is therefore simply:

det Z(dry)=0, \ flexural Stoneley wave. (34)

If the driving wavenumber ky coincides with a flexural Stoneley wavenumber then the
admittance is singular. The singularity is a resonance phenomenon and occurs because the
forcing has precisely the phase of an interface wave propagating in the y-direction.
Alternatively, the plates are driven by a line force which phase matches to a travelling
wave, and hence the resonance. The resonance is pure (infinite Q) because there is no
damping in the system, and disappears with the introduction of realistic dissipation.

As a specific illustration, consider the case when the plates are identical. Then the 11
and 22 elements of Z(dry) in equation (28) vanish, implying that both Z(p,dry) and Y(p,dry) are
diagonal. For instance, the ‘‘physical’’ admittance matrix is

Y(p,dry)=
v

2B(j1+j2) $−1/j1j2

0
0
1%, identical dry plates, (35)

where j1 and j2 are now the two roots of equation (26) in H+. The sum j1+j2 is non-zero
for all values of ky , however, the product j1j2 vanishes at ky=k, and consequently the force
admittance Y(p,dry)

11 is singular at this value of ky . The moment admittance is always finite.
This example is degenerate in the sense that the flexural Stoneley wave coincides with the
simple flexural wave on the uniform plate, and does not decay away from the ‘‘junction’’.

In general, when the plates are dissimilar the existence of flexural Stoneley waves
depends upon whether or not equation (34) has real roots for ky . The question of existence
can be simplified if we assume that there is at most a single propagating root. This implies
that the sign of det Z(dry) changes at most once for ky in the range max {k1, k2}QkyQa.
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It is easily checked that

det Z(dry)=[(3+n1)B1+(1−n2)B2][(3+n2)B2+(1−n1)B1]k4
y+O(k2

y ), ky:a.

(36)

The existence condition can therefore be expressed as

det Z(dry)Q0, ky=max{k1, k2}, \ flexural Stoneley wave. (37)

With no loss in generality, let k1qk2, then using the dimensionless parameters 0QqQ1
and b of equations (32a) and (33b), the condition (37) becomes

−n2
1+[(z2z1−q2+z2z1+q2+2n1)z1−q4+2n1n2]b

+[1−q4+2(1−n2)z1−q4−n2
2]b2Q0, \ flexural Stonley wave. (38)

This condition is satisfied if b is small with all the other parameters held fixed. Therefore,
there are clearly circumstances under which flexural Stoneley waves can exist, and
resonance is possible. However, for other combinations of plate parameters the condition
(38) is not met and resonance will not occur. For example, the real and imaginary parts
of the determinant of Z(dry) of equation (28) are plotted as a function of the non-dimensional
frequency parameter,

V0k2/k2
1 , (39)

in Figure 2 for identical steel plates. The presence of the zero is apparent. The same plots
for a pair of dissimilar thickness steel plates (a=2) in Figure 3 shows that there is no zero
for the imaginary part, and hence no resonance. This is in agreement with the fact that
the condition (38) is not met by the plate parameters of Figure 3. It is interesting to note
that flexural edge waves along the free edge of a plate are always possible [12, 13], just
as their analog in bulk elasticity always exists, i.e., the Rayleigh wave.

4. THE FLUID-LOADED SOLUTION

The procedure for developing the solution is to first represent it as a transform, and then
apply the jump conditions (14). For uniform plates with line loads one can write down
the transform by inspection, however, the major difficulty here is finding the transform
itself. Once it is found one can perform asymptotic approximations to look at specific

Figure 2. The determinant of the impedance matrix Z(dry), equation (28), for a uniform steel plate where the
phase of the loading is given by ky=k sin 75°. ——, Real part; - - -, imaginary part.
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Figure 3. The frequency dependence of det Z(dry) for a pair of steel plates with a=2 which denotes a thickness
change of 100% with the same phase of loading given in Figure 2.

physical contributions. We begin with a formal expression for the transform, and then deal
with the jump conditions at the junction.

4.1.  

We first represent the pressure as a transform, or more precisely, we assume the solution
has the form

p̄(x, z)=
1
2p g

a

−a

p̃(j)e[ijx−g(j)z] dj, g(j)=(j2−k�2)1/2. (40)

g(j) is defined as an analytic function in the complex j-plane cut so that its real part is
non-negative and on the real axis, g(j)=−izk�2−j2, or g(j)=zj2−k�2, depending on
whether j2Qk�2 or j2qk�2, respectively. The transform solves equation (10) if p̃(j) satisfies
the dual equations

g
a

−a

D1(j)p̃(j)eijx dj=0, xQ0; g
a

−a

D2(j)p̃(j) eijx dj=0, xq0, (41)

where

D1,2(j)=1−g(j)V1,2(j), V1,2(j)=a1,2[k−4
1,2 (j2+k2

y )2−1]. (42)

Define the quotient function K as

K(j)=D1(j)/D2(j) (43)

and let K2(j) be the unique Wiener–Hopf factors, such that

K(j)=K−(j)/K+(j), K−(−j)=1/K+(j). (44)

Thus, by definition, K2(j) are analytic in the half-planes H2. Explicit formulae for K+(j)
are given in Appendix A, based upon a factorization method recently developed by Norris,
Relinsky and Wickham [14]. Also, define the generalized dispersion function,

G(j)0D2(j)/K+(j)=D1(j)/K−(j). (45)

The general homogeneous solution of the dual integral equations (41) must be of the
form

p̃(j)=A(j)/G(j), (46)
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where A(j) is any polynomial, of degree q, say. For every polynomial we thus have a
q-parameter family of outgoing pressure fields consistent with Helmholtz’s equation
and the plate boundary conditions (4). The precise form of the polynomial remains to be
determined, and as one might expect, it depends upon the proper application of the
junction conditions at x=0.

The pressure and the transverse plate deflection may now be expressed as

p̄(x, z)=A0−i
1

1x1p0(x, z), rv2w̄(x)=A0−i
d
dx1w0(x), (47a, b)

where the two fundamental potentials p̄0(x, z), and w̄0(x) are

p0(x, z)=
1
2p g

a

−a

e(ijx−gz)

G(j)
dj, w0(x)=

−1
2p g

a

−a

g(j)
G(j)

eijx dj. (48)

4.2.   w0   

Before dealing with the junction conditions we need to know how w0(x), and hence w̄(x),
behaves on either side of the join. In particular, some of its higher derivatives may be
discontinuous. We will demonstrate in this subsection that

w0(x)=s
7

n=0

l2
n

(ix)n

n !
+O(x8 log =x =), xm0, (49)

where the terms l2
n are given in Appendix B. We start with w̃+

0 , w̃−
0 , the half-line transforms

of w0, defined as

w̃+
0 (j)=g

0

−a

w0(x) e−ijx dx, w̃−
0 (j)=g

a

0

w0(x) e−ijx dx. (50)

These are also the analytic partitions of the full transform, w̃0, which follows from equation
(48), with

w̃0(j)=w̃+
0 (j)+w̃−

0 (j), (51)

and such that w̃+
0 (j) is analytic in H+ and w̃−

0 (j) is analytic in H−. The inverse transforms
associated with w̃+

0 and w̃−
0 vanish for xq0 and xQ0, respectively. Hence, these can be

used to find the behavior of w̃0 on both sides of x=0.
In order to find the half-transforms we first write w̃0 as

w̃0(j)=−g(j)/G(j)=[K+(j)−K−(j)]/P*(j), (52)

where P*(j) is the quartic

P*(j)=V2(j)−V1(j)=P*0 [(j2+k2
y )2−z4

0 ], (53)

with

P*0 =
B2−B1

rv2 , z4
0=

Dm
DB

v2=k4
1 0a−1

b−11, (54)

and a and b are defined in equation (33). The identity (52) follows from the two equations
(45) by elimination of g. The zeros of P*(j) are 2z1 and 2z2, where

z2
1+z2

2=−2k2
y , z2

1 z2
2=k4

y−z4
0 . (55)

Note the similarity to equations (26) for the four ‘‘dry’’ wavenumbers. Many of the
subsequent equations are simplified by definite choices for the roots. We therefore define
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them as

z2
1=z2

0−k2
y , z2

2=−z2
0−k2

y . (56)

The roots depend on the wavenumbers z0 and ky , and they are distinct (z1$z2) as
long as z4

0$0. We assume this to be the case, for simplicity.
We can now determine the partition functions from equation (52) by adding and

subtracting poles at the roots of P*(j), with suitable residues. Thus,

w̃2
0 (j)=2

K2(j)
P*(j)

3s
2

n=1 $ u+
n

j−zn
+

u−
n

j+zn%, (57)

where we have assumed, with no loss in generality, that the roots z1 and z2 of P*=0
lie in H+, and consequently the remaining pair of roots, −z1 and −z2, are in H−. Also,

u2
n =residue of $K2(j)

P*(j)%j=2zn

, n=1, 2, (58)

which can be evaluated as

u2
n =2[4zn (z2

n+k2
y )P*0 ]−1 e2sn , n=1, 2. (59)

The numbers s1,2 are defined by

K+(zn )=esn , n=1, 2, (60)

and the fact that K(2zn )=1 has been used in reducing u2
n . Equations (57) can now

be expanded about the point at infinity. Omitting the details, which are given in
Appendix B, we find

w̃2
0 (j)=2i s

7

n=0

l3
n j−(n+1)+O(j−9 log j), =j=:a. (61)

The first five coefficients in these expansions are given in equation (B9). It is then a simple
matter to relate these expansions to the asymptotic expansions of w0(x) at x=20, viz,
equation (49). We note that l+

n =l−
n for n=0 to n=2, and hence w0(x) and its first two

derivatives are continuous at x=0.

4.3.   A(j)
The fact that there are four edge conditions to be satisfied, i.e., continuity of w̄ and w̄'

and equations (14), suggests that we try

A(j)=s
3

n=0

Anj
n. (62)

The displacement near the origin therefore follows from equations (47b), (49), and (62),
as

rv2w̄(x)=s
4

n=0 0s
3

k=0

l2
j+nAj1 (ix)n

n !
+O(x5 log =x=), xm0. (63)

Kinematic continuity at the plate junction required that both w̄(x) and its first derivative
be continuous across x=0, implying

s
3

j=0

(l+
j −l−

j )Aj=0, s
3

j=0

(l+
j+1−l−

j+1)Aj=0, (64)
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respectively. However, the fact that l+
j =l−

j for j=0, 1, and 2, implies A2=A3=0, and we
therefore have

A(j)=A0+A1j. (65)

We may now apply the jump conditions at the junction. Thus, equations (14) become,
respectively,

{B2l
+
2 −B1l

−
2 +k2

y [B2(1−h2)l+
0 −B1(1−h1)l−

0 ]}A0

+{B2l
+
3 −B1l

−
3 +k2

y [B2(1−h2)l+
1 −B1(1−h1)l−

1 ]}A1=−rv2M0, (66a)

{B2l
+
3 −B1l

−
3 +k2

y [B2(1+h2)l+
1 −B1(1+h1)l−

1 ]}A0

+{B2l
+
4 −B1l

−
4 +k2

y [B2(1+h2)l+
2 −B1(1+h1)l−

2 ]}A1=irv2F0, (66b)

These can be simplified using the explicit expressions given in equation (B9), yielding the
matrix system

(N1+N2) $A1

A0%=−2i$−M0

iF0 %, (67)

where

Nn(q)=G
G

G

K

k

01−
qk2

y

k2
y+z2

n1 cosh sn

01+
qk2

y

k2
y+z2

n1zn sinh sn

01−
qk2

y

k2
y+z2

n1z−1
n sinh sn

01+
qk2

y

k2
y+z2

n1 cosh sn

G
G

G

L

l

=Jn(q)Mn , (68)

and

Jn (q)=&1−
qk2

y

k2
y+z2

n

0

0

1+
qk2

y

k2
y+z2

n', M21
n =$ cosh sn

2zn sinh sn

2z−1
n sinh sn

cosh sn %, (69)

for n=1 and 2. The number q defines an averaged difference in the material properties
of the two plates:

q0(h2B2−h1B1)/(B2−B1)=1−(n2B2−n1B1)/(B2−B1). (70)

Note that the determinant of Mn is unity

det N1(q)=det N2(q)=1−q2k4
y /z4

0 , (71)

and also that

J2(q)=J1(−q). (72)

Solving for the coefficients A0 and A1 using equations (67) and (72) gives

$A1

A0%=−2i(N1+N2)−1$−M0

iF0 %=−2i
[M−1

1 J2(q)+M−1
2 J1(q)]

det [N1(q)+N2(q)] $−M0

iF0 %. (73)

We note that equations (63), (65) and (B9) imply that

$ w̄(0)
−iw̄'(0)%=−i

2z2
0 0M2−M1

B2−B1 1$A1

A0%, (74)
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and inverting equation (74) gives A0 and A1,

$A1

A0%=i2z2
0 (B2−B1)[det (M2−M1)]−1(M−1

2 −M−1
1 ) $ w̄(0)

−iw̄'(0)%. (75)

The admittance matrix Y of equation (21) now follows from equations (73) and (74),
while the impedance can be obtained using equations (22), (67) and (75). Thus,

Y=[z2
0 (B2−B1) det [N1(q)+N2(q)]]−1(M1−M2)[M−1

1 J2(q)+M−1
2 J1(q)], (76a)

Z=z2
0 (B2−B1)[det (M2−M1)]−1[J1(q)M1+J2(q)M2](M−1

1 −M−1
2 ). (76b)

Expanding these matrix products, we find after some algebra that Y and Z are in fact
proportional to one another, as expected, and

Y=[(B2−B1)1
2 det [N1(q)+N2(q)]]−1Q(q), (77a)

Z=−v2(m2−m1)[1
2 det (M2−M1)]−1Q(q), (77b)

where

Q(q)=
1

2z2
0
{M1M

−1
2 −M2M

−1
1 +1

2 det (M2−M1)[J2(q)−J1(q)]}. (78)

These expressions can be simplified using equations (56) and (68)–(69), yielding

1
2 det (M22M1)=12cosh s1 cosh s22

k2
y

z1z2
sinh s1 sinh s2, (79a)

det [N1(q)+N2(q)]=det (M2+M1)−q2 k4
y

z4
0
det (M2−M1)

−q
4k2

y

z1z2
sinh s1 sinh s2. (79b)

Therefore,

Q(q)=

G
G

G

K

k

01−q
k4

y

z4
01 sinh s1 sinh s2

z1z2
+q

k2
y (1−cosh s1 cosh s2)

z4
0

1
z2

0
(z1 sinh s1 cosh s2−z2 sinh s2 cosh s1)

1
z2

0 0sinh s1 cosh s2

z1
−

sinh s2 cosh s1

z2 1
−01−q

k4
y

z4
01 sinh s1 sinh s2

z1z2
−q

k2
y (1−cosh s1 cosh s2)

z4
0

G
G

G

L

l

. (80)

It may then be checked by explicit calculation that the matrices Y and Z of equation (77)
satisfy YZ=I.
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5. DISCUSSION

5.1.  -

The general results for the fluid-loaded plates in equation (77) should reduce to the
‘‘dry’’ results of equation (30) in the appropriate limit. We can actually perform the
limiting process and check that the equations agree by the following method. Consider
the fluid density tending to zero while the fluid wave speed remains finite. The lengths a1,2

are then much greater than all others. Thus, in the limit as r:0, we have K:V1/V2 from
equations (42) and (43). The analytic factorization is straightforward, with

K+(j)=zb 0j+j21

j+j1110j+j22

j+j121, K−(j)=
1

zb 0j−j11

j−j2110j−j12

j−j221. (81)

Then using the identity K(zn )=1, equations (26), (56), and some algebra give

cosh sn=
zb

z4
0−k4

1
{z4

n+[j11j12+j22j21−(j11+j12)(j22+j21)]z2
n+j11j12j22j21}, (82a)

sinh sn=
zbzn

z4
0−k4

1
{(j22+j21−j11−j12)z2

n+(j22+j21)j11j12−(j11+j12)j22j21}. (82b)

Substitution of these identities into equations (77b), (79a) and (80) should yield the identity

lim
r:0

Z=Z(dry). (83)

We have not been able to verify this owing to the excessive algebra involved. However,
we checked the equivalence numerically by taking a wide range of all the parameters for
the dry plates and the frequencies. The agreement found provides a confirmation of the
validity of the general expression for Z.

5.2.  -

The heavy fluid-loading limit for a two-dimensional configuration (ky=0) occurs at
low frequency when the fluid-loaded plate wavenumbers far exceed all others in magnitude.
A similar limit applies to the present problem if we assume that the transverse
wavenumber, ky , scales linearly with frequency. For instance, if the excitation is acoustic,
then ky=k sin u for some −p/2QuQp/2. Under these circumstances the low frequency
asymptotic limit reduces to the strictly two-dimensional heavy fluid-loading regime. Let
B, a and k be the parameters for either plate, then the low frequency, heavy fluid regime
is defined by l�k, where

l0(k4/a)1/5=(rv2/B)1/5. (84)

Crighton [2] argued convincingly that this can be relaxed to the requirement k�k.
In this regime we have D(j)11−l−5j4(j2)1/2, where the natural limit of the square
root function g is (j2)1/2=j sgn Re j [15]. The equation D(j)D�(j)=0 (see Appendix A)
reduces to j10=l10. The roots in H+ are jn=lz(n−1), n=1, . . . , 5, where z=eip/5, and thus
n=1, 3, and 4 correspond to zeros of D(j) while n=2 and 5 arise from D�(j)=0. We
reiterate that the present limit coincides with the strictly two-dimensional low frequency
limit, but not with the general three-dimensional low frequency regime, in general. The
dependence of ky upon frequency is the crucial factor. Thus, the following asymptotics are
not relevant to the oblique scattering of a low frequency flexural wave from a junction.

The limiting form of the split function K+(j) can be determined using some results of
Crighton and Innes [15] for the factorization of D(j)=D+(j)D−(j) in the same limit,
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where D−(−j)=D+(j). Thus, for j=O(k) we have

D+(j)=1+dm
j

l
+d2

m
j2

2l2+(d3
m+2df )

j3

6l3+ · · ·, (85)

where

dm=1−i cot p/5, df=1+i tan p/10. (86)

Terms up to quadratic in equation (85) are given explicitly in equation (A33) of reference
[15], while the cubic term follows from equations (A29)–(A32) of reference [15] after some
manipulation. The expansion (85) may be rewritten:

D+(j)=01+df
j3

3l3+ · · ·1 edmj/l, (87)

from which we deduce that

K+(j)=01+df
j3

3
D(1/l3)+ · · · 1 edmjD(1/l), (88)

where Df0f2−f1 is the difference in the parameter f for the two plates.
All things being equal, as the frequency diminishes the special wavenumbers z1 and z2

scale with k1 and k2. Hence, zn=O(k) and we can use the previous asymptotic expressions
to simplify quantities like cosh sn . The low frequency limit of the admittance matrix then
follows from equations (60), (77a), and (88) as, to leading order,

Y=G
G

G

K

k

d 2
m

2(rv2)2/5

(DB1/5)2

DB
1

3(rv2)3/5 0df
DB3/5

DB
−d 3

m
(DB1/5)3

DB 1
G
G

G

L

l

, v:0. (89)
dm

(rv2)1/5

DB1/5

DB
−

d 2
m

2(rv2)2/5

(DB1/5)2

DB

Note that arg(−d 3
m)=arg df . and hence the argument of each term in Y in equation (89)

is fixed, regardless of the plate properties.
The case of a uniform plate is a simple consequence of this result, by virtue of the limit

DBa/DB:aBa/B as DB:0. We then recover Crighton’s asymptotic approximations for a
uniform plate for the same frequency limit [2], or using equation (23a),

Y(p)=
v

5Bl2 $dfl
−1

0
0

dml%, identical plates, v:0. (90)

5.3.    

We next consider the limit of B2:B1 (b:1), but assume that the areal densities remain
distinct, m1−m2$0. In this limit the wavenumbers z1 and z2 become large relative to all
others, and appropriate approximations can be made. Thus, equations (60) and (B1) imply
that

cosh sn=1+
(Dm1)2

2z2
n

+
Dm1Dm3+(Dm1)4/24

z4
n

+O(z−6
n ), (91a)

1
zn

sinh sn=
Dm1

z2
n

+
Dm3+(Dm1)3/6

z4
n

+O(z−5
n ), (91b)
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for n=1 and 2, where Dm1 and Dm3 are defined by equations (B2) and (B3). These
asymptotic approximations allow us to take the limit of each element in the Y matrix of
equation (77a), with the precise result

Y=
1

v2Dm $ −1
2(Dm1)2

Dm3−1
3(Dm1)3

Dm1
1
2(Dm1)2%, for B1=B2. (92)

The numbers m1 and m3 on either side of the join follow from equation (B3) as

mj=
1
j

s
5

n=1

(jn ) j01
2+

snun

p 1, j=1 and 3, (93)

where j1, . . . , j5 are the five zeros of P(j)=D(j)D�(j) in H+, i.e., they solve

[(j2+k2
y )2−k4]2(j2−k�2)=l10. (94)

The complex angles u1, . . . , u5, in equation (93) are defined in accordance with equation
(A6) as un=cos−1(jn /k�) and sn=1 or −1, depending if jn is a zero of D(j) or D�(j),
respectively. Thus,

sn=g(jn )V(jn )=g(jn )[(j2
n+k2

y )2−k4]/l5. (95)

5.4.   

We may now consider the further limit of two completely identical plates, i.e., a single
uniform plate of infinite extent. This is found by letting m2:m10m in equation (92),
yielding for the physical admittance for identical plates,

Y(p)=$v−11m1/1m
0

0
v−11m3/1m%, (96)

The derivative may be effected by partial differentiation, using equation (93) and the
fact that each root jn solves equation (94). Equations (94) and (95) yield the identities
1jn /1m=−2sng(jn )/rP'(jn ) and 1un /1m=−2isn /rP'(jn ), while the latter combined
with

s
5

n=1

(jn )m/P'(jn )=0, for m=1, 3 and 5, (97)

which is a consequence of the polynomial nature of P(j), implies that the terms involving
1uk /1m cancel. We finally obtain

1
v

1mj

1m
=

1
v

s
5

n=1 01
2+

snun

p 1(jn ) j−1 1jn

1m

=
v

B
s
5

n=1

(jn ) j−2$ 1/2+snun /p
4(j2

n+k2
y )+snl

5/g3(jn )%, j=1 and 3. (98)

Crighton [2] derived similar formulae for the force and moment admittance for the strictly
two-dimensional case, while Photiadis [7] has recently solved the phased line loading
problem. The expressions (98) agree with those obtained by Photiadis, and both reduce
to Crighton’s formulae when ky=0. In Figure 4, the frequency dependence of the
force and moment admittances are shown for two cases: (a) ky=0; and (b) ky=k sin 75°.
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Figure 4. The fluid loaded admittances for a uniform steel plate in water as a function of the non-dimensional
frequency parameter V of equation (39). The admittances are normalized with respect to their in-vacuo
counterparts. (a) ky=0; (b) ky=k sin 75°. ——, Force admittance; - - -, moment.

We note that the numerical results of case (a) are in agreement with those obtained by
Nayak [1].

5.5. - 

The previous results simplify greatly when there is no y-dependence. Thus, setting ky=0,
equation (73) simplifies to

$A1

A0%=−i(cosh s1 cosh s2+1)−1(M−1
1 +M−1

2 ) $−M0

iF0 %. (99)

Hence, A(j) easily follows from equations (65) and (99), as

A(j)=F0 $(cosh s1+cosh s2)−(z−1
1 sinh s1+z−1

2 sinh s2)j
cosh s1 cosh s2+1 %.

+iM0 $(cosh s1+cosh s2)j−(z1 sinh s1+z2 sinh s2)
cosh s1 cosh s2+1 %. (100)
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Alternatively, another expression of A(j) is obtained by using equation (75), which gives

A(j)=w'(0)(B2−B1) $(z2
1 cosh s1+z2

2 cosh s2)−(z1 sinh s1+z2 sinh s2)j
cosh s1 cosh s2−1 %

+iw(0)(B2−B1) $(z2
1 cosh s1+z2

2 cosh s2)j−(z3
1 sinh s1+z3

2 sinh s2)
cosh s1 cosh s2−1 %. (101)

Finally, the admittance and impedance matrices for ky=0 are

Y=[(B2−B1)(cosh s1 cosh s2+1)]−1Q(0), (102a)

Z=v2(m2−m1)[(cosh s1 cosh s2−1)]−1Q(0), (102b)

where Q(0) follows from equation (80).

5.6.  

Some typical numerical results for the admittance functions are shown in Figures 5
and 6. All the curves shown were calculated using the algorithm for the split function
K+ outlined in Appendix A. Figures 5 and 6 show the force and moment admittances
Y12 and Y21, respectively, for two joined steel plates of different thicknesses a=2 for both
fluid loaded and in-vacuo conditions. Note that plates of the same material but with
different thicknesses in the ratio a of equation (33) have in-vacuo flexural wavenumbers
related by k2=k1/za. Figure 5 shows the two-dimensional (ky=0) results whereas
Figure 6 illustrates the effect of phased loading with ky=k sin 75°. Note that for ky=0,
the magnitude of the fluid-loaded admittances are decreased in comparison to the in-vacuo
results. The same general observation applies to the fluid-loaded admittance as compared
to in-vacuo for non-zero ky in Figure 6, except near the frequency k2=ky . As discussed
in section 3.3, the in-vacuo solution can exhibit resonance-type behaviour in this frequency
range. As noted in section 3.3, the resonance phenomenon for the dry structure does not
occur for the parameters chosen in Figure 6 (see the discussion of Figure 3 in section 3.3).
It is interesting that both the force and moment admittances exhibit a peak or valley,
respectively, near this frequency. The quasi-resonance effect is most apparent in the rapid
variation of the phase occuring near the resonance frequency, as shown in Figures 6(b)
and 6(d). The resonance behaviour is also observed in the fluid-loaded admittances but
it is heavily damped.

6. CONCLUSIONS

We have derived explicit expressions for both the dry and wet admittance matrices
at the junction of two plates subject to a line force and moment. The dry admittance
can be singular for certain combinations of plates if the line forcing is in phase with a
flexural Stoneley wave travelling along the drive line. The resonance is not possible with
fluid loading, but there is a remnant of the phenomenon at frequencies which are
close to phase-matching with structural waves propagating down the line. In this paper
we have emphasized the intrinsic properties of the admittance matrix. The full strength
of the results rests in their potential for solving scattering and radiation problems.
For example, in a separate paper we consider the scattering of a flexural wave from
an internally attached rib at the junction of two plates. The admittance matrix derived
here can be used to determine all the interaction mechanisms for waves incident on a
three-member junction. Scattering coefficients can be found in a semi-analytic fashion,
which are easy to compute.
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Figure 5. The frequency dependence of the force and moment admittances, Y of equation (21), for ky=0.
The system comprises a pair of steel plates with h2=2h1. (a) =Y12=, (b) arg (Y12), (c) =Y21=, and (d) arg (Y21). ——,
Fluid-loading (water); - - -, corresponding in-vacuo results.
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Figure 6. The same parameters as in Figure 5, but ky=k sin 75°.
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APPENDIX A: FACTORIZATION OF THE KERNEL

Factorization of K is simplified using the following functions for each plate:

Rj (j)=−D�j /Dj , Pj (j)=D�jDj , (A1)

where j=1 or 2, and

D�j (j)=1+g(j)Vj (j), (A2)

is the ‘‘unphysical’’ dispersion relation corresponding to Dj (j). Thus, for j=1 and 2,
Rj is the acoustic reflection coefficient for a uniform plate and Pj is the rationalized form
of the dispersion relation, given by equation (A1) or,

Pj (j)=1−a2
j (j2−k�2)[k−4

1,2 (j2+k2
y )2−1]2, (A3)

and k� is defined by equation (13). Let j=2j(1,2)
n , n=1, 2, . . . , 5, be the zeros of P1,2(j)

such that j(1,2)
n are in H+, with no loss in generality. Following the procedure of Norris,
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Relinsky and Wickham [10, 14], we can derive two alternative expressions for K+:

K+(j)=zb t
5

n=1 0j+j(2)
n

j+j(1)
n 1

1/2

×g
G

G

F

f

$R1(0)
R2(0)%

1/4

exp 6g
j

0

[F1(s)−F2(s)] ds7,

exp 6−g
a

j

[F1(s)−F2(s)] ds7,

(A4)

where

Fj (j)=
1
2p $[log Rj (j)]' cos−1 (j/k�)+s

5

n=1

2s( j)
n j( j)

n u( j)
n

j2−(j( j)
n )2%, j=1, 2, (A5)

and

u( j)
n =cos−1 (j( j)

n /k�), s( j)
n =6−1,

+1,
if D�j (j( j)

n )=0,
if Dj (j( j)

n )=0.
(A6)

The branch of the inverse cosine is

cos−1 (j/k�)=i log [j/k�+g(j)/k�], (A7)

where the principal branch of the logarithm is taken, −pQIm log (·)Qp. Note that F1,2

possess no poles in the upper half-plane, H+, because the poles of R1,2 are exactly cancelled
by the poles in the second term in equation (A5).

The alternative formulae for K+ in equation (A4) are designed for values of j near 0
and near a, respectively. The latter is used to derive the asymptotic behavior in Appendix
B, while the former can be simplified further. Thus, following Norris and Wickham [10],
we express the first term of equation (A4) in the integrand in partial fractions, and obtain
(dropping the suffix j)

F(j)=
2
p g

cos−1(j/k�)

p/2

s
5

n=1

u cos u sin un−un cos un sin u

cos2 u−cos2 un
sn du. (A8)

It is then a simple matter of rearrangement of terms to arrive at another form for K+,

K+(j)=
r'(1+j/j(2)

n )
r'(1+j/j(1)

n ) $D2(0)
D1(0)%

1/2

exp [f1(j)−f2(j)], (A9)

where the products r' are taken only over the three roots for which sn=1, and

f(j)=
1
2p g

cos−1(j/k�)

p/2

s
5

n=1 $u sin un−un sin u

cos u−cos un
+

u sin un−(p−un ) sin u

cos u+cos un %sn du. (A10)

The form (A9) is used for practical calculations because it does not have any possibly
ambiguous square root functions in the pre-exponent, and the integrand is smooth.

APPENDIX B: EXPANSION COEFFICIENTS

The asymptotic behavior of K+ for large j follows from equations (A4) and (A5) as

K+(j)=zb exp $ s
4

j=1

Dmj

jj +O(j−5 log j)%, (B1)

where

Dmj=m(2)
j −m(1)

j , (B2)
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and referring to Appendix A,

m(n)
j =

1
2j

s
5

k=1 61p s(n)
k u(n)

k [(j(n)
k ) j−(−j(n)

k ) j]−(−j(n)
k ) j7. (B3)

Expanding the polynomials P1 and P2 of equation (A1), it can be shown that

s
5

j=1

(j(n)
j )2=k�2−4k2

y , s
5

j=1

(j(n)
j )4=k�4+4k4

y+4k4
n , n=1, 2, (B4)

and hence,

Dm2=0, Dm4=1
2(k

4
1−k4

2 ). (B5)

The asymptotic expansions of w̃2
0 are straightforward except for the terms involving

K2(j); see equation (57). It follows from equations (53), (54), (B1) and (B5), that

K2(j)
P*(j)

=
b21/2

P*0
s
4

j=0

d2
j

j(4+j)+O(j−9 log j), (B6)

where

d2
0 =1, d2

1 =Dm1, d2
2 =1

2(Dm1)2−2k2
y , (B7a)

d2
3 =Dm3+1

6(Dm1)3−2k2
yDm1, (B7b)

d2
4 = 1

24(Dm1)4+Dm1Dm3+z4
0−k2

y (Dm1)2+3k4
y2Dm4. (B7c)

Hence, the expansions for w̄2
0 of equation (57) imply, using equations (49) and (61), that

l2
n = s

2

m=1

i(zm )n(u+
m +(−1)nu−

m )−
i

P*0
b31/2d3

n−3, (B8)

for n=0, . . . , 7 and where d2
m =0 for negative m. Then using equation (59) we deduce the

following identities, which are all that we will need,

l2
0 =

i
2z2

0P*0 0sinh s1

z1
−

sinh s2

z2 1, l2
1 =

i
2z2

0P*0
(cosh s1−cosh s2), (B9a, b)

l2
2 =

i
2z2

0P*0
(z1 sinh s1−z2 sinh s2), l2

3 =
i

2z2
0P*0

(z2
1 cosh s1−z2

2 cosh s2−2b31/2),

(B9c, d)

l2
4 =

i
2z2

0P*0
(z3

1 sinh s1−z3
2 sinh s2−2Dm1b

31/2), (B9e)


