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simplest possible configuration. The general solution is developed and related to the
limiting cases of a rigid inclusion and a hole.

2. ENERGY AND FLUX IDENTITIES
2.1.   

The equations for bending of plates are well known and can be found in many textbooks,
such as that of Timoshenko [1]. The displacement is w=w(x, y, t) in the z-direction. For
a given direction n, =n==1, with s designating the direction perpendicular to n, the bending
and twisting moments are

Mn =−D012w
1n2 + n

12w
1s21, Mns =D(1− n)

12w
1n 1s

, (1)

where D=Eh3/12(1− n2), and E and n are the Young’s modulus and the Poisson ratio,
respectively. The generalized Kirchhoff stress associated with the n-direction, Vn , is a
combination of the shear stress Qn and the twisting moment [1, 3],

Vn =Qn −
1Mns

1s
=

1Mn

1n
−2

1Mns

1s
. (2)

The equation of motion for the plate is

DD2w+ rh
12w
1t2 = q(x, t), (3)

where r(x) is the density per unit volume, h is the thickness, and q is the applied load or
pressure.

2.2.   

We now derive some general expressions related to energy flux for bending waves. The
point-wise expression of conservation of mechanical energy, in the absence of an external
source, can be written

1U/1t+9 · F=0, (4)

where U is the total strain energy density (per unit area) and F is the energy flux vector.
We have [2]

U=
D
2 6(Dw)2 −2(1− n)$12w

1n2

12w
1s2 −0 12w

1n 1s1
2

%7, (5)

and the component of the energy flux vector in the n-direction is [1]

Fn =−Vn
1w
1t

+Mn
12w
1n 1t

, (6)

or, using the previous definitions,

Fn

D
=

1w
1t $ 1

1n 012w
1n2 + n

12w
1s21+2(1− n)

1

1s
12w
1n 1s%−

12w
1n 1t 012w

1n2 + n
12w
1s21. (7)

Applying the conservation relation (4) to a simply connected area A, with boundary C and
outward normal n, gives

1

1t gA

U dA+gC

Fn ds=0. (8)
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The boundary integral can be simplified by rewriting equation (7) as

Fn =F
 n +D(1− n)$ 12w
1n 1t

12w
1s2 +2

1w
1t

1

1s
12w
1n 1s

−
1w
1t

1

1n
12w
1s2%, (9)

where

F
 n 0D01w
1t

1

1n
Dw−

12w
1n 1t

Dw1. (10)

Integrating by parts with respect to s, equation (8) reduces to

1

1t 6gA

U dA+D(1− n) gC

1w
1n

12w
1s2 ds7+gC

F
 n ds=0. (11)

We now assume that the motion is periodic and define the time average of a physical
quantity f over one period as �f�. Averaging the energy conservation relation (8) implies
that the surface integral of the flux �Fn� vanishes for any contour not enclosing sources.
However, according to equation (11), the same is true of the ‘‘simplified’’ flux �F
 n�. Thus,
although F
 is not the instantaneous flux, its time average coincides with the time average
of the true flux. The simpler form of F
 makes it more suitable for using in practice to check
the conservation of energy. To be specific, we consider time harmonic motion of the form
w(x, t)=Re [W(x) e−ivt], for which the energy conservation relation is

gC

�Fn� ds=gC

�F
 n� ds=v
D
2

Im gC 0W 1

1n
DW*−DW*

1W
1n 1 ds=0, (12)

where we have used the definition of F
 n in equation (10).
The identity (12) for W can be derived more directly as follows. The time harmonic

version of equation (3) is

D2W− k4W=Q/D, (13)

where k4 =v2rh/D, and Q is the fourier transform of q. Let W* denote the complex
conjugate of W. It may be easily checked, using integration by parts, that

gA

W(D2W*− k4W*) dA=gA

(=9W=2 − k4=W=2) dA

+gC 0W 1

1n
DW*−DW*

1W
1n 1 ds=0. (14)

Hence, taking the imaginary part of this identity yields equation (12). Although this
derivation is simpler and more direct, it does not show how the integral is related to the
energy flux conservation. Nor is it apparent that the flux relation applies to arbitrary
periodic motion, as opposed to time harmonic motion.

2.3.      

Now consider a finite region of an otherwise homogeneous plate of infinite extent which
contains a scatterer, which is by definition some type of obstacle that causes scattering of
incident waves. It may consist of a region with different plate properties (thickness, density,
etc.) or it could be an attachment of some type. In any event, the identity (12) applies to
the flux generated by the total field, but it does not apply to the flux defined by the scattered
part of the response, Wsc =W−Winc, where Winc is the incident wave, which we assume
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to be a straight-crested wave. The scattered far field amplitude f(u) is defined such that

Wsc =
1

z2r
ei(kr− p/4)f(u)+ o(1/zr), r:a. (15)

The average energy flux of the incident wave Winc =eikx =eikr cos u across a unit length of
any wavefront, x being constant, is simply vk3D, and the energy flux associated with the
scattered field follows by substituting from equation (15) into equation (12) while letting
the contour C recede to infinity. The scattering cross-section, ssc, defined as the ratio of
the latter flux to the incident flux, is therefore

ssc =
1
2 g

2p

0

=f(u)=2 du. (16)

Note that ssc has dimensions of length. Assuming that the scatterer does not use up, or
dissipate, energy, we may apply the energy flux equation (12). Thus, substitute for the total
field in equation (12) using the incident wave and the far field scattered response, and again
let the contour tend to infinity. The flux across C associated with the incident wave
vanishes, while the remaining terms give

g
2p

0

= f(u)=2 du+lim
r:a

z2r Re 6e−ip/4 g
2p

0

(1+cos u) eikr(1−cos u) f(u) du7=0. (17)

The limit can be evaluated by first approximating the integral asymptotically using the
method of stationary phase and then taking the limit to yield, using equation (16),

ssc =−2Xp

k
Re f(0). (18)

This is an expression of energy conservation which is related to the optical theorem of
classical acoustics and electromagnetics [9, 10]. The optical theorem has been applied to
2-D scattering [12] and has been generalized to include scattering from baffled flexible
surfaces [11], but as far as we know it has not been previously derived or used in the context
of flexural wave scattering. The energy flux identity (12) is different than the corresponding
relation for acoustics, which does not involve the Laplacian operator. However, the final
expression of the optical theorem, equation (18), is identical to the analogous 2-D acoustic
equation. The reason for this is clear, a posteriori at least. The ‘‘interior’’ scattering process
is governed by the flexural wave equation (13). However, both the incident straight-crested
wave and the far field are solutions to the acoustic Helmholtz equation, and it is this
equation which determines the energy conservation equation (18).

The scattered flexural displacement can always be expanded in a set of complete wave
functions. Thus, the general form of the scattered field can be represented as [2]

Wsc = s
a

n=0

H(1)
n (kr)(An cos nu+A'n sin nu)+ s

a

n=0

Kn (kr)(Bn cos nu+B'n sin nu), (19)

where A'0 =B'0 =0. This type of representation is appropriate for scatterers of circular
shape, and will be used in the next section. Equation (19) may be also used for arbitrary
scattering configurations, although other basis functions might be appropriate if the
geometry is separable, such as for elliptical regions [2]. The far field amplitude follows from
the definition in equation (15) and the asymptotic behavior of Hankel functions:

f(u)=
2

zpk
s
a

n=0

(−i)n(An cos nu+A'n sin nu). (20)
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Hence, equation (16) and the optical theorem (18) imply the identity

=A0=2 +Re A0 + s
a

n=1

{=An =2/2+ =A'n =2/2+Re [(− i)nAn ]}=0. (21)

This serves as a numerical check on any computed results, and will be used in the examples
discussed next.

3. SCATTERING BY A CYLINDRICAL INHOMOGENEITY

3.1.  

We consider a circular region of inhomogeneity in rE a, which is perfectly bonded to
the exterior region along the boundary r= a. Let the exterior, infinite plate be denoted
by 1, and the scatterer by 2, so that the properties in each region are Dj , nj , rj and hj ,
j=1, 2. We consider time harmonic motion, so the wavenumbers are k1 and k2. For
simplicity, we take the incident wave in the x-direction, or u=0, so that A'n =B'n =0 in
equation (19). The total displacement is of the form

W=g
G

G

F

f

eik1r cos u + s
a

n=0

[AnH(1)
n (k1r)+BnKn (k1r)] cos nu,

s
a

n=0

[CnJn (k2r)+Dn In (k2r)] cos nu,

rq a,

rE a.
(22)

The choice of the wave functions is dictated by the conditions that the scattered response
is finite at r=0 and must be outgoing, or radiating, as r:a. There are four continuity
conditions on r= a, requiring that W, 1W/1r, Mr and Vr are continuous across the
boundary. We note that eik1r cos u = sa

n=0 en inJn (k1r), where e0 =1, en =2 and ne 1, and also
that the quantities defined in equations (1) and (2) become, in cylindrical co-ordinates [1],

Mr =−D$12w
1r2 + n01r 1w

1r
+

1
r2

12w
1u21%, (23a)

Vr =−D
1

1r
Dw−D(1− n)

1
r2

1

1u 0 12w
1r 1u

−
1
r

1w
1u1, (23b)

Applying the continuity conditions for each azimuthal order n=0, 1, 2, . . . , we arrive at
the following set of equations for the unknowns:

H(1)
n (k1) Kn (k1) −Jn (k2) −In (k2) An Jn (k1)

k1H(1)'
n (k1) k1K'n (k1) −k2J'n (k2) −k2I'n (k2) Bn k1J'n (k1)G

G

G

K

k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j

g
G

G

F

f

h
G

G

J

j

(24)
SH (k1) SK (k1) −SJ (k2) −SI (k2) Cn

=−en in SJ (k1)
.

TH (k1) TK (k1) −TJ (k2) −TI (k2) Dn TJ (k1)

The following notation is used:

SX (ka )=Da [n2(1− na )3 k2
a ]Xn (ka )−Da (1− na )kaX'n (ka ), (25a)

TX (ka )=Da [n2(1− na )]Xn (ka )−Da [n2(1− na )2 k2
a ]kaX'n (ka ), (25b)

for a=1, 2, where ka = kaa, and the upper (lower) signs refer to X=H(1), J, (I, K),
respectively. The second order ODEs for these functions have been used to simplify SX

and TX .
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3.2.    

There are two limits of interest, corresponding to the limits in which the heterogeneity
is either rigid or soft. The former corresponds to clamped conditions at r= a, while the
soft limit gives a hole in rQ a. In either case, only the field for re a is meaningful in
equation (22), and the matrix system (24) reduces to a 2×2 system. For the rigid limit,
the matrix comes from the upper left block in equation (24), and gives (dropping the
subscript 1 as redundant)

An =−en in$ Jn (ka)K'n (ka)− J'n (ka)Kn (ka)
H(1)

n (ka)K'n (ka)−H(1)'
n (ka)Kn (ka)%, (26a)

Bn = en
2in+1

pka
[H(1)

n (ka)K'n (ka)−H(1)'
n (ka)Kn (ka)]−1, (26b)

where the expression for Bn has been simplified using the Wronskian relation for Bessel
functions [13]. The matrix for the case of a circular hole corresponds to the lower left block
in equation (24), and yields

An =−en in$SJ (ka)TK (ka)−TJ (ka)SK (ka)
SH (ka)TK (ka)−TH (ka)SK (ka)%, (27a)

Bn =−en in$TJ (ka)SH (ka)−SJ (ka)TH (ka)
SH (ka)TK (ka)−TH (ka)SK (ka)%. (27b)

It can be checked by asymptotic expansions that in the low frequency limit, ka:0, all
of the coefficients An tend to zero for the rigid case, except A0, which tends to −1. This
low frequency behavior of the rigid inclusion can be understood by considering the limit
of a fixed point at r=0, i.e., such that the origin is constrained not to move. Consider
the point force Green function, WG, which solves equation (13) with Q/D= d(x). It can
be shown that [3]

WG(x)=
i

8Dk2 [H(1)
0 (kr)−H(1)

0 (ikr)], (28)

where H(1)
0 (ikr)= (−2i/p)K0(kr) [13]. We assume that the scattering from the constrained

point is of the form Wsc =F0WG. Then using the fact that WG(0)= i(8Dk2)−1, we find that
the force required to make the total displacement vanish at the origin, W(0)=0, is
F0 = i(8Dk2)−1. The scattered far field is therefore defined by equation (20) with A0 =−1,
and An =Bn =0, ne 1, or f(u)=−2/zpk . The scattering cross-section follows from
equation (16) or equation (18) as

ssc =4/k, fixed point at r=0. (29)

Thus, the scattering cross-section increases without bound as the frequency tends to zero.
The appearance of the equivalent force F0 appears to invalidate the flux analysis, and the
flux relation (18), among others. However, the equivalent force does no work and hence
introduces no extra energy into the system.

The low frequency response of the rigid obstacle is in sharp contrast to the
corresponding limit for the hole, for which

A0 = i
p

4
n

1− n
(ka)2 +O((ka)3), A1 = p(ka)4 +O((ka)5),

A2 =−i
p

4
1− n

1+ n
(ka)2 +O((ka)3), An = o((ka)2), n=3, 4, . . . .

(30)
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Figure 1. The magnitude of the backscattered far field flexural response for an incident wave of unit amplitude.
The surrounding plate is steel of thickness 1 in. Three curves are shown: ——, the limiting case of a hole, –·–·–,
a rigid inclusion; –––, an inclusion of the same material but of a thickness that is 1/50th of the surrounding
plate.

These results were obtained from equation (27a) using a symbolic manipulation package.
The dominant coefficients are A0 and A2, both of order (ka)2 as ka:0. Hence, the scattering
pattern at low frequency is dominated by the monopole and quadropole terms:

f(u)1 i
2Xp

k $ n

1− n
+

1− n

1+ n
cos 2u%(ka)2, hole, ka:0. (31)

This implies that the cross-section vanishes like

ssc =
p2

4 $0 n

1− n1
2

+ 1
201− n

1+ n1
2

%k3a4, hole, ka:0. (32)

These results are, perhaps, not that surprising. At long wavelengths the hole becomes
‘‘invisible’’ to an incident wave, but the rigid region has an influence even as the wavelength

Figure 2. A polar plot of the far field scattering amplitude for a circular hole in a 1 in steel plate. Two different
frequencies are shown: ——, ka=1; –––, ka=0·5. The wave is incident from the left.
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Figure 3. As Figure 2 but for a rigid inclusion of the same extent. ——, ka=1; –––, ka=0·5.

becomes infinite in comparison with its dimension. However, it is interesting to note that
the rigid obstacle behaves as a monopole, while the hole is a combination of a monopole
(n=0) and a quadropole (n=2).

The backscattered fields for both the rigid and soft limits are plotted versus ka in
Figure 1, which contains additional curves discussed below. As expected, we note that in
the low frequency limit the backscatterer goes to zero for a hole and increases without
bound for a rigid inhomogeneity. In the high frequency limit, the backscatter asymptot-
ically approaches unity for both the hole and rigid inhomogeneities. This may be explained
on the basis of the reflection from a flat interface, modified by a geometrical correction
due to the curvature of the interface. The asymptotic value of the backscatter is unity,
because the reflection coefficient for either a rigid or a free edge is of unit amplitude. In
Figures 2–4 are shown polar plots of the far field scattering amplitude (=f(u)=) for the hole
and rigid inhomogeneities. We note from Figures 2 and 3 that as the frequency is reduced,
=f(u)= decreases for the hole and increases for the rigid inhomogeneity. Note from Figure
2 that the hole displays a characteristic ‘‘figure of eight’’ scattering pattern at low
frequency. The scattering is mainly in the forward and backward directions, with very little
side scattering. This is consistent with the monopole plus quadropole form of the far field
amplitude in equation (31). On the other hand, the directionality of the scattered field is
lost for the rigid inhomogeneity as ka decreases, in keeping with the above finding that
the rigid inclusion behaves like a monopole in the low frequency limit. In the high
frequency limit, the scattered field is of the same order of magnitude for both the hole and
rigid inhomogeneities, and strong directional scattering is also exhibited in both cases. The
large forward lobes in Figure 4 indicate a shadowing effect which becomes stronger with
increasing frequency. The scattered response essentially cancels the incident wave in the
shadow region.

Figure 4. Polar plots of the far field amplitude for both a hole (——) and a rigid inclusion (–––) of the same
size at ka=5. Note the appearance of shadow lobes, particularly for the rigid obstacle.
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Figure 5. These curves are as in Figure 1: ——, the limiting case of a hole; –––, a rigid inclusion; –·–·–, a
bonded steel inclusion of thickness 0·5 in; –··–··, a heavy, bonded inclusion with the elastic properties of steel
and mass equivalent to a plate of thickness 50 in. This was chosen to demonstrate the tendency towards the rigid
obstacle limit as the inclusion mass increases. Note that while the curve does approximate the curve for the rigid
case at kaq 1, it still tends to zero as ka:0, as one would expect for a non-rigid obstacle.

3.3.     

The general case, for which the 4×4 matrices are used to find the unknowns An , Bn ,
Cn and Dn , simulates the soft and rigid limits when the thickness of the inhomogeneous
material tends to zero and to infinity, respectively. In Figures 1 and 5, we have considered
three cases representative of a ‘‘typical’’ inclusion, a ‘‘membrane’’ type inclusion
approximating a hole, and a massive inclusion approximating a rigid obstacle. These are
modelled as equivalent plates with the same properties as the surrounding 1 in thick steel
plate but with thicknesses of 1/2 in, 1/50 in and 50 in, respectively. As the thickness of the
inhomogeneous material is reduced, the backscattered field approaches the backscattered
field of the soft limit, as can be seen in Figure 1. An exceedingly thin plate can be
considered as a membrane, in so far as it offers no bending resistance to the surrounding
plate (although it does not support in-plane stresses because we are still using the classical
plate theory). It is illustrated in Figure 1 that as the membrane limit is approached, the
backscattered field deviates sharply, at certain discrete frequencies, from the backscattered
field of a hole of the same dimension. These frequencies are identified as the resonance
frequencies of the thin ‘‘membrane’’ inclusion with clamped boundary conditions at r= a.
The resonance frequencies can be solved by finding the zeroes of the equations:

b Jn (k2)
J'n (k2)

In (k2)
I'n (k2) b=0, n=0, 1, 2, . . . . (33)

These roots have been tabulated by Leissa [2], based upon earlier studies in the literature.
We have marked the peaks in Figure 1 with the order n of the dispersion equation, for
nE 4. The reason for their appearance in this limit is because the ‘‘membrane’’ offers very
little reaction except at these frequencies. We note that similar types of singular response
from almost rigid or almost soft scatterers are encountered in acoustic scattering problems
[14]. In the other limit, it is indicated in Figure 5 that as the thickness of the inclusion
becomes much larger than the thickness of the homogeneous plate the backscattered field
approaches the backscattered field of a rigid limit, as expected.
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4. CONCLUSIONS

Flexural wave scattering from obstacles can be treated by the same techniques
commonly used to consider acoustic and electromagnetic problems. The main
complication arises from the form of the wave equation (3), which is of higher order than
the standard acoustic wave equation. Evanescent ‘‘waves’’ are possible but they have no
effect on far field quantities, which depend only upon the radiated flexural waves. Thus,
the flux identity (12) and the optical theorem (18) are similar to the acoustic analogs.

We have presented some elementary results for flexural wave scattering from plate
inclusions of circular shape. The two extreme cases of rigid inclusions and holes have been
examined and both come out of the general analysis naturally. These results are interesting
in their own right, but could be used for practical applications. For instance, an effective
attenuation in a plate filled with randomly placed small holes may be estimated by equating
the energy lost from the effective attenuation with the energy radiated from each hole.
Suppose that there are N holes per unit area on average. Neglecting multiple scattering
effects, the imaginary part of the flexural wavenumber for the effective coherent wave
acquires a small, positive imaginary part,

a0 Im k=(N/2)ssc, (34)

where ssc is the scattering cross-section for an isolated hole, and it is assumed for simplicity
that the holes are of the same size. Let c be the volume fraction of the holes in the plate,
c=Npa2; then it follows from equations (32) and (34) that

a= ck3a2 p

8 $0 n

1− n1
2

+
1
201− n

1+ n1
2

%. (35)

Hence, on the basis of this effect alone, we would expect the attenuation to be proportional
to v3/2.
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