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A new method is described for computing the acoustic far field scattered by a submerged smooth
elastic thin shell. The total field is split into a sum of specular and leaky wave contributions. The
latter arise from weakly radiating membrane waves that propagate globally over the structure, and
are the focus of this work. The scattered leaky wave field is expressed, via a surface Helmholtz
integral, as the sum of integrals along a finite number of Gaussian beams. The integral on each beam
is then approximated as a line integral along the central ray of the beam. Finally, the far-field
contribution from each line integral is reduced to a sum of stationary phase contributions. The
derived asymptotic expression for the leaky wave field is uniformly valid for all observation
directions. Difficulties associated with caustics and two-point ray tracing do not arise in the present
formalism. A test of the method for a spherical shell shows that the numerical results agree well with
the exact solution and the pure ray solution for % a> 10, where kf is the fluid wave

number. © 1995 Acoustical Society of America.

PACS numbers: 43.20.Dk, 43.20.Fn, 43.30.Gv. 43.40.R;j

INTRODUCTION

Acoustic scattering problems for fluid-loaded elastic
shells are usually formulated in terms of surface Helmholtz
integrals. The direct evaluation of these surface integrals at
high frequencies is a formidable task because the required
computational time increases substantially with frequency. In
contrast, ray-based approaches are best suited to the higher
frequencies, and provide the natural means for dealing with
this regime. From the ray point of view, the scattered field at
a distant observation point is dominated by the surface field
at a few distinct points on the shell, the so-called launching
points. Apart from the point of specular reflection, which is
relatively easy to predict and handle, the dominant mecha-
nism for radiation from the launch points is by supersonic
“membrane” wave motion. Therefore in order to obtain the
associated membrane wave scattered field, one needs to de-
termine (i) the field at the coupling points where the incident
rays couple to the membrane rays on the shell’s surface, (ii)
the ray paths from the coupling points to the launching
points, and (iii) the field at the launching points. This inter-
pretation has lead to enormous insight into the mechanism of
wave scattering and radiating from submerged elastic shells,
and has resulted in considerable simplification.! However,
the determination of the field at the launching points often
turns out to be nontrivial because it usually involves two-
point ray tracing. In a traditional ray theory the surface wave
field is defined only along the rays, and the field at a launch-
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ing point depends on those rays that pass exactly through it.
Searching for these rays from all possible rays by a two-
point ray tracing method could be computationally costly,
and may be unrealistic, except for simple shells such as
spheres and cylinders where the ray paths are well known.

Some modifications to the “traditional” ray method
seem to be necessary in order to use it for constructing the
field scattered by an arbitrarily curved shell. A natural ap-
proach is the paraxial approximation of the wave field in the
vicinity of a ray, which is often called the Gaussian beam
method. A Gaussian beam may be considered as a bundle of
rays in complex space in the neighborhood of the central ray,
which is in real space. The field along the beam is concen-
trated in the vicinity of its central ray, and the amplitude on
the cross section of the beam has a Gaussian profile. The
trajectory of the beam is described by its central ray path,
which can be determined by the pure ray method. In com-
parison with the pure ray method, there are two major ad-
vantages to be gained by using the Gaussian beam method
for the propagation and radiation of waves on a curved shell.
First, a Gaussian beam is always finite at caustics so that the
surface field synthesized from all the beams is well defined at
every point on the surface, and there is no need to determine
caustic locations. Second, the Gaussian beam method is
more efficient than the ray method because two-point ray
tracing is not required.

The Gaussian beam method has had wide use in wave
propagation and scattering problems. The earlier applications
can be traced back to the papers of Keller and Streifer,’
Deschamps,? and Felsen.* The Gaussian beam technique has
been exiensively exploited in geophysics in the last decade
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by Cerveny et al.,” Nowack and Aki,® and Norris e al.” Most
applications of this technique, however, are limited to three-
dimensional Euclidean space. Due to the geometrical com-
plexity, the Gaussian beam method to date has not been di-
rectly applied to the construction of the acoustic field
scattered by an arbitrarily curved shell.

The objective of this paper is to determine the acoustic
field scattered by a submerged shell of arbitrary smooth
shape through the use of the Gaussian beam method. The
principal assumption employed is that elastic wavelengths
are much greater than the shell thickness but much smaller
than the principal radii of curvature defined over the shell’s
surface. Consequently, thin shell theory and high-frequency
asymptotics are directly applicable. The paper is organized as
follows. Membrane ray theory for thin elastic shells, devel-
oped by Norris and Rebinsky,®? is briefly reviewed in Sec.
I. Gaussian beams are introduced and some of their basic
properties on a curved surface are discussed in detail. In Sec.
II, the surface integral for the scattered field is approximated
by a sum of Gaussian beams, and an explicit asymptotic
expression for the scattered field is derived. A numerical
scheme is described in Sec. III which combines the Gaussian
beam method with the pure ray method. The scheme is ex-
plicitly tested against the available analytical solutions for a
submerged spherical shell. Numerical results for the acoustic
far field are discussed in Sec. III.

1. RAYS AND BEAMS ON A CURVED SURFACE

The essence of the Gaussian beam summation method is
to approximate the wave field by a number of Gaussian
beams, each of which is exponentially localized in the vicin-
ity of its central ray. The central rays form the framework
upon which the Gaussian beams are patched and the trajec-
tories of the central rays are determined by the pure ray
method. The foundation of the Gaussian beam approach 1s
therefore pure and simple ray theory. We will first summarize
the pertinent aspects of ray theory for thin elastic shells, and
then discuss solutions in the form of Gaussian beams.

A. Review of membrane ray theory

The geometry of a smooth shell’s surface of arbitrary
shape, 3, can be described by two families of curvilinear
coordinate curves £ and £ on 3. The position vector at a
point (£',£) is written as

x=x(¢',£%). (1)

Consider a plane acoustic wave incident upon X in the direc-
tion n™. The wave is not only reflected in a normal or
“specular” manner by the shell’s surface but may also excite
shell membrane waves at points where the phase of the inci-
dent wave matches to that of the membrane waves. The term
“membrane wave” is used here to denote supersonic waves
with displacements predominantly in the surface. They have
been discussed in detail by, for example, Norris and
Rebinsky."® The polarization of the waves leads to weak
coupling with the fluid and hence the membrane waves are
only weakly radiating, or leaky. To a first approximation, the
phase matching condition is
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n.a;=—cos §,, sin Oo=kiky, )

where a; is the unit outward normal to 3, 6, is the critical
angle for the membrane wave, kf is the acoustic wave num-
ber, and k the membrane wave number. The roots of Eq. (2),
define the starting points, or the coupling points, for all the
excited membrane rays. An efficient numerical scheme was
recently developed by Yang et al.'® to determine the cou-
pling points on arbitrarily curved shells. The set of coupling
points for each type of membrane wave form a closed curve
on a smooth shell, viz., the coupling curve.

The membrane wave number £ is a root of the disper-
sion relation for the submerged shell. The relation was first
derived by Pierce,!! and was further simplified by Norris and
Rebinsky®? in the Iimit & Rmin>1, where R, is the smallest
radius of the curvature on the shell’s surface. The asymptotic
approximation to the root may be written as'

k2~m2+ 1- )K—i—i 3

UK TR )
where ¢ is the phase speed associated with straight-crested
waves on a flat plate: c=c,, for longitudinal waves, or c=c,
for transverse waves. The impedances in Eq. (3) are

Z,=—iwph, Z,=ZA06,),

Z{(0)=pscy sec 0,
@

where A is the thickness, and p; and p; are the densities of
the shell and the surrounding fluid. The parameter R is the
dynamic effective local radius of curvature, defined by

1 1/R||+ vIR,, longitudinal,
= 5
Ry 2/Ry, transverse, )
with

1 =n%d B ! — Lad 1B
Ry =nd,gn®, R, =n agt s

Lo (6)
R =5 (n®d ygn* P+ n'2d ,gnP).

The unit vectors n and n' lie in 3, parallel and perpendicular
to the surface ray direction, respectively. The surface curva-
ture tensor is daﬁ and K is the Gaussian curvature,

o L1
RiR, R}

Q)

Note that the final term in Eq. (3) is complex, and its imagi-
nary part accounts for the attenuation of the membrane
waves through radiation loss. Although kR ;,>1 is assumed
and consequently the leading-order term in Eq. (3) is much
larger than the others, one must include the fluid-loading
term in the dispersion equation even in the first-order ap-
proximation; otherwise there is no attenuation. Our approach
therefore is to retain the fluid-loading term in Eq. (3) when
we evaluate the global phase variation (and resulting radia-
tion loss) as the ray propagates over the shell, but ignore the
Auid-loading term in the computations of the coupling curve,
the ray trajectories, and the ray tube widths.
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The leading-order approximation to the ray trajectories
therefore follow from Eq. (3) as the characteristic curves of
the eikonal equation

K=w*c?, or V¢, -Vo,=1/c?, (8)
where k is the magnitude of the surface wave-number vector,
k=wV @, =kn, ©)

and ¢,(x) is the timelike phase function on 3,. Furthermore,
on a shell of homogeneous material and thickncss, the mem-
brane wave speed is approximately constant over the entire
surface 3. Thus to leading order the rays describe geodesic
paths on 3. Let s be arc length along a ray; then (£.,8)
satisfy the well-known differential equations

d&* dn®

%=n“, ES—=—I‘;}}1ﬂn7, (10)
where 'z, are the Christoffel symbols of the second kind."?
The ray trajectories are uniquely determined by solving these
equations with initial conditions prescribed on the coupling
curve %,

£4(0)= ¢4,

n(0)=csc fy(n"—(n'"-as)az)|. .
(11)
The ray tube width A(s) is a measure of the spreading
between neighboring rays. The differential equations for A
follow from Eq. (10) by taking variations with respect to a
parameter r along the direction n*. The resulting equations,

or the variational ray equations, are’
a4 B 48 KA 12
E =cD, c ds - . ( )

Tt has been shown by Norris® that the wavefront curvature on
the shell’s surface is the quotient of B(s) and A(s),

,u,(s)EnL“‘nlﬁVaVBd)s:B(s)/A(s). (13)

The value of A(0) is arbitrary, and may be set to unity with
no loss in generality. The initial wavefront curvature is then
B(0), which is derived by local phase matching between the
incident and surface waves at the coupling point.! In short,

A(0)=1, B(0)=pu(0)=c™" cot GoKRy|y . (14)

One may directly solve Eqgs. (12) using the initial con-
dition (14). Alternatively, the general solution can be written
as a linear combination of two independent solutions,
(A.B)) and (A,,B,), to Egs. (12):

A(s)=A () + (0)A(s), ()
B(s)=B,(s)+ p(0)Ba(s),

with initial conditions
A(0)=B,y(0)=1, B ,(0)=A,(0)=0. (16)

Using Eqgs. (12) and the initial conditions (14), one can show
that the Wronskian, or Lagrange ray invariant,' is constant
and equal to unity along the entire ray trajectory; that is,

A\ (s)B5(s) —Aq(s)B(s)=1. (17)
The membrane wave displacement amplitude V(s) sat-

isfies the simplified transport equation’
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d

E(V\/pshcA)=O. (18)
Assuming uniform material properties, we then have

Vi V(0 A(O)) " 19

@=vo)35] (19)
where the initial amplitude is’
— Py (i2mkR| tan 6p)'?
V(0)= —— | =2 (20)

iwkR, Z,+Z '
and Py is the amplitude of the incident acoustic wave. The
surface pressure generated by a membrane ray is directly
related to the normal surface velocity via the local radiation
impedance Z,

A0)\'"*
)"

plmem(s) = —insF(s)V(O)(m

The amplitude factor F(s) is defined as the ratio of the nor-
mal displacement to the in-surface displacement for the
membrane wave, and was derived by Norris and Rebinsky®
as

m

i
FG)Y= ko) @arza)”

(22)

According to the Sturm separation theorem (see page 223 of
]nce""), if the two fundamental solutions A (s) and A,(s)
have zeros along the ray, the zeros of A must alternate with
those of A,. This fact imiplies that the general solution A
must also have zeros. Equations (19) and (21) imply that the
surface fields become singular at the zeros of A. Thus the
zeros of A are the caustics of the system.

In summary, the leading-order ray and ray tube equa-
tions are independent of frequency. We therefore only need
to solve these equations once, and can then use the ray tra-
Jjectories and tube widths at all frequencies. This is one of the
greatest advantages over other numerical methods where
computation must be repeated at each individual frequency.
However, there are disadvantages as well. First, the surface
field is singular at caustics. It has been illustrated recently by
Yang et al.' that even on a smooth shell as simple as an
ellipsoid the caustics can spread all over the surface. Hence
we must deal with an infinite number of caustics on an arbi-
trary shell in order to construct the surface field as well as the
scattered field. Second, the membrane wave contribution to
the scattered response in the fluid depends upon the surface
field at well defined launching points on 3. This requires the
total contribution from all the rays passing through the
launching point, but finding these rays usually involves two-
point ray tracing. In other words, one must trace a suffi-
ciently large number of the rays initiating from the coupling
curve in order to find those rays which precisely pass
through the taunching point. The objective of this paper is to
take full advantage of the pure ray method summarized
above but eliminate its disadvantages through the use of the
Gaussian beam method.
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B. Gaussian beams on a curved surface

A Gaussian beam may be considered as a paraxial ap-
proximation of the wave field in the vicinity of a central ray.
Since the central ray is confined to real space, its trajectory,
denoted by position vector x.(s), can be determined by solv-
ing the real ray equations (10). For convenience, we intro-
duce a curvilinear coordinate system composed of the central
ray of the beam and the geodesic perpendicular to the central
ray. The central ray propagates in the direction n=dx_/ds,
and the perpendicular geodesic may be obtained by solving
the geodesic equations'> with initial  direction
nl=a3(s,0)><n(s,0). Let r be the arc length along this geo-
desic; then a point on 3, near the central ray may be ex-
pressed as

x(s,r)=x.s)+rot(s,r). (23)

Consider a real ray initiating at the ith coupling point.
The surface field along the central ray varies according to
Eqgs. (19) and (21). In order to extend the field away from the
central ray we first expand the phase function in a paraxial
manner,’

s dr 1
¢s(5~r)=fo ORI (24)

[where the wavefront curvature p(s) is defined by (13)], and
then express the field in the form of a Gaussian beam:

pgmem)(s’r) — y‘_Pi(s)eiw%(.r.r)‘ (25)

Here and in subsequent equations the suffix i denotes the ith
ray or beam. The pressure P;(s) follows from Egs. (19) and
(21) as

Pi(s)=P(0) 7ro5

12
F(s) (A(O)) 26)

F(0) \A(s)

Note that Eq. (25) is the same as Eq. (21) except for the
additional factor y;, which is introduced to take into account
the effect of replacing an infinite set of the surface rays by a
finite number of Gaussian beams. A general expression for y;
is given in the next subsection.

As noted above, the surface field is singular at the zeros
of A(s). The only way to prevent the ray tube width from
vanishing is to analytically extend the initial real wavefront
curvature into complex space. That is, instead of (14),, we
take

1(0)=p1(0)+ip,(0), 27

where ,(0) and u,(0Q) are both real with Im y,(0)>0. The
ray tube width and its first derivative then follow from (15)
and (27) as

A(s)=[A(s)+ Ml(O)Az(S)]+lM2(0)A2(S)
B(s)=[B,(s)+ 1£1(0)B(s)]+ip,(0)B,(s).

Since A (s) and A,(s) cannot vanish at the same point, the
magnitudes of the parameters A(s) and B(s), and hence the
surface field (25), must remain finite and nonzero at every
point along the-beam. At the same time the surface wavefront
curvature y becomes complex, and may be rewritten as

(28a)
(28b)
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[Bi(s)+ £1(0)By(s)1+ip2(0)By(s)
[A1(s)+ £1(0)Ax(s)]+ipea(0)Ax(s)"

Its imaginary part follows from Egs. (17) and (29) as
Im p(s)=[(A,(s)+ 1,(0)A5(s))
+(12(0)A2(5))*1™ 122(0). (30)

The choice ,(0)>0 implies that Im w(s)>0 for every arc
length s, and hence the Gaussian beam preserves the charac-
ter of the Gaussian profile as it travels over the shell’s sur-
face. Furthermore, the imaginary part of the complex curva-
ture is related to the beam width, denoted by 8(s):

8(s)=[wpa(s)]7""

The Gaussian beam solution is thus completely specified
by the initial conditions for z;(0) and w,(0) [assuming A(Q)
=1]. The choice of these parameters is arbitrary, subject to
the constraint that Im 2,(0)>0. In this paper we take ,(0) to
be the real initial wavefront curvature given by Eq. (14), and
choose a positive number for x,(0) in such a way that the
initial wave field as defined by the Gaussian beam summa-
tion is smooth.

Special care must be taken in evaluation of the beam
amplitude P;(s) from Eq. (26), because the square root of
the complex ray tube width could be a multivalued function.
In the case where A (s) and A,(s) possess zeros along a ray,
the complex number A(s) then corresponds to a curve wind-
ing around the origin in the complex plane. As A(s) goes
around the origin for one complete turn, its phase is changed
by 2, resulting in a change of —ar in the phase of the
amplitude P;(s). Thus determination of the phase of the
complex ray tube width is essential to the application of the
Gaussian beam method. It helps to express the ray tube width
in the form

A(s)=|A(s)|e"¥, (31)
where, according to Eq. (28a), the amplitude is
|A(s)|= V(A (5)+ 11(0)Ax(5))? + (12(0)A(5))*

and the phase is

u(s)= (29

s A'
'ﬁ(S)—l/’(O):ImI W (32)

o Au)
The derivative of A(s) is related to B(s) by the variational
ray equations (12);, which in turn is related to the wavefront
curvature u. Also, Eq. (14), implies that ¢(0)=0, and hence
by Egs. (12) and (13)

W(s)= f:L‘(u)#z(u)du- (33)

Since p,(s)>0, the phase ¢/(s) must increase smoothly and
monotonically with arc length. The amplitude of the ith
beam in Eq. (26) therefore becomes

F(s)

Pi(s)=P{0) 755

IA( )I 172 —1/24,{:(5) (34)

In order to illustrate the characteristic behavior of the
phase of A(s), consider a Gaussian beam on a spherical shell
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FIG. 1. The phase of complex ray tube widths as the function of the are
length along a ray traveling over the unit spherical shell. These curves
correspond to the same real part of 1(0), that is, p (0)=0, but five diffzrent
valaes of the imaginary part: u,(0)=45.85/c (solid), 7.34/c (long-
dashed), 0.82/c (short-dashed), 0.46/c¢ (dotted), and 0.12/c (chain-
dotted).

of radius R, originating from latitude 8=, and initially di-
rected towards the south pole (#=1r). The central ray trajec-
tory is a great circle; the two sets of the fundamental solu-
tions for the ray tube width are

A(8)=cos(8—8,), B,(8)=—(1/cR)sin(8- 8y),

A,(8)=cR sin(8— 6),
and Eq. (29) reduces to
cRu(0)cot( 68— 64)— 1
cRu(0)+cot(d—86;) -

Substituting Eq. (35) into Eq. (33) and then numerically
evaluating the integral along the ray path gives the phase of
the complex ray tube width A(s). This is plotted in Fig. 1 for
five different initial values of w, but the same initial value of
1y, i.e., 1,(0)=0. These curves show that the phase is a
smooth function defined everywhere, even at caustics. As
(0 increases from 0.12/c 10 45.85/c, the phase deforms
continuously from a smooth staircase function into a
straight-line function and then into another staircase func-
tion. In all these cases, however, the change in phase, when
the ray travels on the sphere for a half-turn, is approximately
7, so that the phase of the amplitude P,(s) has a change of
—mf2 according to Eq. (34). In this way the Gaussian beam
solution retains all the physical properties of the pure ray
solution while smoothing out the discontinuities and singu-
larities.

B,(8)=cos( 8- 6),

cRu(s)= (35)

C. Synthesis of the surface field along a curve

The only undetermined parameter in the Gaussian beam
solution (25) is the factor 7y, which results from the decom-
position of the continuous wave field into a finite number of
Gaussian beams along the coupling curve. In fact, the de-
composition and superposition of Gaussian beams are two
aspects of the same problem. We first consider the general

615  J. Acoust. Soc. Am., Vol. 98, No. 1, July 1995

FIG. 2. Decomposition of a continuous wave tield into a finite number of
Gaussian beams on an arbitracily curved surface.

issue of synthesizing the surface field along a given smooth
curve using Gaussian beam solutions. We will then consider
the superposition along the coupling curve as a special case
and derive the general expression for the factor 7. Similar
problems have been discussed in some detail by éerveni
et al.’ Nowack and Aki,® and White et al.'® All of these
previous treatments are limited to Euclidean space and most
of their results are not directly applicable to non-Euclidean
space, i.e., a curved surface.

In order to synthesize the wave field on a smooth curve
% arbitrarily given on the shell’s surface, as shown in Fig. 2,
we need only consider the contribution from each Gaussian
beam that intersects %" Beams that do not intersect the curve
and are also sufficiently far away from .’ will have little
effect on the field on it. We only consider contributions from
the first intersection, although the effects of subsequent ray
crossings of .% can be evaluated in a similar manner. Points
on the curve % may be expressed in the parametric form
X,=X,(?), where ¢ is the arc length with respect to a fixed
point on %. Suppose there are N ray intersection points
along .7, specified by {¢;, i=1,2,...,N}. The Gaussian
beams are labeled according to the indices of the intersection
points along %. The arc lengths of the central rays at the
points of intersection are denoted by {¢,, i=1,2,...,N}.

Now let us consider the local expansion of the curve .
in the central ray coordinate system of the ith beam,
{n; .0} a3},

x () =x(t) +x,(t) At + 3%,(1,) (A1), (36)

where Ar,=t—1;, X, and X, are the first and the second de-
rivative of the position vector on ¥ with respect to the arc
length ¢. Thus x,(z;) is the unit tangent vector and X,(¢;) is
the curvature vector of the curve ¥% at the ith intersecting
point. More explicitly,

k/(ti)zt, il(t"): - K(Ii)ni— Kgi)n;-‘-— Kgi)ag, (37)
where (", k%, and «{ are the components of the curvature
vector of £ with respect to the central ray coordinate frame

{n; ;0 ,a,}. The minus sign is required for consistency be-

(i)
3
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tween the definition of the curvature on %% and that of the
wavefront curvature p. Therefore the central ray coordinates
for a point at x,(¢), denoted here by (s, ,r;), follow from Eqs.
(36) and (37) as

si()~@;+t-mAz;~ 1 (Ar)?, (38a)

ri()~t-nrAt;— 3 (Ar)2. (38b)

These local expressions provide an approximation to the
curve % in the vicinity of the ith intersection point. More
precisely, At; < \,/R_L, where R; is the radius of the curva-
ture of the curve ., which is assumed to be much larger than
the wavelength, i.e., R;>\. When A¢; ~ \/EZ, the expan-
sions (38) are less accurate, but we can still use them because
the Gaussian amplitude is exponentially small in this range
and the error introduced by the approximation is almost neg-
ligible.

The total surface field at the point x,(t) is a sum of the
contributions from each Gaussian beam solution (25). That
is,

N
PO(D)= 2, 7iP(s)exp

. §; 1 2
iw 'E‘+E/.L(S,-)r,-) . (39

We now specialize this to the case when the curve .% coin-
cides with the coupling curve ¥. The surface field at every
point on ¥ is given by Eq. (26) with s=0, so that the left-
hand side of Eq. (39) is known. The only unknowns are the
factors 7y; with i=1,2,...,N, which can be determined by
collocation at specified points of ¥”. That is, we match the
known field to the superposition of Gaussian beams at each
coupling point, or equivalently, at the N points of intersec-
tion x,(t;), i=1,2,...,N, of the curve £ with the central
rays. Applying the collocation procedure to Eq. (39) yields a
system of linear algebraic equations for the unknowns y;,

N
Sim 1
Pm(tm)zzl YiPi(ti)exP[ia’ ‘;_"' 5 #(Si)’%m)lv

m=1,2,...,N, (40)

where s,,,=s;(t,,) and r;,,=rt,) are the coordinates of the
point x,(z,,) in the central ray coordinate system of the ith
beam, and s;=s;(¢;).

In order to be more explicit, we consider the case when
the coupling curve is also the initial wavefront, as on a
spherical shell. Then, ¢;=0, and to a first approximation the
amplitudes P;(¢;,) and initial wavefront curvatures are con-
stants. For simplicity, we consider the case where N beams
are equally spaced along the coupling curve with At as the
distance between two central rays of two neighboring beams,
so that z,,—t,=(m—i)At. It is then reasonable to assume
that the weights y; are also constant. An explicit expression
can be found using the identities X;-n=%X,-n*=0 and
x;-n'=1, and the simplified form of Egs. (38) for the ray
coordinates of the mth coupling point in the coordinate sys-
tem of the ith beam,

ri{ty)=tn—ti,  stn)=—(x12)(t,,— 1) (1)

Thus using the fact that the curve is closed and therefore
periodic in ¢, we have that

616  J. Acoust. Soc. Am., Vol. 98, No. 1, July 1995

Yi— ﬂAt\,‘kao/2’ﬂ', (42)
where
1N | -1
7,=[ S exp( — kao(mAt)2) \ /I“ﬂ At]
T m=1 2 2
(43)
and
ag=cpr(0)=i(cp(0)—xy). (44)

When the number of beams is sufficiently large, i.e., N>1,
the sum in Eq. (43) may be approximated by a Gaussian
integral, so that

-1
n= W Zexp 5 apt \f—z‘ t =1.

When N is not that large we have 77=1.

In general, the coupling curve is not the initial wave-
front, and one has to solve the system of linear equations
(40) for the unknown factors y;, i=1,2,...,N. Once these
are determined, the Gaussian beam solutions for the mem-
brane waves are completely determined by Eqgs. (25) and
(26).

I. CONSTRUCTION OF THE SCATTERED FIELD

We are concerned with evaluating the far-field scattering
amplitude, defined as

(ZIXIp“(x)

= lim
RminPO

] —seo

e“"‘f""), for a finite scatter,

(45)

where P is the amplitude of the incident wave. The total
scattered field p* may be approximately decomposed into a
specular field p¥O, generated by direct reflection from the
shell’s surface 5., and the leaky wave field p*"), which is the
radiation from the membrane waves traveling over 2,

p¥(x)~p* () +p*V(x). (46)

Alternatively, the total scattered response can be expressed
as a Helmbholtz integral,

p¥(x) = L[G(x,X)ag-va%X)

—p*(X)a3-VG(x,X)]1d3(X), 47
where G is the free-space Green’s function,
eikf|X#X|
G(x,X)=— m_—xl (48)

We will apply the Helmholtz integral to each part of p*
separately in the next subsections.

A. The specular field

The specular field has been studied extensively in the
last two decades. A general asymptotic expression can be
found in the paper by Kachalov,'® who derived specular and
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penumbral approximations which include both bending and
membrane effects. For simplicity, we neglect the bending
terms in Kachalov's solution.'® Under this approximation,
the pressure generated by the specular reflection of a plane
wave in the illuminated region of 3, reduces to!16

POX) =Py A(6™), Xyel. (49)

Here, n* is the direction of specular reflection, and .72(4) is
the acoustic reflection coefficient,

where Z; is defined in Eq. (4);. For a finite scatter, the far-
field contribution to the scattered response can be obtained
by substituting the specular field (49) into the Helmholtz
integral (47) and using the stationary phase approximation,
with the result'é

sc(Q)
P (X0) ki -nxg)

se(0) My
P (X) 2K”2|XI

51

Here, X, is the reflection point which satisfies
n%(Xo) -a3(Xo) = —n'"-a3(Xp). (52)

The specular contribution to the far-field scattering ampli-
tude then follows from Egs. (45) and (51) as
%( ein)

i €, (53)

_?sc(O)(x)= R

min
Equations (45) and (51) are valid as they stand for finite
Gaussian curvature, i.e., K#0, in the illuminated region.
The specular field becomes singular on regions with
K=0, as on a circular cylinder, where a uniform theory is
needed to account for the “bright lines’ produced. We will
not pursue this here, except to note that the analogous 2-D
expression for the specular field is given in Norris.' Beyond
the illuminated region, the expression of the specular field
becomes complicated, and detailed discussions can be found
in Kachalov.'®

B. The leaky wave field

The membrane wave field is a sum over Gaussian beam
solutions, and hence the linearity of the problem suggests
that we represent the leaky wave field in the same manner.
Thus the response for a given type of leaky wave (longitu-
dinal or shear) is

N
P00 =2 pr (), (54)
where
pi(x) =P Vekrty (55)

i3 the field radiated by the ith Gaussian beam. Substitution of
Eq. (54) into Eq. (47) yields

P (x)= fz[c;(x,X)a,-fo“”(X)

- p¥M(X)a3-VG(x,X)]d3(X). (56)

The pressure gradient may be approximated as
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VpiD(x) = ik (V ) P Veikrtr+ (W Pty etk
~ik (V ) PiVes?, (57)

for kR pin>1, while the gradient of the phase function de-
fines the radiation direction, i.e.,

n=Vg,. (58)

Then, using the continuity condition for the pressure on the

shell’s surface,
P?c(”eiqubf: yipi(s)eiwd)s(s.r), on 2, (59)

and substituting from Eqgs. (25), (26), (48), (57), (58), and
(59) into Eq. (56), we obtain

Pi(0)
F(0) Jo

+a F(s)exp(ifokdt)
A(s)"

PV (x)~iksy; s

—o

+x
xJ. G(;.(,X)arj-(nf+;‘x)e"w'2’2 dr. (60)

Here, X is the unit vector in the observation direction, x=x/
[, and the far-field condition |[x|>R,,;, has been used in the
approximation of Helmholtz integral.

1. Reduction to a line integral

The double integral in Eq. (60) can be simplified by
taking advantage of the localized nature of the Gaussian
beam solution in the vicinity of the central ray. Thus only the
field on or near the central ray gives an appreciable contri-
bution to the far field. Suppose the central ray trajectory is
represented by the position vector X, ; then a nearby point
off the ray may be written in a form similar to Eq. (23),

X(s,r)=X_(s) +rn*(s,r). (61)
Hence
[x—X(s,7)|~|x— X (s)| - %-n'r— 3%-n'r?, (62)

and consequently the 3-D Green’s function may be expanded
near the central ray as

G(x,X)=G(x,X, Jexp{— ik (X-n'r+ wenirh)}. (63)
Substitution of Eq. (63) into Eq. (60) yields

" . P0) (+= F(s)exp(ify kdr)
PO~k Fgy ), T @™

+a
X G(X,Xc)dsf 33'(nf+ ;()exp[ lkf( - ﬁ-nlr
Ly . ?|id 64
SXM I S cpr r. (64)

Assuming that the pre-exponential term is independent of r,
the r integral in Eq. (64) reduces to a simple Gaussian inte-
gral which can be evaluated exactly. The normal component
of ny can be approximated by phase matching between the
acoustic and surface waves along the central ray, yielding
ﬂf'ﬂsl,:():COS 00. (65)

Equation (64) therefore simplifies to
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‘ P, (0) [+= F(s)exp(ify kdt)
se( o
Pi U(X)’“lkﬂ’i F(0) fo (A(s))“2

X {cos By+X-az)

% (—tkgi20,)(ent)?
G(x,X,) =T e ds,
(66)
where
o =cpu—Xem,. 67)

The double integral over the surface has been reduced to a
line integral along the central ray, and as a result, the com-
putational time is substantially diminished. We note that the
final term in Eq. (66) has a negative real part in its exponent,
resulting in exponential decay as the observation direction
moves away from the plane spanned by the surface ray di-
rection n and the shell’s surface normal a;. This implies that
only those beams with [X-n'|<1 give an appreciable contri-
bution to the far field.

2. Further simplification of the line integral

Actual numerical tests show that the evaluation of the
line integral in Eq. (66) is still a time consurning task, espe-
cially at high frequencies. This difficulty can be overcome by
noting that the main contributions to the line integral should
come from those points where the phase of the integrand is
stationary. Consider the total phase of the integrand in the
form exp{i®(s)}, and suppose there are M distinct station-
ary phase points at s=s{", i=1,2,...,M, where

®’(s)=0. (68)
Applying the method of stationary phase to the line integral
in Eq. (66) gives

i M ; i s(j)
—ik;YiPH{0) & F(si)et®tr?

4mF(0) & (AGY)H?

><(00300+f(-a3) 2m |12 2 172
x—X.P)| \—ikoy] \—i®"(sD)] -

(69)

The problem is to determine the stationary phase points and
the values of @ and ®" at these points.

We focus on the neighborhood of points along the cen-
tral ray path where the following condition is satisfied:

at s=s,. (70)

P~

kaffi-n,

Note that the observation direction X is not necessarily con-
fined to the plane spanned by n and a;. Condition (70) is
therefore similar to but not exactly the same as the phase
matching condition of pure ray theory, for which X is con-
strained to this plane. Equation (70) may have a number of
roots along the central ray, at sc=s2i), i=1,2,3,...,M. The
Taylor expansion of the total phase in the integrand of Eq.
(66) near a typical point, s=s", may be expressed as
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D(s)~D(sP)+ D' (sV) (s — s

+ 50" (sV) (s —s)2. (71)
The position of the stationary point s =s{" follows from Egs.
(68) and (71) as

re ()
o 2 (72)
3 ¢ (I)"(Sil)) s
and the phase there is, from Eqs. (71) and (72),
A Lo @(sY)
®(si) =D (st") — 5= (73)

ZCDH(SE‘i)) .
The precise form of the total phase ®(s) follows from
Eq. (66) as

_|° kp oo 142
@(s)—fode-kf]x X, (5)] o x-nt)

s kf
A~ + — kX — ——(x-n*)?2
J;)kdt kf|x| kfx Xc(s) 20_1 (X n ) 3 (74)

where the latter approximation applies specifically to the far-
field |x|>|X.|. According to Eq. (66) nontrivial contributions
to the far field arise only from those rays along which
|x-n*|<1. The leading-order expansions along these rays of
the first and the second derivatives of ®(s) at s =s£i) can be
obtained by differentiating Eq. (74), yielding

. k
®' (s~ = =L (Rm)(%enl), (752)
1
@"(sWy~—kZm—(k;/ o)) (X-0)2, (75b)

where condition (70) has been used. The directions n and n*
are, by definition, geodesics, and so their curvature vectors
must be parallel to the normal to 3. A simple calculation
shows that
1 1 1

n’s=—}7”a3, n’l:—— a;, n'ls=— k—Ta3, (76)
where R, R , and Ry are defined by Eq. (6).

We note that Eq. (70), combined with [%-n*|<1, implies
that

X-a3~cos 6. (77)
Substituting from Eqs. (76) and (77) into Eq. (67) yields
o=cu sin §y+cos 8,/R, . (78)

Then, combining Eqs. (75)-(77), and differentiating Eq. (71)
twice at s=s{"), gives

. k
1N f Lok
d'(s.”) R0, cos fpx-m-,
. . k.o (79)
d"(s)~P"(sP)~ =L cos 6.
( ! R”O’] Q
The parameter ¢ is defined as
g=cp sin 8+ KRy cos g, (80)

and the identity (7) has been used.

We are now in a position to calculate the stationary
phase contribution to the line integral (66). First, the total
phase at the stationary point s =5, given by Eq. (73), fol-
lows from Eq. (79) as
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, S0 R ok
D(sf")~ JO("kdt+kf|x[ —kx-X (s~ Zfr (x-n")2.
(81)

Substitution of Eq. (81) into the stationary phase approxima-
tion of (69) gives

M

P(0) F(s{) RO
sl x)ms y. — = ex f € kdt |
P 0= F(0) ;Zl (A(sV)12 P! 0 J

eik,{lxl—}-xt(.\:_”)} o ik i2atent)?

X . . 82
X GP) VoltReos iy
We note that, from Eq. (80),
cp
- = + PR
R“ cos 00 K R" tan 00, (83)

which turns out to be the Gaussian curvature of the radiated
wavefront at the launching point. A detailed geometrical in-
terpretation for Eq. (83) can be found in the paper of Yang."
Let p(lo’ and p(20) be the two principal radii of curvature of the
radiated wavefront at the launching point; then Eq. (82) may
be rewritten in a more concise form,

M () :
')’iPl'(SI ) J‘SU)
sc(1} (0) (01172 T
(X)) = = exp| i kdt
pl ( ) le (pl p2 ) |X“XC(S§"))| p 0

X etkl¥ % Xc(s(cj))}e ~likp(20)(n') (84)

P,(s\), given by Eq. (26), is the amplitude of the pressure
al the stationary point, s=s{, on the central ray of the ith
Gaussian beam.

The contribution to the far-field scattering amplitude
from each beam now fallows from Eqgs. (45) and (84) as

M
2 . i
Fi= 2 (P(IO)P(QO))llz')’iPi(Sfj))eXp ifs" kdt
RuinPo j51 0
X ¢~ kAR - (k2 Genty?, (85)

It is interesting and useful to compare this approxima-
tion with the predictions of “pure ray theory” for the radi-
ated far-field response. The latter involves only those surface
rays whose directions lie exactly in the plane spanned by X
and a3, and only these radiate the leaky wave field to the
observation point. In contrast, the Gaussian beam solution
(84) shows that virtually every beam contributes to the field
at the observation point, each weighted by a Gaussian profile
from the final term in Eq. (84). The far-field contributions
from those beams with X-n*=0 (84) reduce to the result of
the pure ray theory."'? However, the probability of an arbi-
trary beam satisfying this two-point ray tracing constraint is
zero, in general.

Finally, the total leaky wave field can now be calculated
from the sum of each Gaussian beam solution using Eqgs.
(54) and (84). Tt is clear that the solution to the leaky wave
field is uniformly valid for all observation directions.

619  J. Acoust. Soc. Am., Vol. 98, No. 1, July 1995

ill. NUMERICAL IMPLEMENTATION AND TEST
A. The basic ray method

The Gaussian beam methodology outlined above has
been integrated into an efficient numerical scheme we devel-
oped recently.m The scheme is based on pure ray and wave-
front theory, allowing us to trace rays on arbitrarily curved
shells and to determine the associated ray amplitudes. The
general procedure can be summarized briefly as follows. The
first step is to divide the shell surface into a number of small
quadrilateral patches. The local geometry of each path is
approximated by the parametric representation

ptl pt1
x’(‘N)z 21 21 S’(ﬂ)(él)pﬂ—i(gz)pﬂ i

i=1 j=

o<¢', £=1, (86)
where xﬁN Y k=1,2,3, are the three covariant components of
the position vector under the fixed global Cartesian coordi-
nate systerm, and the superscript N denotes the patch number.
The order of the polynomial is specified by the integer p,
which we take for convenience as p=3, so that Eq. (86)
involves bicubic spline functions. The two parameters £ and
§2 are treated as the local curvilinear coordinates, from which
local curvilinear coordinate frames can be defined within
each patch. The surface metric and curvature tensors can
then be obtained from Eq. (86) by differentiation. Finally, the
system of ray equations (10) and (12) are solved numerically
using the fourth-order Runge—Kutta method. '

The following subsections discuss how the Gaussian
beam method can be integrated into this existing ray-based
scheme, and describes the construction of the scattered field
from ray tracing.

B. Constructing ray trajectories and ray tube widths

The ray tracing scheme outlined above can be used to
obtain the central ray trajectories and the ray tube widths for
a given shell.'” These quantities are independent of fre-
quency as well as the observation directions, and there is no
need to repeal the computation for every frequency or for
different observation directions. [n the present scheme we
first store the ray results in a data file for subsequent use in
computing the scattered field at all frequencies. Obviously,
one can only store the coordinates and ray tube widths for a
finite number of points along a ray path. The stationary point,
however, may not be one of these points. We therefore need
to approximate intermediate values between two adjacent
points using appropriate interpolation functions. Here, we
use cubic spline functions for the interpolation.

Let i, and i, denote the numbers of two adjacent nodal
points along a ray and assume, for simplicity, that they lie
within the same patch. The intermediate values of the local
coordinates between i, and i, may then be expressed as

0= (1) g0+ Fo(1)§0+ Fy(1) €0

+E(NEP”, (87)

where
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t=(s—slaly/1,,

Fi(t)=23-3¢%+1,

l,‘-——'S(ib)—S(iﬂ)’
Fy(t)=F,(1—1)=—-283+3¢,

Fi(t)=12=20241, Fy(t)=F3(1-t)=—1%.

It follows from the ray equations (10) that
f:“)":l,-n(ia)", ff:b)“=l,n('b)“’, (88)
and so Eq. (87) becomes
£0= F\(1) €150+ Fa()£0*+ F3(1) o)
+F4(1)inp, 89

Differentiating this equation with respect to arc length yields
the intermediate values of the components of the tangent
vector along the ray,

n®=F (1) 41+ Fy() €1+ F3(1)nlo
MOl (90)

The ray tube width can also be interpolated in a form similar
to Eq. (89) by using Eqgs. (12):

A(s)=F()AYD+ F,(1)AU) + F3(1)1,c BY
+Fy(1)1,cBY). 91)

In the present numerical scheme we store the data for A (s)
and A,(s) instead of A(s), but the expression in (91) re-
mains unaltered.

C. Finding the stationary phase points

The positions of the stationary points s}i) along a central
ray are defined by Eq. (72), which in turn depend on the
roots of Eq. (70) or, equivalently,

X-n=sin 8. 92)

Although the roots to this equation are easy to find, in prin-
ciple, numerical experience shows that some roots can be
missed due to numerical errors in the ray trajectory. This is
not a major problem, and can always be avoided with suffi-
ciently close gridding. In practice, we employ an alternative
strategy for finding these roots, which we describe next. We
first note that the same difficulty does not occur in solving
Eq. (3) for the coupling points, even when a less accurate
approximation of the shell’s surface is employed. The expla-
nation is that the normal vector a; is defined continuously
over the surface, and the roots of Eq. (3) form a continuous
curve, whereas the ray direction n is defined along a curve,
and as a result the roots of Eq. (92) are isolated points. Con-
ceivably, numerical errors may shift a root from its exact
position. Although such a shift only slightly distorts the cou-
pling curve, it could move a root of (92) away from the ray
and thus result in the root being missed. Enlightened by this
observation, we rephrase the condition (92) into a form simi-
lar to the coupling condition [see Eq. (2)],

X-a;=cos 6,. 93)
The angle 4, between the directions of X and a; at the point
s=s, is related to the critical angle by
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cos 8,=+1—(x-n)>—(x-n' )%= Jcos? ,— (x-n*)?,
(94)
with the restriction |x-n*|<cos 6,. The procedure is there-
fore to find roots of

X-a3=cos fyv1—(X-n")? sec? 6, (95)

along those parts of the surface ray satisfying the simulta-
neous constraints

|%-n'[<cos 6, and X-n>0. (96)

By this means we can obtain all the roots s¢, i=1,2,3,..., in
spite of small perturbations to the surface ray path induced
by numerical errors.

D. Numerical test on a sphere

We now describe a numerical test of the general method
for computing the far-field scattering from arbitrary, non-
separable shells. The test case is the simplest geometry—a
spherical shell of radius R=1, for which both exact and ray '
asymptotic solutions are available.! We treat the sphere as an
arbitrary surface, without taking any advantage of its spheri-
cal shape. In other words, the procedure used here for the
sphere is exactly the same as for an arbitrarily curved shell.
The shell’s surface is first meshed into 384 quadrilateral
patches. The scheme developed and described in Yang
et al.'® is then used to determine the coupling curve, and to
trace N=36 central rays that are imitially spaced at equal
intervals along the coupling curve. Each surface ray is fol-
lowed for an arc length of 125 and the ray trajectories and
the ray tube widths are stored. The ray data is subsequently
used to reconstruct the ray paths in parametric form, and to
determine the positions of the stationary points following the
procedures described in the two previous subsections. The
final solution for the scattered field can be computed from
Eq. (82).

The initial complex wavefront curvature (0)
= p1(0)+ip5(0) is an arbitrary parameter that needs to be
prescribed. In principle, 1,(0) could be any real number, and
1,(0), associated with the beamwidth, should be chosen in
such a way that the initial wave field along the coupling
curve is smooth as the result of the beam summation. Actual
numerical tests confirm that the choice of w,(0) hardly af-
fects the final solution. Similar tests, using the 36 surface
rays, also show that the initial wave field defined by the
beam superposition is smooth if 0.4/c<p,(0)<2.0/c.
Based on these findings, the calculations reported here use

#1(0)=0, 1,(0)=0.82/c. ©7)

The far-field scattering amplitude defined by Eq. (45) is
shown in Fig. 3 for six different directions, defined by the
angle & between the backscattering and observation direc-
tion. Three curves are plotted for each #: the Gaussian beam
superposition, the exact thin shell prediction, and the ray-
asymptotic solution of Norris and Rebinsky.'

Numerical results for backscattering are shown in Fig.
3(a), and are seen to agree well with the two reference solu-
tions over a wide frequency range. We notice some discrep-
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FIG. 3. The far-field scattering amplitude vs nondimensional fluid wave number at different observation directions. The solid curves. the dashed curves, and
the diamonds correspond to the exact solutions, the ray-based asymptotic solutions (Ref. 1), and the present results, respectively. (a) #=0°, (b) 8=15.82°, (c)

6=30°, (d) 6=60°, (¢) 6=175", (f) 6=90". :

ancies at the higher frequency resonances, which probably
result from the truncated arc length of each beam. Thus the
attenuation along a ray decreases as the frequency increases
because the imaginary part in the dispersion equation (3)
decreases. This suggests that we should trace rays for longer
distances in order to match the resonances adequately at high
frequencies. As partial confirmation we note that the ray so-
lution of Norris and Rebinsky' uses rays of infinite arc
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length, and matches well with the exact solution at the reso-
nances.

Comparisons for bistatic scattering are shown in Fig.
3(b)—(f). Note that the observation angle in Fig. 3(b) is
0=15.82°, the critical angle for longitudinal membrane
waves. In this case the launching point of one of the rays is
at a caustic, and the surface field at that point is singular
according to the pure ray theory (although the ray theory
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far-field prediction of Ref. 1 is not singular at this angle). In
the present formalism the surface amplitudes at caustics are
always finite, and no special treatment is necessary. In gen-
eral, the comparisons for various angles, in Figs. 3(b)-(f),
indicate that the beam superposition results match the pure
ray predictions of Ref. 1 very well. This is to be expected,
especially at higher frequencies where the superposition can
be shown to reproduce the ray theory exactly.'” There are
some discrepancies between the beam superposition and the
exact solution, and these discrepancies tend to propagate to
higher frequencies as the observation angle increases. We
believe that these discrepancies are due to the simplified ap-
proximation used for the specular field, which is not uni-
formly valid at all observation directions.

We note that the pure ray theory prediction of Ref. 1 for
bistatic scattering is also not uniformly valid in all directions.
Specifically, backscatter from a sphere requires special treat-
ment because the number of rays reaching the observer goes
from 2 to @ as 8—0. One can, of course, derive uniform
theories to account for the transition, but they require prior
knowledge of the ray picture. In contrast, the Gaussian beam
method treats backscattering exactly the same as bistatic
scattering, and consequently the expression for the field ra-
diated from the membrane waves is uniformly valid for all
observation directions.

We find that the beam solution for backscattering (6=0)
is less sensitive to the number of beams used and to numeri-
cal errors in the ray paths and the ray tube widths. This is
because, in backscatter, each beam makes an equal contribu-
tion to the far field and the errors are averaged out in the
Gaussian beam summation. For bistatic scattering, however,
only those beams near the plane spanned by the incident and
observation direction give appreciable contributions to the
far field. In that case the accuracy of the beam method is
more sensitive to the accuracy of individual beams and the
density of the beams, or the total number of beams used.

IV. CONCLUSION

The Gaussian beam summation method is normally used
to model wave propagation through nonuniform media. In
this paper, we have developed the first application of the
method to scattering from a wave bearing object. The beams
are used to model the on-surface dynamics on fluid-loaded
smooth elastic shells of arbitrary shape, and also provide a
natural means to calculate the scattered acoustic far field. At
the same time, we have incorporated the Gaussian beam
method into the ray-based scheme developed in Ref. 10. The
outcome is a hybridized scheme, in which the coupling of the
incident wave to the membrane waves and the subsequent
wave propagation on the shell’s surface are described by
pure ray theory, whereas the radiation from the surface mem-
brane waves is determined by the Gaussian beam method.

The scheme outlined here provides a new procedure for
numerically solving the scattering problem for submerged
elastic shells. It is closely related to pure ray theory, but has
demonstrated several advantages over the ray method. First,
the surface field remains finite even at caustics, which is a
common feature of the Gaussian beam method. Second, the
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method removes the need to perform two-point ray tracing, a
task which is equivalent to finding the rays that connect the
launching point and the coupling point. Finally, the beam
summation automatically provides a uniform result at atl ob-
servation directions. There is no need to distinguish certain
observation directions, as is required using pure ray theory.

The numerical comparison tests on the sphere show that
the accuracy of the present scheme depends on the number of
the Gaussian beams used, as well as their initial beamwidth.
These two parameters are chosen in such a way that the
beam summation can accurately reproduce the continuous
wave field along the coupling curve. For instance, one may
set 7=1 in Eq. (43) and then select the values of the param-
eters N and ,(0) accordingly. In general, the numerical re-
sult depends less on z£,(0) as N is increased. In summary, the
present scheme not only provides a robust numerical tool for
the study of the acoustic scattering by arbitrarily curved,
smooth elastic shells, but it also allows us to extract the
physical mechanisms from numerical results.
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