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Abstract

Dynamic ray equations for membrane and flexural waves on arbitrarily curved and inhomogeneous smooth thin shells
are derived from the equations of motion. The ray paths are geodesics only if the wave speed is constant along the ray.
The evolution equations for the wavefront curvature depends upon both the local Gaussian curvature along the ray, and the
transverse derivative of the wave speed. The propagation of gaussian beams is discussed and applied to the problem of
finding the quasimodes associated with closed ray paths. The ray equations are applied to a specific example of a smooth
structure with piecewise constant curvature which exhibits both stable and unstable ray paths.

1. Introduction

Geometrical optics methods offer the possibility of describing the motion of very large thin shell structures of
arbitrary, smooth shape [ 1-3]. However, many of the elements required have not been sufficiently developed to
date, such as the equations for the evolution of wavefront curvature on regions of variable curvature and wave
speed. This paper is an attempt to address some of these deficiencies. Such issues as how the simultaneous
presence of surface curvature and inhomogeneity conspire to affect the ray equations are addressed. The basic
parameters that enter into the description of gaussian beams and quasimodes are also outlined in some detail,
with the view to applications on finite, smooth shells.

Separate ray theories for bending waves and membrane waves (longitudinal and shear) on thin shells have
been described by Steele [1] and Chien and Steele [2]. Their starting point was the Lagrangian-variational
formulation of Whitham [4], which circumvents the need to consider the equations for motion explicitly.
Alternatively, using the more conventional approach, and starting from the general equations for thin shells of
arbitrary curvature, Pierce [3] has shown that one can find a local dispersion relation for short wavelength
disturbances that includes both flexural and membrane waves. Applications to cylindrical shells were given by
Pierce and Kil [5]. In a recent paper, Norris and Rebinsky [6] presented simpler form of Pierce’s equation,
and also derived separate dispersion relations for membrane and flexural waves on arbitrarily shaped shells. The
flexural relation is similar to one found previously by Germogenova [7] and Steele [1], and also by Pierce [3]
as a limit of his general dispersion relation. The separate relations of Norris and Rebinsky [6] are based upon
distinct asymptotic scalings for the membrane and flexural waves, where the scaling involves a non-dimensional
curvature parameter, € < 1. A similar approach will be adopted here. The basic idea stems from noting that
in the absence of curvature at all points (i.e., a flat plate) the equations for in-surface displacements decouple
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from the equation for the normal displacement. It is well-known that in this limit the decoupled equations
support membrane and flexural waves, respectively, where the membrane wave types are longitudinal or shear,
depending upon the displacement polarization. In the presence of curvature it is therefore natural to use the
small parameter

e=+/h/R, (1)

where R is an arbitrary length, on the order of the minimum radius of curvature, and 4 is the shell thickness.
We will develop asymptotic solutions for € small but non-zero.

The equations of motion of arbitrarily curved thin shells are summarized in Section 2, where the notation is
also defined. Membrane and flexural waves possess different dispersive properties and are discussed separately.
Membrane waves are considered first, in Section 3, and the ray and transport equations are derived in Section
4. The parameters required to define the propagation of gaussian beams are discussed in Section S, and some
general properties are derived. For example, it is shown that a gaussian beam does not possess singularities
at caustics, but evolves smoothly at all points. It is possible to obtain periodic short wavelength solutions
associated with ray paths which are closed and stable. These “quasimodes™ are gaussian beam solutions that are
periodic and concentrated near periodic ray paths [8,9]. They are defined and constructed in Section 6, where
a discussion is also given concerning their relationship to structural modes. A detailed example illustrating how
to apply the beam and quasimode results is presented in Section 7 for a “complex structure” which exhibits
stable and unstable periodic rays. Flexural waves are discussed in Section 8.

2. Thin shell equations

The shell equations employed here are similar to those of Green and Zerna [ 10], and are discussed in more
detail by Pierce [3] and by Norris and Rebinsky [6]. The curvilinear coordinates on the shell are #' and
62, with corresponding direction vectors a, = X4, @ = 1,2, and surface normal a3 = a; A ay/|a; A az|. Greek
sub- or superscripts assume the values 1 or 2, and the suffix , @ denotes differentiation with respect to 6%. The
surface curvature tensor and the surface metric tensor, both symmetric, are deg=ay®azg and a.p = a,  ag,
respectively. Vectors are defined relative to these tangent vectors by their components, e.g., p = p®a,. The
covariant derivative is denoted by Dgv® = v* g +I'g, v”, where the Christoffel symbols are I'g, = a**ayeag,.
Finally, the principal directions on the surface are numbered I and II such that (e, e}, a;) form an orthonormal
triad.

The displacement of a point originally on the middle surface is denoted u = v* a, + was. The equations of
motion for a shell composed of isotropic material are

%™

Ph“'—-—&t2 =Dg{C[(1-v)e*f + ve";a"‘ﬁ]} , a=1,2, (2a)
02

PhE;v- = —-D,Dg [B(l - V)DaDBw] - D,D* [BVDﬂDBw] -C [(l — V)d;eg + ydgeg] . (2b)

The in-surface strains are
1
€ap = 5 (agyDa” + aayDp?) + dag w, (3)

h is the thickness, p the mass density of the shell material, and C = Eh/(1 — »?) and B = Eh*/12(1 — v?)
are the extensional and bending stiffness, respectively, where E is the Young’s modulus. The wave speeds for
membrane waves are ¢, and c;, where c;‘; = E/(1 — v*)p for longitudinal waves, and ¢? = E/2(1 + »)p for
shear waves.
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3. Membrane waves

Membrane waves are solutions that are short wavelength relative to the radius of curvature, but long wave-
length relative to the thickness. In order to emphasize this scaling, we consider time-harmonic solutions of the
form

u(x, ) =u'®(x) exp {ie ' w (¢p(x) — 1)}, 4)

where € is defined in (1). The scaling in (4) is specific to membrane waves, and assumes that the frequency
is an O(1) parameter in terms of the length scale R. That is, @|V¢|R =0(1), and the wavenumber k associated
with (4) then satisfies kk < 1 and kR > 1. Thus, the wavelength is large compared with A, as it should be for
thin shell theory, and small relative to R, so that it approximates the flat plate limit. A similar scaling scheme
was adopted by Logan [11] in considering edge effects on thin shells. The “conventional” procedure is to take
w as a large parameter, and is recovered by setting € = 1, or equivalently, choosing R = A since it is an arbitrary
parameter. In summary, the introduction of the scaling parameter € is purely to assist in the asymptotics. After
performing the asymptotic scaling we may set € — 1, so that @ is then the actual frequency and ¢(x) the
phase function.
The amplitude functions are also expanded as asymptotic series in €,

wOx)=eWx) + W) +..., vO%x)=Vi(x)+eVi(x)+.... (5)
Substitute (4) and (3) into (2) and keep only the leading order terms, of order unity. This implies that the

normal displacement is decoupled and the in-plane components satisfy

1 1
5(1~V)p2a§+ 5(1+V)p“p;;—cp'2ag VA =0. (6)

All quantities in this equation are defined in Section 2 except p, the slowness vector,
Pa =Da . (7)

Also, p? = p,p®, and define the unit vector in the direction of the slowness vector as n = p/p, also known
as the wave normal, and let m be the in-surface unit vector perpendicular to it, m = a3 A n. The next in the
asymptotic sequence of equations obtained from (2), (4) and (3) gives a pair of equations involving both
Vv« and V*. Contraction of these equations with V,, and subsequent use of (6) gives a single equation, the
transport equation,

1 1
Dp {c [5(1 ARt +v)p“VaVﬁ]}=O. (8)
Setting the determinant to zero in (6) and using the identity ag = nng + m*mg to simplify, gives

(PPc;—1) (P72 —1)=0. (9)

The possible values of the slowness are therefore p = 1/cp, or p = 1/c¢s with eigenvectors (polarizations)
V = Vn, and V = Vm. These are longitudinal and shear waves, respectively. Substituting for V* into the
transport equation (8), it reduces in either case to

D, (V?phcn®) =0, (10)

where c is the appropriate speed, ¢, or c;. These equations reflect the conservation of energy flux for each wave
type, where phc is the analog of the acoustic impedance.
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4. Ray and transport equations
4.1. Summary of results

The main results for membrane waves are first summarized. The details of the derivations are in the next
three subsections, followed by a discussion. The equations for ray paths are found to be

dsz P ds ds

11
ds ds 0, (D

426 468 dov (a"’B do= daﬂ) s _
[

where s is arc length. Apart from the final term involving the surface derivative of the speed, this is the usual
equation for geodesics on a surface [12,13]. Hence, the rays can diverge from the surface geodesics when
¢ varies with position, which is similar to the departure of rays from straight lines in a 2 or 3 dimensional
acoustic medium with variable sound speed.

The amplitude function, V(s), for either type of membrane wave, depends upon the local wave impedance
phc and a ray tube area parameter A(s),

_ [ (phc A)(0)
V(s) =V(0) A ) (12)

The equation for the change in ray tube area is a modified Jacobi equation,

d 1dA
c———+(K+L) A=0, (13)

dsc ds
where K is the Gaussian curvature, and L is related to the second derivative of the speed in the direction

perpendicular to the ray direction, i.e.,
1 DyDgc
K= ——, L = memB Z2BC 14
R Ry mm (4

The parameter A is also related to the second derivative of the phase function ¢ in the direction transverse to
the ray. Let M be the matrix of second derivatives (the first derivative is simply p) of the phase evaluated on
the ray, i.e.

Mag =DoDg . (15)
Then,
1 dA A C,A A C,A
Myg = A~C a mMomg —m —c—2- (n,,mg + manﬂ) -n C_2 nghg. (16)

This matrix is useful for paraxial approximations, which will be discussed in more detail later.
4.2. The ray equations
We first demonstrate that the rays of the eiconal equation for membrane waves are identical to the shell

geodesics, modified by possible variations in wave speed with position. For simplicity, let the wave speed be
¢ =cp or cs, then the eiconal equation which follows from (6) can be written H = 1/2, where

1
H=> c’a®®D,¢ Dgop. (17)
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We now restrict the definition (7) to the value along a ray, which is defined as a solution to the equation
H = 1/2 for some initial values of the position and the normal direction. Therefore, p,p®* =1/ ¢? and ny = cpa
along the ray. We consider 8% and p, as conjugate variables, analogous to position and momentum, for the
“Hamiltonian” H = H(6, ¢ g). This is independent of ¢, which could be taken as the parameter along the ray;
however, it is preferable to use the arc-length, s, where ds = cdt. The ray or Hamilton-Jacobi equations are
then
ag" 1OH  dp._ 10H 8)
ds ¢ dpa ds c 36~
which immediately guarantee that H = 1/2 along the ray, because dH/ds = 0 from (18). Substituting for H
from (17), the ray equations become

o= dpe  Co 1

=n £ -5 — n

ds ds 2 20N

The differential equation for p can be converted into one for the wave normal n, using Eq. (19), the relation
n® = ca*®pg, and the identities

a? ,. (19)

ABya = awr;‘a + a,\,,l“ga, aP? o = =Pt — a"Th (20)
yielding the following alternate form of the ray equations,

de* dn® o o« 8Cp

= % =-T4 nfn’ —m mB—E—. (21
A ray is completely determined once an initial position and direction are given for 8* and n®. Combining the
separate equations in (21) yields the single second order differential equation (11) for the position along the

ray.

4.3. Variational ray equations

We next consider how the higher order derivatives of the phase function ¢ propagate along the rays.
In particular, the second order derivatives are sufficient to determine both the wavefront curvature and the
amplitude of disturbances with initially curved wavefronts and also gaussian beams.

We first note that the identity D, H = 0 gives

€ o @ (Dyd) (Dyd) + ca(Dy¢) DoDyop =0, (22)
which, when evaluated on the ray, implies

MagnP =—c2c,, (23)
where M,z are defined in (15). The remaining unknown element of M is

pn=mmP Myp. (24)

In order to find y«, we first expand the identity Dg (¢! D,H) =0 and evaluate it on the ray, using (23) to
simplify,

1
c—2 (DGDHC——?)C,QC_B) -|—CM2,MAB -l-l‘lA DﬁD,\Da(ﬁ =0. (25)

Equations (16) and (25) together imply
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2 1
memPn? DgD\Dogp = 3 (m"‘c,a)2 -2 m"mBDaDﬂc - c,uz. (26)

We will eventually use this identity to determine an expression for the derivative of x along the ray. The latter
follows directly by differentiating (24), where the derivatives du/ds can be eliminated quite easily using (21),
and the fact that d(m“n,) /ds = 0. We find

du a. B A€ a, B, A

I =2n"mPMagm ? + m®mPn* D\DgDy. (27)
Note that the final term in (27) is similar but not identical to the expression (26). The difference arises because
of the fact that in general, D,DgD,¢ # DgD,D,¢, even though DgD,¢ = DoDge. To be more precise, for
any vector function with components v,,

(DaDg — DgDy) va = R® 5, 1p, (28)

where R® 5, =T, —T%, , + 5,05, — T I's) are the components of the surface curvature tensor [13].
Combmmg Eqs (23) and (26) through (28), we obtain the desired differential equation for w,

du o g PaDgc 1 A

A —cp? —m*mf —a + . memPrrn® Ryap). (29)
This is a Ricatti equation for y, i.c. a first order nonlinear differential equation. It can be reduced to a second
order linear system by introducing parameters A(s) and B(s) defined by

B dA
=—, — =Bec. 30

# A ds ¢ (30)
We note in passing that Eqs. (23), (24), and (30) imply the explicit form (16) for the matrix M. The
differential equation for B follows from (29) and (30), as

ds

dB 1 D.D
ZmemP [__.EE
C C

+ nfn? RpaﬂA] A. (31)

Alternatively, eliminate B to obtain the linear second order equation (13) for A, where L is given by (14);
and K = —m®mPnPn? Ryepa- The simplified version of K in Eq. (14); can be derived using the equation of
Gauss for the curvature tensor for a surface [13], Ragya = daydpas — dardpy- The only non-zero elements are
Ry212 = Ryj21 = —Ry221 = —Ray12 and it can be seen quite easily that Rypj2 = a/ Ry Ry where a = deta,g and R,
and Ry are the principal curvatures.

4.4. The transport equation

The transport equation (10) for membrane waves may be rewritten, using n = cp,

d
5 (phc*V?) + ph P VIME =0, (32)

where M7 are defined in (15). Noting that the derivative along a ray is d/ds = n*D,, and using (16) and
(30), Eq. (32) simplifies to

d 2 4\
3, o8 (phcV? A) =0. (33)

The amplitude therefore evolves according to Eq. (12).
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4.5. Discussion and interpretation

The ray equation (21), can be simplified if we define the total derivative of an arbitrary vector function
q(6%) along the ray as
Dg*  dg“ « By
— = . 34
Ds as Tgyn"a (34)
The equation for the geodesic that is locally parallel to the ray path is then simply Dn/Ds = 0, while the ray
equation (21), becomes

Dn*
Ds

This is more like the standard form of the ray equation for acoustic media, normally phrased in euclidean
spaces where the definition of the total derivative is straightforward. An alternative form of the ray equation
on a curved surface has been derived by Collins [14] starting from Fermat’s principle (see the Appendix of
[(14]).

It was stated above that the parameter A is the “ray tube area”. We will now justify this statement, and at
the same time provide a more rigorous interpretation of the term “ray tube area” in the context of surface area
mappings. We first introduce the matrices

«_ 90% o _ Op°
P 00 £ o0f°

C
= —m* mP —c’i (35)

(36)

where 6§ are independent parameters which define the initial position of the ray. Hence, A and B describe
the variation in the ray coordinates as a function of the initial position. Evolution equations for both matrices
follow by taking the derivatives of the ray equations with respect to 8§, yielding the so-called variational ray
equations [15]. The first of these follows from (21), by writing n* = p®//ar,p*p? and using the identity
ag =n"ng + m*mg. We find

d o (24 a
aAﬂ=cm my, B, — n°T7 n"nyAZ. (37)
This can be simplified by first using the general result, true for any matrix, that
d dA
— log(detA) =tr— A™!, (38)
ds ds
and the following identity, which is simply derived from the definitions in Egs. (15) and (36),
1
—1\Y 14 le4
By (A7) =Mp— —Tign’. (39)
We obtain
d
3; log(detA) = cm*mgM®? — T, n'. (40)

The final term can be simplified using the identity 'S, = (log+/a) x, (see equation (2.82) in Eisenhart [13]),
where again a = det a,g is the determinant of the metric. It then follows from (40) that

1d
m*mgM®B = 5 log(v/a detA). (41)

Comparison with Eqs. (24) and (30) implies that the scalar A is related to the tensor A by
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A =+/a detA. (42)

We therefore identify A unambiguously as the analog of the ray tube area. More precisely it is the area mapping
along the ray, because it depends upon the jacobian associated with the rays through the matrix A, and the term
v/a occurs in (42) because it defines the physical area associated with the general curvilinear coordinates 6%.

The second order differential equation (13) is closely related to the Jacobi equation of differential geometry.
This is obtained when the wave speed c is uniform, so that the evolution of A depends simply upon the Gaussian
curvature at each point along the geodesic (the ray path coincides with the geodesic for constant ¢). The Jacobi
equation can be quickly derived from the second fundamental form for surfaces, ds?> = Edu? + 2Fdudv + Gdv®
[16], by specializing u and v to geodesic coordinates such that E = 1, F = 0, so that ds? = du? + Gdv?.
Gauss’s general equation for the curvature in terms of the derivatives of E, F and G [16] then simplifies to
K = —(G)~"23%\/G/au?, which is the same as (13) for constant c if we identify +A with v/G, in accordance
with the previous discussion about A. A “polar” form of the local metric, ds? = ¢?(du? + G?dv?), is the starting
point for the analysis of Steel [17] for the asymptotic form of the Green’s function for the reduced wave
equation on a surface. Steele derived a second order evolution equation for G for smoothly varying ¢, equation
(2.11) in [17], which is identical to (13) with the identification G = A/c. The scalar functions A and G are
closely related to “Jacobi fields”, which are vector functions that undergo parallel transport along geodesics,
in the terminology of differential geometry. Also, the natural generalization of the Jacobi equation to arbitrary
differentiable manifolds is Synge’s equation of geodesic deviation [12].

The equations derived here are applicable to shells on which the material properties and the curvature vary
continuously. The degree of ray spreading depends upon the local parameter ( K+ L). When this vanishes, as on
a uniform flat plate, the distance between neighboring rays increases linearly with initial distance from a source.
In general, the increase is sub-linear or super-linear, depending as K + L is positive or negative, respectively.
This is the major distinction between rays on uniform, flat plates and on inhomogeneous curved shells, and
leads to the possibility that initial data in the form of plane waves or point sources can generate caustics
at finite distances. However, the presence of curvature and variable speed does not lead to dispersion of the
waves, meaning that the spatial dependence of the waveform in the ray direction is unaltered as it propagates.
In the next section we will formalize the evolution of wavefronts, and allow the possibility of complex valued
wavefront curvature, i.e. gaussian beams.

5. Gaussian beam evolution
5.1. The ray matrix

The differential equations (30) and (31) for A(s) and B(s) form a system of coupled first order equations,

dA B
3—03, G- ¢ (K+L)A. (43)
Define the matrix
_ | Ar(s) Aa(s)
P = [Bl(s) 32(5)] ’ @

where (A;(s),Bi(s)) and (Az(s), B2(s)) are two sets of linearly independent solutions of (43), such that
P(0) = 1. The general solutions for A and B subject to arbitrary initial conditions is

Q(s) =P(s) Q(0), (45)

where Q(s) is the two-vector formed from A(s) and B(s). The matrix P(s) propagates ray tube areas and the
rate of change of the ray tube areas. We will call it the ray matrix, in keeping with optical terminology [18].
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Note that A; and B correspond to initial conditions like a plane wave, and A; and B, describe the ray tube
for an initial point source. Also, Egs. (43) and the initial conditions imply that the Wronskian, or Lagrange
ray-invariant [ 18], detP(s) = A,(s) B2(s) — A2(s) Bi(s) is constant and equal to unity. Therefore, the two
eigenvalues of P(s) are of the form A, 1/A.

Now consider the element x(s) of the M matrix associated with the transverse direction, m. Its evolution
follows from (30); and the fundamental solutions for A and B, as

_ Bi(s) + p(0) Ba(s)
A1(s) + p(0) Az(s)”

This is the “ABCD law” of transformation of wavefront curvature in optics [18]. If the initial conditions
correspond to a gaussian beam then x(0) is complex valued with positive imaginary part, ensuring gaussian
decay in the transverse direction. The Sturm separation theorem (page 223 of Ince [19]) can be applied to the
single equation (13) for A(s), and implies that the zeros of A; and A; alternate. Hence the complex number
w(s) of Eq. (46) is always of finite magnitude. The Sturm comparison theorem may also be applied to the
corresponding second order differential equation for B; and B, from which we conclude that u(s) cannot
vanish either. Thus, w(s) is guaranteed to remain finite and non-zero for a gaussian beam.

Let #(0) = py + ipo, where ) and u; are real with uy > 0, then using the fact that detP(s) = 1, (46)
implies

w(s) (46)

Im u(s) = [A1(5) + mAa(s))’ + (u24a()] ™ w2 (47)

The imaginary part of u(s) is therefore guaranteed to be positive if and only if the imaginary part of x(0) is
positive. We note in passing that the points where Im u(s) is stationary are precisely those points where the
real part of u(s) vanishes, which can be verified by differentiating (47) and using (46).

The gaussian beam amplitude follows from (12) as

V(s) =

V(0) [<phc>(0)]‘” (48)
VAL(S) + Az(5) w(0) | (phe)(s)

The Sturm comparison theorem also implies that V(s) remains finite and has no zeroes. Hence, we have shown
that a gaussian beam remains localized and of finite but non-zero amplitude as it travels over the surface. This
is one of the fundamental properties of gaussian beams.

We are now in a position to completely describe the evolution of gaussian beams. Consider an initial direction
ny, n§no, = 1, with data prescribed on the surface curve n,,6% = 0, of the form

i ")
v(8%) = Vo qo exp {E @ po MoatMog 6‘”0’3} , Dgv® =i - nog v, (49)

where mg = a3 A ng, qo = ng for longitudinal waves and qg = mg for shear waves and c is the corresponding
wave speed. The complex number uo defines a transverse gaussian decay about the initial center, if and only
if the imaginary part of uq is positive definite. The gaussian beam solution is defined by solving the ray and
transport equations, which are just ODEs along the ray path, for the initial conditions defined by (49). Thus,
the initial ray position is at the origin of coordinates, and the initial ray direction is n(0) = no. The remaining
initial condition is u(0) = uo.

5.2. Examples

The ray matrix of (44) can be easily evaluated for regions that are uniform (c¢ = constant) and of constant
Gaussian curvature. Thus,



136 A.N. Norris/Wave Motion 21 (1995) 127-147

cosvVKs ﬁsin\/fs
P(s) = , (50)

1
—Z\/—Ifsin\/—lfs cosvKs

if the curvature is positive, while for regions of constant negative curvature

_ c
coshv—~Ks ﬁ sinhv/—K s
P(s) = , (51)

1
—+v—Ksinhy/—K s coshy/—Ks
c

The ray matrix for a uniform, flat region is simply the limit of either (50) or (51) for zero curvature, i.e.,

(1 ¢s

P(s) = 01|

(52)

5.3. Gaussian beams on a spheroid

Consider a spheroid with semi-major axes of length R, R, and R; = 8! R. The beam propagates around the
“waist”, describing a circular path of radius R. Let # be the angle on the circle from the starting point, then
the ray matrix is given by (50) with s = Rf and VK = 1/R;. The beam-width parameter follows from Egs.
(46) and (50) as

_ #(0) — (cRy)~" tan B8
#(S) = 77000) Ry tan 6 (33)

The natural unit for u is 1/cRj. Accordingly, let #(0) = (cR3) ™! (F1 + ifi2), where fiz > 0, and define o
and 6, by

2%
. 2800 = .

2
~ ~ ~ ~ 2 o~ — —
By @+ 8- 1) + 43 S

242

Mo = (54)

With no loss in generality, let the origin of @ be redefined so that 6y = 0, then x(s) can be written in the
“standard” form, u(s) = (cR3) ! ii(s), where

_ iftgcos B0 — sin 8O

a(s) = . 55
HS) = im0 + cos B8 >3
The general solution for a gaussian beam traveling around the waist of a spheroid is therefore
V(0 B(s) r?
u(s,r) = ) exp{ik (R0+ ELs) ’—)} (56)
\/cos B8 + it sin SO 2 Rs

where k = w/c and r is the transverse distance from the ray. The gaussian beam (56) “breathes” as it circles
the spheroid because the width parameter, which depends upon Im zi(s), varies between o and 1 /0. The
interval between maximum or minimum widths corresponds to an increment in 6 of 7/28. Thus, for a given
value of R, the “breathing” is more frequent on an oblate spheroid (1 < 8 < co) than on a prolate spheroid
(0 < B < 1). Gaussian beams on a sphere are just a special case of (56) (R/R3=B=1).
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6. Quasimodes and asymptotic modal frequencies

The gaussian beam solution associated with a periodic ray, as in the previous example, is generally not
periodic. However, when it is, we call it a quasimode [8]. In general, one can associate a quasimode with
a stable periodic ray according to the prescription described below. The basic idea is that the neighboring
ray system is periodic, which requires that both the amplitude and the beam width are periodic. This implies
a constraint upon the frequency, which is the semi-classical Einstein-Brillouin—Keller quantization condition
[20].

The term quasimode is used here in the spirit of Arnold [8], who pointed out that although these are periodic
solutions which almost satisfy the wave equation (the error is asymptotically small) they are not necessarily
global approximations to modes. The frequencies are, however, good approximations to the modal frequencies.
The relatively simple mechanical system composed of a pair of weakly coupled but similar pendula provides
a useful analogy. There the modal frequencies are well approximated by the uncoupled frequencies, but the
modes are strictly coupled. The quasimodes are the uncoupled vibrations of the separate pendula, which are
good approximations over many periods, but not forever. In the same manner, a quasimode could correspond to
a disturbance which is trapped locally about the central ray for a long time (many periods) but not an infinite
time! Thus, a more exact description of the quasimode should discuss whether it can leak away to other parts
of the structure, and if so, how long it takes. The duration would probably depend in some manner on how
stable the ray system is. Without digressing too much, we note that for most practical purposes it may be safely
assumed that the quasimode is a wave object that exists for many periods.

The theory as presented here is similar to that of geometrical, Hamiltonian optics, as reviewed by Arnaud
[18], for example, although the applications are different. The reader should not confuse quasimodes with
“beam modes” [18], which are propagating modes similar to the waveguide modes of an optical fiber. The
general mathematical theory of quasimodes on surfaces and in higher dimensions has been described by Ralston
[9]. There are other methods by which one can attempt to obtain geometrical optics approximations to modes,
although they are sometimes restricted as to the type of system. Thus, Keller and Rubinow [21] describe a
quite different procedure for approximating the modes of 2D regions, such as the interior of an ellipse, while
Lazutkin [22] and Smith [23] have developed asymptotic methods specifically for “bouncing ball” types of
modes. Most relevant to the present work is the paper by Babich and Lazutkin [24], in which a parabolic
equation approach is used to construct modes concentrated near closed geodesics on surfaces. Whatever method
one uses, the leading order approximation to the frequency must be given by the quantization condition (60).

6.1. General theory

Consider a closed periodic ray path of base length L. A quasimode associated with the ray must satisfy the
periodicity condition that the neighboring rays form a congruence, i.e. the beam must have exactly the same
lateral dependence after each cycle around the closed central ray. This requires (we will not consider degenerate
rays [ 18], for which the periodicity conditions are imposed after N > 1 orbits)

#(L) = u(0). (57)
These are two equations for the initial values of the real and imaginary parts of #(0). We note the identity
[V(L)|™*Im u(L) = [V(0)|™*Im u(0), (58)

which follows from (47), (48), and the fact that p, h and ¢ are L-periodic. Hence, satisfaction of (57) implies
that the absolute value of the amplitude is also periodic,

[V(L)| = |V(0)|. (59)
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Any possible change in phase of the amplitude is included in the quantization condition for the frequency,
which is that the total phase is an integral multiple of 277. The total phase over one cycle follows by integrating
the relation d¢p/ds = 1/c(s) and combining the phase of the amplitude V. Thus, the Einstein-Brillouin-Keller
(EBK) frequency condition becomes

L L
ds d
w/ o) +/ dsargV(s)ds—nZ'rr, n=1,2,.... (60)
0 0

The closed ray is said to be stable if the eigenvalues of the ray matrix P(L) are of unit magnitude, and
unstable otherwise. The eigenvalues of a stable ray must therefore be of the form A; = e, Ay =e ¥, for some
0 < ¢ < 7. Substituting #(0) = w1 + i, into (57); and solving for both x; and x>, we find that a solution
is possible only if the ray is stable. The condition for the ray to be stable can be shown to reduce to [18]

—-2<A(L)+By(L) L2 (61)

Thus, a quasimode can only exist in the neighborhood of a stable ray. Assuming that (61) holds, we find that
the eigenvector rotation angle is

¢=cos_lw, o<y <m (62)

Solving (57); for x(0), and demanding that the imaginary part be non-negative, we find

_cosx/;—Al(L) . sinyg
#O == oo

There appears to be singular behavior if Ay(L) = 0. However, the fact that det P(L) = 1 implies A,(L)Ba(L) =
1, and since the ray is assumed to be stable, (62) implies in turn that A(L) = B2(L) = £1, with ¢ =0 or
7. Hence, the numerators in the right member of (63) vanish when A,(L) =0, and it is not unreasonable to
assume that the limit exists, in the sense of 1'Hopital’s rule. This case occurs for the sphere.

The EBK frequency condition (60) reduces to

(63)

L

ds 1
= - - 64
w/c(s) n2m+ W),  n=12,..., (64)

]

where ¥ () is a continuous function defined by, see Egs. (48) and (63),
sing |A2(L)| ™! Aa(s)

tan ¥(s) = ~ , (65)
Ai(s) + A(L) " (cosyy — A1 (L)) Aa(s)
with ¥ (0) = 0. Thus, the frequency equation becomes
L q y
s m m
= = m 66
w/c(s) 277'(n+4>+ 5 (66)
0
where
_ W, m even, 67
¢”’_{W—¢, m odd, (67)

and m is the largest integer less than |¥ (L)|/ar. This is precisely the Keller-Maslov index [20], which equals
the number of conjugate points on the orbit, i.e., the number of times the ray intersects a caustic.
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6.2. Examples: Periodic paths with constant curvature

Consider the example of the beam rotating about the waist of a spheroid, in Section 5.3. Applying the
periodicity condition (57) to fi(s) of Eq. (55), with L = 27R, implies that the normalized width parameter
Mo is unity. Therefore, f(s) maintains the constant imaginary value fi(s) =i, and (56) reduces to

u(s,r) = V(0) ei(kR—)0 o—kr’B/2R. (68)

The beam propagates with a constant width and amplitude, although the phase of V(s) = V(0) exp{—iB0/2}
changes steadily. The constant 1/e half-width is \/RA/Bm, where A = 27/k is the wavelength. The quantization
condition can be deduced immediately from the general solution (68) as

kR=n+B/2, n=1,2,3,.... (69)

The special case of a sphere is noteworthy. The beam width parameter z(s) of Eq. (55) is periodic
for any initial value of Zip. The condition (57), which is necessary but not sufficient for a quasimode, is
therefore automatically satisfied for rays on a great circle of a sphere. That is, the beam defined by Egs.
(55) and (56) with 8 = 1 is a quasimode for any zip as long as kR = n + % The values of the modal
frequencies and the non-uniqueness of the modes correspond to the fact that any function of the form f(8, ¢) =
Y oo @m€'™® P (cos ) is the solution to the Helmholtz equation on the sphere if kR = /n(n + 1), where
¢ is the azimuthal angle and P are Legendre functions of the first kind. The asymptotic eigenvalues of (69)
with B = 1 are approximations to the exact eigenvalues, because /n(n+1) = n + %4—0(1 /n). The modal
degeneracy of the sphere is not present for spheroids.

One can generalize these results to closed orbits on any path with constant positive Gaussian curvature. Then
the beam width of the quasimode is constant, x(s) = ic~'v/K, and the phase angle is ¥(s) = vKs. The
quasimode is a generalization of Eq. (68),

u(s,r) = V(0) (= 1VE) ~4vE?, (70)
and the modal frequencies are therefore

kL=2mn+vVKL/2, n=1,2,3,.... (71)

An example of such a path, apart from those mentioned above, is the exterior circumference of a doughnut. In
general, if the surface is subject to inextensible deformation, or bending, it is known that the Gaussian curvature
at all points on the surface is unchanged. This is Gauss’ famous “Theorema egregium” to the effect that the
Gaussian curvature is a bending invariant [25]. Hence, the quasimode described by Egs. (70) and (71) is also
an invariant of the surface under bending.

7. Periodic rays and stability on a complex shell structure: An example

The structure depicted in Fig. 1 comprises a cylinder of radius R; and length L;, with identical assemblages
attached at either end, composed of a spherical section, a conical section, and a spherical cap. The spherical
section, S, has the same radius as the cylinder, and is of angular extent 8;, 0 < 8; < /2. The conical section,
Co, has semi-angle ¢, and is attached to S; at one end and to the spherical cap, S,, of radius R, < Ry, at the
other. The end assemblage, consisting of S;, Co and S, is parameterized by the radii Ry and R; and the cone
angle #;. The semi-polar angle subtended by the cap S, is 77/2 — 61, and the length of the conical section is
Lo = (R; — Ry) cot 6.
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Fig. 1. A schematic of the shell structure composed of a cylinder with identical endcaps. A more detailed view of one endcap is shown.

7.1. The polar ray

There is a unique ray which goes through both “poles”, with a period of length L = 2L, + 27wR; +4Lo(1 +
6, tan8;). As it traverses each section the Gaussian curvature is constant and equal to zero on the cylinder and
cone, and 1/R? or 1/R3 on the spherical regionss. The ray matrix across each section therefore follows from
Egs. (50) and (52). For instance, the ray matrix across one end assemblage is (see Fig. 1)

—1 —2¢ L()R]/R2
0 -1

In order to find the stability of the ray and the parameters of the quasimode, if it exists, we choose one point
on the ray path and construct the total round-trip ray matrix. For example, referring to Fig. 1,

1 2CL1+4CL0R1/R2
P, = : (73)
0 1

We find that ¢ = 0 and u(0) = O for this periodic ray, from Egs. (62) and (63). The fact that ¢ = 0, or
equivalently, A;(L) + B>(L) =2, means the ray is neutrally stable; while x(0) = 0 implies that the quasimode
is a plane wave on the cylindrical sections. By examining the ray matrix through each section, it can be easily
shown that the plane wave focuses to a point at the poles, and the Keller-Maslov index is m = 2. The latter
can be seen by considering the structure as a modification of the sphere (increase #; and L, from zero to their
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final values), and noting that as the structure changes the K-M index is constant because ¢ =0 for any 6; and
L.

7.2. Oblique rays

We next consider ray paths on the same structure which do not cross the poles. The ray is defined by the
angle it makes with a plane slicing the cylindrical section, y. Alternatively, the ray subtends an angle /2 — v
with the the generator axis as it traverses the cylinder. The previously considered polar ray path corresponds
to 'y = /2, so we restrict attention to values less than this. In general, the path of the ray on the cylinder is
spiral, but the ray path on the ends depends upon the value of y. We distinguish two cases:

(1) ¥ < 6. The spiral on the cylinder connects to great semi-circles on the spheres S at either end, but the
ray does not reach the conical section. The ray path and ray congruence are isometric to those of a ray which
traverses the poles on a cylinder with hemi-spherical endcaps. Based upon the previous findings we conclude
that the ray is neutrally stable (¢# =0) and the quasimodes are plane waves (u(0) =0).

(2) v > 6y. The ray path reaches the conical section. Let 7y, be the spherical angle subtended by the section
of the ray path crossing S, and y, the angle the ray makes with the interface between S; and the cone. It
follows from some straightforward geometry that

sin 8 cosy
—, cosy; = .
siny cos &,

siny; = (74)
There exists two possibilities, depending upon whether or not the ray reaches the sphere S;. We note that the
conical section is isometric to a section of a circular annulus of outer radius R; csc 81, inner radius R, csc 8 and
angular extent 277 sin 8;. The ray makes an angle vy, with the tangent to the outer circumference, and therefore
it intersects the inner circle only if R csc @) cos y2 < Ry csc 8;. Using (74),, the two cases become:

(2.1) The rays do not cross the sphere S:

R
6, <y <cos! (——2- cosﬂ,) ,
Ry

(2.2) The rays cross S:

R
cos™! (7%1 cos 01> <y<mw/2
i

Case (2.2) is obviously the more complicated, but can be easily handled by the methods outlined here.
However, case (2.1) is sufficiently rich that it describes most of the ray physics one can expect to find on this
structure. Hence, we will not consider case (2.2) further. Regarding (2.1), we note that the length of the ray
path across Co is 2L;, where L, = R csc ) siny,. The ray matrix for propagation across an end assemblage
follows from (50) for the two paths across S; of length Ry, each, and from (52) for the path of length 2L,
across the cone. This can be simplified by noting, from (74), that cos 8; siny, = cos?y; siny, which implies
L, = Ry sec 6 cot<y;. Using this to eliminate L,, we find

-1 - 2c052y1 (sec@; — 1) cR; sin2y) (sec ) cot271 +1)
P, p= . (75)
(cR1) 7! sin2y; (sec8 —1)  —1—2cos’y, (sech; — 1)

If the ray is periodic then the ray matrix for the full round trip is the square of the matrix for half of the orbit,
since the two halves are identical. Also, because the matrices are unimodular (the determinant is unity), the
full orbit is stable or unstable if and only if the same is true of the half orbit. The ray matrix for the half cycle
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follows by multiplying the matrix of (75) with that of (52) for s = L3, where L3 = Ljcscy is the length of
the spiral path on the cylinder. We find that

1 L
5 [A1(L/2) + Ba(L/2)] = —1 + (sec8) — 1) 2cosy; [R—3 siny; —cosy; | . (76)
i

Therefore, according to (61) and (76) a periodic ray of angle vy will be stable only if

L, siny, cos 8,
0< | —— - < — 77
( Ry siny cosyL ) cos! 1 —cost n

A periodic ray must also satisfy the condition that the change in azimuthal angle, with respect to the axis of
the structure, is a multiple of 27 over one orbit. For rays of type (2.1) this condition becomes a constraint on
v, for given values of 8; and L,/R;,

;—: coty+2 sin_l(sinﬁl coty) + 2 csc by cos"(secol cosy)=jm, Jj=1,2,3,.... (78)
The left hand side represents the azimuthal angle for half of the total orbit. The first term is the angle
due to the spiral path on the cylinder. The second comes from the two crossings of S), each contributing
sin~! (siny; cosy), and the final term is the increment in azimuthal angle as the ray crosses the conical
section, 22/ sin#;. Eliminating the angles y; and vy, using (74) yields the expression (78). The quasimode
frequency therefore has two indices, n and j, from Eqgs. (66) and (78).

7.3. An example

Let 6; = 30° and L;/R, = 10. Then (77) is satisfied for all angles y larger than 30° except for those in
the range 32.9° < y < 45.8°. These angles correspond to unstable periodic orbits, if they exist. The orbital
condition (78) has four roots for periodic rays of type (2.1): at y = 31.7°, 38.5°, 48.5° and 64.7°. The
corresponding values of the index j are 6, 5, 4, and 3, respectively. Therefore, the j = 3, 4 and 6 rays are
stable, but the j =5 ray is unstable.

8. Flexural waves

Flexural waves on thin shells are characterized by displacements which are primarily in the normal direction.
The associated tangential components are small and vanish on flat plates (within the limits of the thin shell
theory used here, which ignores the Poisson effect). The form of the polarization field is discussed in detail
by Norris and Rebinsky [6]. There is, however, another important distinction between membrane and flexural
wave solutions, which concerns the scaling of frequency versus wavenumber, k. In the former case we have
k = /k*k,, where k = wp. This is what is commonly understood as the wavenumber, and we note in particular
that w?> = O(k?) for large wavenumber, as one would expect for nondispersive waves. However, for flexural
waves, the scaling is quite different, w? = O(h%k*) (the precise definition of k is given below). The appearance
of the non-dimensional factor (4%k?) means that for flexural waves @ can be O(1) even though k is large
(recall that kh < 1 is a condition of thin shell theory, sine qua non). Hence, ray theory for flexural waves
does not require that the frequency is large, only that the wavenumber be large. This is the essential difference
between membrane and flexural ray solutions. It leads to the expected dispersion of flexural waves, and also to
the possibility of significant anisotropy which depends upon the surface curvature.
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8.1. The dispersion relation

Instead of (4) the ansatz is now
u(x, 1) =u'(x) exp {i (e~ O(x) - wt)}, (79)

with amplitude functions scaled as
wE(x) = W) +eWx) +..., vO%x) =€eVi(x) +EV(X) +... . (80)

Because of the inherent dispersion in the flexural wave solution, it is more natural to work with the wave
number vector k rather than the wave slowness p, where k is defined as

ko = D, . (81)

The relation between ¢ and @, and p and k follows by comparing Egs. (4), (7), (79), and (81), which imply
® = w¢ and k = wp. At this stage we are finished with the scaling arguments and it is more convenient to
renormalize by setting € = 1. The leading order terms in the equations of motion imply the following dispersion

relation,
w? K 2
& o K = (=) (mampd®)” =0, (82)
P

Here, m is the unit vector perpendicular to the wave normal unit vector n = k/k, i.e, m = a; A n. The
derivation of (82) is described in the Appendix. We note that it is identical to flexural dispersion relations
discussed by Germogenova [7], Steele [1], Pierce [3], and Norris and Rebinsky [6]. In principal coordinates,
mompgd®® = nZ /Ri+n? / Ry, and hence the final term in (82) introduces anisotropy only if Ry # Ry. In general,
(82) determines the magnitude of the wave number k as a function of @ and the direction of the wave normal
n, ie, k=k(w,n).

8.2. Ray and transport equations

The eiconal equation (82) can be expressed as H = w/2, where the Hamiltonian H = H(6%, ® g) is now

(83)

I 2h2 ap 2 2 2
H ¢y (a*PD® Dp®)” +c3(1 — %)

i (d*#D,® Dpd)’
20 1712 ‘

(a*D® D,®)*

The modified curvature tensor d is defined to have the same principal directions as d but the values of the
principal curvatures are reversed. Thus, for example, n,,n,gcf"ﬂ = mamﬁd"ﬂ. As we will see, the speed along a
ray is not a simple parameter, such as the local wave speed ¢ for membrane waves, and it is therefore more
convenient to use the travel time as the ray parameter. The ray equations then become,

do® _ oH dko _ 9H

2 = (84)

dr ok, dt ~ a0

The first of these becomes d9*/dr = cg» Where ¢ is the local group velocity vector, which may be determined
from (83) and (84) as

w 12 k
This equation has been discussed in detail by Norris and Rebinsky [6], so we will not dwell on it here, except
to note that the anisotropy depends upon the term m®nfd,z = 1/R;; — 1/R;, and therefore vanishes on locally

2 2
h 2
cg=—- [2 Kn— 2 (1-%) (m*mPdag) (m*ndy,) m] : (83)
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spherical regions. The general form of (84); for the evolution of k, is very complex and is not worth pursuing
except possibly by numerical means, see Norris and Rebinsky [6] for an application to conical shells.

Despite the complexity of the ray equations, it is still possible to simplify the transport equation for flexural
waves of the type given in (79) and (75). We only cite the result here,

Do (ph W2 cg) =0. (86)

Details can be found in the Appendix.

There is a subtle point concerning the connection between (86) and energy conservation. It can be shown
that the vector cg ph W2 is closely related to the time-averaged energy flux vector, (F*), as defined by Pierce
[26] and discussed in the present context by Norris and Rebinsky [6]. The latter is a real-valued vector,
whereas the former involves W2 which can in general be complex valued. However, the time average of w2 is
asymptotically the same as W2, since the rapid phase variation has been accounted for in the exponential term in
(79). Therefore, one way of understanding the appearance of W? rather than |W|? in (86) is that if W = [W|e¥,
then the complex phase angle ¢ is essentially constant according to ray theory. This explanation is perfectly
adequate for classical wavefront analysis, where the phase of the amplitude only changes at discrete events,
such as reflection, transmission, or passage through a caustic. It does not apply to gaussian beam solutions, for
which the phase of the amplitude, ¢, changes smoothly as the beam propagates. Energy flux is not conserved in
a point-wise sense along the ray, rather, the spatially integrated energy associated with the beam is conserved.
These comments apply equally well to Eq. (10) for membrane waves.

8.3. High frequency simplifications

The ray equations for the dispersive, anisotropic and inhomogeneous Hamiltonian of (83) are exceedingly
complicated, mainly because of the presence of the final term, which introduces the anisotropy. However,
this term.is only significant at frequencies near the generalized ring frequency [3,6], defined as wy,, =
<, VK (2v+ Ry /Ry + Ry/R;)/%. At medium to high frequencies relative to @,jq, the anisotropy in the flexural
dispersion relation (82) can be safely overlooked, resulting in significant simplification. The dispersion relation
then reduces to k = w/c, where the phase velocity ¢ = c(w) is defined as ¢ = (12)~4 Jw hc,, and the ray
velocity (group velocity) of Eq. (85) becomes ¢, = 2cn. Omitting the details, which are similar to those of
Section 4, the ray equations reduce to exactly the same form as those found previously for membrane waves,
i.e. Egs. (11) or (21), where c is the phase speed and the arc-length is now ds = ¢z dr.

The transport equation (A.8) simplifies in that we can ignore the contributions from the tangential displace-
ment and keep only the terms involving W2. In order to simplify it further, let ® = w¢, and define Mqp as in
Eq. (15). Then (A.8) reduces to

% (BW?) + cBW? (M3 +2n%nf Mag) =0. (87)
At the same time, it can be shown that Eq. (16) again holds. Using this to simplify the transport equation
we find that W satisfies an equation just like (33) for the membrane waves, with V(s) replaced by W(s),
and where A(s) satisfies the same evolution equation, (13), as before. In summary, the flexural ray equations
are identical to those of the membrane waves, with c(s) the flexural phase speed. The only difference is that
the group velocity ¢, = 2¢ defines the arc length of the ray, which indicates the wave is dispersive, unlike
membrane waves. Because we are only considering time harmonic waves here, the effects of this dispersion are
not significant. When translated into the time domain, it causes wave spreading, or diffusion, in the direction
of propagation, in addition to the geometrical spreading in the transverse direction.
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9. Conclusions

The propagation of membrane and flexural waves on smooth thin shells has been analyzed using the methods
of geometrical, optics. The ray paths are identical to the usual geodesics if the wave speeds are constant, but
can depart from these if the speed varies with position. Hence, if the shell thickness is variable, the shear and
longitudinal speeds are constant but the flexural wave speed will change, implying that flexural ray paths could
differ from those of membrane waves. The evolution of wavefronts is governed by the ordinary differential
equation (13) for the ray tube area A. The rate of change of A depends critically upon the local Gaussian
curvature, with distinct behavior on regions of positive or negative K.

The basic elements developed in Section 4 allow us to derive all the necessary parameters for describing the
propagation of gaussian beams, with the details in Section 5. For every closed periodic ray, which is also stable
in the sense of Eq. (61), we can construct explicit geometrical optics approximations which have the property
of being periodic and locally confined about the ray. These quasimodes are not structural modes, but if excited
by suitable external forcing could exist for a time sufficiently long that they become indistinguishable from pure
modes. The procedure for constructing quasimodes is described in detail in Section 6. In general, quasimodes
will not provide a full description of the spectrum of a complex structure, just as closed orbits do not provide
the full picture in systems which exhibit stochastic or chaotic rays [20]. The issue of how to incorporate such
non-semiclassical effects remains an interesting question and the topic of current research.
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Appendix A.. The flexural ray equations

Some of the details leading to the flexural ray and transport equations are presented here. By substitution
of the ansatz (79) and (75) into the equations of motion (2), and identification of the leading order term in
powers of €, we find

1
5 (=) ag + (1 +v)kkg) V2 —iGERP W =0, (A.la)
. Bya CU2 h2 4 a B
—iGap kP Ve 4 | = — K — Gl | W=0, (A.1b)
p

where k is defined in (81), and
Gy=(1-v)ds+vdlaj. (A2)
Solving for V* gives V* = iWS?, where

2 1
§* = ———— |k G*Fkg ~ = (1 P o A3
Y G*Pkg 2( +v) Gkgky k (A3)
Then eliminating V¢ from the W-equation implies the flexural wave dispersion relation (82).
The next to leading order terms in the asymptotic series that result from inserting (79) and (80) into the
equations of motion (2) give a set of equations from which we can deduce a transport equation for the wave
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amplitude. Specifically, terms of order € in comparison with the leading order terms must be retained. For
example, the strains become

eap =W dap + 5 (kaV + kgVa) + € W dup + e (kaVi + k) + = (DaVa+DgVe) + ... (A4)

where only those terms omitted may be neglected. We also note that the first and second order terms which
involve W in the asymptotic expansion of D,D*DgD#? w are

k4

. 1 ‘
D,D*DgD? (We@/f) == (—w — 4%k D W — 2ik*NGW — 4ik kP NGW + .. ) e'®le, (A.5)
€ €

where Ng are defined by analogy with (15) as Nug = DoDg®. Using (B.1) to eliminate the leading order
terms, we obtain

0=C (ingﬂ B Vﬂ) + %Dﬁ [C(1 —v) (k*VF + KPV™)] +iD* (Cv kgV¥)

+5C(1 - v)kg (D*VA + DFV®) +iCrk*DgV? + Dy (CGW), (A6)
for the in-surface equations, and for the normal displacement
~ h? ~
0=C [i GBrgV® — (92 - Ek“ - gd{f) W] + CG§ D, VP
~2i [BR2k*DoW + kK> k*Do(BW) + B (K* N2 + 2k, kPNG) W] . (A7)

Multiply the first pair of equations by iV, and the final equation by iW, and add the results to get, using (B.1),
a single equation for the leading order amplitude,

0=2W [2B Kk*DoW + WK k%D, B + B (K* N2 + 2kakPN) W] +iWCG§ Do V¥ +iVeDg (CG*W)

—V, {%DB [C(1 = v) (kVP + kPV*)] + D* (Cv kgV?)

1
+5C(1 = »)kg (D*VF + DPV*) + Cv k"D,gvﬂ} : (A.8)
Expanding and combining terms gives
2rap2 . ay/B C B a c o Bl _
Do |2BE°k*W* 4+ iCGRV W——Z—(l—v)V Vak ——2—(1+V)V Vgk” | = 0. (A9)

The tangential components V* can be eliminated using V* = iWs®, where $¢ is defined in (A.3). It then
follows, after much algebra, that the transport equation (A.9) simplifies to (86), where ¢, is the group velocity
vector of (85).
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