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A matrix approach is proposed to investigate waves in circular cylindrical thin shells
jointed with circular plates. Both the general propagator matrix and S-matrix formalisms
are presented, with emphasis on the latter. The loss of computational accuracy due to the
inevitable exponentially growing terms in a propagator matrix is completely avoided by
using the S-matrix. This paper demonstrates implementation of S-matrix methods for
analyzing waves in complex shell structures with axial symmetry. The basic elements are
laid out in detail, including the S-matrix for cylindrical shells, the propagator matrix and
the asymptotic S-matrix for plates, and both the propagator matrix and the S-matrix for
junctions of cylindrical thin shells with internal and/or external circular plates and for
multi-channel elements. The general approach is demonstrated for several examples of
cylindrical shells with periodic stiffeners and sub-elements. Dispersion curves are computed
and compared with previous results.

1. INTRODUCTION

We are concerned here with wave propagation on circular cylindrical thin shells jointed
with circular thin plates for both low and high frequency ranges. The terminologies ‘‘high
frequencies’’ and ‘‘low frequencies’’ need to be defined clearly since they are used
repeatedly. Let L be a typical propagation distance on the structure, and let K be the
largest structural number, at a given frequency. In the high frequency range we
have KLw 1, whereas KLEO(1) at low frequencies. Classical thin plate and thin shell
theories are employed here, which require that KhW 1, with h the structural thickness. The
high frequency range is therefore compatible with the plate and shell theories as long as
Lw h. Our purpose is to describe the scattering matrix approach, which turns out to be
a numerically stable approach at high frequencies. The method will be compared with the
better-known propagator matrix approach, which is numerically stable at low frequencies,
but fails at high frequencies.

The propagator matrix method is well developed in physics and seismology, with the
pioneering work attributed to Thomson [1] and Haskell [2]. It was introduced into the
general area of dynamic analysis of continuous elastic systems by Lin and Donaldson [3].
A computational difficulty arises associated with loss of precision because of growing
exponential terms in the propagator matrices. This difficulty can be removed by
reformulating the matrix (see reference [4]) or considering high order minors of the original
matrices (see reference [5]). Unfortunately, as pointed out by Kennett [6], some difficulties
still remain, since individual matrix elements are needed for transmission coefficients.
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Therefore, Kennett [7, 8] developed a reflection and transmission matrix method in which
the matrices contain no growing exponential terms, and so completely avoids
loss-of-precision problems. In this paper, we propose a methodology similar to that of
Kennett [8] for cylindrical shells and plates, based upon scattering matrices, or S-matrices,
a name given by Redheffer [9]. The use of S-matrices is common in quantum mechanical
wave descriptions, but is equally valid for classical waves. Growing exponential terms
occur in seismological applications only when waves have an incident angle beyond a
critical value. In structural acoustics, however, these pernicious terms are always present
due to the existence of evanescent flexural waves. This means that if the structure contains
many flexural wavelengths the only way to proceed is the S-matrix approach. This is the
major motivation of this paper: in short, we contend that the S-matrix is more efficient
than the propagator matrix in structural acoustics applications. There are only a few
papers applying the S-matrix method to structures; for example, Yong and Lin [10, 11]
investigated dynamic response of truss-type structural networks, and von Flotow [12]
considered disturbance propagation in assemblages of slender structural members (beams,
cables and rods) connected by junctions. As we will see, the S-matrix is intimately related
to reflection and transmission matrices for structural elements [13]. No work has been
reported using the method for waves propagating on complex structures made of
cylindrical shells and circular plates. We note that the state space method used by Tavakoli
and Singh [14, 15] is actually the propagator matrix method, as is the method for
one-segment shells used by Kalnins [16]. The segmentation method proposed by Kalnins
[16] can avoid the loss of accuracy in the process of computing the natural frequencies of
mode shapes. However, it results in a system of 2m linear homogeneous matrix equations
with 2m unknowns, where m is the number of segments needed to obtain accurate
solutions, which increases with frequency.

The main objective in this paper is to introduce the S-matrix approach for structural
dynamics, with specific examples of plate–shell structures described. The paper is organized
as follows. The general theory is first developed in section 2, where we cast the structural
equations as a first order systems of ODEs. The general propagator matrix and S-matrix
formalism are introduced in section 2, and rules for using the S-matrix are derived. For
example, it is demonstrated how the multi-channel S-matrix can be found from more
elementary S-matrices. In sections 3–6 we describe applications of the general theory to
practical structures. The specific form of the ODE governing wave motion on circular
cylindrical shells is derived and discussed in section 3, and it is shown to be equivalent
to the Donnell–Yu equations [17]. The propagator matrix and the S-matrix for cylindrical
shells are given in section 3, while the corresponding analysis for circular plates is outlined
in section 4. The T-junction of a cylinder and plate is studied in section 5, and the results
of sections 3–5 are combined and applied in section 6 to consider cylindrical shells with
periodic substructures of varying complexity. The dispersion curves for free waves are
computed and compared with previous work.

2. THE PROPAGATOR AND THE S-MATRIX

2.1.       

We are concerned with unidimensional structural systems with time harmonic
dependence (the term e−ivt will be omitted everywhere). The dynamics at any point on the
structure may be described by the state vector Z, which has 2m components; m generalized
velocities and m forces, where the number m depends on the structure and the theory used
to analyze the structure. For a rather wide class of elastic structures [14, 16, 18–21], such
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as beams, plates and rotationally symmetric shells, the equations of motion may be written
in matrix form,

dZ/dX=iNZ+F, (1)

where N is a 2m×2m matrix and F is a 2m-component external force vector. More
detailed discussion of this subject will be presented in section 3, where an example of this
governing equation will be given.

The homogeneous solution to equation (1) may be written as

Z(X)=P(X, X0)Z(X0), (2)

where

P(X, X0)= I+i g
x

x0

dx1N(x1)−g
x

x0

dx1N(x1) g
x1

x0

dx2N(x2)+ · · ·. (3)

This series will converge uniformly if all the elements in N are bounded [6]. Even so,
a simpler way to obtain P will be employed later on for uniform layers. We notice
that dP(X, X0)/dX=iNP(X, X0). The matrix P(X, X0) is defined as the propagator
or transfer matrix, which maps the state vector at X0 to that at X. An alternative,
but equally valid, point of view is to represent the dynamics in terms of forward and
backward propagating structural waves. The 2m-component wave vector v may be
represented as

v=(u f, ub)T,

and the m-component sub-vectors u f and ub denote forward and backward travelling
waves, respectively. The wave propagator matrix Q(X, X0) is then defined such that

v(X)=Q(X, X0)v(X0). (4)

The two viewpoints are connected by the relation

Z(X)=E(X)v(X), (5)

where E is a 2m×2m matrix of eigenvectors of N. Further details of E will be discussed
later for cylindrical thin shells and circular plates. Comparison of equation (2) with
equation (4) implies

P(X, X0)=E(X)Q(X, X0)E−1(X0). (6)

We note that the propagator matrix satisfies the group properties

P(X2, X0)=P(X2, X1)P(X1, X0), P(X, X0)−1 =P(X0, X), P(X0, X0)= I,

which are independent of material properties. The wave propagator satisfies the first two
of these, but generally, limX:X0 Q(X, X0)$ I, unless the material properties and the
structure are continuous at X0.

The compact form of the unidimensional vector equation of motion, equation (1),
simplifies the calculation of many physical quantities. For example, the time average of
energy flux in the X-direction over a period is proportional to the products of real parts
of the generalized forces and those of the generalized velocities, and may be written
succinctly as

�F�=−1
2 �Re (ZT)J Re (Z)�=−1

2 ZTJZ*, (7)
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where the asterisk denotes the complex conjugate and

J=$ 0

Im×m

Im×m

0 %.
Premultiplying equation (1) with F=0 by Z*TJ, and making use of the fact that N satisfies
the symplectic relation

N*TJ= JN,

we deduce the identity

d
dX

(1
2 ZTJZ*)=Re {Z*TJF}. (8)

This, combined with equation (7), means that the average flux is conserved at any position
on the shell at which there is no applied force.

2.2.    S-

In this paper we focus on a third approach, involving the concept of input and output
wave vectors for a region. Let vin and vout represent waves coming into and going out of
the region, which may be of any length, and is defined by X(−) EXEX(+). The S-matrix
transforms input to output wave vectors according to

vout =Svin. (9)

The elements of S can be derived from the corresponding wave propagator. Let

vin =(u f
(−), ub

(+))T, vout =(u f
(+), ub

(−))T, (10)

and define the partition of a square matrix, A, of size 2m,

A=$A1 A2

A3 A4%, (11)

where Ai , i=1, 2, 3, 4, are m×m matrices. Comparison of equations (4), (9) and (10)
leads to

S=$Q1 −Q2Q
−1
4 Q3

−Q−1
4 Q3

Q2Q
−1
4

Q−1
4 %. (12)

Physical considerations imply, a posteriori, that Q4 must be non-singular. We note that
Q4 might have exponentially grown elements but Q−1

4 does not. For instance, the flexural
wave propagator for a beam always contains terms of the form ekL, k being the flexural
wavenumber and Lq 0 the propagation length. The propagator matrix does not
distinguish between forward and backward waves, including evanescent ones, which lead
to the exponentially growing terms, whereas the S-matrix explicitly avoids them. In
summary, we emphasize that the S-matrix method is numerically stable.

The submatrices of S are actually the transmission matrix T and reflection matrix R for
the structural region under consideration. Partitioning S according to equation (11), we
find S1 =T(−+), S2 =R(++), S3 =R(−−), and S4 =T(+−), where the first and second
subscripts indicate the points at which waves come in and go out, respectively.

As an example of the difference between the three methods, consider a periodic structure,
with fundamental period (X(−), X(+)). The propagation constant, m, is defined by [22]

v(+) = emv(−). (13)
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Either of the end-vectors can be eliminated in favor of the other, and the resulting equation
can be written in terms of wave vector or the state vector as

(Q− I em)v(−) =0 or (P− I em)Z(−) =0, (14)

respectively, where Q and P are both for the unit period. The dispersion relation for
the system is det (Q− I em)=0, or det (P− I em)=0, which are clearly equivalent.
However, if flexural waves are being considered and the period is many flexural
wavelengths, then both P and Q contain exponentially large terms, leading to inescapable
numerical difficulty. This problem is well known; see, e.g., Roy and Plunkett [23].
Alternatively, equation (13) can be rewritten in terms of the incoming and outgoing
vectors, and then one or the other eliminated using the S-matrix for the unit period.
In this way we find

$S1

S3

0

−I%$u f
(−)

ub
(−)%+em$−I

0

S2

S4%$u f
(−)

ub
(−)%=0, (15)

and the dispersion relation becomes

det $S1 e−m − I

S3

S2

S4 em − I%=0. (16)

All matrix elements in equations (15) and (16) are now well behaved numerically, leading
to a stable scheme at all frequencies.

2.3.    S-    

The elementary solutions of the basic equation (1) have the form Z(X)= eiKXXZ(0) with
a uniform layer or region, where KX is any one of the 2m eigenvalues of N. In order to
derive the propagator and the S-matrix, we first note that the eigenvalues occur in pairs,
2KX , and KXj , j=1,..., 2m, are arranged such that the imaginary parts of KXj , j=1,..., m,
are positive or vanish. Then, the eigenvector matrix E of equation (5) is constructed in
such a way that its columns are eigenvectors which correspond to, from left to right, the
eigenvalues in the matrix L, where

L=diag [KX1,..., KXm , −KX1,..., −KXm ].

It follows from equation (1) with F=0 that the matrix L satisfies the relation

NE=EL. (17)

This can be combined with equation (5) to reduce the ODE (1) for the state vector to an
ODE for the wave vector,

dv/dX=iLv. (18)

We used the fact that E is independent of X within a uniform region, and so this differential
equation is only piecewise valid in such regions. The wave vector solution is

v(X)=Q(Ly)(X, X0)v(X0), (19)

where the wave propagator for a uniform layer of extent d=X−X0, XeX0, is

Q(Ly)(X, X0)=diag [eiKX1d,..., eiKXmd, e−iKX1d,..., e−iKXmd]. (20)

The sub-matrices of Q are, according to equation (11), Q2 =Q3 =0, and Q4 =Q−1
1 , where

Q1(X, X0)=diag [eiKX1(X−X0),..., eiXXm (X−X0)]. (21)
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The S-matrix then follows from equation (12), as

S=diag (S', S'), (22)

where S'=Q1. There are clearly no growing exponentials in the S-matrix, and so the
difficulty of losing accuracy in computation is totally removed. This is the advantage of
the S-matrix method over the propagator matrix method, which contains exponentially
large terms.

2.4.    S-   

By definition, an interface consists of the junction of uniform regions at which the state
vector Z is continuous. It therefore follows from equation (5) that the wave vector is
discontinuous, with values on either side of the interface related by

v(+) =Q(Int)v(−), (23)

where

Q(Int) =E−1
(+)E(−). (24)

It is obvious that Q(Int) = I if and only if the material properties and the structure are
continuous at the interface. The S-matrix for an interface can now be obtained from
equations (12) and (24).

2.5.   

The general solution to equation (1) is

Z(X)=P(X, X0)Z(X0)+g
X

X0

P(X, z)F(z) dz, (25)

which can be verified by substitution and using the fact that dP(X, X0)/dX=iNP(X, X0).
The associated equation for the wave vector follows from equations (5) and (6) as

v(X)=Q(Ly)(X, X0)v(X0)+g
X

X0

Q(Ly)(X, z)E−1F(z) dz. (26)

If the loading is of the concentrated type:

F(z)=F0d(z−X0),

then we have v(+)(X0)= v(−)(X0)+E−1F0, where the subscripts denote the values just to the
right and left of the point of application. We may rewrite this in terms of ingoing and
outgoing waves as

vout(X0)= vin(X0)+G0, (27)

where

G0 =KE−1F0, K=diag (I, −I). (28)

Now consider the source sandwiched between two regions, A and B, to the left and to the
right of the loading, respectively. First eliminate the intermediate fields which represent
the waves in A, giving

$u f
(+)

ub
(−)%(A+Src)

=SA$u f
(−)

ub
(+)%(A+Src)

+$I0 SA
2

SA
4%G0
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for region A and the source. Through the same approach, we find

$u f
(+)

ub
(−)%(A+Src+B)

=SA+B$u f
(−)

ub
(+)%(A+Src+B)

+SSrcG0 (29)

for region A, the source and region B combined, where

SSrc =$ SB
1 (I−SA

2 S
B
3 ))−1

SA
4 (I−SB

3S
A
2 )−1SB

3

SB
1 (I−SA

2 S
B
3 ))−1SA

2

SA
4 (I−SB

3S
A
2 )−1SB

3S
A
2 +SA

4%.
The matrix SSrc represents the radiation from the source, and is clearly in the form of

an S-matrix Green function.

2.6.  S-  

We now consider some of the details necessary for computing the S-matrix of
complex structures. Let A and B be two adjacent regions on the structure, either of
which could be a uniform section, an interface or a composite region. Regardless of the
structural geometry, the material properties at the junction of the two regions should be
continuous, so that the wave vector is continuous there. Let A= {X =X $ [X(−), X(0)]} and
B= {X =X $ (X(0), X(+))}; then, for regions A and B,

$u f
(0)

ub
(−)%(A)

=SA$u f
(−)

ub
(0)%(A)

, $u f
(+)

ub
(0)%(B)

=SB$u f
(0)

ub
(+)%(B)

, (30)

respectively, where SA and SB are the separate S-matrices, and u f
(0) and ub

(0) are the forward
and backward propagating waves at the junction. Eliminating these from equation (30)
and partitioning SA and SB according to equation (11), we deduce the S-matrix for the
composite region:

SA+B 0SA$SB 0$ SB
1 (I−SA

2 S
B
3 )−1SA

1

SA
3 +SA

4 (I−SB
3 S

A
2 )−1SB

3 S
A
1

SB
2 +SB

1 (I−SA
2S

B
3 )−1SA

2 S
B
4

SA
4 (I−SB

3 S
A
2 )−1SB

4 %. (31)

The addition rule equation (31) is consistent with Kennett and Kerry’s [8] procedure for
finding the reflection and transmission coefficients for a composite region.

If the structure B has a termination at its right end, then the same type of addition rule
can be used to calculate the m×m reflection coefficient matrix for waves incident from
the left of A. Thus, the reflection matrix for waves incident onto B from the left is, by
definition SB

3 . The desired reflection coefficient matrix for waves incident on A is then
just (SA+B)3. Note that the only part of SB used is SB

3 ; i.e., the rest of SB is not required.
For example, if B represents a constrained end (free, clamped, etc.) then SB

3 is the only part
that is physically meaningful.

2.7.  - S-

Complex structures can also contain multi-channel sections. We next describe the
procedure for determining the S-matrix for the typical multi-channel structural section
illustrated in Figure 1. We begin with the S-matrix for the one-to-many joint at the left
end,

G
G

G

K

k

u f
(1)

ub
(2)

*
ub

(l )

G
G

G

L

l

, (32)G
G

G

K

k

ub
(1)

u f
(2)

*
u f

(l)

G
G

G

L

l

=G
G

G

K

k

R(11)

T(21)

*
T(l1)

T(12)

R(22)

*
T(l2)

· · ·
· · ·
*

· · ·

T(1l)

T(2l)

*
R(ll)

G
G

G

L

l
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Figure 1. Multi-channels and joints.

where T(ij) and R(ij), i, j=1, 2,..., l, are transmission and reflection coefficients, respectively.
These follow, in general, from the l continuity conditions at the joint. If the channels are
in welded contact, and if the thicknesses of those members are small compared to their
other dimensions, the conditions are best expressed by first splitting the total state vector
into m-component velocity and force sub-vectors,

Z=(Z(v), Z(f ))T, (33)

for each of the individual state vectors Zi , i=1,..., l. The continuity conditions then imply
the relations

Z(v)
1 =Z(v)

2 =Z(v)
3 = · · ·=Z(v)

l , s
l

i=1

Z(f )
i =0, (34)

expressing the continuity of velocities and the condition that no net force is applied
there. It is a routine but unedifying procedure to convert these conditions into the
S-matrix of equations (32). The coefficients are given, as an example, in Appendix E
for T-junctions of cylindrical shells and interior circular plates. Equation (32) may be
written as

G
G

G

K

k
&u

f
(2)

*
u f

(l)

u l
(1)

'GGG
L

l

=$SL
1

SL
3

SL
2

SL
4%G

G

G

K

k&
u f

(1)

ub
(2)

*
ub

(l)'G
G

G

L

l
, (35)

where ‘‘L’’ denotes the ‘‘left joint’’, and

SL
1 = &T(21)

*
T(l1)'

p×m

, SL
2 = &R(22)

*
T(l2)

· · ·
*

· · ·

T(2l)

*
R(ll)'

p× p

, (36a)

SL
3 = [R(11)]m×m , SL

4 = [T(12) · · · T(1l)]m× p , (36b)

with p=(l−1)m. It is observed that equation (35) has been written in a form of the single
channel matrix, so that its addition rule can be obtained from that for single channels,
i.e., equation (31), although it is a multi-channel matrix.

Each separate channel has its own S-matrix,

$u f
(l+1)

ub
(2) %=Sc2$ u f

(2)

ub
(l+1)%, · · · $u f

(2l−1)

ub
(l) %=Scl$ u f

(l)

ub
(2l−1)%,
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where Sci, i=2,..., l are 2m×2m matrices. They can be combined as

G
G

G

G

G

K

k

&u
f
(2)

*
u f

(l)'
&u

b
(l+1)

*
ub

(2l−1)'
G
G

G

G

G

L

l

, (37)G
G

G

G

G

K

k

&u
f
(l+1)

*
u f

(2l−1)'
&u

b
(2)

*
ub

(l)'
G
G

G

G

G

L

l

=$SC
1

SC
3

SC
2

SC
4%

with

SC
i =diag (Sc2

i ,..., Scl
i ), i=1, 2, 3, 4,

where Sci
j , i=2,..., l, j=1,..., 4, are m×m matrices obtained according to equation (11),

and SC
i , i=1,..., 4, are p× p matrices. The addition rule SA+B =SA$SB defined in

equation (31) can be applied to SL and SC in equations (35) and (37) even though they
have different dimensions. Adding SL to SC according to the rule gives SL+C =SL$SC,
and we find

G
G

G

K

k
&u

f
(l+1)

*
u f

(2l−1)

ub
(1)

'GGG
L

l
=$ (SL+C

1 )p×m

(SL+C
3 )m×m

(SL+C
2 )p× p

(SL+C
4 )m× p%G

G

G

K

k&
u f

(1)

ub
(l+1)

*
ub

(2l−1)'G
G

G

L

l
. (38)

For the right joint, we have

G
G

G

K

k&
u f

(2l)

ub
(l+1)

*
ub

(2l−1)'G
G

G

L

l
=$SR

1 SR
2

SR
3 SR

4%G
G

G

K

k
&u

f
(l+1)

*
u f

(2l−1)

ub
(2l)

'GGG
L

l
, (39)

where

SR
1 = [T((2l)(l+1)) · · · T((2l)(2l−1))]m× p , SR

2 = [R((2l)(2l))]m×m ,

SR
3 = &R((l+1)(l+1))

*
T((2l−1)(l+1))

· · ·
*

· · ·

T((l+1)(2l−1))

*
R((2l−1)(2l−1))'

p× p

, SR
4 = &T((l+1)(2l))

*
T((2l−1)(2l))'

p×m

.

Combining equations (38) and (39), using equation (31), we finally obtain

$u f
(2l)

ub
(1)%=$(SL+C+R

1 )m×m

(SL+C+R
3 )m×m

(SL+C+R
2 )m×m

(SL+C+R
4 )m×m%$u f

(1)

ub
(2l)%, (40)

where SL+C+R =SL+C$SR is the S-matrix of the multi-channel system.
The addition rule for the multi-channel S-matrix is a ‘‘one-shot’’ approach, in contrast

to the step-by-step elimination procedure of reference [11], and it can be easily modified
for structures with varieties of geometries. One can also generate rules for combining the
propagator matrices for substructures in parallel and in series. In the latter case, the
propagators combine by simple multiplication, and the procedure for multi-channel
elements is described in Appendix A.
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3. WAVES IN CYLINDRICAL THIN SHELLS

Wave propagation in cylindrical shells and circular plates having material and structural
inhomogeneities in one co-ordinate direction can be conveniently studied by casting the
equations of motion as a first order differential equation for the state vector, in the form
of equation (1). Propagator and S-matrix methods appropriate to the 1-D wave equation
can then be utilized to full advantage. There is a large volume of literature of related
approaches for these particularly structural elements. For example, Kalnins [16] obtained
one-dimensional equations for arbitrary rotationally symmetric shells, while Tavakoli and
Singh [14] derived a first order ordinary differential equation of an eight-vector from Love’s
governing equations for circular cylindrical thin shells. Recently, Borgiotti and Rosen
[19, 20] presented the equations of motion for circular cylindrical shells in a form of a
system of first order differential equations satisfied by a ten-component state vector. Their
equation is equivalent to the equations of motion given by Mirsky and Herrmann [24, 25].
An interesting variation on this theme has been presented by Irie et al. [21], who discuss
an eight-vector differential equation with respect to the circumferential direction 8 for
non-circular cylindrical shells. Finally, we note that the long-wavelength behavior of
bending waves in periodic thin plates has recently been analyzed by first rewriting the
equations of motion as an ordinary differential equation of a four-vector [18].

3.1.   

The equations of motion of an axisymmetric cylindrical thin shell may be written in the
form of equation (1), with m=4. The state vector of the shell is of the form of equation
(33), where the sub-vectors of generalized velocities and forces are

Z(v) =0U� , V� , −W� ,
1W�
1X1

T

, Z( f ) = (NX , SX , TX , MX )T.

The meanings of the components are explained in Appendix B. The state vector and the
force vector can be represented as a sum of azimuthal harmonics, each of the form
Zn =Z�n ein8, fn = f�n ein8. Subscripts n will be suppressed from now on, since only the nth
azimuthal harmonic needs to be considered. Starting from the equations of motion,
(B9a)–(B9g), we have derived the 8×8 matrix N and the 8×1 vector F, with the details
given in Appendix C. We notice that N may be partitioned as

N(X)=G$ NMem

J4C*TJ4

C

NFlex%G−1, (41)

where, and in the rest of this paper, G represents a ‘‘transformation matrix’’ which
transforms a vector into a different form. The dimensions and elements of G will be
specified each time it is used. See Appendix C for details and definitions of the submatrices
and G for equation (41). We note that equation (1) allows for arbitrary X-dependence in
the shell parameters, and this is reflected in the possibility that N is a function of X.

The equations of motion for a flat plate can be obtained in the same form as equation
(1) by simply allowing the radius R to tend to infinity, with N:Nplate, where

Nplate =G$NMem

0

0

N'Flex%G−1. (42)

G is as before, while NMem and N'Flex follow from equation (41) and Appendix C with
n/R:KY , which is independent of R. The decoupling between flexural and membrane
waves is apparent in equation (42). The shell can also be treated as a flat plate at very
high frequencies. To see this, we recall that for acoustic waves nAv and for flexural waves
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nAv1/2. Examining each row of equation (C10) in the limit as v:a leads to the high
frequency approximation of N, which is the same as Nplate. Therefore, the flat plate
approximation is acceptable when the wavelength is much smaller than the radius of the
shell.

The equations of motion presented here explicitly ignore effects due to shear and
rotational inertia. The resulting equations and matrices are simpler on this account,
but we note that the more sophisticated shell theories which incorporate shear effects
have been considered by Tavakoli and Singh [14] and Borgiotti and Rosen [19, 20],
among others. The shell theories considered here still reveal the basic features of waves
in thin shells. Moreover, it is advantagenous to combine the present thin shell theory with
classical thin plate theory to study wave propagation at T-junctions of shells and plates,
since the continuity conditions are simple. If the shear effects are included, then at a
T-junction the rotation angle of the shell has to match a combination of two quantities:
the bending angle and the shearing angle of the plate, making the continuity conditions
more complex. In contrast, corresponding quantities match each other in the classical
theory.

3.2.   

In order to obtain the propagator matrix and the wave propagator for a uniform
layer, we first need to find the eigenvalues and the eigenvectors of N. It is generally
possible to obtain the linearly independent eigenvectors for N even with repeated
eigenvalues, as pointed out by Yong and Lin [26]. To simplify the problem further, we
reduce the 8×8 matrix N to a 4×4 matrix by first defining an eight-vector
(Z1, Z2)T =GZ, where Z1 and Z2 are two four-vectors and G is a 8×8 matrix with
non-zero elements g11 = g34 = g52 = g73 =1, g26 = g47 = g65 = g88 =−1. Rewriting equation
(1) with F=0 as

dZ1/dX=iN1Z2, dZ2/dX=iN2Z1, (43)

and substituting Z1 = eiKXXZ10 and Z2 = eiKXXZ20, we obtain

(K2
X I−N1N2)Z10 = 0. (44)

The 4×4 matrices N1, N2 and N1N2 are listed in Appendix C. The dispersion relation
follows from equation (44), and once KX and Z10 are obtained, Z20 can be calculated using
equation (43).

For each eigenvalue KXi , let ei =G−1(Z10, Z20)T, i=1,..., 8; then it may be shown that

(K*Xl −KXm )e*T
l Jem =0. (45)

Hence eigenvectors corresponding to different eigenvalues are orthogonal in the sense of
equation (45). However, if K*Xl =KXm , then el and em do not have to be mutually orthogonal;
while if KXl is not purely real, we always have

e*T
l Jel =0,

which means that the evanescent waves give no contribution to the averaged energy flux
even if the axial wave vector has a real part.

The dispersion relation for uniform cylindrical shells follows from equation (44) as
det (K2

X I−N1N2)=0. Let k=zK2
XR2 + n2, and define u such that KXR= k cos u,
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n= k sin u; then the dispersion relation becomes

b201− n

2 1k8 − b2V203− n

2 1k6 +$b2V4 −V201− n

2 1+01− n

2 1(1− n2) cos4 u%k4

+$V403− n

2 1−V201− n

2 1((2n+3) cos2 u+sin2 u)%k2 +V4 −V6 =0, (46)

where b2 = h2/12R2, V=v/vr and vr =R−1zE/r(1− n2) is the ring frequency. We
remark that equation (46) is consistent with equation (8) of Pierce [27].

4. WAVES IN CIRCULAR THIN PLATES

The equations of motion for the plate are derived from those for the shell by letting
R:a, as discussed above, although they can also be found in textbooks; see, e.g.,
Love [28]. These equations govern both flexural, or anti-plane, and membrane, or
in-plane, motions of the plates. The membrane waves (longitudinal and shear) may be
ignored when their wavelengths are much greater than the diameter of the plate. However,
the membrane waves must be considered when the wavelengths and the diameter are
comparable. This is the case in this paper, since we are concerned with high frequencies.
The other reason to consider both flexural waves and membrane waves in the plates is that
both wave types are coupled through the connections with waves in the cylinder.
In general, it is not possible to obtain a wave eigenvector relation such as equation (17)
for the circular plate at all frequencies, because N is not constant as a function of the
radial co-ordinate r. One could introduce the idea of differential S-matrices to rectify this,
but we prefer to focus on the high frequency limit in which the r-dependence is small.
In this section we derive the S-matrix for circular plates at high frequencies; in other
words, an asymptotic S-matrix. At lower frequencies, propagator matrix methods can be
safely used. The asymptotic S-matrix for the circular plate is one of the main points of
this paper.

4.1.     

The equations of motion for thin plates may be obtained from those for cylindrical thin
shells by letting R:a. Recalling equation (41), we have

12u
1x2

1
+

1− ñ

2
12u
1x2

2
+

1+ ñ

2
12v

1x1 1x2
=

r̃(1− ñ2)
E	

12u
1t2 , (47a)

1+ ñ

2
12u

1x1 1x2
+

1− ñ

2
12v
1x2

1
+

12v
1x2

2
=

r̃(1− ñ2)
E	

12v
1t2 , (47b)

D	 94w+ r̃h	
12w
1t2 =0, (47c)

where u, v and w are displacements in the x1-, and x2- and the x3-directions, respectively.
The displacement components are denoted by lower case letters and the plate parameters
have tildes (0) to distinguish them from the corresponding cylinder quantities. These are
the classical equations of motion for thin plates [28]. Plane polar co-ordinates r, 8, x3, with
the origin at the center of the plate, will be used from now on. The general solution to
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equations (47a)–(47c) is

ur =$a s
2

l=1

A(l)
m H(l)'

n (ar)+
n
r

s
2

l=1

B(l)
m H(l)

n (br)% ein8, (48a)

u8 =i$nr s
2

l=1

A(l)
m H(l)

n (ar)+ b s
2

l=1

B(l)
m H(l)'

n (br)% ein8, (48b)

w= s
2

l=1

[A(l)
f H(l)

n (cr)+B(l)
f H(l)

n (icr)] ein8, (48c)

where A(l)
m , B(l)

m , A(l)
f , B(l)

f , l=1, 2, are constants, and H(l)
n are Hankel functions. The

subscripts f and m indicate flexural and membrane contributions, respectively, and the
wavenumbers a, b and c are defined in Appendix D. We note that the general solution
for solid circular plates must be finite at the center r=0, implying that A(1)

a =A(2)
a , and

B(1)
a =B(2)

a , for a= f and m.

4.2.   
The state vector for the plate is defined as z=(z(v), z( f ))T, to distinguish it from Z for

the cylinder, and the velocity and force sub-vectors are, by analogy with those for the
cylinder,

z(v) =0ẇ, u̇8 , −u̇r , −
dẇ
dr1

T

, z( f ) = (tr , nr8 , −nr , mr )T (49)

The state vector is propagated across the plate according to
z(R)=P	 z(r), (50)

where the propagator matrix follows from equation (D15) as

P	 =G$Pf (R, r)
0

0

Pm (R, r)%G−1. (51)

The matrices Pf(R, r) and Pm (R, r) are given in Appendix D, and all elements of G vanish
except g11 = g26 = g54 = g67 = g83 =1, g35 = g42 = g78 =−1. As might be expected for this
degenerate structure, the state vector can be split into flexural and membrane constituents:
thus (z(v), z( f ))T =G(zf , zm )T.

4.3.   S-   
It can be seen from the asymptotic expression equation (D20) for the Hankel function

in Appendix D that the propagator matrix contains exponentially growing terms
associated with evanescent flexural waves. These cause computational difficulties when
frequencies are high, in which case the asymptotic S-matrix is preferable. Combining the
results for flexural and membrane waves, equations (D22)–(D24), we find that

z=E	 $ũo

ũi%, $ũo(R)
ũi(r) %=S	 $ ũo(r)

ũi(R)%, (52)

where the superscript o and i indicate outgoing and ingoing, relative to the center of the
plates, and

S	 =diag (S	 ', S	 '), S	 '=diag (eicd	 , e−cd	 , eiad	 , eibd	 ), (53)

ũo =$uo
f

uo
m%, ũi =$ui

f

ui
m%, E	 =G$Ef

0

0

Em%G'.
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Here, G is as in equation (51), and all elements of G' vanish except g'11 = g'22 = g'53=
g'64 = g'35 = g'46 = g'77 = g'88 =1. The remaining quantities in these equations are defined in
Appendix D. The S-matrix relation equation (52) implicitly associates the radially outgoing
waves with the ‘‘forward’’ waves. Sometimes it is useful to treat these as the ‘‘backward’’
waves instead, in which case equations (52) becomes

z=E	 '$ ũi

ũo%, $ ũi(r)
ũo(R)%=S	 $ũi(R)

ũo(r)%, (54)

where, partitioning according to equation (11), E	 '1 =E	 2, E	 '2 =E	 1, E	 '3 =E	 4 and E	 '4 =E	 3.
Both formulations (equations (52) and (54)) are necessary for the examples discussed in
section 6.

5. THE T-JUNCTION

Wave propagation across joints of plates has been studied by many authors, including
Cremer et al. [29], Veshev [30], Romanov [31], Budrin and Nikiforov [32] and Lu et al.
[33]. Roy and Plunkett [23] considered the coupled bending and longitudinal waves in
periodically T-jointed beams using the propagator matrix method. Several methods have
been developed for and applied to jointed plates and shells. Some of the approaches and
authors include: the classical method of matching the boundary conditions by Smith and
Haft [34, 35]; minimization of a Lagrangian, by Harino [36, 37]; the transfer matrix
method, by Irie et al. [21, 38] and Kobayashi and Irie [39]; the state space method, by
Tavakoli and Singh [14, 15] which is equivalent to the propagator matrix method described
here; the variational approach, by Cheng and Nicolas [40]; and, finally, the receptance
method by Faulkner [41] and Huang and Soedel [42]. More detailed reviews can be found
in the papers of Tavakoli and Singh [15] and Huang and Soedel [42]. To the author’s
knowledge, no investigation has been made of plate–shell structures through the S-matrix
approach.

5.1.   

The intersection of a cylindrical shell and a circular plate is considered as a ring with
infinitesimal cross-section. Hence, the forces and the moments exerted on the shell by the
plate are of concentrated type and those exerted on the plate by the shell may be treated
as boundary conditions. Based upon these considerations, the continuity conditions at a
T-junction can be written as

Z( f )(X2)−Z( f )(X1)2 z( f )(x3)= 0, Z(v)(X2)=Z(v)(X1)= z(v)(x3) (55)

(see Figure 2), where the sign in front of z( f ) should be ‘‘+’’ when the plate is outside the
shell and ‘‘−’’ when the plate is inside.

Figure 2. The T-junction.
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5.2. -         

As mentioned above, there are many different approaches to investigating waves
through joints between members. We focus here on the impedance matrix method and the
multi-channel S-matrix method, and both techniques will be described and compared.
In general, the impedance approach is preferable at low frequencies, whereas the S-matrix
is more natural at higher frequencies for reasons given earlier. The impedance matrix Y	

is defined by

z( f )(R)=Y	 (R)z(v)(R), (56)

and can be defined from the boundary conditions at the inner radius r,

Y	 (R)= [P	 3 +P	 4Y	 (r)][P	 1 +P	 2Y	 (r)]−1,

where P	 i , i=1, 2, 3, 4, are obtained according to equation (11). For example, if r is a free
edge, it can be shown by letting Y	 (r)=0 that Y	 (R)=P	 3P	

−1
1 , whereas if r is a fixed edge,

Y	 (R)=P	 4P	
−1
2 . Combining equations (55) and (56) we deduce that the propagator over a

T-junction is given by

P(X2, X1)=$I4×4

Y	

04×4

I4×4%. (57)

The S-matrix method is essential for dealing with high frequencies. It can be shown for
the T-junction shown in Figure 2, that

&u
f
(2)

ui
(3)

ub
(1)'= &T(21)

T(31)

R(11)

R(22)

T(32)

T(12)

T(23)

R(33)

T(13)'&u
f
(1)

ub
(2)

uo
(3)', (58)

where T(ij), R(ij), i, j=1, 2, 3, 4, are given in Appendix E. Define a ‘‘wave impedance’’
matrix Y	 ', which relates the ingoing and outgoing waves at a point:

ũo =Y	 'ũi. (59)

Then, substituting it into equation (58), we obtain

$u f
(2)

ub
(1)%=S$u f

(1)

ub
(2)%,

where the submatrices of S for the T-junction are

S1 =T(21) +T(23)Y	 '(R)[I−R(33)Y	 '(R)]−1T(31), (60a)

S2 =R(22) +T(23)Y	 '(R)[I−R(33)Y	 '(R)]−1T(32), (60b)

S3 =R(11) +T(13)Y	 '(R)[I−R(33)Y	 '(R)]−1T(31), (60c)

S4 =T(12) +T(13)Y	 '(R)[I−R(33)Y	 '(R)]−1T(32). (60d)

It follows from equation (52) that the ‘‘wave impedance’’ Y	 ' can be ‘‘propagated’’ from
r to R by

Y	 '(R)=S	 'Y	 '(r)S	 ', (61)

where S	 ' is given in equation (53), and Y	 ' and Y	 are related by

Y	 '=(Y	 E	 1 −E	 3)−1(E	 4 −Y	 E	 2), Y	 =(E	 3Y	 '+E	 4)(E	 1Y	 '+E	 2)−1. (62a, b)

Note that Y	 and Y	 ' should both be evaluated at the same position on the plate.
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In summary, the procedure for computing S is as follows: (i) assuming that the inner
impedance Y	 (r) is known, we first obtain Y	 '(r) from equation (62a); then (ii) ‘‘propagate’’
Y	 ' from r to R using equation (61), to obtain Y	 '(R); and, finally, (iii) the S-matrix follows
from equations (60a)–(60d).

5.3. -         

In this case, the impedance matrix defined in equation (56) is given by

Y	 (R)=L$Y	 f (R)
0

0

Y	 m (R)%G, (63)

where Y	 f (R) and Y	 m (R) are derived in the Appendix D. All the elements of G8×8 and
L8×8 vanish except for l12 = l23 =1, l34 = l41 =−1 and g11 = g42 =1, l33 = l24 =−1. The
‘‘wave impedance’’ Y	 '(R) then may be found using equation (62a) and the S-matrix from
equations (60a)–(60d).

6. APPLICATIONS TO CYLINDERS WITH INTERNAL MEMBERS

The methods developed in this paper can be applied to study waves in cylindrical shells
with finite regions of material discontinuity and/or stiffeners. Numerous papers have been
published on the latter subject. A few of them are concerned with the deformation of the
stiffener cross-sections; for example, Hodges et al. [43] allows the symmetric stiffeners
to suffer cross-sectional distortion, but their method is also a low frequency
approximation. Even so, they have shown that the deformation significantly influences the
wave propagation characteristics at low frequencies. Accorsi and Bennett [44] considered
the cross-sectional deformation using a finite element based technique. The natural and
comprehensive way to investigate the effects of the stiffeners is to consider the waves within
them. The method presented in this paper is suitable for this purpose.

6.1.   - 

The geometry is shown in Figure 3. In order to deduce the S-matrix, we first need
to find the impedance matrix. First note that the forces and velocities at the bottom
junction are related according to Z( f )(Xj )=Y(Xj )Z(v)(Xj ), where j=2 or j=3, and
Y(X2)=P3(X2, X1)P−1

1 (X2, X1), Y(X3)=P3(X3, X4)P−1
1 (X3, X4). It then follows from

equation (55) that the impedance matrix for the lower T-junction is Y(X2)−Y(X3).
Therefore, the impedance matrix for the entire T-frame (see equation (56)) is

Y	 (R)= [P	 3 +P	 4(Y(X2)−Y(X3))][P	 1 +P	 2(Y(X2)−Y(X3))]−1. (64)

Figure 3. The geometry of an internal T-frame. The numbers indicate the relative dimensions used in the
numerical results discussed in section 6.
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The S-matrix is found by first defining, by analogy with equation (59), a ‘‘wave
impedance’’ matrix Y' such that u f =Y'ub. It satsifies

Y'(X2)=S'Y'(X1)S', Y'−1(X3)=S'Y'−1(X4)S',

where S' is given in equation (22) and also, analogous to equation (62b),

Y(X2)= [E3Y'(X2)+E4][E1Y'(X2)+E2]−1,

Y(X3)= [E3 +E4Y'−1(X3)][E1 +E2Y'−1(X3)]−1.

Therefore, the matrix Y	 ' of equation (59) follows from the continuity conditions and
equation (62a) as

Y	 '(r)= [(Y(X2)−Y(X3))E	 1 −E	 3]−1[E	 4 − (Y(X2)−Y(X3))E	 2]. (65)

Finally, the S-matrix is obtained from equations (60a)–(60d) and (61).

6.2.      

We consider the box frame stiffener shown in Figure 4 as an example of a substructure
which is relatively complex, but still amenable to the methods proposed in this paper. The
propagator matrices PC2 and PC3 depend upon the propagator matrices for each and every
section of the box,

PC2 =P(X4, X2), PC3 =P	 (x5, x10)P(X9, X8)KP	 (x7, x3),

where K is given in equation (28). Following the procedure of Appendix A and noticing
the directions of the forces at the joints (see the first of equation (55)) we can find the
propagator matrix P(X6, X1). The submatrices of P(X6, X1) are

P1 =PC2
1 +PC2

2 (PC3
2 −PC2

2 )−1(PC2
1 −PC3

1 ), P2 =PC2
2 (PC3

2 −PC2
2 )−1PC3

2 , (66a, b)

P3 =PC3
3 +PC2

3 +PC3
4 (PC3

2 )−1(PC2
1 −PC3

1 )

+ (PC2
4 +PC3

4 (PC3
2 )−1PC2

2 )(PC3
2 −PC2

2 )−1(PC2
1 −PC3

1 ), (66c)

P4 = (PC2
4 +PC3

4 (PC3
2 )−1PC2

2 )(PC3
2 −PC2

2 )−1PC3
2 . (66d)

The multi-channel S-matrix presented in section 2 is again preferable for high
frequencies. It is observed that equation (54) should be employed for the left plate
(x3, x7), while equation (52) applies to the right plate (x10, x5). The wave propagators for
the two joints (X8, x7) and (x10, X9) are Q(X8, x7)=E−1(X8)KE	 (x7) and Q(x10, X9)=
E	 '−1(x10)E(X9), where K is given in equation (28), from which the S-matrices for the joints
can be obtained. Then the S-matrix for the wave channel (x3, x5) follows from those for

Figure 4. The geometry and dimensions of an internal box frame.
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the plates, the junctions, the inner cylinder and the addition rule. Finally, the S-matrix for
the box is obtained from equations (35)–(40).

6.3.     

The frequency dependent behavior of periodic cylinders can be revealed by solving the
eigenvalue problems of equations (14) and (15). It is observed that there are eight complex
propagation constants, four of them negative counterparts of the other four. The positive
real and imaginary parts of the propagation constants for three different examples are
shown in Figures 5–7. In all three examples the stiffeners and the cylinder are made of
the same material and, hence, the form of the dispersion curves depends only on the
Poisson ratio n and the dimensions of the periodically stiffened cylinder normalized relative
to the radius of the cylinder. The natural unit of frequency is the ring frequency, and all
results are shown in these units. The final example described below was the most
numerically time consuming. The curves in Figure 7 required about 80 s CPU time on a
SPARC 4 workstation.

The first example, which is the same as that considered by Mead and Bardell [45], is
a cylinder with periodic exterior stiffeners. The dispersion curves computed from equation
(15) are shown in Figure 5, and are consistent with those obtained by Mead and Bardell
[45] using a different method. The agreement is particularly good at low frequencies, but
very small differences are apparent at higher frequencies, which can be attributed to the
different models used here and by Mead and Bardell [45].

The second example is a cylinder with periodic internal T-frames. The physical
dimensions of the basic period are given in Figure 3, where the units are normalized relative
to the outer radius of the cylinder. The computed dispersion curves are shown in Figure 6
for circumferential wavenumber n=4 and n=0·3. We note that there are only four small
passing bands in the frequency range 0·0EVE 2·0, but there is a large passing band for

Figure 5. Dispersion curves for the periodic stiffened cylinder model of Mead and Bardell [45], with n=5 and
n=0·3. The thickness, periodic length, rib thickness and rib height are 1·15×10−2, 0·303, 2·10×10−2 and
5·62×10−2, respectively, all relative to the radius. Precise details of the geometry and the dimensions are given
in Fig. 5 of reference [45]. The curves shown here correspond to Figure 6(a) in reference [45].
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Figure 6. Dispersion curves for the cylindrical shell with periodic internal T-frames, with dimensions as shown
in Figure 3. Also, n=4 and n=0·3.

Ve 2·02. The final example illustrates the multi-channel S-matrix approach. Dispersion
curves for a cylinder with periodic box stiffeners as shown in Figure 4 are presented in
Figure 7 for n=2 and n=0·3.

7. SUMMARY

The propagator matrix and the S-matrix offer two equally valid but alternative methods
for studying the vibration of structures. The S-matrix approach has been emphasized in
this paper because it does not suffer from numerical instabilities at higher frequencies, in
contrast to the propagator matrix which contains elements that become exponentially
unbounded with increasing frequency. Explicit and useful expressions have been derived
for the S-matrices of the basic elements of a complex structure: a uniform section,
multi-channel regions, and joints. Addition rules for the S-matrix are also given. We have
demonstrated how these separate elements may be combined to study wave propagation
on cylindrical shells with material or structural discontinuity in the axial direction, and
with internal wave-bearing attachments. The same methods can be applied to structures
with far greater complexity by suitably cascading S-matrices for substructures.

We note that in order to obtain the S-matrix, the matrix Q4 needs to be inverted. The
S-matrix approach fails when Q4 is singular. This happens for a plate–shell junction most
probably when the azimuthal number n is small, or ‘‘normal incidence’’ onto the junction,
although the S-matrix approach works well for the plates, and also for the shells, even
for n=0. However, the propagator matrix method can be employed for a small region
near the junction where Q4 is singular, so that there is no numerical instability, while the
S-matrix approach is used for other parts of the structure.
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Figure 7. Dispersion curves for the cylindrical shell with periodic internal box stiffeners (see Figure 4) and
n=2, n=0·3.

At the end of this paper, we would like to point out that the S-matrix approach can
be employed whenever the S-matrix, or the asymptotic S-matrix, exist—and that it is
preferred for high frequencies.
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APPENDIX A: THE MULTI-CHANNEL PROPAGATOR MATRIX

The concatenation rule for propagators will be illustrated by way of considering the
example structure in Figure 1. We first write

Z(Xl−1+ i )=PCiZ(Xi ), i=2,..., l, (A1)

where PCi , i=2,..., l, is the propagator matrix for channel i, respectively. Equation (A1)
together with the velocity continuity conditions at both the left and right joints, which
follow from equation (34), implies that

Z( f )(Xi )=AiZ
(v)(X1)+BiZ

( f )(X2), i=3,..., l, (A2)

where Ai =(PCi
2 )−1(PCi

1 −PCi
1 ), and Bi =(PCi

2 )−1PC2
2 , i=3,..., l. Substituting the force vectors

from equation (A2) into the force continuity condition for the left joint, from equation
(34), we obtain

$Z(v)(X2)
Z(f)(X2)%=G

G

G

K

k

I

−0I+ s
l

i=3

Bi1
−1

s
l

2

Ai

0

−0I+ s
l

i=3

Bi1
−1G
G

G

L

l
$Z(v)(X1)
Z(f)(X1)%, (A3)

whereas substitution of equation (A2) into equation (A1) gives

$Z(v)(Xl−1+ i )
Z(f)(Xl−1+ i )%=$ PC2

1

PCi
3 +PCi

4 Ai

PC2
2

PCi
4 Bi%$Z(v)(X2)

Z(f)(X2)%, i=3,..., l. (A4)

These relations allow us to show, using the force continuity condition for the right joint,
that

$Z(v)(X2l )
Z( f )(X2l )%=G

G

G

K

k

PC2
1

−PC3
3 − s

l

i=3

(PCi
3 +PCi

4 Ai)

PC2
2

−PC2
4 − s

l

i=3

PCi
4 Bi

G
G

G

L

l
$Z(v)(X2)
Z( f )(X2)%.

Finally, combining this identity with equation (A3) results in

Z(X2l )=P(X2l , X1)Z(X1), (A5)
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where P is the propagator for the multi-channel element, with submatrices (see equation
(11))

P1 =PC2
1 −PC2

2 0I+ s
l

i=3

Bi1
−1

s
l

2

Ai , P2 =−PC2
2 0I+ s

l

i=3

Bi1
−1

, (A6a, b)

P3 =−PC2
3 − s

l

i=3

(PCi
3 +PCi

4 Ai )+0PC2
4 + s

l

i=3

PCi
4 Bi10I+ s

l

i=3

Bi1
−1

s
l

2

Ai , (A6c)

P4 =0PC2
4 + s

l

i=3

PCi
4 Bi10I+ s

l

i=3

Bi1
−1

. (A6d)

APPENDIX B: EQUATIONS OF MOTION FOR CYLINDRICAL SHELLS

The equations of motion of a cylindrical shell used here are derived from the static
equilibrium equations in Timoshenko [46]. Adding the dynamic terms, we have

R
1NX

1X
+

1N8X

18
+RfX =Rrh

12U
1t2 , (B7a)

1N8

18
+R

1NX8

1X
−Q8 +Rf8 =Rrh

12V
1t2 , (B7b)

−R
1QX

1X
−

1Q8

18
−N8 −(p+ − p−)R+RfR =Rrh

12W
1t2 , (B7c)

R
1MX8

1X
−

1M8

18
+RQ8 =0, (B7d)

1M8X

18
+R

1MX

1X
−RQX =0, (B7e)

where r, h and R are the mass density, the thickness and the radius of the shell,
respectively. U, V and W measure the displacements of the middle plane of the shell in
the axial direction X, the circumferential direction 8 and the radial direction, respectively;
NX ,..., QX ,... are resultant forces and MX ,... are resultant moments; p+ and p− are the
pressures exerted externally and internally by the fluid loading; and f is the applied force.
We also have the constitutive relations

NX =C01U
1X

+ n
1V

R 18
+ n

W
R1, N8 =C0n 1U

1X
+

1V
R 18

+
W
R1, (B8a, b)

NX8 =N8X =
(1− n)

2
C0 1U

R 18
+

1V
1X1, (B8c)

MX =−D0n 1V
R2 18

−
12W
1X2 − n

12W
R2 1821, M8 =−D0 1V

R2 18
− n

12W
1X2 −

12W
R2 1821,

(B8d, e)

MX8 =−M8X =(1− n)
D
R 01V

1X
−

12W
1X 181, (B8f)

where the bending and extensional stiffness are D=Eh3/12(1− n2) and C=Eh/(1− n2),
and E and n are the Young’s modulus and Poisson ratio, respectively. The results reported
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in this paper are for shells in vacuo, although they could be generalized to include exterior
fluid loading by using a local impedance relation of the form p+ − p− =−ivZradW, where
Zrad is the specific radiation impedance.

Substituting the constitutive relations into the equations of motion it can be seen that
the first terms of the right sides of equations (B8d)–(B8f) and Q8 in equation (B7b) may
be neglected when hW l and hWR, where l is the wavelength (this simplification leads
to the Donnell–Yu equations [17]). Ignoring these terms, we obtain

1U
1X

=−
n

R
W−

n

R
1V
18

+
1
C

NX ,
1V
1X

=−
1U

R 18
+

2
(1+ n)C

SX , (B9a, b)
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(B9c, d)
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(B9e, f)

1MX

1X
=−2D(1− n)

13W
R2 182 1X

+TX , (B9g)

where

G=
Eh3

12R4

14

184 +
Eh
R2 + rh

12

1t2 − ivZrad , SX =NX8 +
MX8

R
, TX =QX −

1MX8

R 18
.

Justification of the choice of the quantities SX and TX for static problems can be found in
Timoshenko [46]. Eliminating the resultant forces and moments in equations (B9a)–(B9g),
we arrive at the Donnell–Yu equations [17].

APPENDIX C: SOME MATRICES

The force vector in equation (1) is F=(0, 0, 0, 0, −f8 , −fX , 0, −fR )T, and the matrix N

is
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G G
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i n
R G
 −i nn2

R2 0 0k l
(C10)
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where (see Appendix B)

G
 =−
Eh3

12
n4

R4v
−

Eh
R2v

+ rhv+iZrad , (C11)

G is an 8×8 matrix with all elements zero except g11 = g23 = g35 = g47 =1,
g54 = g62 = g78 = g86 =−1 and, obviously G−1 =GT. The matrices C, NMem and NFlex in
equation (41) can be identified from equations (41) and (C10), and the 4×4 matrix J4

is (J4)ij = di+ j,5. The matrices in the simplified 4×4 system of equations (43) and (44)
are

−
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where V=v/vr , and vr =R−1zE/r(1− n2) is the ring frequency. The product N1N2
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APPENDIX D: WAVE MATRICES FOR CIRCULAR PLATES

Separate propagator matrices are defined by

za (r)=Pa (r, R)za (R), a= f or m. (D15)
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It can be shown that, using equations (48a)–(48c),

Pa (r, R)=Na (r)N−1
a (R), a= f or m. (D16)

For convenience of further development, we write Nf and Nm as products of two
matrices,

Nf (r)=G
G
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P(cr, icr), (D17)
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Csk(iar) −Csar −Csn Csnbr

where
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H(1)'
n (x)
0
0
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The flexural parameters are c4 =v2r̃h	 /D	 , Ds = r−2(1− ñ)D	 , and k(x)= n2 + x2/(1− ñ);
and the membrane parameters are a=v/cp and b=v/cs , where cp =zC	 /r̃h	 is the
longitudinal thin plate velocity and cs = cpz(1− ñ)/2 is the shear velocity; also,
Cs = r−2(1− ñ)C	 and k̂(x)= n2 + x2/2.

Making use of the asymptotic expressions, for =z=w 1,

H(1)
n (z)

H(1)'
n (z)7=eiz 6an (z)

gn (z)
,

H(2)
n (z)

H(2)'
n (z)7=e−iz6bn (z)

dn (z)
, (D20)

where

an (z)
bn (z)7=X 2

pz
(3i)n e3ip/4(Pn (z)2 iQn (z)),

gn (z)
dn (z)7=X 2

pz
(3i)n e3ip/4$P'n (z)−Qn (z)2 i(Q'n (z)+Pn (z))−

1
2p

(Pn (z)2 iQn (z))%,
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and Pn (z) and Qn (z) are given in reference [47], we can show that the matrix P(x, y) of
equation (D19) reduces to

P(x, y)=G
G

G

K

k

an (x)
gn (x)
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0

0
0

an (y)
gn (y)

bn (x)
dn (x)
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G

L

l

U(x, y) ein8 (D21)

where U(x, y) is a 4×4 matrix function, with u11 = eix, u23 = eiy, u32 = e−ix and u44 = e−iy;
all other elements are zero. Therefore, using equations (D15), (D17), (D18) and (D21), the
state vectors may be written in forms similar to equation (5),

zf =Ef$uo
f

ui
f%, zm =Em$uo

m
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m%, (D22)

where
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,

Ef (r)=Nf (r)U−1(cr, icr), Em (r)=Nm (r)U−1(ar, br).

It can be shown that the wave vectors satisfy

$uo
f (R)
ui

f (r) %=diag (eicd	 , e−cd	 , eicd	 , e−cd	 )$uo
f (r)

ui
f (R)%, (D23)
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m (r)
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m (R)%. (D24)

These define the asymptotic S-matrices for the annular plates. Define
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where Jn, are Bessel functions. It can then be shown that

z( f )
a =Y	 az

(v)
a , a= for m, (D26)

where
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a )23

Y	 a =G
G

G

K

k

G
G

G

L

l

, (D27)
(Nsld

a )23(Nsld
a )41 − (Nsld

a )21(Nsld
a )43

−(Nsld
a )13(Nsld

a )21 + (Nsld
a )11(Nsld

a )23

(Nsld
a )13(Nsld

a )41 − (Nsld
a )11(Nsld

a )43

(Nsld
a )13(Nsld

a )21 − (Nsld
a )11(Nsld

a )23

and Nsld
f =NfP

−1(cr, icr)Psld(cr, icr) and Nsld
m =NmP−1(ar, br)Psld(ar, br).

APPENDIX E: SCATTERING COEFFICIENTS OF A T-JUNCTION

The continuity conditions at a T-junction are, referring to Fig. 2,

Z( f )(X2)=Z( f )(X1)+ z( f )(x3), Z(v)(X2)=Z(v)(X1)= z(v)(x3). (E28)
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These imply that the transmission and reflection coefficients are

R(11) =−E−1
2 (X1)F'[E3(X1)E1(X1)−1 +E	 '3(x3)E	 '1(x3)−1 −E3(X2)E1(X2)−1]E1(X1),

T(12) =E−1
2 (X1)F'[E4(X2)E2(X2)−1 −E3(X2)E1(X2)−1]E2(X2),

T(13) =−E−1
2 (X1)F'[E	 '4(x3)E	 '2(x3)−1 −E	 '3(x3)E	 '1(x3)−1]E	 '2(x3),

T(21) =E−1
1 (X2)[E1(X1)+E2(X1)R11],

R(22) =E−1
1 (X2)[E2(X1)T12 −E2(X2)],

T(23) =E−1
1 (X2)E2(X1)T13,

T(31) =E	 '−1
1 (x3)E1(X2)T21,

T(32) =E	 '−1
1 (x3)[E1(X2)R22 +E2(X2)],

R(33) =E	 '−1
1 (x3)[E1(X2)T23 −E	 '2(x3)],

where

F'= [E4(X1)E2(X1)−1 +E	 '3(x3)E	 '1(x3)−1 −E3(X2)E1(X2)−1]−1.


