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The general theory for small dynamic motion superimposed upon large static deformation, or
acoustoelasticity, is developed for isotropic fluid-filled poroelastic solids. Formulas are obtained for
the change in acoustic wave speeds for arbitrary loading, both on the frame and the pore fluid.
Specific experiments are proposed to find the complete set of third-order elastic moduli for an
isotropic poroelastic medium. Because of the larger number of third-order moduli involved, seven
as compared with three for a simple elastic medium, experiments combining open-pore, closed-pore,
jacketed, and unjacketed configurations are required. The details for each type of loading are
presented, and a set of possible experiments is discussed. The present theory is applicable to
fluid-saturated, biconnected porous solids, such as sandstones or consolidated granular media.
© 1996 Acoustical Society of America.
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INTRODUCTION

The linear theory of poroelastic fluid-saturated media is
a mature subject, with the classic studies of Frenkel1 and
especially of Biot2 standing as the significant achievements
in its modern development. Several different methods now
exist for arriving at governing equations, including the
theory of interpenetrating continua3 and the method of ‘‘ho-
mogenization’’ based on two-scale asymptotic expansions.4,5

Despite the fact that these approaches do not always yield the
same governing equations and that further general theoretical
studies are required, they have certainly proved useful in
several branches of civil and geo-engineering and the Earth
sciences,6–8 and also in unexpected fields, such as low tem-
perature physics9 and pattern formation in polymer gels.10

However, there are definite limitations to the linear theory.
For example, a proper analysis of the dynamics of large am-
plitude sound in sediments or of small amplitude sound in
rocks under large confining stress is obviously impossible
within the framework of a linear theory. Even seismic waves
of very small intensity at a large distance from their epicenter
should be studied in the framework of a nonlinear theory
because of the well-known effect of the accumulation of
nonlinear distortions leading to the ‘‘gradient catastrophe’’
phenomenon.11,12

There is renewed interest in the nonlinear acoustics of
rocks that is based partly on several observations of distinct
nonlinear effects. These include the change of thein situ
velocities of seismic waves13–15 and direct measurement of
harmonic distortion.16,17 These experiments have clearly
demonstrated that thein situ nonlinear elastic moduli of
rocks, soil, and sediments are much greater than the linear
ones. The nonlinear behavior of fluid-filled poroelastic solids
is not as well understood, and further progress depends upon
accurate experimental measurement of the effective nonlin-
ear moduli of poroelastic media.

The determination of the linear moduli has been the sub-
ject of numerous experimental and theoretical studies.7,18,19

An isotropic poroelastic medium has four static moduli that
may be measured by a combination of stress-strain experi-
ments on ‘‘jacketed’’ and ‘‘unjacketed’’ samples. The role of
the jacketing is to constrain either the fluid pressure or its
mass. The nonlinear moduli, in contrast, should be deter-
mined by measurement of essentially nonlinear effects. One
of the simplest nonlinear phenomena is the elastoacoustic
effect, whereby the speeds of small amplitude waves are
changed by applying stress or strain. The theory of acous-
toelasticity has been thoroughly discussed for purely elastic
materials,20–22 and is now commonly used in
ultrasonics;23–25 it has also been adapted to multiphase
materials.26

The subject of this article is the acoustoelastic effect
within the context of poroelasticity. The theory is based on a
nonlinear generalization of the classic Biot theory. Biot him-
self discussed thermodynamic aspects of a nonlinear theory
of poroelastic media, but did not specify any nonlinear
stress–strain behavior~see papers 15, 16, 18, and 19 in Ref.
2!. There has been some work on nonlinear poroelasticity
within the framework of the theory of interpenetrating
continua,3 and also using the method of two-scale
homogenization.27,28 Three sources of nonlinearity are tradi-
tionally distinguished in elasticity:~i! the physical nonlinear-
ity, that is, the nonlinearity of the constitutive relations relat-
ing the stress and the displacement gradient;~ii ! nonlinearity
of the universal equations, such as the equations of conser-
vation of mass, momentum, etc.;~iii ! geometric nonlinearity,
which results from the nonlinear relationship between the
deformation gradient and the tensor of finite deformations.

In order to keep the analysis as simple as possible, in
this article we ignore all dissipative effects and concentrate
on the first kind of nonlinearity only because it appears to be
the most significant for geophysical materials. We begin with
a discussion of acceleration waves in nonlinear poroelastic
media. These are exact solutions independent of the state of
prestress in the medium, and they reduce to the well-known
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Biot fast and slow waves for unstressed isotropic materials.
These general results serve as the basis for considering the
principal body waves propagating in a slightly prestressed
isotropic nonlinear saturated poroelastic substance. Finally,
we discuss application of the general formulas for the stress
dependence of the wave speeds to several specifically de-
signed experimental configurations.

I. NONLINEAR POROELASTICITY

A. Governing equations

All further analysis is based on the following governing
equations of the nonviscous, fluid-filled poroelastic medium:
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Here,ui is the displacement of the solid skeleton,wi is the
relative displacement of the fluid,ti j are the stresses,p is the
fluid pressure,W(z,um,n) is the poroelastic potential,r and
rf are the averaged density and the density of the fluid, re-
spectively,2z5w,i

i is a divergence of the relative displace-
ment of the fluid, andKi j is the ‘‘instantaneous’’ magnitude
of a symmetric tensor of permeability~the value of the per-
meability hereditary operator att50!. Also, xi are the spatial
coordinates, the Latin indices take the values 1, 2, and 3;
summation over repeated indices is implied, and a comma
followed by a Latin suffix symbolizes partial differentiation.
We refer to the Refs. 2, 4, 27, and particularly Ref. 28 and
for the motivation behind Eqs.~1! and ~2!.

By inserting the value ofz in terms ofwi we can rewrite
the equations of motion as
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In these and subsequent equations we use the following no-
tation for the derivatives of the potential energy functionW:
Wij5]W/]ui , j , Wzz5]2W/]z2, Wz

i j5]2W/]ui , j ]z,
Wijkl5]2W/]ui , j ]uk,l , etc.

B. Acceleration waves

An acceleration wavefront is a propagating surface de-
fined such that displacements and their first derivatives are
continuous across this surface, but the second and higher
derivatives and, in particular, the accelerations possess finite
jumps. Acceleration waves are the most convenient object of
theoretical study for both linear and nonlinear dynamics.
They have been investigated thoroughly by Hadamard29 and
by Thomas,30 while Chen31 provides a more recent review
for elastic materials. Continuity of the first derivatives im-

poses geometric and kinematic constraints on possible jumps
of the second derivatives since the ‘‘tangential’’ components
of the second derivatives are continuous. These constraints
are known as compatibility conditions and are, essentially,
geometric conditions originally developed by outstanding
geometers like Hadamard,29 Levi-Civita,32 and Thomas30

~fortunately all three were outstanding mathematical physi-
cists so their works are accessible to physicists!. In particu-
lar, the jumps of second derivatives across acceleration
wavefronts satisfy31,33
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where hk5[ui ,pq]2
1npnq and Hk5[wi ,pq]2

1npnq are the
second-order amplitude vectors of discontinuity,nj is the
unit normal to the wavefront, andc is the velocity of the
front. The compatibility conditions indicate that the two vec-
tor functionshk andHk completely define the jumps of 60
partial derivatives of the displacements.

In order to determine the acceleration vectors them-
selves one has to extract some additional dynamic informa-
tion from the governing Eqs.~3!. These equations are not
valid at the wavefront since the second derivatives are unde-
fined at the front. By definition, only one-sided second de-
rivatives are defined at the front, and these one-sided limits
satisfy Eqs.~3!. We first subtract, termwise, Eq.~3a! for the
two one-sided limits taking into account continuity of the
first derivatives and then do the same operation with Eq.
~3b!. Then, evaluating the jumps of the second derivatives
using the second order compatibility conditions of Eqs.~4!,
we get the following linear algebraic system for the ampli-
tude vectors:
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where K inv
i j is the inverse of the permeability matrixKi j ,

which is assumed to be invertible.
The pressurep is continuous across the wavefront, but

its gradient is not, specifically,

@p,i #2
15qni . ~6!

At the same time, it follows from the Eqs.~2! and ~4! that

@p,i #2
15Wz

klninlhk2Wzznin
kHk . ~7!

Combining the previous two equations allows us to eliminate
the quantitynkHk in favor of the jump in the pressure gra-
dient,q. Then Eq.~5b! provides an expression forHi ,

Hi52Ki j S hj1 q

r fc
2 nj D . ~8!

After some manipulation, Eqs.~5! imply that

~ r̃ ikc22W̃i jkl njnl !hk2K̃ i j njq50, ~9a!
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where

r̃ ik5rd ik2r fK
ik, ~10a!
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K̃ ik5Kik1Wz
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Equations~9! form a system of four linear algebraic equa-
tions with respect to the four unknownshk andq. This sys-
tem has a nonzero solution when the determinant vanishes,
leading to a fourth order polynomial equation inc2. The
coefficients of the polynomial depend onuk,l , z, and the
orientation of the unit normalnk , and thus the same is true
for the velocitiesc. Each real root generates an associated
nonzero solution (hk ,q). Further discussion of the fourth-
order system can be found in Ref. 34. On the other hand, the
system defined by Eqs.~5! is sixth order, because it involves
the unknownshi andHj . The fourth and sixth order systems
are connected by the fact that the latter possesses the root
c250 of multiplicity 2. Thus, whenc250, the system of Eqs.
~5! has infinitely many solutions of the formhk50,Hk5Rk ,
whereRk is an arbitrary vector in the two-dimensional~2-D!
space orthogonal to the wave normalnk . In summary, the
propagating waves and the nonzero wave speeds can be
found from either the fourth-order or the sixth-order systems.

C. Principal directions

A principal direction is defined as one in which an ei-
genvector, such ashi , is aligned with or orthogonal to the
wave normalni . For example, let us consider a longitudinal
wave in the direction ofni , that is, a solution of the form

hk5hnk , Hk5Hnk . ~11!

Substituting from Eq.~11! into Eqs.~5! and contracting with
ni gives
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ik nink2Wzz!H50. ~12b!

It follows immediately from Eqs.~12! that the corresponding
eigenvaluesc2 are defined by a biquadratic characteristic
equation, whereas the amplitudesh andH are connected by
the relation

rc22Wijkl ninjnknl
r fc
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5
H2
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. ~13!

A transverse wave, on the other hand, satisfieshk5hek ,
Hk5Hek , wheree

i is a polarization vector withnkek50 and
ekek51. Under these circumstances, Eqs.~5! become
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~r fc
2d ik1Wz

klnln
i !ekh1r fc

2K inv
ik ekH50, ~14b!

implying that the transverse wave velocity is given by

ct
25@r2r f~K inv

pqepeq!
21#21Wijkl eieknjnl . ~15!

When the material is isotropic then all directions are
principal directions, i.e., all acceleration waves are either
longitudinal or transverse in nature.

II. THE ACOUSTOELASTIC EFFECT

A. Third-order moduli for poroelasticity

We now consider the effects of prestress on the longitu-
dinal and transverse waves in an isotropic medium. The per-
meability for an isotropic poroelastic medium isKi j5kd i j ,
while the potentialW is a function ofz and the principal
invariants I M of the symmetric strain« i j5(ui , j1uj ,i)/2.
Thus

W5W~ I 1 ,I 2 ,I 3 ,z!, ~16!

where

I 15d i j« i j , I 25
1
2~dq jd rk2d r jdqk!« jq«kr ,

~17!
I 35

1
6e
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andei jk is the third-order alternating tensor. To within third-
order terms in«i j andz the potentialW can be approximated
by the polynomial
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We consider the following field of perturbations with respect
to the reference~unstressed! configuration:

dui5S aNnjx
jni1 (

A51,2
aAx

jeA j D «, dz5«D, ~19!

where e1i and e2i are two mutually orthogonal transverse
vectors, i.e., both are orthogonal to theni direction. The
perturbation magnitude is defined by«, with u«u!1 by as-
sumption, and the parametersaN , aA , A51,2, andD are
O~1! and independent. The prestrain is, from Eq.~19!,

« i j5S aNnjni1 (
A51,2

aAeAieA j D «. ~20!

Differentiating Eq.~18! in the vicinity of the reference
configuration~«50! we obtain the second order elasticity
tensors in terms of the elastic moduli:

Wijkl5lcd
i jdkl1m~d i ld jk1d ikd j l !,

~21!
Wz

i j52aMd i j , Wzz5M ,

wherelc , a, andM are the Biot parameters.35 In fact, Biot
defines the linearized stress–strain relations in terms of a
quadratic energy potential similar to Eq.~18!. Comparison of
the quadratic terms in the latter with Eq.~3.4! of Biot35 im-
mediately implies that

lc52G111G2 , m52 1
2G2 , M52Gzz ,

~22!
a52G1z /~2Gzz!.

There are many different notations used for describing the
linear response of saturated porous media, and even Biot’s
own notation evolved from the time of his early work on
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consolidation~see paper 1 of Ref. 2! to his later work. His
1962 paper35 provides a good comparison of the notations
used.

For the third-order quantities we get

Wz
i jkl5~G2z12G11z!d

i jdkl2 1
2G2z~d i ld jk1d ikd j l !,

~23!
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i j 52G1zzd
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1d ind jm!1dmn~d ikd j l1d i ld jk!….

In the absence of poroelastic effects, the third-order elastic
moduli Wijklmn are equivalent to the standard third order
moduli Ci jklmn , or CIJK in the concise Voigt notation.23 In
order to compare the moduli here with the more common
notation, we note the equivalences

G1115
1
6C111, G125

1
2~C1122C111!,

~24!
G35

1
2~C11123C11212C123!.

The connection with other notations for third-order moduli
can be inferred from the table in Green’s review23 that com-
pares many different systems of notation. We note for future
reference the following formulas:

Wijklmnninjnknl56G111d
mn12G12~dmn2nmnn!, ~25a!

Wijklmneinjeknl52 1
2G12d

mn2 1
2G3~dmn2nmnn2emen!.

~25b!

B. Wave-speed dependence on the applied strain

For each deformed configuration there are three orthogo-
nal directions of principal strain, and the small amplitude
waves that propagate in these directions are either longitudi-
nal or transverse. We will now derive approximative formu-
las for the incremental changes of the velocities of these
principal waves to leading order in«.

First, the variation in the velocity of the transverse wave
with the polarization vectoreCi follows from Eqs.~15! and
~20! as

dctC
2 5~r2kr f !

21dWijkl eCieCknjnl

5~r2kr f !
21~WijklmneCieCknjnl«mn

1Wz
i jkl eCieCknjnl«D!. ~26!

Note that the densitiesr and rf are unchanged because we
are using the reference or Lagrangian description as opposed
to the current or Eulerian description. Conservation of mass
requires that these densities are constant. The structure con-
stantk is also assumed to remain the same under the defor-
mation. Combining Eqs.~20!, ~25!, and~26! we arrive at the
formula for the elastoacoustic effect for transverse waves,

dctC
2 5

2«

2~r2kr f !
„~a11a21aN!G121~a11a2

2aC!G31G2zD…. ~27!

In particular, the split in the velocities of two transverse
waves with the same propagation direction but different po-
larizations is, from Eq.~27!,
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«G3
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In order to establish analogous formulae for longitudinal
principal waves we first write the system of Eqs.~5! as

AX5c2CX, ~29!

whereX5(h,H)T, and the symmetric matricesA, C are
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G , C5F r r f

r f k21r f
G .
~30!

The inertial matrixC is again unchanged by the initial de-
formation, and the new wave speeds depend upon the varia-
tion in A. By making use of Eqs.~18!–~23! we can approxi-
mate this to within first order in«,

A5A01«A1, ~31!

where

A05Flc12m aM

aM M G ,
~32!

A15aNF 6G111 22G11z

22G11z 2G1zz
G1~a11a2!

3F 6G11112G12 22G11z2G2z

22G11z2G2z 2G1zz
G

1DF 2G11z 22G1zz

22G1zz 6Gzzz
G .

The eigenvalue problem for the matrixC21A0 was first stud-
ied by Biot in 1956~see paper 8 of Ref. 2! when he estab-
lished the existence of two different longitudinal modes: the
‘‘fast’’ and ‘‘slow’’ waves with velocitiescf andcs , respec-
tively. The eigenvectorsX f and Xs associated with these
velocities can be calculated by making use of the following
equation implied by Eq.~13!:

rc22~lc12m!

k21r fc
22M

5
H2

h2
. ~33!

Corrections to the Biot fast and slow velocities due to the
incremental deformations can now be calculated using stan-
dard perturbation theory, leading to the formula

dc25«
A i j
1X0iX0 j

Ci jX
0iX0 j . ~34!

Equations~27!, ~32!, and~34! show that by measurement of
elastoacoustic effects we can, in principle, find the third or-
der elastic moduli by solving a system of linear algebraic
equations. In Sec. III we shall examine some possible experi-
mental configurations with this purpose in mind.
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III. THE ELASTOACOUSTIC EFFECT IN
EXPERIMENTS

A. Experimental nomenclature and moduli

The application of the previous ideas to a poroelastic
sample requires the ability to impose various types of stress
states if all seven third-order moduli are to be determined,
i.e., $G111,G12,G3,G1zz,G11z,G2z, We first discuss the types of
measurements employed in determining the four second-
order moduli$G11,G2,G1z,Gzz% or $lc ,m,a,M %. The second-
order moduli are related to one another via Eq.~22! and yield
the classic Biot theory for linear poroelasticity35 for which

t i j5lcu,k
k d i j1m~ui , j1uj ,i !2aMzd i j , ~35a!

p52aMu,k
k 1Mz. ~35b!

Note thatp is the pore pressure, andti j is the total or con-
fining stress. The effective stress,t i j1apd i j , is also com-
monly used. For example, if a hydrostatic confining stress
t i j52pcd i j is applied, then the effective pressure is
pe5pc2ap. The main point is that there are two indepen-
dent stress variables, or pressures, if the system is hydrostati-
cally loaded. Table I lists and defines three distinct bulk
moduli ~inverse of compressibility!, Kc , K, andKM , associ-
ated with hydrostatic deformation of undrained, jacketed,
and unjacketed samples, respectively. We also define the
bulk modulus for the fluid alone,Kf , and the ‘‘coefficient of
fluid content’’ g,18,35

1

Kf
5

21

Vf

]Vf

]p
, g5fS 1Kf

2
1

KM
D , ~36!

in terms of which the Gassmann relation35 is

g5
1

M
2

a

KM
. ~37!

Different types of experiments have been used to deter-
mine the second-order elasticities of fluid-saturated poroelas-
tic media. We shall discuss them briefly in order to avoid
possible confusion in terminology. The terms ‘‘open’’ and
‘‘closed,’’ ‘‘jacketed’’ and ‘‘unjacketed,’’ and ‘‘drained’’
and ‘‘undrained’’ are all relevant to the problem, but have
different connotations. We shall next describe the four states
of deformation illustrated in Fig. 1, and then consider their

mathematical description and their implications for elastoa-
coustic measurements.

In state~a! the closed-pore system corresponds to con-
stancy of the fluid content or mass, and in the geometrically
linear approximation this implies thatz50. The closed-pore
experiment is the simplest for theoretical analysis but is
rather difficult to realize in practice, at least for a high level
of wetting. Conceptually, it requires that the sample is cov-
ered by an impervious closed deformable jacket; see Fig.
1~a!. ~b! Alternatively, the open porous system, in the termi-
nology of Biot and Willis,18 corresponds to the case of con-
stant fluid pressure, orp50. However, it is more consistent
to refer to this as a ‘‘drained’’ test and to treat it as a special
case of a more general open configuration withp5const.
Such an experiment is sketched in Fig. 1~b! and is regarded
as the jacketed test. The amount of absorbed liquid is not
fixed in this experiment since it can leave the sample through
the tube connected with the air. The unjacketed tests are

TABLE I. Different compressibilities of a porous medium, with definitions ofKc , K, andKM . Here,p andpc
are the pore and confining pressure, respectively. Note thatlc , m, a, andM are defined in Eqs.~22!, and
l5lc2a2M ~Ref. 35!. The relations between these and other moduli are explored in greater detail by Ku¨mpel
~Ref. 36!, and also by Brown and Korringa~Ref. 37!.

Compressibility—definition
In current
notation Terminology, notation, and references

1

Kc
5

21

V

]V

]pc
U
z

1

lc1
2
3m

Closed compressibility~Ref. 35!
undrained compressibility,cu ~Ref. 36!

1

K
5

21

V

]V

]pc
U
p

1

l1
2
3m

Open or jacketed compressibility~Refs. 35 and 18!
drained or matrix compressibility,c ~Ref. 36!

1

KM
5

21

V

]V

]pc
U
p5pc

12a

l1
2
3m

Grain or pore compressibility~Ref. 37!, cs ~Ref. 36!,
unjacketed compressibility,d ~Ref. 18!

FIG. 1. Different schemes of loading:~a! closed-pore jacketed test,~b!
open-pore jacketed test,~c! conventional unjacketed test, and~d! triaxial
unjacketed test.
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sketched in Fig. 1~c! and Fig. 1~d!. Although the system as a
whole is again contained within an impervious jacket, the
porous solid sample can now exchange fluid with the sur-
rounding free fluid in the reservoir.~c! A ‘‘conventional’’
unjacketed test is shown in Fig. 1~c!. In this case the hydro-
static stress on the solid is caused by pressurizing the sur-
rounding fluid, and therefore both the skeleton and the fluid
are hydrostatically stressed with the same pressure,
t i j52pcd i j and p5pc . This type of conventional unjack-
eted test does not permit triaxial deformation of the sample,
and is thus too restrictive for the acoustoelastic effect.~d!
The experiment sketched in Fig. 1~d! might be helpful in
avoiding this drawback, although it is presumably rather dif-
ficult to realize practically. In what follows we call it a ‘‘tri-
axial unjacketed’’ test, and it is characterized by a constant
pressurep in the pore fluid, and a triaxial state of stress in
the skeleton, implying three independent elements forti j .

The four states outlined above are as follows. First, for
the ‘‘closed-pore’’ jacketed test we have~see Table I for
definitions!

dz50⇔pc /Kc5pe /K. ~38!

In the ‘‘open-pore’’ jacketed test, on the other hand,

p50⇔dz52apc /K. ~39!

In the ‘‘conventional’’ unjacketed test the skeleton is in a
state of hydrostatic stress, experiencing the same pressure as
the fluid, i.e.,pc5p. In the case at hand the skeleton defor-
mation is purely dilatational, and Eqs.~35! then imply

dui , j52~p/3KM !d i j , dz5gp, ~40!

whereg is defined in Eq.~36!. Finally, in the triaxial unjack-
eted test both the fluid pressure and the deformation of the
skeleton are simultaneously kept under control. In this case
we can express the fluid dilatation parameter in terms of
these as

dz5adu,k
k 1p/M . ~41!

B. Wave speeds for specific experimental
configurations

The above formulas together imply specific relations for
the change in the velocities of the three wave types: trans-
verse, and fast and slow longitudinal waves. For the first
three cases below, the loading is hydrostatic, defined by the
confining pressurepc . The change in the transverse speed is
therefore independent of its polarization direction.

~a! The ‘‘closed-pore jacketed’’ tests: for the transverse
wave,

dct
2

dpc
5

G121
1
3G3

2Kc~r2kr f !
, ~42!

and for the fast and slow waves,

dc2

dpc
5
Bi jX

0iX0 j

Ci jX
0iX0 j , ~43!

where

B5
1

Kc
F26G1112

4
3 G12 2G11z1 2

3 G2z

2G11z1 2
3 G2z 22G1zz

G . ~44!

~b! The ‘‘open-pore jacketed’’ tests:

dct
2

dpc
5

G121
1
3G31aG2z

2K~r2kr f !
. ~45!

The variation in the fast and slow wave speeds is given by
Eq. ~43!, where now

B5
1

K F26G1112
4
3G1222aG11z 2G11z1 2

3G2z12aG1zz

2G11z1 2
3G2z12aG1zz 22G1zz26aGzzz

G .
~46!

~c! The conventional ‘‘unjacketed’’ tests:

dct
2

dpc
5

G121
1
3G32gKMG2z

2KM~r2kr f !
. ~47!

The fast and slow speed changes are given by Eq.~43! with

B5
1

KM
F26G1112

4
3G1222gKMG11z 2G11z1 2

3G2z12gKMG1zz

2G11z1 2
3G2z12gKMG1zz 22G1zz26gKMGzzz

G . ~48!

~d! The ‘‘unjacketed’’ triaxial tests: The three principal
strainsaN , a1, a2, and the pore pressurep[«P are now
independent parameters, and, according to Eq.~41!,

D5a~aN1a11a2!1P/M . ~49!

The changes in the three wave speeds are then given by the
general formulas in Eqs.~27!, ~32!, and~34!.

IV. DISCUSSION AND CONCLUSIONS

The acoustoelastic effect is the simplest nonlinear elastic
effect that can be used to determine nonlinear elastic moduli.

To this end one should measure changes of velocities of
acoustic waves induced by prestrain. Although it is of higher
order as compared to linear effects, acoustoelasticity can be
reliably detected in sedimentary materials since the nonlinear
elastic moduli are of several orders higher that their linear
moduli.16 The experiments can be performed either on core
samples orin situ as, for instance, by experimental measure-
ment of strain-induced changes in seismic waves velocities
due to the solid Earth tides.13 In fact, it is found that thein
situnonlinearity is as large or larger than that observed in the
laboratory, and may be due to the large scale heterogeneity
in the Earth.13 Such measurements can provide valuable in-
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formation about the Earth’s interior, just as measurements of
the velocities themselves allow one to determine linear
moduli.

In the present article we have established relations for
the strain-induced changes of acoustic wave speeds in fluid-
filled poroelastic media. We have concentrated on the longi-
tudinal and transverse waves in isotropic poroelastic sub-
stances, which become slightly anisotropic under triaxial
prestrain. These changes depend not only on the prestrain of
the solid skeleton but also on the drainage regime of the fluid
component. Thus, the acoustoelastic effect is different for
drained, undrained, jacketed, and unjacketed tests, and ex-
plicit formulas for each configuration are described.

The seven nonlinear elastic moduli characterizing an
isotropic poroelastic substance can be found, in principle, by
a sequence of acoustoelastic tests and by using the formulas
presented here. Thus, the nonlinear elastic modulusG3 may
be determined directly using the rather simple formula of Eq.
~28! for the split in the velocities of two transverse waves
having the same direction of propagation but different polar-
izations. Then, using the formulae in Eqs.~42! and~45!, one
can determine the nonlinear moduliG12 andG2z by making
shear wave measurements under uniform~hydrostatic! pre-
strain with closed-pore jacketed and open-pore unjacketed
conditions. The same information can be extracted using
shear wave data from a conventional unjacketed test and Eq.
~47!. Compatibility of the numerical results for the moduli
determined through different experiments can be used as the
indication of acceptability of the model of an isotropic po-
roelastic substance. The determination of the remaining four
nonlinear moduli can be based on measurements of the fast
and slow longitudinal waves, using Eqs.~34!, ~43!, ~44!,
~46!, and ~48!. Again, the fact that there are more relations
than moduli allows one to check the admissibility of the
model of an isotropic poroelastic medium.
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