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A general solution is developed for the acoustic and structural scattered response
from the junction of two flat plates under unilateral fluid loading. The plates are
modelled by the classical theory of flexure, and the solution is found using the
Wiener-Hopf technique for the dual integral equations for the unknown pressure
on the plates. Explicit formulae are obtained for the pressure transform when the
plates are in welded or clamped contact, and corresponding explicit expressions are
given for the various diffraction coefficients associated with the fluid—structure inter-
action. The magnitudes of the reflection and transmission coefficients of structural
waves display very simple analytic forms at low frequency.

1. Introduction

Subsonic flexural energy is known to be a significant part of the total vibrational
energy of submerged structures, but it is only weakly coupled to the acoustic field on
smooth structural segments. One of the main sources of flexural energy, and the site
for acoustic radiation from flexural waves, must be at junctions where material and
structural properties are discontinuous. In this paper we consider the interaction of
sound with the junction of two plates which are fluid loaded on one side, as depicted
in figure 1. Both plates support flexural motion in the sense of the classical theory of
bending, and they may have different thickness, mass density, and bending stiffness.
The presence of the material discontinuity at the junction couples all possible wave
number vectors in the same way that a point attachment such as a rib on a uniform
plate of infinite extent under fluid loading can generate waves in all directions. The
latter problem is far simpler, however, because the effect of the structural attachment
can be represented in terms of a point force and a point couple, each of which can
be represented as explicit integrals suitable for a computer (Seren & Hayek 1989;
Photiadis 1993, 1995). Scattering from clamped and finite impedance ribs has been
widely discussed (e.g. Lyapunov 1969; Guo 1993, 1994), and the related problem of
cracks and joints in otherwise uniform plates was considered by Howe (1986, 1994).

Scattering problems of the type considered here, with different boundary condi-
tions on complementary half-lines, are invariably attacked using the Wiener Hopf
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Figure 1. The plate junction and coordinate system.

technique (Noble 1958). For instance, Crighton (1970) discussed the general prob-
lem of different flexible boundaries, although he only considered the case of locally
reactive boundaries in detail. The particular problem addressed here has been dis-
cussed by Kouzov (1963, 1969) and Brazier-Smith (1987). Kouzov developed a formal
solution in terms of a transform which satisfies a Wiener-Hopf equation, and he out-
lined the different types of junction conditions possible. The essence of the problem
may be reduced to two issues: (i) analytic factorization of the kernel in the Wiener—
Hopf equation, and (ii) satisfaction of the edge conditions at the join. Kouzov (1963,
1969) provided only a formal solution for (i) in terms of infinite Cauchy integrals,
and failed to address the difficult task of actually applying the edge conditions. The
approach of Brazier-Smith (1987) was quite different, but more direct than that of
Kouzov. Brazier-Smith handled the first item using what might be called a ‘brute
force’ approach of performing an infinite Cauchy integral along the real axis, al-
though the range of integration was transformed to a finite one by a clever change
of variable. Brazier-Smith considered a variety of possible edge conditions (welded,
hinged and free—free) and in each case they reduced to a system of eight simultane-
ous equations. The more complicated problem of acoustic scattering by the junction
of two Timoshenko-Mindlin plates was considered by Woolley (1980). However, his
assumed form for the scattered potential (equation (7) in (Woolley 1980)) is not
a solution to the Helmholtz equation in the fluid, contrary to his contention. The
subsequent analysis in (Woolley 1980) is therefore of questionable validity. As noted
above, many authors have considered effects related to acoustic interaction with a
single semi-infinite plate in a fluid. The intermediate case of a plate coplanar with
an absorbing boundary was recently analysed by Asghar et al. (1994).

Although we consider the same problem as Kouzov (1963, 1969) and Brazier-Smith
(1987), we believe our method of solution is far simpler and more physically appeal-
ing. For instance, in §5 we obtain explicit and simple formulae for the amplitudes
of reflected and transmitted structural waves from welded and clamped joins under
heavy fluid loading conditions. Concerning item (i) above, analytic factorization of
the Weiner-Hopf kernel is performed using a new, genecral procedure developed by
the authors (Norris & Wickham 1995), by which the desired functions are obtained
as finite integrals. This form allows a simple and direct asymptotic expansion ger-
mane to a rigorous satisfaction of the edge conditions (ii), a luxury not afforded by
the brute force approach of Brazier-Smith (1987). Thus the conditions at the junc-
tion of the two plates are attacked in a straightforward manner leading to far fewer
equations to be solved in general. Also, the terms in these equations can be found
in analytic form, and have some physical significance, in contrast to Brazier-Smith’s
approach. In fact, we derive explicit solutions for the cases of welded and clamped
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plates, and these solutions in turn yield new, simple and useful results for scattering
under heavy fluid loading.

The outline of the paper is as follows. We begin in § 2 with the equations of motion
and a statement of the scattering problem. Some related physical quantities, such
as reflection coefficients, are also introduced. The formal solution of the problem is
derived in §3 in terms of an undetermined polynomial function A(€). Some general
properties of the solution and the diffraction and coupling coefficients are discussed
there. A systematic procedure is described in §4 for finding the polynomial A(£), and
the particular solutions for welded and clamped plates are obtained in § 5, where some
numerical results are also presented.

2. Formulation of the scattering problem
(a) Dynamic equations
We consider time harmonic motion of frequency w > 0, the factor Re{-e7*“*} un-
derstood but suppressed. The problem is two dimensional, with inviscid, compressible
fluid in the half space ~00 < & < 00, 0 < y < 00, and two plates lie along the z-axis.
The field quantities of interest are the acoustic pressure p(z,y) and the plate deflec-

tion into the fluid, w(x). The pressure satisfies the Helmholtz equation in the fluid
region,

Vip+kip=0, —-oco<z<o0, 0<y<o0, (2.1)

where k = w/c is the acoustic wave number, and ¢ is the fluid sound speed. The
equation of kinematic continuity between the plates and the fluid is

0
puw(z) = 8-2’@,0), 00 < 2 < 00, (2.2)
where p is the fluid mass density.

The two plates may have different densities, elastic properties, and thicknesses,
but each is uniform and its motion is modelled by the classical theory of dynamic
flexure. Assuming they meet at z = 0, we have

d4
g 4w

—o<xr<0, =1,
J (T:;Z(x> - mjw2w(ac) = _p(x>0)a { (23>

O0<z <00, g=2.

The plate parameters are the mass per unit area, m; », and the bending stiffness, B; o,
and are constant on each plate. These quantities may be related to the intrinsic plate
properties; thus, m = psh, and B = Eh3/12(1 — v?), where h, ps, E and v are the
thickness, volumetric mass density, Young’s modulus, and Poisson ratio, respectively.
For each plate we define the flexural wave number, k; 2, and the impedance length,
a2, by

Kj =w?m;/B;, a;=m;/p, j=1,2 (2.4)

J
The plate frequency defined by ka = 1 serves as a useful threshold distinguishing the
transition from a low frequency, pressure release regime, to higher frequencies where
the plate dynamics cannot be ignored. Eliminating the plate deflection between the
pair of boundary conditions (2.2) and (2.3) reduces them to a single equation for the
pressure,

Lip(x,0)=0, 2<0; Lyp(z,0)=0, z>0, (2.5)
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where the boundary operators are

ot 2]
L;i=1+ a (;s;‘*%z - 1> oy’ j=12. (2.6)

The diffraction problem can now be formulated entirely in terms of the pressure.
Thus, we need to solve the Helmholtz equation (2.1) in the fluid, subject to radiation
conditions as y — oo and the boundary conditions (2.5) on y = 0. Four edge condi-
tions must be specified at the junction = y = 0. The precise form of the conditions
are given in §4 for the following types of junction: (i) welded, (ii) clamped—clamped,
(iii) free—free, and (iv) hinged. The first two cases are discussed in detail in § 5. The
formulation of the problem is complete once we have specified the incident wave
field. There are several possible types of incident wave to consider, both acoustic and
structural, and these will be delineated in § 3. First we need to discuss the dispersion
relations for the infinite plates.

(b) The dispersion function and reflection coefficients

_ The fluid-loaded interaction with a plate is characterized by the functions D and
D, defined by

Lelz=m) = el&z=1) D(g)  Lelmtm) = gliotm) P(g), (2.7)

where £ and D stand for one of £; and D;, with j = 1 or 2. The square root y(¢) =
(€2 — k2)1/2 is defined as an analytic function in the complex &-plane cut as shown in

figure 2 so that its real part is non-negative. Along the real axis v(§) = —i14/k? — &2

for || < k and y(§) = /&% — k2 for || > k. We have selected this branch for v
so that certain Fourier superpositions of solutions of the form used in (2.7); are
outgoing at infinity. Note also that, for later convenience, we have given k a small
positive imaginary part, i.e. k = |kle!, 0 < ¢ < 1. We shall further assume that
D(€&) # 0, £ € HY N'H~, where H* are upper and lower halves of the complex
&-plane as shown in figure 2. Thus,

D) =1-9(OV(E), DE=1+7EV(), V() =alx"¢~1). (28
Hence, D is defined for outgoing wave solutions, and D for ingoing solutions.

Zeros of these dispersion functions are of some significance. A real root of D = 0
exists at all frequencies, corresponding to the subsonic flexural wave (i.e. slower than
acoustic). The dispersion relation D = 0 and its root structure has been the subject
of much discussion in the literature, e.g. Crighton (1979). In general, the field at a
point is represented by an integral along the real £-axis, where the definition of the
square root function -« is unambiguous. However, there is no unique way to define
the square root of the real axis, and one could choose different cuts extending to
infinity. We have specifically indicated one, see figure 2. Contour deformation from
the real axis, combined with a given definition of the cuts for the square root can
lead to poles arising from zeros of the function D. We will denote these complex
roots of D = 0 as ‘leaky’ wave roots. There is some ambiguity in ascribing physical
significance to leaky waves, because their very existence is a sensitive function of the
choice of branch cut for the analytic extension of the square root of the real axis
(Crighton 1979). One may even consider incident leaky waves for the problem at
hand, if, for example, a source is at a finite distance from the junction. This is not
unphysical, as long as one remembers that a leaky wave cannot exist in isolation,
but is simply a mathematically identifiable part of a spectrum. Therefore, for future
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Figure 2. The &-plane and the branch cuts for (§).

usage, we adopt the terminology that plate waves refer to zeros of D(£) whereas the
zeros of D(¢) are called leaky waves. In summary, the function D(€) and its zeros
are necessary for generating the solution, and it is mathematically convenient to
introduce the related function D(£) and its zeros. Some or all of these wave numbers
can be considered as incident wave numbers, whether they are leaky or not. We will
consider all possibilities for incident waves in the next section, although leaky wave
incidence is not addressed in the numerical examples discussed later.

Now suppose a plane wave with incident z-component of slowness & impinges on
a homogeneous boundary y = 0 where the acoustic pressure satisfies one of (2.5) for
all z, then the total field consisting of incident plus reflected waves is

p(o)(x,y) = li€ozt(é0)y) R(go)e(ifoxw(ﬁow), R(€) = — D(&)/D(¢). (2.9)
The reflection coefficient for a plane acoustic wave incident at angle § from the surface
is R(8) = R(k cos @), and hence |R(§)| =1 for real 6.
(c) Distinguished wave numbers for the combined plates

The reflection coefficients, R;(§) and Ra(€), of the individual plates are generally
distinct, but they coincide for certain values of the incident wave number. Thus,

Rl — RQ = 2’7P*/D1D2, (210)
where P*(£) is the quartic polynomial
P*(&) = Va(6) = Vi(€) = F5 (&% = (D), (211)

and

-1

. Q2 a1 4 as ai 4 fa—1
pr=2=_ 2 = — -~ = = — ). 2.12
=g deeea(FR) = (55) e

The dimensionless parameters a and g3 are
a=asf/a;, [ =DBy/B;. (2.13)

Hence, if £ is a root of P*(¢) = 0, while D1(§)D2(§) # 0, then Ri(§) = R»(§),
and both plates reflect equally at such values. The four zeros of P*, £(;, £(2, are
necessarily outside H* NH~, and we define them such that ¢; and {; are in H*. We
will see that the zeros of P* play a central role in the general solution.
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3. Formal solution of the diffraction problem

(a) Incident and scattered fields

As a first step in the solution of the scattering problem defined in §2 we define
the scattered field p'®) according to

p(z,y) = p(z,y) + p* (z,y), (3.1)

where p(®) is an incident wave solution with horizontal wave number &, and satisfying
the boundary condition on 2 < 0. Thus, p‘*) may be an incident plane acoustic wave
with & = k cos 8y, where 0 < 6y < 7/2 so that &; lies in the upper half plane, and the
amplitude of p{®) at the origin is then (1+7R,(6y)) times the incident pressure there.
Or, it could be an incident plate wave or leaky wave, in which case &, is a zero of
one of the dispersion functions D(£) or D(¢) with Re & > 0. Finally, we include the
possibility of an acoustic ‘end-fire’ wave (Brazier-Smith 1979). This is an acoustic
wave in the fluid with horizontal wave number &, = k, and linear dependence upon
the depth coordinate, i.e. a solution of the form p®(z,y) = (1 + py) exp(ikz). This
solves the Helmholtz equation in the fluid and it satisfies the boundary conditions on
the left-hand plate if p is chosen appropriately. The end-fire wave cannot exist in an
infinitely extended medium, but it may be present in real structures. The incident
field is therefore assumed to be one of the following:

[eYv + Ry(&)e 7E0)v] | acoustic wave,
, —7(&)y late wave
O (g, ) = 0% x ¢ ’ P ’ 3.2
p(z,y) €0y, leaky wave, (3:2)
[1—y/Vi(k)] (& = k), end-fire wave .

We assume, without loss of generality, that & lies in the upper half, H*, of the
complex &-plane described in figure 2.
The boundary conditions (2.5) may then be written as

Lip(2,0) =0, 2<0;  Lop®(z,0) = —L3p(x,0), = > 0. (3.3)

We now introduce an outgoing Fourier superposition of plane waves for p{*) in the
form

T [ _ ea
P@) =5 [ BT ag, (3.4)
This will satisfy (3.3) if the dual equations
1 e s
5 / Dy (6)p(€)e’™ d¢ = 0, T <0, (3.5a)
1 /= i .
5 / Dy (6)p(€)e*™ A€ = — Dy (&) Ag e”, z >0, (3.5b)

hold with Ag given by
Ryi(&o) — Ro(&0), 1, —Ro(&), —~Pr(k)/Vilk), (3.6)

for incidence of an acoustic wave, a plate wave, a leaky wave, or an end-fire wave
(for which &, = k), respectively. Note that A, vanishes for plane wave incidence if &,
is a root of P* = 0 (but not a root of D; Dy = 0, cf. (2.10)). One might think that
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the scattered pressure is identically zero in this case. However, the solution of the
dual integral equations (3.5) must also satisfy the edge conditions. The incident field
p© will not, in general, be consistent with the edge conditions, and must therefore
be supplemented by a null solution of the dual integral equations when &, coincides
with ¢,. This particular case will not be discussed further here, and we will operate
under the assumption that Ag # 0. We note that £, and £, reduce to impedance
operators if the bending effects are set to zero, and then no edge conditions need be
considered. The solution is relatively simple and is discussed by Norris & Rebinsky
(1995).

(b) General solution
It is evident that the first of (3.5) is satisfied by writing

B(&) = F~(6)/Da(6), (3.7)
where F~ is any function analytic in H~ and
F (&) =0, €&— o, EeH . (3.8)
Substituting this ansatz into the second of (3.5) yields
L[ Da(8) ooy ite 1o o
o | Dl(é)F (5)6 dé = Dg(ﬁo) Age y z > 0. (39)

Again by inspection, a particular solution of this equation is

iAgD K-
F‘({) _ 149 2(50) . (f) :
£-& K+(&)
where K*(£) are particular Wiener—Hopf factors of the quotient of the two dispersion
relations, such that

Di(§)/D5(6) = K(§) = K~(§)/K™(§) with K (=§)=1/K7(£). (3.11)
Thus, in particular, K*(¢) are analytic in the half-planes H* of figure 2.

A little reflection on the preceding argument shows that the boundary condition
on each plate is also formally satisfied by the scattered pressure field

(3.10)

() _ 1 [T AFE (6 ea—vie)
_ a8 [T EEQ) e viow
_2ﬂA< 18w> D e (3.12)
where A(€) is a polynomial of degree ¢ (say) and
A(&o) = Ao. (3.13)

The degree q is chosen so that w(z) is bounded everywhere on the plates and ps(z, ¥)
exists everywhere in the fluid region including the origin. It follows from the explicit
expressions for K*(£) given in Appendix A that

K*(€)=0(1),  [¢— oo, (3.14)

and D;(§) = O(€°) at infinity and hence the maximum value of g is 4. The general
solution for the pressure transform is

§—& G(&)°

(3.15)
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where G is an analytical generalization of the dispersion functions,

G(§) = Di(§)/K (&) = D2(&)/ KT (&), (3.16)

Thus we have provided a formal construction of a ¢g-parameter family of outgoing
scattered fields satisfying Helmholtz’s equation and the plate boundary conditions
(3.3). It remains to satisfy the conditions at the junction of the two plates. Evidently
the value of ¢ only depends on the size of the factors K* as £ — oo and we would
expect that the physical constraints at the join will also number ¢ to enable a unique
construction. We will show in §4 that this is indeed the case, using an analytic
construction for K*(¢) developed in Appendix A. Firstly however, we discuss the
general form of the solution for the physical quantities of interest.

(¢) Displacement and pressure solutions
Equations (2.2), (3.1), (3.4), and (3.15), show that the pressure and the transverse
deflection may be expressed in terms of two fundamental potentials po(z,y), and
wo(x), ie.

ple.3) =0 (e0) - A (=12 ) mo(avn) (3.17a)

) _ op© .d
pw w(z) = 99 (z,0)— A <~1£> wo(z), (3.17b)

where
ﬁ eliéz—7y) .
e =5 [ G e e, (3180)
_ piéz

wol) = %11 / ~(€) G(éo)) —r (3.185)

At first it may appear to be a simple matter to formally apply the junction continuity
conditions using these expressions. However, wq(z) will in general have weak singu-
larities at © = 0 and therefore it is necessary to proceed with caution. Our approach
is straightforward in that we will first derive alternative expressions for wy(x) so that
it is easy to find its power series as * — 0% and then obtain an algebraic system
of equations for the undetermined coefficients in A by substituting these expansions
into (3.17b) and the junction conditions.

(d) Diffraction coefficients

The scattered pressure simplifies at distances far from the junction in units of the
longest wavelength in the problem. A far field approximation may be obtained by
the usual methods of first shifting the contour of integration from the real axis to the
path of steepest descents. The saddle point contribution then yields the scattered
pressure in the fluid. When the observation angle 6 (see figure 1) is close to 6 = 0,
the deformation onto the path of steepest descents will capture a pole corresponding
to the subsonic flexural wave traveling to the right in x > 0. This pole occurs at
the positive real zero of D,(§). Similarly when 8 is close to 8 = 7, the deformation
captures a pole at the negative real zero of D;(£). When the incident field is a flexural
wave advancing from the left, say, the residues at these poles are the reflected and

transmitted waves respectively. Using (3.15) and the identities (3.16) with & = £,
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we thus find that the left- and right-going flexural waves are

p1(2,y) = Rpex e[—iﬁénx—w(ﬁé”)yl’ 2<0; pa(z,y) = Thex e[iﬁé”w—'v(&é”)y], x>0,
(3.19)
respectively, where 5(()2) is the wave number of flexural waves on the right hand plate.
The reflection and transmission coefficients are

_ACGY.eN6E”) LAY &G KT )
T2k DED) T (€D = eP)py(e?)

respectively, and we have rewritten A(€) as A(€, &) to remind us that it is a function
of both the incident and scattered directions. Note that Th., is the transmitted
amplitude for the surface pressure, not the displacement.

The acoustic far-field in the fluid depends upon a diffraction coefficient C'(6) de-
fined such that

p® = C(0) 2/mkre /4R r 00, 0< < (3.21)

The value of C may be found using the method of steepest descents applied to the
integral (3.4) after making the conformal mapping £ = —k cosht and writing (z,y)
in polar coordinates (r,6), see figure 1. If the incident wave is an acoustic wave
with angle of incidence 6y such that { = kcos 8y, the diffraction coefficient can be
considered a function of both angles, i.e. C(8) = C(8,0o), and £ = kcos 8. It follows
from (3.15) as

, (3.20)

flex

C(6,05) = L ksind p(kcosh) = —L~(€) C;(éo)) fé@_’ g) (3.22)

(e) Reciprocity and energy conservation

Acoustical reciprocity requires that the diffraction should be the same under the
interchange of the source and receiver directions, or

C(0,00) =C(m — b, m—0). (3.23)
This implies, using (3.22),

A(€,£0) 7(€) G(60)/G(E) = A(=bo, =€) 7(&0) G(=€)/G(=&)- (3.24)
It follows from (2.10) and (3.16) that

G(E)G(=E) = D1 (&) D2(§) = v() P (§)/ [Ra(§) — Ra(E)] (3.25)

while the denominator in the last expression simplifies further for acoustic wave
incidence as Ri(§) — R2(€) = A(,€), from (3.6). Using (3.24) and (3.25) and the
identity A(¢,€) = A(—¢&,—€), we see that reciprocity implies the connection

A(€,€) A(=E, &) P™(§0) = A(&o, o) A(—£0, &) P7(§). (3.26)
The polynomial A must satisfy this relation for arbitrary plane wave incidence.
The energy flux associated with an incident flexural wave has been derived by
Crighton & Innes (1984) for fluid loading on both sides of a plate. The modification
for unilateral loading is straightforward (although there is a typographical error in
equation (5.1) of Brazier-Smith (1987)) and gives a flux of

4BEY (&) | & \ I _ p2
( pw? + 7(&)) 2w D' (o) (%) 2w’ (3.27)
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where |p| is the surface pressure amplitude. We have assumed a value of unity in §2.
The total flux of acoustic energy diffracted from the junction into the fluid follows
from (3.21) as

™ ™

lim — / 1) (r, 6)|?r d6 = —=— / C(0)]2 db. (3.28)
r—0o0 OC Jq TPW Jo

Now consider an incident flexural wave with unit flux, then (3.27) and (3.28) may be

combined to provide a statement of energy conservation. We specifically assume that

subsonic flexural waves on each plate provide the only means of energy transmission

away from the junction, other than the acoustic diffraction loss. Thus,

Dy (e (68 1 4
I T Ty D Y - / |IC(0)]*ds.  (3.29)
Dy(& (&) D& (& ") 0

The three terms in the right member are each positive and less than unity, and

correspond to the fractional energy reflected on plate 1, transmitted on plate 2, and
acoustically radiated into the fluid.

1= ‘Rﬂex|2 + |Tﬂex‘2 -

4. Satisfying the join conditions

We now give a general systematic procedure for evaluating A(§) in the formal
solution (3.15) so that various prescribed conditions at the junctions of the plates
may be determined. Application of the junction conditions requires knowledge of the
behaviour of the potential wo(z) in the neighbourhood of the join, z = 0. Our first
order of business is to obtain an analytic expansion for this quantity, actually, as we
will see, a power series in ascending powers of . We can then apply the conditions
directly in physical space.

(a) Alternative integral forms for wg

The potential is in the form of a fourier transform which can be separated into
two distinct transforms each of which vanishes for either z > 0 or z < 0. Thus,

1 0 . o0 .
wne) = o [ Bo@erag = oo [T @@ w50 @)

oo 2mi J_
where w7 and @, partition w, as

wo(§) = g (€) + W (§), (4.2)
and @3 (€) are analytic in H* respectively and both wE = O(¢71) as [¢] — co. The
transform wg as defined in (3.18 b) may be rewritten by noting that

V) | KHE) — K-(€)
S GIRAGEAGE (43)

which is easily obtained by eliminating v between the two equations (3.16). Thus,

(E*(€) — K~ (€))
(€—8&)P(&) ’

where the polynomial in the denominator is defined in (2.11). The partition functions

can be found quite easily from (4.4) because, apart from the split function K+ and
K, the only singularities are from the simple poles at £ = &; and the roots of P* = 0.

wo(€) = G(&o) (4.4)
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By adding and subtracting poles at the same points with suitable residues, we can
arrive at explicit formulae for the partitioned functions. They therefore become

wo- (8- £
Z ot e @)”’ e
- 29(£8) £
i{é gcn on”f ST f;f_og"_ 50)]}, (4.5b)
where

uy = residue of [K*(£)/P*(€)] at & = £(,. (4.6)

The residues u;} and u,, can be related to one another by noting, from (2.9),, (2.11),
and (3.16), that K(+£(,) = 1. Let v; and v, be the logarithms of the split function
at the roots, such that

K (¢,) = e, 4.7)
Then using the fact that P* is an even function, it is easily seen that

uf = +et /43P, n=1,2. (4.8)

(b) Behaviour of wo near the join

In order to satisfy the join conditions we only need the asymptotic forms for wy
and its derivatives near x = 0, and these follow immediately from the power series
expansion of the fourier transform about the point at infinity. Suppose that the
partitions of wy(£) are of the form

M-1

TEE) =F Y ATE ™ L 0o(e M loge), [ — oo, (4.9)

n=0

for some integer M > 1. Then it can be shown that

ML gy
wo(z) = Z: AE —I;E—J~ + O(zM log|z|), T — 0%, (4.10)

The only terms containing logarithmic singularities in the expressions (4.5) for @i

are those with K (£), respectively. Referring to the asymptotic results in Appendix
B, specifically (B7), and to (4.5), shows that the leading order singular term at
infinity in the expansion of the fourier transforms for wy in (4.1) is of order £71%log €.
On inversion, the latter yields a term of order z°log|z|, and hence M = 9. The
coefficients in (4.10) are listed explicitly in Appendix B. We note that )\j = A; for
j = 0 through j = 3, and hence wo(z) and its first three derivatives are continuous
at ¢ = 0.
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(¢) Determination of A(€)

The fact that there are four edge conditions to be satisfied, combined with the
condition (3.13), suggests that the undetermined polynomial A(¢) is of fourth order
(g =4). Let

4
A@©) =) Ang. (4.11)
n=0
Then (3.13) implies the identity
4
D AL = Ag. (4.12)
n=0

The displacement near the origin therefore follows from (3.17 ), (4.10), and (4.11),
as

4

pwiw(z) = ( 0) - ), z20,  (413)

n=0

where
Z Moo Ar, n=0,1,...,4. (4.14)

The four edge conditions can now be applied for the different junctions.

(i) Welded edges

The four edge conditions dictate continuity of the displacement, rotation, bending
moment and shear force, i.e. w, w', —Bw"”, —Bw", respectively, where the prime
denotes the z-derivative. These can now be expressed, using (4.13), as

AT =45, A =47,
BAF — A7 = &(B-1)pP(0,0),  BAT — Ay = (B -1)p)(0,0). (4.15)

(ii) Clamped edges

If the ends of the plates are clamped at £ = 0 then both w and w’ vanish at either
plate termination. The four conditions follow from (4.13) as

A(T = A0_7 A1+ = A;: AS_ = p’(;))<0’ 0)7 Ai*_ =&o p,(!(/))(O’ O) (416)

(iil) Free edges
Alternatively, the plates may be free—free, in which case w” and w’” vanish on
either side of x = 0. The four conditions become

Af =45, Af =45, AF=gp0,0), Af=p(0,0.  (417)
(iv) Hinged edges

If the plates are hinged at z = 0 then w and Bw'” are continuous across the joint,
while w” vanishes on both plates there, implying the conditions

AT =4y, A =45,
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A5 = &p(0,0), BAT - A7 =&(8-1)p3(0,0). (4.18)
Equations (4.12) and the relevant one of (4.15)-(4.18) constitute a set of five
equations for the five unknowns A,, n = 0,1,...,4. An explicit linear system of

equations for these unknowns follows from (4.14). Explicit solutions for the first two
cases will be developed in the next section.

5. Welded or clamped plates

(a) The general form of A for welded plates
It turns out that the two kinematic conditions (4.15); and (4.15)y are trivially
satisfied. Thus, as mentioned previously, /\;r = A; for j = 0 through j = 3, and
therefore, (4.15); and (4.15), imply respectively that A, = 0 and A; = 0. Hence,
A is of second order (¢ — 2) and there are only three equations to be satisfied for
welded plates in contact: (4.12), (4.15)3, and (4.15)4. The three equations are

1 50 68 AO AO
BAS =Xy BM ~A3 B =M || A= | &€B-1pY0,0) | (51)
BM =5 BAF =Xy BN -5 | LA (8~ 1)p%(0,0)
This system can be simplified by first redefining the A polynomial as
A(E) = Ao + (A1 + Ax6)(€ — &), (5.2)
so that
L (B-DOF —&X) BT —&X) - (0 —&X) | | 4
B=11 B —&AF) — Ay —&A3) B = &M — (A —&Ap) | | 4
€295 (0,0) — AgA¥
{é@wm ANE | (53)

The matrix elements can be reduced using the results of Appendix B, specifically the
final three identities in (B12). These results, combined with (B10) and (B11) for

p(g)(O, 0) and A\, AT, imply that (5.3) multiplied by the factor 2P} /G(&) becomes

exactly
[ gz ( Ml M2 ) 1
M; + M. Sl =-A4 , (5.4)
M+ M) 3, NT-873-8) |«
where
_ oy
M, — Co§h Vp ¢, sinhu, Con=12 (5.5)
Cnsinhy,  coshu,

Both M; and M, have determinant of unity, and are easily inverted. Using the
identity (2 + (2 = 0, the system (5.4) implies that

A | A {5 (f(M{lMl—Ml‘lMg)} 1 (5.6)
A | g 2(cosh vy cosh vy + 1) & | )
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where I = diag[1, 1]. This is easily evaluated and combined with (5.2) to give, finally,

4 . (€ &)
AQ) = 5= 415% g

cosh vy coshvs + 1)

[(€ — &)(1¢o sinh vy sinh vy

+(&&o + ¢F)¢y sinh vy cosh vy + (€€ + ¢2)(, sinh v, cosh z/l] } (5.7)

This clearly satisfies the reciprocity condition (3.26).

(b) The general solution for clamped plates

The deflection and rotation are continuous across the junction, as for the welded
plates, i.e. the first two conditions in (4.15) and (4.16) are the same. Therefore, by
the same argument as before, it follows that A(¢) is at most a quadratic polynomial
(A3 = A4 = 0). The three conditions to be satisfied are then (4.12), (4.16)s, and
(4.16)4. The first of these is automatically met by writing A(§) in the form of (5.2),
and the remaining pair can be simplified using (B 10) and (B11) and the first three

identities in (B 12), yielding
M, M, ) 1
=-A — , 5.8
°<@—$ 3 -& [@] 58

where the matrices M, and M, are defined in (5.5). This system may be easily
solved and combined with (5.2) to eventually yield

Ao{gﬁ_¢+ (6 - &)

& — ¢t (cosh vy cosh vy — 1)

(M - M)

A1

A(é‘) = [(6 - 60)41(2 sinh 128 sinh 12

+(&€o + ¢2)¢, sinh vy cosh g + (€€0 + (2)¢a sinh v, cosh 1/1] } (5.9)

Again, this clearly satisfies the reciprocity condition (3.26). We note the remarkable
similarity between the solutions for the welded and clamped plates. Equations (5.7)
and (5.9) differ only in the terms (cosh vy cosh vy +1). The full solutions are otherwise
identical apart from this apparently small change in the analytic result.

(¢) Light fluid loading limit
Light fluid loading is defined here as the limit in which the lengths a; » are much

greater than all others, so that appropriate approximations can be used. Thus, re-
ferring to (2.8)s, and (3.11), we have K — V;/Va, with the explicit analytic factors

E*(&) =2 (re £(ima £ )™ (m £k £6)T . (5.10)
The scattered pressure transform is

5(e) = 1A() (&0 + k1)(&o +1kr1) (& — k2)(&o — ik2) V(&)
(€—&) (E+r)(E+ir)(E —r)(E —ira) (&)~

The function A can be simplified using the identities, which result from (5.10),
coshvy, = /B [X2 —n* +1X2(n-1)%] /(X: - 1), (5.12a)
sinhv,, = \/BX,(n— 1) [X2 +n+i(X2 - n)] /(XE - 1), (5.12b)

where X,, = ¢, /k1 for n. =1 or 2, and = ka/k1 = (a/B)"*.
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A flexural wave incident from the left has 56“ ~ k1 and Ay = 1. Its reflection
and transmission coefficients are given by (3.20), or alternatively, follow from (5.11)
using Rgex = (—i)resp(—k1) and Thex = iresp(k2). The latter give

. 117 1—in 2A(Ka, K1) v(k1)
R ex — A - ) . 3 T ex — : 513
fox = 1A(=r1 K1)<1+n> <1+m> ! n(L+mn) v(ka) (549

Combining (5.12) and (5.13); with the expressions for A in (5.7) and (5.9), and
eliminating X; and X, gives Rgex as i and

((L=n") = @ =in*r?) /(1 +n)* = A +7°)r?), (5.14)

for clamped and welded conditions, respectively, where r = (8n? — 1)/(8n? + 1).
These values agree with known expressions for Rgex, €.g. as given by Mace (1984),
and hence provide a reassuring check on the validity of the general solutions for
welded and clamped plates.

The term +(k1)/v(k2) in the transmission coefficient of (5.13) appears because
Thex defines the pressure on the right-hand plate. It is more convenient to work with
the displacement transmission coefficient in the light fluid loading limit because it is
independent of the fluid properties. Thus, proceeding as before, we find that (5.13),

gives Tﬁeifcp = ThexY(K2)/7(K1) as zero for clamped edges, and
2L+ (1 —r)/(L+m)? = (1 +7°)r?), (5.15)
for welded conditions, as expected (Mace 1984).

(d) Heavy fluid loading

The heavy fluid loading limit occurs at low frequency, or more precisely, when
A > K, where

A= (pw?/B)Y® = (k*/a)'/?, (5.16)

although Crighton (1972) showed that this can be relaxed to the requirement x > k.
The explicit solutions for the pressure transform for welded and clamped contact
can be simplified in this limit by using the appropriate asymptotic form of K. This
can be derived from Appendix A, although for the sake of brevity we take advantage
of the previous work of Crighton & Innes (1984) for the factorization of D(§) =
D*(€)D~(€), where D¥(§) = D™ (~§), D*(0) = 1, and D(§) = 1 — A°¢°sgnRe¢
in this limit (Crighton & Innes 1984). It follows from equation (A13) of Crighton &
Innes (1984) that

5 1/2 . 5 §/Azn1 d
D+<£>=H(1+f7n) exp{;D-l)"* / ;Z_f}, (5.17)

n=1 n=1

where z, = e"~17/5 The asymptotic expansion for ¢ = O(k) is
3
D+(§) :egdl/)\ <1+d3—:f-)\§+..) 3 (518)

where d; =1 —icotn/5 and d3 = 1 +itann/10. Terms up to quadratic in equation
(5.18) are given explicitly in equation (A33) of Crighton & Innes (1984), while the
cubic term follows from equations (A29)-(A32) of the same paper after a bit of
manipulation. The limiting form of the split function K (&) can be determined using
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these results, from which the functions A(¢, &) may be simplified. For instance, we
find for welded contact that A(&, A1) = &2/A% for € = O(\q) .

We consider a subsonic flexural wave incident from plate 1, with §(()1) = A1 and
Ay = 1. After some algebra, we find that the reflection and transmission coefficients
for welded or clamped conditions at the junction are

e—i37r/4 AB
Ryed = —F/— —, 5.19a
" DIowP B S
—i37/4 2 B
Twela = ° a (5.1906)

Dy (\)Df (A2) (B1B2)*/5 ABYS

Retom = [1+ : (l i) _ 38+ D2+ (8~ ]
clam B —1\d, " ds) (B = 1)ds — L(B5 — 135

Tetam = {—€"™/® sin 557} Tweld, (5.19d)
where Af = fo — fi. The magnitudes simplify even further by using the identity

Rweld) (519 C)

1/2
|D3(\)] = (875 +1)Y2 (B-1)/(87° - 1)), (5.20)
which follows from (5.17). Thus, we obtain the remarkably simple expressions,
]ﬁ1/5_1| 2/31/10
| Ryela| = W, [ Tweld| = W’ (5.21a)
" B \/52/5—{—2@/5(:03%%—{—1 . e .
l claml_ ,61/5+1 ) ] clam|—m81niﬁ7r. ( . )

Note that these clearly satisfy the energy conservation identity |R|?>+|T'|2 = 1, which
is the appropriate form of (3.29) in this limit; i.e. no energy radiates into the fluid.
The general results of (5.19) also simplify when the material contrast is small. Using
the identity D¥(\) = v/10e~®"/8 (equation (A22) of Crighton & Innes (1984)), to
give

AB
10B’
to leading order as AB/B — 0. These limits for R.j.m and Tyay, can be derived inde-

pendently using the heavy fluid loading approximation to the line drive admittance
of a uniform plate (Crighton 1972), and agree with (5.22).

_ . in/5 1 o in/5 i 1
Rueld = Toelda = 1, Rejam = 1™/° cos 67 Telam = —el™/% sin 57 (5.22)

(e) Numerical results

We concentrate on the case first considered by Brazier-Smith (1987), namely that
where the contrast at the junction is provided by a discontinuity in the plate thick-
ness. Thus we suppose that both plates are made of the same material so that the
ratio of thicknesses is simply « of (2.13), and k3 = 1 /+/@. The dimensionless mate-
rial parameter € = 1/ Bp?/m3c? is therefore the same for both plates. Brazier-Smith
(1987) plotted the reflection and transmission coefficients as a function of the dimen-
sionless frequency parameter {2 = k?/k2. Here we denote the same parameter by
£2. Figures 3-10 show results for a subsonic flexural wave incident from the left onto
a thickness change of 100%, or @ = 2. The junction is either welded or clamped,
and the material combination is either steel and water (¢ = 0.134) or aluminium
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and water (¢ = 0.4). In figures 3-6 we have plotted the proportion of energy re-
flected and transmitted in coupled subsonic flexural waves together with the total
relative power radiated to infinity in the acoustic field diffracted from the junction.
According to equation (3.29) these three quantities should sum to unity. Our nu-
merical calculations have satisfied this equality to a very high degree of accuracy
(in all cases shown the error was less than 107°). Our results for the transmission
and reflection are in good agreement with Brazier-Smith in the case of the welded
junction. The clamped junction is a little more difficult to compute, even though
there is a remarkable similarity in the formulae (5.7) and (5.9). The reason for this is
that the product cosh vy cosh v, is close to unity for small values of £2. Thus it is very
important to be able to compute it accurately. Our analytic expressions for K+ (¢)
in Appendices A and B provide numerically well conditioned formulae for both small
and large complex values of the argument.

The low frequency, or heavy fluid loading results of (5.21) indicate that the limiting
values of |R| and |T'| depends only on the ratio of the bending stiffnesses, 8 of
(2.13),. When the plates differ only in thickness we have that 8 = (ha/h1)?, and
hence the limiting values of |R| and |T'| are independent of the material properties.
All the examples considered here are for hy/h; = 2 and hence |Ryeql? = 0.042,
|Tweia|?> = 0.958, |Rejam|? = 0.909, and |Tuiam|? = 0.091. The numerical calculations
in figures 3-6 are consistent with these numbers, and suggest that the low frequency
approximations for |R| and |T'| should be valid over a wide and practically useful
frequency range for welded plates. When the plates are clamped, on the other hand,
|R| decreases rapidly with frequency from its low frequency asymptote, with the bulk
of the lost structural energy apparently converted to acoustic radiation.

It is interesting to study the directivity of the acoustic diffraction pattern for
various frequency regimes and different edge conditions. Like Brazier-Smith, we find
that it is dramatically dependent on both. Figures 7-10 show the radiation patterns
at 2 = 0.25, 0.75 and 2 = 1.25 for welded and clamped steel and aluminium
plates bathed in water. At low frequencies the total radiated power for both clamped
and welded plates is small. Its directivity is similar to that of a dipole placed at
the junction with its axis perpendicular to the alignment of the plates. At higher
frequencies, the field develops relatively intense beams the direction of which appears
to be well correlated with the mechanical constraints.

6. Conclusion

Our main results are summarized by (3.1) and (3.2) for the total response, and
(3.4), (3.15), and (3.16) for the scattered field, where the split function K+ is given
in Appendices A and B in forms that are easily computed. The scattered response
depends upon the polynomial function A(&, &), which has been derived explicitly for
welded and clamped plate edges, in (5.7) and (5.9) respectively. The incident wave
is defined completely by the two parameters: its wave number &g, and its amplitude,
Ap of (3.6). These formulae provide an irreducible analytic solution which is useful
for practical calculations of the acoustic—flexural interactions at junctions between
flat plate segments. The explicit formulae also lead to new and simple results for
the structural scattering coefficients in the low frequency, or heavy fluid loading
limit. These provide useful approximations over a wide frequency range for welded
junctions.
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Appendix A. Factorization of the kernel

The analytic factorization of kernels similar to D; and Dy was considered by
Cannell (1975, 1976), and by Crighton & Innes (1984). The authors have recently
developed a simpler procedure for dealing with more general quotient kernels of
this type, with K{(£) being a particular case. The full derivation of the analytic
factorization is rather involved, and the details can be found in a related paper (Norris
& Wickham 1995). We summarize the final results as they apply here. Starting from
the identity

(K*/K™)" = (D3/D1)* = PRy /(PiRa), (A1)
we have
(K*)" = Bf BY/(P{ RY), (A2)

where Ry, are the fluid/plate reflection coefficients, with factors satisfying R(§) =
R™(€)/R™(£), and R™(—¢) = 1/R*(£), while the polynomials P, are ‘+’ functions
for the product factorizations of

PO = DD =1-a (5 - EE Bk w), gy

K8 K8 K4

such that P(§) = PT(§)P~(£), and PT (&) = P~ (—¢€). Let £ = +£,, n=1,2,...,5,
be the zeros of P(€) such that Im &, > 0, with no loss in generality, then

5
PEE) = = [J6 9. (A4)

The factorization of R is a bit more involved, but can be achieved by noting that

R'/R=1/1Q, (A5)

where Q(£) is the ratio of two polynomials the numerator one of which is P(£), and
() therefore shares the same zeros as P. It is also an odd function of &, with

res(1/Q)le—se, = —sn7(&n), (A6)
where
s, =1 if D(&,)=0, s,=-1 if D(£,)=0. (A7)
We use the basic identities (Noble 1958) v(€) = (&) + v (§), v (—&) = v (&),
with v7(€) = [y(€)/x] arccos(€/k), where the branch of the inverse cosine is
arccos((/k) =1log (€/k+ (&) /k) . (A8)

and the logarithm is defined so that its argument lies in the interval (—m, 7). The
sum split of R'/R can then be effected by adding and subtracting pole terms, with
the details in Norris & Wickham (1995). The final result is

KH() = (PF(6)/PHE) Y (Ri(0)/Ry(0))/* el#: )= 22(001/2) (A9)
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where

28nlnbn | 4 (A10)

2-g ]

§ ’
b(&) = —1—/0 [Z[log R(z)] arccos(z/k) +

and
8, = arccos(&,/k). (A11)

Expressing the first term in the integrand in partial fractions we obtain

9 [arccos€/k) 5 g oosfsin b, — O, cos b, sin b
292 [ 2

cos2 0 — cos? 6,

Sn do, (A12)

™ /2 n=1

Equation (A 9) expresses K™ in a form which is easily evaluated for small values
of £ relative to k. Evidently the integrand in &, » has only removable singularities
in the upper half plane, H*, and so K™ is demonstrably of the correct analyticity.
Further it is readily shown that it has a branch point at £ = —k as well as simple
poles at the zeros of D1 (&) lying in the lower half-plane. Physically, these correspond
to the left-going flexural and leaky waves.

An alternative form for K* can also be obtained which is reminiscent of the light
fluid loading limit, but is generally valid,

/

K (&) = (D2(0)/D1(0)"? T (1 + €/62) /(1 + €/€1)) eler®@=0=(01/2 (A 13)

where the products H' are taken only over the three roots for which s, = 1, and

1 ferecos(€/k) 5 rgqin 0, — O,sinf Osinf, — (v —0,)sind 0
9() = ;/77/2 — [ cosf — cos b, cos § + cos b, ] Sn df.
(A14)
Evidently, ¢1 — ¢ — 0 in the limit of light fluid loading. Equation (A 13) is preferred
for numerical computations because it does not contain any square roots in the

pre-exponent.

Appendix B. Expansion coefficients

The expansions of the functions @i for large £ are straightforward except for the
terms involving K*(£), see (4.5). Hence, we first need the asymptotic form for K+
at large argument. Referring to Appendix A, and the definition of K, it can be
shown that

lim K*(¢) = lim (P} (&)/P ()" = 5. (B1)

§—o0

Then it is easily seen from (A9) that
K+ (&) = (B (€)/PH(€)? exp {(27°(€) — 95°(€)) /2}, (B2)

where

5
23"6”0”} d. (B3)

-8

P (z) = _% /:o {[log R(z)] arccos(z/k) + 2

=1
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A routine calculation yields

d _10s* TE?kT

—log R — L
and so expanding the integrand in (B 3) and then integrating term by term we find
that

+0(7), (B4)

K*(&) = /B exp lzg <2>—u&1>)+0<£"51og§)], (B5)

where, for the sake of convenience we have promoted the pre-factor in (B2) into the
exponent before expanding. The coefficients are all explicitly expressed in terms of
the zeros of P1(€) and P,(£) as

5
W = 3 S {0 [y - eyl - ey} me
n=1
Returning to the difficult terms in (4.5), we have from (B5) and (2.11), that
Ki(f) [EL/2 . 4 .
= ) 1
oL o e
ﬂi1/2 4 55 -

TR ;awn) + 0" log), (B7)

where all terms have been combined in the exponent, and

S =1, & =pt, & =5 +us, & =)+ ufuy +uf,  (BSa)

85 = g ()" + 5(u) iz + 5(u2)* + iy + K, (B8b)
and
o VA R R R (é Y+ (o (B9)
Hence, the expansions for @y of (4.5), imply using (4.9), (4.10), and the identity
G(&) K™ (&) /P () = p(0,0)/ Ao, (B10)
that
n 2 + n —(_ n F1/2
AT = (§0> 0) 0,0)+G {um(cm) . um( Cm) :I _ B 5F ’
n AO p,y ( ) (50) m221 Cm _60 Cm +€O P(;‘ n—4
(B11)

for n = 0,...,8 and where §& = 0 for k < 0. The definition in (4.7) and the
expressions in (B 11) imply the following identities, which are used in §5,

— &N ¢3sinh vy,
Ay — &N 2 | (Pcoshy,
A —EAE b = i(ﬁ?f D1 Gilsinhg, (B12)
M- gE Pom=l L (coshuy, — BFU),

— AL (G sinh vy, — uf FF/2).

We note, from (B9), that uj = u7.
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