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The general theory for small dynamic motion superimposed upon large static deformation, or
acoustoelasticity, is developed for isotropic fluid-filled poroelastic solids. Formulas are obtained for
the change in acoustic wave speeds for arbitrary loading, both on the frame and the pore fluid.
Specific experiments are proposed to find the complete set of third-order elastic moduli for an
isotropic poroelastic medium. Because of the larger number of third-order moduli involved, seven
as compared with three for a simple elastic medium, experiments combining open-pore, closed-pore,
jacketed, and unjacketed configurations are required. The details for each type of loading are
presented, and a set of possible experiments is discussed. The present theory is applicable to
fluid-saturated, biconnected porous solids, such as sandstones or consolidated granular media.
© 1996 Acoustical Society of America.

PACS numbers: 43.25.Dc, 43.25.Ba, 43.20MAB ]

INTRODUCTION An isotropic poroelastic medium has four static moduli that

The linear theory of poroelastic fluid-saturated media a4 be measured by a combination of stress-strain experi-

a mature subject, with the classic studies of Frehleeid ments on “jacketed” and “unjacketed” samples. The role of

especially of Biot standing as the significant achievementsthe jacketing is to constrain either the fluid pressure or its

in its modern development. Several different methods nowm_ass. The nonlinear moduli, in contrast, should be deter-

exist for arriving at governing equations, including the mined by measurement of essentially nonlinear effects. One

theory of interpenetrating contintiand the method of “ho- of the simplest nonlinear phenomena is the elastoacoustic
mogenization” based on two-scale asymptotic expansidns. Efféct, whereby the speeds of small amplitude waves are
Despite the fact that these approaches do not always yield tff1anged by applying stress or strain. The theory of acous-
same governing equations and that further general theoreticgelas.t'c't%_ggs been thoroughly discussed for purely elastic
studies are required, they have certainly proved useful iﬁnaterlal§2, 525 and is now commonly used in
several branches of civil and geo-engineering and the EartHItraS(_’”'ng’ it has also been adapted to multiphase
science$;® and also in unexpected fields, such as low tem Materials’ . _ o .
perature physidsand pattern formation in polymer gefs. _ _The subject of this artlclg is the acousto.elastlc effect
However, there are definite limitations to the linear theory Within the context of poroelasticity. The theory is based on a
For example, a proper analysis of the dynamics of large amPonlinear generalization of the classic Biot theory. Biot him-
plitude sound in sediments or of small amplitude sound irS€lf discussed thermodynamic aspects of a nonlinear theory
rocks under large confining stress is obviously impossible®f poroelastic media, but did not specify any nonlinear
within the framework of a linear theory. Even seismic wavesstress—strain behavigsee papers 15, 16, 18, and 19 in Ref.
of very small intensity at a large distance from their epicente)- There has been some work on nonlinear poroelasticity
should be studied in the framework of a nonlinear theorywithin the framework of the theory of interpenetrating
because of the well-known effect of the accumulation ofcontinua; and also using the method of two-scale
nonlinear distortions leading to the “gradient catastrophe”homogenizatiori’*® Three sources of nonlinearity are tradi-
phenomenori!*2 tionally distinguished in elasticityi) the physical nonlinear-
There is renewed interest in the nonlinear acoustics ofty, that is, the nonlinearity of the constitutive relations relat-
rocks that is based partly on several observations of distindng the stress and the displacement gradi@ntnonlinearity
nonlinear effects. These include the change of ithesitu  of the universal equations, such as the equations of conser-
velocities of seismic wavé$™®and direct measurement of vation of mass, momentum, et¢iij ) geometric nonlinearity,
harmonic distortiort®!” These experiments have clearly which results from the nonlinear relationship between the
demonstrated that then situ nonlinear elastic moduli of deformation gradient and the tensor of finite deformations.
rocks, soil, and sediments are much greater than the linear In order to keep the analysis as simple as possible, in
ones. The nonlinear behavior of fluid-filled poroelastic solidsthis article we ignore all dissipative effects and concentrate
is not as well understood, and further progress depends upam the first kind of nonlinearity only because it appears to be
accurate experimental measurement of the effective nonlirthe most significant for geophysical materials. We begin with
ear moduli of poroelastic media. a discussion of acceleration waves in nonlinear poroelastic
The determination of the linear moduli has been the submedia. These are exact solutions independent of the state of
ject of numerous experimental and theoretical stuité$® prestress in the medium, and they reduce to the well-known
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Biot fast and slow waves for unstressed isotropic materialsposes geometric and kinematic constraints on possible jumps
These general results serve as the basis for considering tloé the second derivatives since the “tangential” components
principal body waves propagating in a slightly prestresseaf the second derivatives are continuous. These constraints
isotropic nonlinear saturated poroelastic substance. Finalhgre known as compatibility conditions and are, essentially,
we discuss application of the general formulas for the stresgeometric conditions originally developed by outstanding
dependence of the wave speeds to several specifically dgeometers like Hadamafd, Levi-Civita,*> and Thoma¥

signed experimental configurations. (fortunately all three were outstanding mathematical physi-
cists so their works are accessible to physigidts particu-
I. NONLINEAR POROELASTICITY lar, the jumps of second derivatives across acceleration

31,33
A. Governing equations wavefronts satisf/

.. . . (92U' +
AI_I further analy3|§ is based_on_the following governing [Ui,jk]fzhinjnw 2' =h.c?, (43)
equations of the nonviscous, fluid-filled poroelastic medium: ot |
a2u! Fw X w1
p (9t2 +ps (9t2 =T (18) [Wi’jk]_:Hinjnk, [W :HiCZ, (4b)
2l 2
pr ‘?VZ + peKl J l;J ——Kilp,, (1p  Where hkz[uiypq]fr?pnq and sz[wi,.pq]fnf’nq. are the
ot ot ' second-order amplitude vectors of discontinuity, is the
where unit normal to the wavefront, and is the velocity of the
front. The compatibility conditions indicate that the two vec-
i = W (LU s) _ ﬂv (LU s) @) tor functionsh, and H, completely define the jumps of 60
au;; oMy P ag crmn partial derivatives of the displacements.

In order to determine the acceleration vectors them-
relative displacement of the fluid) are the stressep, is the §elves one has to ex-tract some additional dynamlc informa-
tion from the governing Eqs3). These equations are not

fluid pressureW(¢,u is the poroelastic potentiah and . - L
oy arg the avera(éedmdrgnsity anpd the densiE[)y of tf?g fluid re\_/alld at the wavefront since the second derivatives are unde-

spectively,—{=w', is a divergence of the relative displace- ""cd &t the front. By definition, only one-sided second de-
ment of the fluid. and is the “instantaneous” magnitude rivatives are defined at the front, and these one-sided limits

of a symmetric tensor of permeabilitthe value of the per- safisfy Egs(3). We first subtract, termwise, E¢a) for the

meability hereditary operator &0). Also, x| are the spatial two one-sided limits taking into account continuity of the

coordinates, the Latin indices take the values 1, 2, and gjrst derivatives an(_j then ‘_jo the same operation With.Eq'
summation over repeated indices is implied, and a commgst_))‘ Then, evaluating the Jump_s_gf the sg_cond derivatives
followed by a Latin suffix symbolizes partial differentiation. using the second.ordgr compat|b|l|t.y conditions of E, .

We refer to the Refs. 2, 4, 27, and particularly Ref. 28 and"® get the following linear algebraic system for the ampli-

for the motivation behind Eqgl) and(2). tde vectors:

Here, u' is the displacement of the solid skeletav, is the

By inserting the value of in terms ofw' we can rewrite (pczé“‘—W”k'njn,)hk+(pfc25ik+wig njnk)szo,
the equations of motion as (5a)
J2ul P;w y 25K WK N et (e c2KIK —WoninK) Hu=0
pW‘pr W:Wukluk’“_wgwhk, (33 (ps el Yhi+(ps inv 144 JHy ,(5b)

2w Py, . ) where Kl is the inverse of the permeability matrix”,
pt iz T iKY — 7= = KU (W =Wy wiyg). (30)  which is assumed to be invertible.

The pressurg is continuous across the wavefront, but
In these and subsequent equations we use the following n@s gradient is not, specifically,
tation for the derivatives of the potential energy functidhy N
WI=gW/iou;;,  W,=d"WIaf% — W)=3d*Wldu; ; i, [pilZ=an;. (6)

ijkl _ 72

W =a"Wiau; j duy, ete. At the same time, it follows from the Eq&2) and (4) that
B. Acceleration waves [p,i1"=Ws'ninjh— W, ninkH, . (7)

An acceleration wavefront is a propagating surface deCombining the previous two equations allows us to eliminate
fined such that displacements and their first derivatives arthe quantitynH, in favor of the jump in the pressure gra-
continuous across this surface, but the second and higheient, q. Then Eq.(5b) provides an expression fot',
derivatives and, in particular, the accelerations possess finite
jumps. Acceleration waves are the most convenient object of  yi— _kii| b + iz n-). (8)
theoretical study for both linear and nonlinear dynamics. I opet
They have been'investigated thoroughly by Hadaﬁ?aidq After some manipulation, Eq$5) imply that
by Thomas?® while Cheri* provides a more recent review _ _
for elastic materials. Continuity of the first derivatives im- (p *c?=W¥n;n))h,—K'n;q=0, (9a)
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= K‘ininj 1 When the material is isotropic then all directions are
Knihy + o W, q=0, (9b)  principal directions, i.e., all acceleration waves are either
& longitudinal or transverse in nature.
where

~ik_  sik ik

p=pd"—pKE, (108 ||, THE ACOUSTOELASTIC EFFECT

WK = Wilkl - wilwEl/w,, (10b  A. Third-order moduli for poroelasticity

Kik= Kik+Wi§k/W“. (109 We now consider the effects of prestress on the longitu-

) . ) dinal and transverse waves in an isotropic medium. The per-
Equations(9) form a system of four linear algebraic equa- meapility for an isotropic poroelastic medium Kdi = x &',

tions with respect to the four unknowhg andq. This sys-  while the potentialW is a function ofZ and the principal
tem has a nonzero solution when the determinant vanishegyariants I,, of the symmetric straine;; = (u; j+ U ;)/2.

leading to a fourth order polynomial equation @. The  Thys

coefficients of the polynomial depend an,, ¢, and the

orientation of the unit normat, , and thus the same is true W=W(l1,l2,15,4), (16)
for the velocitiesc. Each real root generates an associateqyhere

nonzero solution I, ,q). Further discussion of the fourth- . . .

order system can be found in Ref. 34. On the other hand, the li=8Teij, 1,=3(6U6™ = 8" 6Mejqe,
system defined by Eq¢5) is sixth order, because it involves
the unknowndy; andH; . The fourth and sixth order systems
are connected by the fact that the latter possesses the r
c?=0 of multiplicity 2. Thus, wherc?=0, the system of Egs.
(5) has infinitely many solutions of the forinp=0, H,=R,,

:%GIJkaquiijqSkr, ( 7)
Apd €’ is the third-order alternating tensor. To within third-
order terms irg;; and{ the potentiaW can be approximated

by the polynomial

I3

whereR, is an arbitrary vector in the two-dimensior(@tD) W=T"1,12+T,l,+ Tyl L+ r§§§2+ Tyl 3+ T 0415
space orthogonal to the wave nornmgl. In summary, the

propagating waves and the nonzero wave speeds can be + T3l g+ Dyl 1 P4 T g 1 T0HT o o+ T 1 5.
found from either the fourth-order or the sixth-order systems. (18)

We consider the following field of perturbations with respect

to the referencéunstressedconfiguration:
C. Principal directions

A principal direction is defined as one in which an ei- 5Ui:(aNanjni+ > aAXjeAj)gv of{=elA, (19

i . . A=1.2

genvector, such aB', is aligned with or orthogonal to the

wave normaln'. For example, let us consider a longitudinal where e;; and e,; are two mutually orthogonal transverse

wave in the direction ofy;, that is, a solution of the form  vectors, i.e., both are orthogonal to the direction. The
ho—hn  H.—Hn (11) perturbation magnitude is defined lay with |e|<1 by as-

ke e ke sumption, and the parameteng,, a,, A=1,2, andA are
Substituting from Eq(11) into Egs.(5) and contracting with  O(1) and independent. The prestrain is, from ELp),
n; gives

(pC2 WM h+ (pc2+ Winn)H=0, (123 €i :(“N”i”i+A=El,2 “AeA‘eAJ)S' @0

(pC2+WEnin)h+ (pec®Kis,nine— W, )H=0.  (12b) Differentiating Eq.(18) in the vicinity of the reference
configuration(e=0) we obtain the second order elasticity

It follows immediately from Eqs(12) that the corresponding tensors in terms of the elastic moduli:

eigenvaluesc? are defined by a biquadratic characteristic b B o o
equation, whereas the amplitudesandH are connected by WKI=) 81 6K+ (8" 1%+ o' o),

the relation (22)

) Wi=—aMél, W, =M,
pc?=WiKninnn,  H? _ _
2T Y ts (13)  where)., a, andM are the Biot parameters.In fact, Biot
PCKinyNiNk & defines the linearized stress—strain relations in terms of a
A transverse wave, on the other hand, satidfieshe,, ~ guadratic energy potential similar to §48). Comparison of
H,=He,, wheree' is a polarization vector with*e,=0 and  the quadratic terms in the latter with E@.4) of Biot™ im-

ee,=1. Under these circumstances, E(s.become mediately implies that
(pc?s™* =Wk nin))eh+ prc?e'H=0, (143 Ne=2l1+T,, p=—3T, M=2l,
. . ' 22)
(prc28™+WE'nin')eyh+ p(c?Kif H =0, (14b) a=—T1,/(2T ). (
implying that the transverse wave velocity is given by There are many different notations used'for describing Fhe
5 o ik linear response of saturated porous media, and even Biot’s
cr=[p—pi(Kivepeq) 1 "W eeenin;. (19  own notation evolved from the time of his early work on
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consolidation(see paper 1 of Ref.)2o his later work. His  In particular, the split in the velocities of two transverse
1962 papet provides a good comparison of the notationswaves with the same propagation direction but different po-
used. larizations is, from Eq(27),

For the third-order quantities we get

WK = (T 5 4 2T 3,) 81 6K — 1T 8 63+ 5% 51 S0 _ el (28)
¢ =Tt 210y) 0707 =215 (57074 6757, 9 an—ag  2(p—Kkpp)
ij — ij = . I
Wir=2T1408%, Wigr=6Tgy, In order to establish analogous formulae for longitudinal
WHKIMN= (6T, .+ 3T ;) 8 6Ot I (ekmeiin principal waves we first write the system of E@S) as
+ eikmgiln o dilm jkn 4 Ejlmeikn) AXZCZCX, (29
— 3T (81 ( 58N+ §KNg'™) + sK (5 M SIN whereX=(h,H)T, and the symmetric matrices, C are
+ N+ s Sk + 5 51F)). Al WK ningnen; = Winin, [p o
In the absence of poroelastic effects, the third-order elastic B —WLJnin, W, ' B pr K lpel
moduli Wijmn are equivalent to the standard third order (30)

moduli Cjjyjmn, Or C,y¢ in the concise Voigt notatiof® In N o . _—

order to compare the moduli here with the more commor'?-he |r:_ert|al rr;a;trrllxc IS again unchgngded bydthe 'n't;ﬁl de-_

notation, we note the equivalences ormation, and the new wave speeds depend upon the vara-

tion in A. By making use of Eq9418)—(23) we can approxi-

I'111=§C111,  T'12=3(C112~ C110), mate this to within first order i,

24
['3=3(C111—3Cy12+2Cy29). @9 A=A"+eAl, (32)

The connection with other notations for third-order moduli\yhere

can be inferred from the table in Green’s reviéthat com-

pares many different systems of notation. We note for future Net2u  aM
reference the following formulas: T oaMm M |’
WIKIM G 0,y = 61731,6™"+ 2T 1(6™"—n™n"), (253 (32
§ 1 6F111 —2F11§
\Nljklmneinjeknl - %Flzﬁmn— %FS( SN M — gMgn) A= ay —Zrllg zrl“ + (a1t as)

(25b)

6F111+ 2F12 _2I‘11{_F2§
B. Wave-speed dependence on the applied strain

X
_zrllg_rzg 2F1§§
For each deformed configuration there are three orthogo- 2Ty,  —2Ty,
A[

nal directions of principal strain, and the small amplitude
waves that propagate in these directions are either longitudi-

nal or transverse. We will now derive approximative formu—.l.he eigenvalue problem for the mat@ *A° was first stud-

las for the incremental changes of the velocities of these, by Biot in 1956(see paper 8 of Ref.)2vhen he estab-

pr|nc|::|pal \{[vr?ves t.otllead.mtghordelr w']t fthe t lished the existence of two different longitudinal modes: the
irst, the variation in the velocity of the transverse wave., cps 44 “slow” waves with velocitiesc; andc,, respec-

with the polarization vectoec; follows from Eqs.(15) and tively. The eigenvectors<; and Xy associated with these
(20) as velocities can be calculated by making use of the following
5Ct2C=(p_Kpf)ila\NijkleCieCknjnl equation implied by Eq(13):

—2l'14¢ 6Ly

=(p—rpr) H(WIM™eciecininiemy pC?—(Nc+2u) H_2

M 33

+W?kleciecknjn|8A). (26)

Note that the densities and p; are unchanged because we Corrections to the Bi_ot fast and slow velocities dug to the
are using the reference or Lagrangian description as Opposétacremental dgformauons can now be calculated using stan-
to the current or Eulerian description. Conservation of mas§ard perturbation theory, leading to the formula
requires that these densities are constant. The structure con- AL x0ix0j

stantx is also assumed to remain the same under the defor- §c2=¢ Lomj-,

mation. Combining Eqg20), (25), and(26) we arrive at the G X=X

formula for the elastoacoustic effect for transverse waves, Equations(27), (32), and(34) show that by measurement of

(34

—e elastoacoustic effects we can, in principle, find the third or-

5Ct2c:m (a1t aztan)l it (et a; der elastic moduli by solving a system of linear algebraic

pKpr equations. In Sec. Il we shall examine some possible experi-
—ac)l3+T5A). (27 mental configurations with this purpose in mind.
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TABLE |. Different compressibilities of a porous medium, with definitionsqf, K, andK,, . Here,p andp.
are the pore and confining pressure, respectively. NoteNhau, @, andM are defined in Eqs(22), and
A=\.—a?M (Ref. 35. The relations between these and other moduli are explored in greater detaihipeKu
(Ref. 36, and also by Brown and Korringdref. 37.

In current
Compressibility—definition notation Terminology, notation, and references
1 -1V 1 Closed compressibilityRef. 39
K :v£ NP undrained compressibilityg, (Ref. 36
¢ cl¢ cT 31
1 -1V 1 Open or jacketed compressibilitiRefs. 35 and 18
K =7$ N drained or matrix compressibility, (Ref. 39
Clp 3M
1 -1V 1-a Grain or pore compressibilityRef. 37, ¢, (Ref. 36,
Ko 275 32 unjacketed compressibilityj (Ref. 18
M Clp=p, T3u
IIl. THE ELASTOACOUSTIC EFFECT IN mathematical description and their implications for elastoa-
EXPERIMENTS coustic measurements.

In state(a) the closed-pore system corresponds to con-
o } ) _stancy of the fluid content or mass, and in the geometrically
The application of the previous ideas to a poroelastiginear approximation this implies th@t=0. The closed-pore
sample requires the ability to impose various types of stresgyperiment is the simplest for theoretical analysis but is
states if all seven third-order moduli are to be determinedyather difficult to realize in practice, at least for a high level
e, {l111.012.03. 0101, We first discuss the types of of wetting. Conceptually, it requires that the sample is cov-
measurements employed in determining the four secondsred by an impervious closed deformable jacket; see Fig.
order moduli{l’'y;,I'5.I' It or {\¢,,,M}. The second- 1), (b) Alternatively, the open porous system, in the termi-

order moduli are related to one another via E29) and yield  nojogy of Biot and Willis!® corresponds to the case of con-
the classic Biot theory for linear poroelastiéityfor which stant fluid pressure, q=0. However, it is more consistent
(353 to refer to this as a “drained” test and to treat it as a special
case of a more general open configuration withconst.
p=—aMul+M{. (35p  Such an experiment is sketched in Figb)land is regarded
’ as the jacketed test. The amount of absorbed liquid is not
Note thatp is the pore pressure, ang is the total or con- fixed in this experiment since it can leave the sample through
fining stress. The effective stresg; +apd;;, is also com-  the tube connected with the air. The unjacketed tests are
monly used. For example, if a hydrostatic confining stress
7j=—P:%; is applied, then the effective pressure is
Pe=P.— ap. The main point is that there are two indepen-
dent stress variables, or pressures, if the system is hydrostati-
cally loaded. Table | lists and defines three distinct bulk
moduli (inverse of compressibilily K., K, andK,, , associ-
ated with hydrostatic deformation of undrained, jacketed,
and unjacketed samples, respectively. We also define the
bulk modulus for the fluid alon&; , and the “coefficient of
fluid content” ,18:3°

A. Experimental nomenclature and moduli

T = AUy + Uy j+ Uy ) — aM {8y

1 -14v (1 1 -
Kf - Vf F?p 3 ’Y_ ¢ Kf KM [} ( )
in terms of which the Gassmann relatidms
1 a 3
=M, (37)

Different types of experiments have been used to deter-
mine the second-order elasticities of fluid-saturated poroelas-
tic media. We shall discuss them briefly in order to avoid
possible confusion in terminology. The terms “open” and
“closed,” “jacketed” and ‘“unjacketed,” and “drained”
a,nd undrained ,are all relevant to the prpblem, but haVeFIG. 1. Different schemes of loadinga) closed-pore jacketed testh)
different COI"ant'altIOI’lS. We. She}” next describe the f'our Stat_e§pen—pore jacketed testg) conventional unjacketed test, and) triaxial
of deformation illustrated in Fig. 1, and then consider theirunjacketed test.
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sketched in Fig. (c) and Fig. 1d). Although the system as a B. Wave speeds for specific experimental
whole is again contained within an impervious jacket, theconfigurations
porous solid sample can now exchange fluid with the sur-

rounding free fluid in the reservoifc) A “conventional”  he change in the velocities of the three wave types: trans-
unjacketed test is shown in Fig(c). In this case the hydro- \gse and fast and slow longitudinal waves. For the first

static stress on the solid is caused by pressurizing the SUfs ee cases below, the loading is hydrostatic, defined by the
rounding fluid, .and therefore both .the skeleton and the ﬂu"l:onfining pressur@, . The change in the transverse speed is

are hydrostatically stressed with the same pressurgnerefore independent of its polarization direction.

7ij=~Pcd; and p=p.. This type of conventional unjack- (a) The “closed-pore jacketed” tests: for the transverse
eted test does not permit triaxial deformation of the sample, 4.6

and is thus too restrictive for the acoustoelastic efféd.
The experiment sketched in Fig(dl might be helpful in dCt2 Tot3l,

The above formulas together imply specific relations for

avoiding this drawback, although it is presumably rather dif-  dp, - 2K (p—kps)’ (42)
ficult to realize practically. In what follows we call it a “tri-
) . Y - . nd for the fast and slow waves,
axial unjacketed” test, and it is characterized by a constanf 5 .
pressurep in the pore fluid, and a triaxial state of stress in ~ d¢® _ B X" X" 43
the skeleton, implying three independent elementsrfar dpc CinO'XOJ '
The four states outlined above are as follows. First, for,nare
the “closed-pore” jacketed test we haveee Table | for
definitiong 1| —6l—35T 2l + 5 Iy, 44
8{=0ep /K.=pe/K. (38) Ke| 2Ty +4T,; =2l
In the “open-pore” jacketed test, on the other hand, (b) The “open-pore jacketed” tests:
p=0& 8= —ap./K. (39 dc? Tpp+ils+aly, s

In the “conventional” unjacketed test the skeleton is in a d_pc_ 2K(p—kpg)
state of hydrostatic stress, experiencing the same pressure Bige variation in the fast and slow wave speeds is given by
the fluid, i.e.,p.=p. In the case at hand the skeleton defor-gq. (43), where now

mation is purely dilatational, and Eq&5) then imply

1 _6F111_ %Flz_zarllg 2F11{+ %Fzg'f‘zal_‘l{g
ou;i j=—(pl3Kw) 8, 6¢=yp, (40) B=1¢ oF + 2 4 20T o 6al
3 - —0oa

wherevy is defined in Eq(36). Finally, in the triaxial unjack- st ety 1 e (46)
eted test both the fluid pressure and the deformation of the T ional “uniacketed” ]
skeleton are simultaneously kept under control. In this case () The conventional “unjacketed” tests:
we can express the fluid dilatation parameter in terms of  d¢? T+ 33— YKyl
these as k dp.  2Ku(p—xpr) (47)

6= adu+p/M. (41 The fast and slow speed changes are given by(4&).with

1 | =6l 5T 1= 2yKyly, 2035+ 50+ 29Ky Ty
B L © u© ¢ 14 . 49)

K 21 g+ %F2§+27KMF1Q =201 =6vKul'y,

(d) The “unjacketed” triaxial tests: The three principal To this end one should measure changes of velocities of
strainsay, @, ay, and the pore pressuge=c¢P are now acoustic waves induced by prestrain. Although it is of higher
independent parameters, and, according to(Ef, order as compared to linear effects, acoustoelasticity can be

A=a(ay+ ar+ay)+PIM. (49) reliaply detec’Fed in sedimentary materigls since the n'on.linear

elastic moduli are of several orders higher that their linear
The changes in the three wave speeds are then given by thgoduli® The experiments can be performed either on core
general formulas in Eq$27), (32), and(34). samples oin situ as, for instance, by experimental measure-
ment of strain-induced changes in seismic waves velocities
due to the solid Earth tidés.In fact, it is found that then
situ nonlinearity is as large or larger than that observed in the

The acoustoelastic effect is the simplest nonlinear elastitaboratory, and may be due to the large scale heterogeneity
effect that can be used to determine nonlinear elastic modulin the Earth** Such measurements can provide valuable in-

IV. DISCUSSION AND CONCLUSIONS
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formation about the Earth’s interior, just as measurements dPA. Onuki, “Theory of phase transition in polymer gels,” Adv. Polym. Sci.
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