was the same for both methods. For the RKA method, zero
initial condition was used and integration was carried out over
many cycles until the convergence criterion of Eq. (2) was
satisfied. Figure 1 clearly shows that the time for the SSA to
- produce a steady-state response is independent of both speed
ind damping, since all four cases lic on the same curve, unlike
the RKA’s obvious dependence upon these parameters, For the
SSA, these errors fall well below the tolerance requirement for
convergence [Eq. (2)]. Hence, Fig. | does not reflect the time
required for both methods to produce the same error. In light
of this figure, the SSA is clearly the better of the two methods.

In arder to compare the different methods (SSA and EXPA),
it was necessary to calculate the relative errors. The maximum
relative errors were calculated by solving for §(0), integrating
using the fourth-order Runge-Kutta method for 2 cycles, and
finding the maximum relative error between the two cycles,
e! [see Eq. (2)].

Figure 2 provides a comparison of $5A and EXPA with
regard to the computation time for a desired accuracy. Several
cases of EXPA were used for this comparison. EXPAZ, EXPA3,
EXPA4, and EXPAS refer to the EXPA method using, respec-
ively, f = 2, 3, 4, and § [Eq. (I12)], in the Taylor series
approximation to estimate the exponential of [4,] At In gener-
ating time/error plots, the number of intervals required to obtain
a certain accuracy (based on e!) were computed for each
method. Then for the respective number of intervals, simula-
tions were performed using a Gateway 2000 486 4DX-33 MHz
personal computer, with 8 MB RAM. Figure 2 illustrates that
the SSA method is more efficient in computation time. The
enhancement in computation time offered by the SSA over the
EXPA is increasingly more as the accuracy requiremient is made
more stringent (e} is required to be smaller). The improvement
in computational time is essentially due to the accuracy of the
SSA method in that for a desired e}, the SSA method requires
a significantly smaller number of intervals than the EXPA
method.

Conclusion

A new efficient method for calculating the steady-state re-
sponse of linear systems with periodic coefficients has been
presented. The method consists of two steps: (i) solve for the
initial conditions that give steady-state behavior, and (ii) supply
these initial conditions to a Runge-Kuta type integration
scheme and integrate over a single cycle. Using a practical
machinery example, the method has been compared to two other
procedures in order to assess its computational efficiency. The
method has been found to be significantly faster and more accu-
ratc than present methods.

10' 3
10 3
£ 100 4
2 b
8 ]
2o ]
£ 107
e ] Runge-Kurty Steady State Algorithm
. —e— Q=45 T=001 —+—Qwud5 =001
3 ~a—Q0=11,F=00i ——Q=11 =00l
p —w—(1=45T=01 ——1=45T=01
=11, T =01 me—= 14, T=01
0.t

T 1 T T T L
[¢] 500 1000 1500 2000 2500 3000 3500
Number of Intervals - Time Steps Per Cycle

Fig. 1 Time conparison of SSA and RKA with various cases of speed
and damping
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Fig. 2 Calculation time for presctibed errors of SSA and EXPA
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Dispersion of Flexural Waves on
Shells
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Simple and accurate approximations are given Jor the disper-
sion properties of flexural waves on curved shells in vacuo. The
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resulits apply to shells of arbitrary double curvature, and are
valid over the full frequency range of interest, from very high
down to values below the generalized ring frequency.

1 Intreoduction

Vibration and transport of energy on elastic shells can be
decomposed into a super-position of distinct wave types, typi-
cally membrane and flexural as on a flat plate (we will not
consider evanescent wave types here). The dispersive behavior
of propagating waves for arbitrary shell geometry is then re-
quired. Several authors have investigated the dispersion rela-
tions for cylindrical shells at frequencies greater than ring,
(Soedel, 1981; Pierce and Kil, 1990; Guo, 1994). Means et al.
(1991) also provided asymptotic approximations which repre-
sent various regions of the wave-normal curve, ie., the wave-
number plane at fixed frequency, for a cylindrical shell below
the ring frequency. Some results have been reported for arbi-
trarily shaped shells, starting with Germogenova (1973) who
derived a short wavelength dispersion relation for flexural
waves. Pierce (1993) presented a single dispersion relation that
includes all wave types, membrane and fiexural, while Norris
and Rebinsky (1994) derived separate relations for each wave
type, the flexural agreeing with Germogenova's.

Here we derive an approximate but explicit expression for
the wave-normal curve of flexural waves on an arbitrarily
shaped shell over a wide frequency range.

2 Dispersion Relations

Consider a thin elastic shell of arbitrary shape with its dy-
namic behavior governed by a set of equations of motion de-
rived by Pierce (1993 ) which is a generalization of the Donnell-
Yu model for cylindrical shells. Any shell theory would be
adequate but this model is the simplest. We consider straight-
crested waves of constant frequency traveling in the direction
n, with phase €'~ 5 being the coordinate along n, or the
arc-length on a ray path. Plerce's (1993) dispersion relation for
a shell of arbitrary shape, as simplified by Norris and Rebinsky
(1994}, is

2k 1 ‘ea 4 4
(51 - _—""‘) [(5' = kD — k') - k€,

1 —r
¢? £%?
— 2 ——— — =
+ (1 V)rzRi] 2(1+V)r2R% 0, (1)

where k and « are the longitudinal and flexural wavenumbers
for a flat plate, respectively,

= mwiC, «* = mw/B.

(2)

Here, m is the areal density, C = Eh/(1 — v*) is the extensional
stiffness. and B = Cr® is the flexural stiffness, where E is
Young's modulus, v is Poisson’s ratio, A is the thickness, and
r is the radius of gyration, r* = h*/12. The ring frequency for
the general shell is defined by k = Long» Where (Pierce, 1993)

1 + ._1_ 2
Ri Ry R,
and R, and R, are the principal radii of curvature. The remaining

two radii of curvature in Eq. (1) and a third for later usage are
defined as

(3)

ér:mg =

\
ny ny
+ —

L_n 1 +
Rn R; RH R.L it Rl

(4)
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where n; and n, are components of n along the directions of
principal curvature, The dispersion ‘relation can be rewritten in
nondimensional form as

(y - 3’—6“) [(y - b5N)(y? — 1)

1 —-v

(1l — Yy (1 +v)y
A -2 e 0‘
b~ T KR: ] KIRL )

i

where wf; is the surface wavenumber normalized with respect
to the flexural wavenumber, b is a dimensionless frequency and
6 is a shell parameter,

y =&k b= kg, 6= rfg,. (6}

2.1 Membrane Waves, We have previously studied in
some detail the dispersion equations characterizing membrane
waves on elastic shells of arbitrary shape for large frequencies
(Norris and Rebinsky, 1994). Membrane dispersion was also
investigated and discussed by Pierce and Kil (1990} and Guo
(1994). We now summarize our results (Norris and Rebinsky,
1994) concerning membrane waves for completeness.

It is clear from its definition in Eq. (6) that § < 1 for thin
clastic shells. We can therefore analyze the roots by taking
advantage of the smallness of § in the dispersion relation (5).
We note that 56 = 1 at the ring frequency and therefore b2 <<
1 for frequencies near ring. We first consider the root y = b2
corresponding to the quasi-longitudinal wavenumber for which
Eq. (5) can be manipulated to

(7

where Ry (R;) of Eq. (4) is the radius of curvature parallel
(perpendicular) to the ray path. We next tum to the root y =
2b8*1(1 ~ v), which yields the wavenumber for quasi-trans-
verse shell waves. Equation (5) can then be approximated as

22 4
2
5 P ——— 8
S w1 (8)
For a circular cylindrical shell, the approximations obtained
by Guo (1994) yield those determined from Egs. (7) and (8)
by ignoring fluid loading, neglecting flexure k%2 < I, and
setting &./k = n, where n_ is the component of n along the axis.

2.2 Flexural Waves. We have also previously studied
flexural wave dispersion at high frequencies ( Norris and Rebin-
sky, 1994) on doubly-curved shells. For cylindrical shells, Guo
(1994) has developed a mid-to-high frequency approximation
of flexural dispersion. Qur main concern in this Technical Brief
is in obtaining approximations for the flexural wavenumbers on
doubly-curved shells which are uniformiy valid for the full
frequency range from ring to high frequencies. As we will see.
the final result is also quite accurate at frequencies betow ring.
Flexural waves correspond to roots of Eq. (5) such that v =
O(1), which is equivalent to £ = «, or

(a-uvhH] .,
¥t - [1 —W]y

2 1 1 J
- [fmg‘FZ(l + v) (H-’--R—%-)];?ko (9
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Removing the root ¥ = 0 yields the cubic
Y L py-a =0

where

N ! 1V 200 + ) /| 1y
— = K- —— ;e m—————— — . 1
y X7 [(Rn Rr) Ry (RJ * R,,)] (He)

g U=
B =1 oR

and note that & represents a dimensionless frequency parameter,
@« % w. The dimensionless parameter 4 also depends upon fre-
quency. but it is more strongly influenced by the direction of
propagation in comparison 1o a,

In solving Eq. (10), we need to consider separately the three
cases § > 0, 8 = 0. and 8 < 0. Thus, when B = 0, the three
roots of Eq. (10) are

{¥es y2o w4}
={zcos¢> — sin ¢ ~ ! Cos ¢, sin ¢ - ! cosqb} (.12)
where

¢=%cos-'2—2-5 % 05m¢s%. (13)

In general. ¥, > 0 > y; > y,, while the limiting values of the
roots for large values of & are v, — 1, - Lyy—0 a5«
= *. Hence, the propagating and evanescent quasi-flexural
waves are given by the roots y, and v,, respectively. Both are
well described by the fiat plate limits of »w=1 and y, = —|,
except at very low frequencies where « is of order unity. Their
approximate dispersion relations. Egs. (12) and (13), perform
well over the whole frequency range of interest, from o = o1y
‘to infinity. The root ¥; corresponds to the quasi-longitudinal
wave which is evanescent at low frequencies. The fourth root
of Eg. (9). y; = 0. represents the quasi-shear wave at low
frequencies. For higher frequencies (i.e.. above ring}, the ap-
proximations (7) and (8 are more suitable for the quasi-longi-
tudinal and quasi-shear wavenumbers than those based upon
Eq. (%)Y or (10).

As previously stated, we are primarily concerned with the
propagating quasi-flexura] root v,, for which Eqgs. (12)and (13)
imply that

Cu L, I8 1 os-1 3 2)
(K) 2\/;cos(3cos B VB 8 >0 (14)

When 8 equals zero the quasi-flexural root is

€y~ ka', B =0 (15)

As [3 becomes increasingly negative the assumption that y =
O(1) for Eq. (9) is less accurate. with ¥ becoming small and
approaching O(£67%). Even 50, we can obtain an approximation
valid for the case when £ is negative but only slighdy so,

S Y o JIBL . (1. 3 B
(T) “2\/ 3 S”‘“(ss‘“h 2a;m\/im)‘

8 <0,
Expressions Egs. (14) through (16) provide uniform approxi-
mations at the ring frequency as compared to that obtained
previously for high frequencies { Norris and Rebinsky, 1994).

(16)
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Fig. 1 Helical wavenumber diagram for 4871 Hz, where the ring fre-
quency is 15168 Hz. The solid curve is the approximation (14) through
(16} and the dashed line is the exact dispersion refation (1). Here, k. =
£ar cos 6 andm = £ ,a sin & where a Is the cylinder radius and ¢ Is angle
between propagation direction and the axial direction,

3  Numerical Results

We consider a circularly cylindrical steel shell in vacuo, with
I/R; = 0, Ry = 0.055 m, and thickness # = 5.3 x 107 m,
implying a ring frequency of 15168 Hz. This example corre-
sponds to the cylindrical shell used by Williams et al. (1990)
and Means et al. (1991), Rays traveling on an infinite cylindri-
cal shell form helical paths. As the direction of propagation (a,,
ny) is varied for frequencies below ring, the helical wavenumber
diagram for the flexural traveling wave forms the shape of a
“figure eight” (Williams et al., 1990: Fahy. 1985).

Following Williams et al. (1990) and Means et al. (1991 ),
we consider the frequency 4871 Hz, which is approximately
one third of the ring frequency. A comparison of the quasi-
flexural wavenumber diagram calculated using the approxima-
tions { 14) through (16) versus the “‘exact” dispersion relation
given by Eq. (1) is shown in Fig. 1. Both expressions display the
characteristic *‘figure eight’” pattern. The parameter 8 becomes
increasingly negative as the propagation direction approaches
the cylinder axis (m = 0}, so it is not unexpected that the
approximation {16) overestimates the helical wavenumber in
this region. Note that Eq. (16) is derived on the assumption
that |81 is small. Generally, the difference between the asymp-
totic and exact wavenumbers is negligible for most directions
of propagation of the helical wave.
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Sensitivity Calculations for Broad-
Band Acoustic Radiated Noise Design
Optimization Problems

S. A. Hambric'!

Introduction

A new optimization methodology for solving broad-band ra-
diated noise design problems has been developed (Hambric,
1995). The optimizer, called STRACOPT (STRuctural ACous-
tic OPTimizer), repeatedly manipulates design parameters, such
as plating thicknesses and material loss factors, and executes
numerical analysis programs until a design which meets radiated
noise goal levels and has the lowest possible design objectives is
found. The integration of optimization techniques and numerical
structural/acoustic response prediction tools, such as the finite
element method (FEM), allows a noise control engineer 1o
investigate a large range of design alternatives in an efficient,
productive manner. STRACOPT is applicable to a broad class
of problerns, including quieting machinery in industrial environ-
ments, reducing far-field radiated noise signatures of submerged
military vehicles, and reducing interior noise levels in automo-
biles and aircraft.

The optimization process depends strongly on the accuracy
and applicability of the design sensitivities, which indicate the
effects of changing design parameters on design objectives and
constraints. For broad-band radiated noise design optimization,
the sensitivities of one-third octave radiated noise levels with
Tespect to structural (plate thicknesses) and material (mass den-
sities, Joss factors) parameters are required. Since most FEM
structural-acoustic analysis programs do not automatically com-
pute radiated noise design sensitivities, finite difference approx-
imations must be used 1o compute the sensitivities. Small pertur-
bations of the design parameters are made, and the perturbed
FEM models are reanalyzed. The sensitivities are then approxi-
mated using the differences in the radiated noise response and
the size of the design variable perturbations. Since the accuracy
of the finite difference approximation is directly related to the
design parameter step size, the choice of step size may influence
the likelihood of the optimization converging to a feasible de-
sign. Broad-band radiated noise design sensitivities may also
be dependent on the frequency resolution used in the analyses.
A coarse narrow-band response spectrum may be inadequate 10
resolve peaks in frequency response, which will lead to errone-
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ous one-third octave band levels. Errors in the broad-band re-
sponse will lead to errors in the sensitivities, which may hinder
or prevent the optimizer from finding a feasible or optimal
design,

This study therefore investigates the sensitivity analysis of
broad-band radiated noise for various structural design parame-
ters and the influence of the sensitivities on the optimization
convergence characteristics of the STRACOPT capability, A
better understanding of the influence of design sensitivity pa-
rameters {design parameter step size, frequency response reso-
lution) on broad-band radiated noise sensitivittes will lead to
improved optimization success rates for broad-band radiated
noise design optimization problems. The effectiveness of the
sensitivities and optimization methods is measured by ro-
bustness (finding the global or near global minimum indepen-
dent of starting design point) and computational efficiency
{based on the required number of actual design evaluations).
A finite element model of a submerged, ribbed cylindrical shell
with hemispherical ends is used as a test case for the sensitivity
and approximation methods. Design variable deltas ang fre-
quency response resolutions are varied to investigate their in-
fluence on the sensitivities and optimization robustness and ef-
ficiency.,

Summary of Optimization Approach

The basic optimization approach using approximation func-
tions (either first-order Taylor or half-quadratic series [ second-
order Taylor without cross terms]), design history weighting,
and simulated annealing search is described in the earlier paper
(Hambric, 1995). The approach is summarized below.

I. Create 2 composite objective function composed of multi-
ple design criteria, such as structura] weight and damping treat-
ment cost. The objective function components may be individu-
ally weighted.

2. Augment the composite objective function with one-third
octave band radiated noise constraints. When radiated noise
levels exceed those of specified goal levels, a penalty function
based on the amount of the goal violation in dB is used to add
to the objective function.

3. Approximate radiated noise constraints using low-order se-
ries functions. First-order Taylor or half-quadratic approxima-
tions may be used to simulate the one-third octave band radiated
noise levels over the design space.

4. Improve the approximations of the radiated noise design
space by retaining the actual numerically-computed radiated
noise levels from prior design iterations.

5. Globally search the approximate design space using sirnu-
lated annealing to find the design with the lowest objective. If
no feasible design is found, the global search will produce the
least penalized design possible, effectively minimizing the radi-
ated noise goal violations.

6. Repear the procedure until design variable changes con-
verge within a user-specified tolerance or repeat a design found
in a previous iteration,

Design Sensitivities

The first- and second-order gradients used in the approxima-
tion functions for radiated noise are computed using finite differ-
ence equations, where the design variable vector is perturbed
slightly and the FEM radiated noise analysis is repeated. The
gradient computation, or sensitivity anatysis, is typically the
most computationally intensive component of design optimiza-
tion. Each complete sensitivity analysis requires a number of
FEM radiated noise evaluations equal to the number of design
variables for the first-order approximations and twice the num-
ber of design variables for the half-quadratic approximations.
(A full second-order Taylor series expansion would require a
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