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A new method is described for computing the acoustic far field scattered by a submerged smooth 
elastic thin shell. The total field is split into a sum of specular and leaky wave contributions. The 
latter arise from weakly radiating membrane waves that propagate globally over the structure, and 
are the focus of this work. The scattered leaky wave field is expressed, via a surface Helmholtz 
integral, as the sum of integrals along a finite number of Gaussian beams. The integral on each beam 
is then approximated as a line integral along the central ray of the beam. Finally, the far-field 
contribution from each line integral is reduced to a sum of stationary phase contributions. The 
derived asymptotic expression for the leaky wave field is uniformly valid for all observation 
directions. Difficulties associated with caustics and two-point ray tracing do not arise in the present 
formalism. A test of the method for a spherical shell shows that the numerical results agree well with 
the exact solution and the pure ray solution for kfa>10, where kf is the fluid wave 
number. ̧  1995 Acoustical Society of America. 

PACS numbers: 43.20.Dk, 43.20.Fn, 43.30.Gv. 43.40.Rj 

INTRODUCTION 

Acoustic scattering problems for fluid-loaded elastic 
shells are usually formulated in terms of surface Helmholtz 
integrals. The direct evaluation of these surface integral:½ at 
high frequencies is a formidable task because the required 
computational time increases substantially with frequency. In 
contrast, ray-based approaches are best suited to the higher 
frequencies, and provide the natural means for dealing with 
this regime. From the ray point of view, the scattered fieM at 
a distant observation point is dominated by the surface field 
at a few distinct points on the shell, the so-called launching 
points. Apart from the point of specular reflection, which is 
relatively easy to predict and handle, the dominant mecha- 
nism for radiation from the launch points is by supersonic 
"membrane" wave motion. Therefore in order to obtain the 

associated membrane wave scattered field, one needs to de- 
termine (i) the field at the coupling points where the incident 
rays couple to the membrane rays on the shell's surface, (ii) 
the ray paths from the coupling points to the launching 
points, and (iii) the field at the launching points. This inter- 
pretation has lead to enormous insight into the mechanism of 
wave scattering and radiating from submerged elastic shells, 
and has resulted in considerable simplification. ] However, 
the determination of the field at the launching points often 
tums out to be nontrivial because it usually involves two- 
point ray tracing. In a traditional ray theory the surface wave 
field is defined only along the rays, and the field at a launch- 
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ing point depends on those rays that pass exactly through it. 
Searching for these rays from all possible rays by a two- 
point ray tracing method could be computationally costly, 
and may be unrealistic, except for simple shells such as 
spheres and cylinders where the ray paths are well known. 

Some modifications to the "traditional" ray method 
seem to be necessary in order to use it for constructing the 
field scattered by an arbitrarily curved shell. A natural ap- 
proach is the paraxial approximation of the wave field in the 
vicinity of a ray, which is often called the Gaussian beam 
method. A Gaussian beam may be considered as a bundle of 
rays in complex space in the neighborhood of the central ray, 
which is in real space. The field along the beam is concen- 
trated in the vicinity of its central ray, and the amplitude on 
the cross section of the beam has a Gaussian profile. The 
trajectory of the beam is described by its central ray path, 
which can be determined by the pure ray method. In com- 
parison with the pure ray method, there are two major ad- 
vantages to be gained by using the Gaussian beam method 
for the propagation and radiation of waves on a curved shell. 
First, a Gaussian beam is always finite at caustics so that the 
surface field synthesized from all the beams is well defined at 
every point on the surface, and there is no need to determine 
caustic locations. Second, the Gaussian beam method is 

more efficient than the ray method because two-point ray 
tracing is not required. 

The Gaussian beam method has had wide use in wave 

propagation and scattering problems. The earlier applications 
can be traced back to the papers of Keller and Streifer, • 
Deschamps, • and Felsen. • The Gaussian beam technique has 
been extensively exploited in geophysics in the last decade 
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by •erven• et aL,5 Nowack and Aki, 6 and Norris et al. 7 Most 
applications of this technique, however, are limited to three- 
dimensional Euclidean space. Due to the geometrical com- 
plexity, the Gaussian beam method to date has not been di- 
rectly applied to the construction of the acoustic field 
scattered by an arbitrarily curved shell. 

The objective of this paper is to determine the acoustic 
field scattered by a submerged shell of arbitrary smooth 
shape through the use of the Gaussian beam method. The 
principal assumption employed is that elastic wavelengths 
are much greater than the shell thickness but much smaller 
than the principal radii of curvature defined over the shell's 
surface. Consequently, thin shell theory and high-frequency 
asymptotics are directly applicable. The paper is organized as 
follows. Membrane my theory for thin elastic shells, devel- 
oped by Norris and Rebinsky? '9 is briefly reviewed in Sec. 
I. Gaussian beams are introduced and some of their basic 

properties on a curved surface are discussed in detail. In Sec. 
II, the surface integral for the scattered field is approximated 
by a sum of Gaussian beams, and an explicit asymptotic 
expression for the scattered field is derived. A numerical 
scheme is described in Sec. III which combines the Gaussian 

beam method with the pure ray method. The scheme is ex- 
plicitly tested against the available analytical solutions for a 
submerged spherical shell. Numerical results for the acoustic 
far field are discussed in Sec. IlL 

I. RAYS AND BEAMS ON A CURVED SURFACE 

The essence of the Gaussian beam summation method is 

to approximate the wave field by a number of Gaussian 
beams, each of which is exponentially localized in the vicin- 
ity of its central ray. The central rays form the framework 
upon which the Gaussian beams are patched and the trajec- 
tories of the central rays are determined by the pure ray 
method. The foundation of the Gaussian beam approach is 
therefore pure and simple ray theory. We will first summarize 
the pertinent aspects of ray theory for thin elastic shells, and 
then discuss solutions in the form of Gaussian beams. 

A. Review of membrane ray theory 

The geometry of a smooth sbell's surface of arbitrary 
shape, E, can be described by two families of curvilinear 
coordinate curves • and •2 on E. The position vector at a 
point (•1,•2) is written as 

(1) 

Consider a plane acoustic wave incident upon •; in the direc- 
tion n in. The wave is not only reflected in a normal or 
"specular" manner by the shell's surface but may also excite 
shell membrane waves at points where the phase of the inci- 
dent wave matches to that of the membrane waves. The term 

"membrane wave" is used here to denote supersonic waves 
with displacements predominantly in the surface. They have 
been discussed in detail by, for example, Norris and 
Rebinsky? The polarization of the waves leads to weak 
coupling with the fluid and hence the membrane waves are 
only weakly radiating, or leaky. To a first approximation, the 
phase matching condition is 

nin.a3= --cos 00, sin 00= klkf, (2) 
where a 3 is the unit outward normal to E, 00 is the critical 
angle for the membrane wave, k/is the acoustic wave num- 
ber, and k the membrane wave number. The roots of Eq. (2) l 
define the starting points, or the coupling points, for all the 
excited membrane rays. An efficient numerical scheme was 
recently developed by Yang et al. m to determine the cou- 
pling points on arbitrarily curved shells. The set of coupling 
points for each type of membrane wave form a closed curve 
on a smooth shell, viz., the coupling curve. 

The membrane wave number k is a root of the disper- 
sion relation for the submerged shell. The relation was first 
derived by Pierce, H and was further simplified by Norris and 
Rebinsky s'ø in the limit kfRmin•l, where Rmi n is the smallest 
radius of the curvature on the shelfs surface. The asymptotic 
approximation to the root may be written as • 

to 2 Z m 1 
- (3) 

where c is the phase speed associated with straight-crested 
waves on a fiat plate: c=c• for longitudinal waves, or c=c• 
for transverse waves. The impedances in Eq. (3) are 

Z,,,=-itop•h, Z•=Zf(0o), Zi(O)=picfsecO, 
(4) 

where h is the thickness, and p• and pf are the densities of 
the shell and the surrounding fluid. The parameter R o is the 
dynamic effective local radius of curvature, defined by 

1__ = [ 11Rii+ vlR•_, longitudinal, (5) 
Ro [2/Rr, transverse, 

with 

1 1 

(6) 
I 1 

R r 2 (n•dat•nX•+nt•d•t•nt•)' 
The unit vectors n and n J- lie in E, parallel and perpendicular 
to the surface ray direction, respectively. The surface curva- 
ture tensor is d•t• and K is the Gaussian curvature, 

I 1 
•:- -- (7) 

RiiR •_ R2r ' 
Note that the final term in Eq. (3) is complex, and its imagi- 
nary part accounts for the attenuation of the membrane 
waves through radiation loss. Although k/R•>> 1 is assumed 
and consequently the leading-order term in Eq. (3) is much 
larger than the others, one must include the fluid-loading 
term in the dispersion equation even in the first-order ap- 
proximation; otherwise there is no attenuation. Our approach 
therefore is to retain the fluid-loading term in Eq. (3) when 
we evaluate the global phase variation (and resulting radia- 
tion loss) as the ray propagates over the shell, but ignore the 
fluid-loading term in the computations of the coupling curve, 
the ray trajectories, and the ray tube widths. 
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The leading-order approximation to the ray trajectories 
therefore follow from Eq. (3) as the characteristic curves of 
the eikonal equation 

k 2--= to2/c 2, or V •s' •' •6s = ! Ic 2, (8) 

where k is the magnitude of the surface wave-number vector, 

k = •oV 4•s = kn, (9) 

and •s(x) is the timelike phase function on X. Furthermore, 
on a shell of homogeneous material and thickness, the mem- 
brane wave speed is approximately constant over the entire 
surface Z. Thus to leading order the ra•s describe geodesic 
paths on X. Let s be arc length along a ray; then (•',•2) 
satisfy the well-known differential equations 9 

d • '• d n ø' 
ds =n•' ds F•t•n Y' (10) 

where F•y are the Christoffel symbols of the second kind. 12 
The ray trajectories are uniquely determined by solving these 
equations with initial conditions prescribed on the coupling 
curve 605:, 

sc•(0)=•5•1•, n(0)=csc Oo(nia--(ni"-a3)a3)l.,-. 
Ill) 

The ray tube width A(s) is a measure of the spreading 
between neighboring rays. The differential equations for A 
follow from Eq. (10) by taking variations with respect to a 
parameter r along the direction n I. The resulting equations, 
or the variational ray equations, are 9 

dA dB 

d•-=cB, c •s =-gA. (12) 
It has been shown by Norris 9 that the wavefront curvature on 
the shell's surface is the quotient of B(s) and A(s), 

Iz(s)--n-C•n•-•V•V •qSs=B(s)/A(s). (13) 
The value of A(0) is arbitrary, and may be set to unity with 
no loss in generality. The initial wavefront curvature is then 
B(0), which is derived by local phase matching between the 
incident and surface waves at the coupling point) In short, 

A(0)= 1, B(0)=/x(0)=c -• cot OoKRii[•. (14) 
One may directly solve Eqs. (12) using the initial con- 

dition (14). Alternatively, the general solution can be written 
as a linear combination of two independent solutions, 
(A l ,Bl) and (A2,B2), to Eqs. (12): 

A (s) =A,(s) + (0)A 

= + 

with initial conditions 

A•(0)=a2(0)=l, Bi(0)=A2(0)=0. 06) 

Using Eqs. (12) and the initial conditions (14), one can show 
that the Wronskian, or Lagrange ray invariant, 13 is constant 
and equal to unity along the entire ray trajectory; that is, 

Ai(s)B2(s)-A2(s)Bi(s)= 1. (17) 

The membrane wave displacement amplitude V(s) sat- 
isfies the simplified transport equation • 

d 

•ss ( vxfP•'dtcA )=O' (18) 
Assuming uniform material properties, we then have 

[ A(O)I ,/2 
v(,)=v(0)[A-jZ) ' (19) 

where the initial amplitude is • 

-Po (i2rrkRl tan 00) I/2 
V(O) = -- . (20) 

i•okR o Zm+Zs 

and P0 is the amplitude of the incident acoustic wave. The 
surface pressure generated by a membrane ray is directly 
related to the normal surface velocity via the local radiation 
impedance Z s , 

(A(0)) 112 p•mem}(s)=-iøaZsF(s)V(O) A• eiø•'b" (21) 
The amplitude factor F(s) is defined as the ratio of the nor- 
mal displacement to the in-surface displacement for the 
membrane wave, and was derived by Norris and Rebinsky • 
as 

i 

F(s)= kRo(s) (Z,,, + Z,)' (22) 
According to the Sturm separation theorem (see page 223 of 
lncel4), if the two fundamental solutions Ai(s) and A2(sl 
have zeros along the ray, the zeros of A • must alternate with 
those of A2. This fact implies that the general solution A 
must also have zeros. Equations (19) and (21) imply that the 
surface fields become singular at the zeros of A. Thus the 
zeros of A are the caustics of the system. 

In summary, the leading-order ray and ray tube equa- 
tions are independent of frequency. We therefore only need 
to solve these equations once, and can then use the ray tra- 
jectories and tube widths at all frequencies. This is one of the 
greatest advantages over other numerical methods where 
computation must be repeated at each individual frequency. 
However, there are disadvantages as well. First, the surface 
field is singular at caustics. It has been illustrated recently by 
Yang et al. m that even on a smooth shell as simple as an 
ellipsoid the caustics can spread all over the surface. Hence 
we must deal with an infinite number of caustics on an arbi- 

trary shell in order to construct the surface field as well as the 
scattered field. Second, the membrane wave contribution to 

the scattered response in the fluid depends upon the surface 
field at well defined launching points on •. This requires the 
total contribution from all the rays passing through the 
launching point, but finding these rays usually involves two- 
point ray tracing. In other words, one must trace a suffi- 
ciently large number of the rays initiating from the coupling 
curve in order to find those rays which precisely pass 
through the launching point. The objective of this paper is to 
take full advantage of the pure ray method summarized 
above but eliminate its disadvantages through the use of the 
Gaussian beam method. 
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B. Gaussian beams on a curved surface 

A Gaussian beam may be considered as a paraxial ap- 
proximation of the wave field in the vicinity of a central ray. 
Since the central ray is confined to real space, its trajectory, 
denoted by position vector Xc(S ), can be determined by solv- 
ing the real ray equations (10). For convenience, we intro- 
duce a curvilinear coordinate system composed of the central 
ray of the beam and the geodesic perpendicular to the central 
ray. The central ray propagates in the direction n=dxc/ds, 
and the perpendicular geodesic may be obtained by solving 
the geodesic equations •2 with initial direction 
n•--a3(s,0)Xn(s,0). Let r be the arc length along this geo- 
desic; then a point on E near the central ray may be ex- 
pressed as 

x(s,r) = Xc(S ) + rltt(s,r). (23) 

Consider a real ray initiating at the ith coupling point. 
The surface field along the central ray varies according to 
Eqs. (19) and (21). In order to extend the field away from the 
central ray we first expand the phase function in a paraxial 
manner, ø 

' dt 1 4•s(s,r) = c-• + • It(s)r2 (24) 
[where the wavefront curvature/x(s) is defined by (13)], and 
then express the field in the form of a Gaussian beam: 

p•mem)(s,r) = TiPi(s)e i•ø•s(s'O. (25) 
Here and in subsequent equations the suffix i denotes the ith 
ray or beam. The pressure Pi(s) follows from Eqs. (19) and 
(21) as 

F(s) /a(0)/112 P,(s) = P,(O) F--• \ A•-J•! (26) 
Note that Eq. (25) is the same as Eq. (21) except for the 
additional factor Yi, which is introduced to take into account 
the effect of replacing an infinite set of the surface rays by a 
finite number of Gaussian beams. A general expression for ¾i 
is given in the next subsection. 

As noted above, the surface field is singular at the zeros 
of A(s). The only way to prevent the ray tube width from 
vanishing is to analytically extend the initial real wavefront 
curvature into complex space. That is, instead of (14)2, we 
take 

It(O) = Itl (0) + iit2(O), (27) 

where It](O) and/ta(O ) are both real with Im pa(O)>O. The 
ray tube width and its first derivative then follow from (15) 
and (27) as 

A(s)=[A](s)+itl(O)A2(s)]+iit2(O)A2(s), (28a) 

B($) = [Bi($ ) + ]-•l (0)B2(s)] + il-*2!O)B2(s) ß (28b) 
Since A](s) and A2(s ) cannot vanish at the same point, the 
magnitudes of the parameters A(s) and B(s), and hence the 
surface field (25), must remain finite and nonzero at every 
point along the.beam. At the same time the surface wavefront 
curvature It becomes complex, and may be rewritten as 

[B 1($) + It 1(0)B2(s)] + iit2(O)B2(s ) 
It(s) = [A](s)+itl(O)A2(s)]+iit2(O)A2(s). (29) 

Its imaginary part follows from Eqs. (17) and (29) as 

Im/x(s) = [(a .(s) +/x] (0)A2(s)) 2 

+ (it2(0)A2(s))•] - 1 It2(0 ). (30) 

The choice It2(0)>0 implies that Im It(s)>0 for every arc 
length s, and hence the Gaussian beam preserves the charac- 
ter of the Gaussian profile as it travels over the shell's sur- 
face. Furthermore, the imaginary part of the complex curva- 
ture is related to the beam width, denoted by &(s): 

-m. 

The Gaussian beam solution is thus completely specified 
by the initial conditions for/.q(0) and It2(0) [assuming A(0) 
= 1 ]. The choice of these parameters is arbitrary, subject to 
the constraint that Im/a•(0)>0. In this paper we take It•(0) to 
be the real initial wavefront curvature given by Eq. (14), and 
choose a positive number for/a•(0) in such a way that the 
initial wave field as defined by the Gaussian beam summa- 
tion is smooth. 

Special care must be taken in evaluation of the beam 
amplitude Pi(s) from Eq. (26), because the square root of 
the complex ray tube width could be a multivalued function. 
In the case where A • (s) and A2(s) possess zeros along a ray, 
the complex number A(s) then corresponds to a curve wind- 
ing around the origin in the complex plane. As A(s) goes 
around the origin for one complete turn, its phase is changed 
by 2½r, resulting in a change of -½r in the phase of the 
amplitude Pi($). Thus determination of the phase of the 
complex ray tube width is essential to the application of the 
Gaussian beam method. It helps to express the ray tube width 
in the form 

A(s) = It(s)le'ø% (31) 

where, according to Eq. (28a), the amplitude is 

IA(s)l = x/(A I(S) q- It I(0)A2(s)) 2 + (it2(0)A 2(s)) 2 

and the phase is 

'(u) ½(s)- ½(0) =Im A--•- du. (32) 
The derivative of A(s) is related to B(s) by the variational 
ray equations (12)], which in turn is related to the wavefront 
curvature It. Also, Eq. (14) I implies that •0)=0, and hence 
by Eqs. (12) and (13) 

0(s)= jc(u)it2(u)au. (33) 
Since It2(s)>0, the phase •b(s) must increase smoothly and 
monotonically with arc length. The amplitude of the ith 
beam in Eq. (26) therefore becomes 

F(•) 

P,(s) = P,(0) F--• IA (s)l- 112e -1/2•s). (34) 
In order to illustrate the characteristic behavior of the 

phase of A (s), consider a Gaussian beam on a spherical shell 
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2. 3 

FIG. 1. The phase of complex ray tube widths as the function of the arc 
length along a ray traveling over the unit spherical shell. These curves 
correspond to the same real part of/.t(0), that is, p, (0)=0, but five different 
values of the imaginary part: p,2(0)=45.85/c (solidl, 7.34/c (long- 
dashed), 0.82/c (short-dashed), 0.46/c (dotted), and 0.12/c (chain- 
dotted). 

of radius R, originating from latitude 0= 00 and initially di- 
rected towards the soulh pole (0=vr). The central ray trajec- 
tory is a great circle; the two sets of the fundamental solu- 
lions for the ray tube width are 

A•(O)=cos(O-0o), Bl(O)=-(llcR)sin(O- 0o), 

A2(O)=cR sin(O- 00), B2(O)=cos(O- 00), 

and Eq. (29) reduces to 

cR/.t(0)cot( 0- 00) - 1 
cRlx(S) = cRtz(O) + cot(0- 00) ' (35) 

Substituting Eq. (35) into Eq. (33) and then numericldly 
evaluating the integral along the ray path gives the phase of 
the complex ray tube width A(s). This is plotted in Fig. 1 for 
five different initial values of tt 2 but the same initial value: of 
$q, i.e., /Zl(0)=0. These curves show that the phase is a 
smooth function defined everywhere, even at caustics. As 
/.ta(0) increases from 0.121c to 45.85/c, the phase deforms 
continuously from a smooth staircase function into a 
straight-line function and then into another staircase func- 
tion. In all these cases, however, the change in phase, when 
the ray travels on the sphere for a half-turn, is approximately 
,r, so that the phase of the amplitude Pi(s) has a change of 
-rr/2 according to Eq. (34). In this way the Gaussian beam 
solution retains all the physical properties of the pure lay 
solution while smoothing out the discontinuities and singu- 
larities. 

C. Synthesis of the surface field along a curve 

The only undetermined parameter in the Gaussian beam 
solution (25) is the factor y, which results from the decom- 
position of the continuous wave field into a finite number of 
Gaussian beams along the coupling curve. In fact, the de- 
composition and superposition of Gaussian beams are two 
aspects of the same problem. We first consider the general 

FIG. 2. Decomposition of a conlinuous wave field into a finite number of 
Gaussian beams on an arbitrarily curved surface. 

issue of synthesizing the surface field along a given smooth 
curve using Gaussian beam solutions. We will then consider 
the superposition along the coupling curve as a special case 
and derive the general expression for the factor y. Similar 
problems have been discussed in some detail by (2erven• 
et al., 5 Nowack and Aki, 6 and White et al. • All of these 
previous treatments are limited to Euclidean space and most 
of their results are not directly applicable to non-Euclidean 
space, i.e., a curved surface. 

In order to synthesize the wave field on a smooth curve 
• arbitrarily given on the shell's surface, as shown in Fig. 2, 
we need only consider the contribution from each Gaussian 
beam that intersects 54'•. Beams that do not intersect the curve 

and are also sufficiently far away from •' will have little 
effect on the field on it. We only consider contributions from 
the first intersection, although the effects of subsequent ray 
crossings of • can be evaluated in a similar manner. Points 
on the curve • may be expressed in the parametric form 
Xl=Xl(t), where t is the arc length with respect to a fixed 
point on •. Suppose there are N ray intersection points 
along /5ff, specified by {t i, i= 1,2 ..... N}. The Gaussian 
beams are labeled according to the indices of the intersection 
points along •. The arc lengths of the central rays at the 
points of intersection are denoted by {qo,, i = 1,2 ..... N}. 

Now let us consider the local expansion of the curve .• 
in the central ray coordinate system of the ith beam, 
{hi ,n]- ,a3}, 

X/(t) = Xl( ti) + •l( t i)Ati q- «•l( ti)( Ati) 2, (36) 

where Ati=t--ti, :•t and •t are the first and the second de- 
rivative of the position vector on • with respect to the arc 
length t. Thus •t(ti) is the unit tangent vector and 3•l(t •) is 
the curvature vector of the curve Z at the ith intersecting 
point. More explicitly, 

J•/(ti) = t, •l(ti) = -- K?n i-- (/)n 'l' K(i)a •2--i- 3 -•, (37) 

where •c[ i•, •c(2 i}, and K(• i) are the components of the curvature 
vector of Z with respect to the central ray coordinate tYame 
{ni,n•-,aa}. The minus sign is required for consistency be- 
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tween the definition of the curvature on • and that of the 

wavefront curvature It. Therefore the central ray coordinates 
for a point at xt(t), denoted here by (s i ,ri), follow from Eqs. 
(36) and (37) as 

si( t } • qoi + t.niA ti-- «•c?}( Ati) 2, (38a) 

ri(t)•t.niX Ati -- •{i)t ̂  , •2 3"2 •'-i• - (38b) 

These local expressions provide an approximation to the 
curve g in the vicinity of the ith intersection point. More 
precisely, At i <• •R•LL, where R L is the radius of the curva- 
ture of the curve •.55-; which is assumed to be much larger than 
the wavelength, i.e., Rr>>k. When At i • R•L , the expan- 
sions (38) are less accurate, but we can still use them because 
the Gaussian amplitude is exponentially small in this range 
and the error introduced by the approximation is almost neg- 
ligible. 

The total surface field at the point x/(t) is a sum of the 
contributions from each Gaussian beam solution (25). That 
is, 

P(xt(t))= • YiPi(si)exp to •+• It(si)r . (39) i-1 

We now specialize this to the case when the curve • coin- 
cides with the coupling curve •. The surface field at every 
point on ff is given by Eq. (26) with s=0, so that the left- 
hand side of Eq. (39) is known. The only unknowns are the 
factors % with i= 1,2,...,N, which can be determined by 
collocation at specified points of go. That is, we match the 
known field to the superposition of Gaussian beams at each 
coupling point, or equivalently, at the N points of intersec- 
tion Xl(ti), i= 1,2 ..... N, of the curve g• with the central 
rays. Applying the collocation procedure to Eq. (39) yields a 
system of linear algebraic equations for the unknowns Yi, 

ß s•, n I 2 
Pm(tm)=• TiPi(ti)exp to• •-+ • Ix(si)rim , i-I 

m = 1,2 ..... N, (40) 

where si• = si(t•) and rim = ri(t•) are the coordinates of the 
point Xl(tm) in the central ray coordinate system of the ith 
beam, and si=si(ti). 

In order to be more explicit, we consider the case when 
the coupling curve is also the initial wavefront, as on a 
spherical shell. Then, q0i = 0, and to a first approximation the 
amplitudes Pi(tim) and initial wavefront curvatures are con- 
stants. For simplicity, we consider the case where N beams 
are equally spaced along the coupling curve with At as the 
distance between two central rays of two neighboring beams, 
so that tm--ti=(m-i)At. It is then reasonable to assume 
that the weights Yi are also constant. An explicit expression 
can be found using the identities /q-n=•t-nr=O and 
it-n •-= 1, and the simplified form of Eqs. (38) for the ray 
coordinates of the ruth coupling point in the coordinate sys- 
tem of the ith beam, 

ri(tm)=tm--ti, si(tm)=--(Kl/2)(tm--ti) 2. (41) 

Thus using the fact that the curve is closed and therefore 
periodic in t, we have that 

¾i = rlAt •lkao/2 •r, 
where 

N I 2 

(42) 

-1 

(43) 

and 

.0 = CIt2(0 ) -- i(cIt I (0) -- ffl)' (44) 

When the number of beams is sufficiently large, i.e., N>> 1, 
the sum in Eq. (43) may be approximated by a Gaussian 
integral, so that 

{•f•exp(-l•kaot2), k•dt}-':l. 
When N is not that large we have r/• > 1. 

In general, the coupling curve is not the initial wave- 
front, and one has to solve the system of linear equations 
(40) for the unknown factors y•, i = 1,2 ..... N. Once these 
are determined, the Gaussian beam solutions for the mem- 

brane waves are completely determined by Eqs. (25) and 
(26). 

II. CONSTRUCTION OF THE SCA'I-rERED FIELD 

We are concerned with evaluating the far-field scattering 
amplitude, defined as 

/2lxlt'(x) .•= !im [ R---•-•-P• e , IxJ•\ rain 0 
for a finite scatter, 

(45) 

where Po is the amplitude of the incident wave. The total 
scattered field p•½ may be approximately decomposed into a 
specular field p•(0), generated by direct reflection from the 
shelfs surface E, and the leaky wave field p•:O), which is the 
radiation from the membrane waves traveling over E, 

p•(x) •p•:rø)(x) + p•:(ø(x). (46) 

Altematively, the total scattered response can be expressed 
as a Helmholtz integral, 

pSC(x) = f[G(x,X)a3-VpSC(X) 
-psc(x) a3-•G(x,X)]d•(X), (47) 

where G is the free-space Green's function, 

G(x,X) = - 4,rJx- XI' (48) 
We will apply the Helmholtz integral to each part of p• 
separately in the next subsections. 

A. The specular field 

The specular field has been studied extensively in the 
last two decades. A general asymptotic expression can be 
found in the paper by Kachaiov, •6 who derived specular and 
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penumbral approximations which include both bending and 
membrane effects. For simplicity, we neglect the bending 
terms in Kachalov's solution. 16 Under this approximation, 
the pressure generated by the specular reflection of a plane 
wave in the illuminated region of E reduces to 1'•6 

pO)(x0) = x0 e (49) 

Here, nsc is the direction of specular reflection, and .•(8) is 
the acoustic reflection coefficient, 

•;•,( O) = (Zm-- Zf( O) )[(Z m q-Z.t { 0)), (50) 

where Zf is defined in Eq. (4)3. For a finite scatter, the far- 
field contribution to the scattered response can be obtained 
by substituting the specular field (49) into the Helmholtz 
integral (47) and using the stationary phase approximation, 
with the result •6 

pSC(ø)(x)= 2K•/elx] eik] (Ixl-n•"x0). (51) 
Here, X o is the reflection point which satisfies 

n•(X 0 )-a 3 (X0) = - ni"' a3 ( X0 )- (52) 

The specular contribution to the far-field scattering ampli- 
tude then follows from Eqs. (45) and (51) as 

•,•( 0 in) 
ß •c(ø)(x) = e-i• n•'x0. (53) a mink 112 

Equations (45) and (50 are valid as they stand for finite 
Gaussian curvature, i.e., K4:0, in the illuminated region. 

The specular field becomes singular on regions with 
K=0, as on a circular cylinder, where a uniform theory is 
needed to account for the "bright lines" produced. We will 
not pursue this here, except to note that the analogous 2-D 
expression for the specular field is given in Norris. • Beyond 
the illuminated region, the expression of the specular field 
becomes complicated, and detailed discussions can be found 
in Kachalov? 6 

B. The lealo/wave field 

The membrane wave field is a sum over Gaussian beam 

solutions, and hence the linearity of the problem suggests 
that we represent the leaky wave field in the same manner. 
Thus the response for a given type of leaky wave (longitu- 
dinal or shear) is 

N 

PSC(l)(x) = E P•c(I)(x), (54) 
i-I 

where 

p/SCl I)(x ) = p•CO•eikœ• 1 (55) 
is the field radiated by the ith Gaussian beam. Substitution of 
Eq. (54) into Eq. (47) yields 

p•C½l)(X) = f•[G(x,X)a3.Vp•C(l)(x) 
-p•C(1)(X)a3.•G(x,X)]d•(X ). (56) 

The pressure gradient may be approximated as 
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Vp•c(l)(x) = ikf(V qSf) P•C(1) eik147-t- (V P•C(I))eik[&! 

• ikfiV •I)P• Oei*z•[' (57) 
for kfRmin•l, while the g•dient of the phase function de- 
fines the radiation diction, i.e., 

(58) 
•en, using the continuity condition for •e pressure on the 
shelfs surface, 

P•C(l)eik•I: YiPi(s)e i•ds'r), on •, (59) 
and substituting from Eqs. (25), (26), (48), (57), (58), and 
(59) into Eq. (56), we obt•n 

Pi(O) F(s)exp(if•kdt) 
P•CO)(x)•ikf% F• fff• (A(s)) •'• ds 

X G(x,X)a3.(nf+•)e i•z/2 dr. (60) 

Here, • is the unit vector in the obse•ation diction, •=• 
I•l, •a th• f•-ne•a condition ]xl•Rmm has been used in the 
approximation of Hel•oltz integral. 

1. R•luction to a line integral 

The double integral in Eq. (60) can be simplified by 
taking advantage of the localized nature of the Gaussian 
beam solution in the vicinity of the central ray. Thus only the 
field on or near the central ray gives an appreciable contri- 
bution to the far field. Suppose the central ray trajectory is 
represented by the position vector X•; then a nearby point 
off the ray may be written in a form similar to Eq. (23), 

X(s,r)= X•(s) + rnt(s,r). (61) 
Hence 

Ix--X(s,r)l•Ix--XAs)l--•.nXr -- '•.n•r ra, (62) 
and consequently the 3-D Green's function may be expanded 
near the central ray as 

G(x,X)=G(x,X•)exp{-ikl(•.nXr+ «•.n.•rZ)}. (63) 
Substitution of Eq. (63) into Eq. (60) yields 

Pi(O) F(s)exp(if•} kdt) 
P7{1)(X)•-'ikf•li F-• fl © (A(s)) uz 

x G(x,X,)ds I_•=al.(n/+ i)exp{ ik•(-•.n*r 
- l•.n.-I-rr2+ l•cflzr2)}dr. (64) 

Assuming that the pre-exponential term is independent of r, 
the r integral in Eq. (64) reduces to a simple Gaussian inte- 
gral which can be evaluated exactly. The normal component 

of n.r can be approximated by phase matching between the 
acoustic and surface waves along the central ray, yielding 

nf'a31 r=O = COS 00 . (65) 
Equation (64) therefore simplifies to 
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Pi(O) F(s)exp(if• kdt) 
P•c(l)(x)•ikfTi F'•-•- •o +• (A(s)) 1/2 

x (cos 00+•.a3) 

XG(x,Xc) • 2,r e(-ikœ/2a•)(•'n'): ds, - ikfo- 1 
(66) 

where 

o-i = cftc- •'n,Zr. (67) 
The double integral over the surface has been reduced to a 
line integral along the central ray, and as a result, the com- 
putational time is substantially diminished. We note that the 
final term in Eq. (66) has a negative real part in its exponent, 
resulting in exponential decay as the observation direction 
moves away from the plane spanned by the surface ray di- 
rection n and the shell's surface normal a3. This implies that 
only those beams with I •.nñl • 1 give an appreciable contri- 
bution to the far field. 

2. Further simplification of the line integral 

Actual numerical tests show that the evaluation of the 

line integral in Eq. (66) is still a time consuming task, espe- 
cially at high frequencies. This difficulty can be overcome by 
noting that the main contributions to the line integral should 
come from those points where the phase of the integrand is 
stationary. Consider the total phase of the integrand in the 
form exp{irI)(s)}, and suppose there are M distinct station- 
dry phase points at s= s?, i= 1,2 .... ,M, where 

(I)'(s?) = 0. (68) 

Applying the method of stationary phase to the line integral 
in Eq. (66) gives 

-- ikfyiPi(O ) • p•½(•)(x) • 4,rF(0) j=• (A(s?))) m 
(oo ( ( 

(69) 

The problem is to determine the stationary phase points and 
the values of (I) and •" at these points. 

We focus on the neighborhood of points along the cen- 
tral ray path where the following condition is satisfied: 

k=k/•-n, at s=s c. (70) 
Note that the observation direction • is not necessarily con- 
fined to the plane spanned by n and a3. Condition (70) is 
therefore similar to but not exactly the same as the phase 
matching condition of pure ray theory, for which • is con- 
strained to this plane. Equation (70) may have a number of 
roots along the central ray, at Sc=S?, i--1,2,3 .... ,M. The 
Taylor expansion of the total phase in the integrand of Eq. 
(66) near a typical point, s = s? ), may be expressed as 

•_. (i) , (i) _ (i) ep(s) (Sc (so)(s s,. ) 

.... -s?)) (71) + 2-u, [s c Its 

The position of the stationary point s = s? follows from Eqs. 
(68) and (71) as 

s? ) = (72) 

and the phase there is, from Eqs. (71) and (72), 
•,2, (i)] [Sc 

•(sSi)) = •(s?))- 2•"(s?)' (73) 
The precise fore of the total phase •(s) follows from 

Eq. (66) as 

fo • kf (•.n•) 2 ß (s)= 

0 • k/ (•'nZ)2, (74) 
where the latter approximation applies specifically to the far- 
field •x•lX•l. According to Eq. (66) nontrivial con•butions 
to the f• field •se only from •ose rays along which 
I•.n• 1. The leading-order expansions along •ese rays of 
the first and the second derivatives of •(s) at s = s? • can be 
obtained by differentiating Eq. (74), yielding 

•,(s?))• k/ (•.n•)(•.n•) (75a) 

where condition (70) has been used. •e directions n and n • 
•e, by definition, geodesics, and so their cumature vectors 
must be p•allel to the nodal to •. A simple c•culation 
shows that 

1 1 1 
n • - n • = (76) n,s- •3, ,r 83, •3, Rll R• '• Rr 

w•ere Rii, R&, and Rr •e defined by Eq. (6). 
We note that Eq. (70), combined with I•.n•l, implies 

that 

•.a3•cos 00. (77) 
Substituting from Eqs. (76) and (77) into Eq. (67) yields 

•c• sin 00+cos Oo/R•. (78) 
•en, combining Eqs. (75)-(77), and differentiating Eq. (71) 
twice at s = s?, gives 

ß 00.n 
•Tffl 

(79) 
• • COS 0 0 . 

Rll• 
•e p•ameter • is defined as 

a=c• sin Oo+KRii cos 00, (80) 
and the identity (7) has been used. 

We are now in a position to calculate the station• 
phase contribution to the line integral (66). First, the total 
phase at the station• point s = s? ), given by Eq. (73), fol- 
lows from Eq. (79) as 
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œs•il k• 

81) 

Substitution of Eq. (81) into the stationary phase approxima- 
tion of (69) gives 

Pi(O) • F(s? )) (Cs(J) • P•C(l){'x)'•' Ti r'--•.•:! (A($?)) 112 exp iJ• c kdt) 

x Ix-xe(s,%l I (82) 

We note that, from Eq. (80), 

o- 

cos 0-• -K+ • tan 0 o, (g3) 
which turns out to be the Gaussian curvature of the radiated 

wavefront at the launching point. A detailed geometrical in- 
terpretation for Eq. (83) can be found in the paper of Yang. 17 
Let p? and p? be the two principal radii of curvature of the 
radiated wavefront at the launching point; then Eq. (82) may 
be rewritten in a more concise form, 

(84) 

Pi(s?')), given by Eq. (26), is the amplitude of the pressure 
at the stationary point, s=s• •, on the central ray of the ith 
Gaussian beam. 

The contribution to the far-field scattering amplitude 
from each beam now follows from Eqs. (45) and (84) as 

ß •'i- Rm7.Po j_•i (p•0)p•0))ll2yiPi(s?))exp i "kdt 
X e - il•'Xc(s?))e - (ikf/2o-)Cx.n 1-)2 (85) 

It is interesting and useful to compare this approxima- 
tion with the predictions of "pure ray theory" for the radi- 
ated far-field response. The latter involves only those surface 
rays whose directions lie exactly in the plane spanned by :• 
and 83, and only these radiate the leaky wave field to the 
observation point. In contrast, the Gaussian beam solution 
(84) shows that virtually every beam conaibutes to the field 
at the observation point, each weighted by a Gaussian profile 
from the final term in Eq. (84). The far-field contributions 
from those beams with •.nJ-=0 (84) reduce to the result of 
the pure ray theory) '•? However, the probability of an arbi- 
trary beam satisfying this two-point ray tracing constraint is 
zero, in general. 

Finally, the total leaky wave field can now be calculated 
from the sum of each Gaussian beam solution using Eqs. 
(54) and (84). It is clear that the solution to the leaky wave 
field is uniformly valid for all observation directions. 

III. NUMERICAL IMPLEMENTATION AND TEST 

A. The basic ray method 

The Gaussian beam methodology oudined above has 
been integrated into an efficient numerical scheme we devel- 
oped recently. m The scheme is based on pure ray and wave- 
front theory, allowing us to trace rays on arbitrarily curved 
shells and to determine the associated ray amplitudes. The 
general procedure can be summarized briefly as follows. The 
first step is to divide the shell surface into a number of small 
quadrilateral patches. The local geometry of each path is 
approximated by the parametric representation 

p+l p+l 

5; "0• xs )v+ 

0•<•, •2•<1, (86) 

where x?, k= I, 2, 3, are the three covariant components of 
the position vector under the fixed global Cartesian coordi- 
nate system, and the superscript N denotes the patch number. 
The order of the polynomial is specified by the integer p, 
which we take for convenience as p=3, so that Eq. (86) 
involves bicubic spline functions. The two parameters • and 
•2 are treated as the local curvilinear coordinates, from which 
local curvilinear coordinate frames can be defined within 

each patch. The surface metric and curvature tensors can 
then be obtained from Eq. (86) by differentiation. Finally, the 
system of ray equations (10) and (12) are solved numerically 
using the fourth-order Runge-Kutta method.•8 

The following subsections discuss how the Gaussian 
beam method can be integrated into this existing ray-based 
scheme, and describes the construction of the scattered field 
from ray tracing. 

B. Constructing ray trajectories and ray tube widths 

The ray tracing scheme outlined above can be used to 
obtain the central ray trajectories and the ray tube widths for 
a given sbell. m These quantities are independent of fre- 
quency as well as the observation directions, and there is no 
need to repeat the computation for every frequency or for 
different observation directions. [n the present scheme we 
first store the ray results in a data file for subsequent use in 
computing the scattered field at all frequencies. Obviously, 
one can only store the coordinates and ray tube widths for a 
finite number of points along a ray path. The stationary point, 
however, may not be one of these points. We therefore need 
to approximate intermediate values between two adjacent 
points using appropriate interpolation functions. Here, we 
use cubic spline functions for the interpolation. 

Let i a and it, denote the numbers of two adjacent nodal 
points along a ray and assume, tbr simplicity, that they lie 
within the same patch. The intermediate values of the local 
coordinates between i a and it, may then be expressed as 

•ti)a= F• (t)•{'•)a + F2(t)•{in}a-k F3(t)•!• 

+ F4(t) s•(.• •)" , (87) 
where 
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t = (s -- S(ia))/li, li = s Obl- s ½ial, 

Fl(t)=2t3-3t2+l, F2(t)=Fl(1-t)=-2t3+3t 2, 

F3(t)=t3-2t2+t, F4(t)=F3(I -t)=t3-t 2. 

It follows from the ray equations (10) that 

•l?)a=liFl (ia)at, •l?•=l,n "•'•, (88) 
and so Eq. (87) becomes 

•(i)•= F1 ( t)•(i•)• + F2( t)•(ib)• + F3( t)lin•a)• 

+ F4(t)lin •ib•. (89) 

Differentiating this equation with respect to are length yields 
the intermediate values of the components of the tangent 
vector along the ray, 

n•= F'l( t)•(i•)a/li + F•(t)•(ib•/li+ F•( t)n•i• )a 

+ F•(t)n (ib)a. (90) 

The ray tube width can also be interpolated in a form similar 
to Eq. (89) by using Eqs. (12): 

A (s) = F 1 (t)A (i•) + F2(t)A(ib) + F3 (t)l•cB(i• 

+ F4(t)licB (a•. (91) 

In the present numerical scheme we store the data for A t(s) 
and A2(s ) instead of A(s), but the expression in (91) re- 
mains unaltered. 

C. Finding the stationary phase points 

The positions of the stationary points s• i) along a central 
my are defined by Eq. (72), which in turn depend on the 
roots of Eq. (70) or, equivalently, 

i-n= sin 00. (92) 

Although the roots to this equation are easy to find, in prin- 
ciple, numerical experience shows that some roots can be 
missed due to numerical errors in the ray trajectory. This is 
not a major problem, and can always be avoided with suffi- 
ciently close gridding. In practice, we employ an alternative 
strategy for finding these roots, which we describe next. We 
first note that the same difficulty does not occur in solving 
Eq. (3) for the coupling points, even when a less accurate 
approximation of the shell's surface is employed. The expla- 
nation is that the normal vector a• is defined continuously 
over the surface, and the roots of Eq. (3) form a continuous 
curve, whereas the ray direction n is defined along a curve, 
and as a result the roots of Eq. (92) are isolated points. Con- 
ceivably, numerical errors may shift a root from its exact 
position. Although such a shift only slightly distorts the cou- 
pling curve, it could move a root of (92) away from the ray 
and thus result in the root being missed. Enlightened by this 
observation, we rephrase the condition (92) into a form simi- 
lar to the coupling condition [see Eq. (2)•], 

i-a3=cos 0•. (93) 

The angle 0• between the directions of i and a 3 at the point 
s= s½ is related to the critical angle by 

COS 0• = 41 - (•-n)2--(•-n•-) 2= x/cos 2 00- (•-n•') 2, 
(94) 

with the restriction Ik-na-I•<cos 0o. The procedure is there- 
fore to find roots of 

k-a3=cos 00x/1-(•-nZ) 2 sec 2 0o, (95) 

along those parts of the surface ray satisfying the simulta- 
neous constraints 

I.'l<cos 00 and •.n>0. (96) 

By this means we can obtain all the roots s? ), i = 1,2,3 ..... in 
spite of small perturbations to the surface ray path induced 
by numerical errors. 

D. Numerical test on a sphere 

We now describe a numerical test of the general method 
for computing the far-field scattering from arbitrary, non- 
separable shells. The test case is the simplest geometry--a 
spherical shell of radius R = 1, for which both exact and ray 
asymptotic solutions are available. l We treat the sphere as an 
arbitrary surface, without taking any advantage of its spheri- 
cal shape. In other words, the procedure used here for the 
sphere is exactly the same as for an arbitrarily curved shell. 
The shell's surface is first meshed into 384 quadrilateral 
patches. The scheme developed and described in Yang 
et al. •o is then used to determine the coupling curve, and to 
trace N=36 central rays that are initially spaced at equal 
intervals along the coupling curve. Each surface ray is fol- 
lowed for an arc length of 125 and the ray trajectories and 
the ray tube widths are stored. The my data is subsequently 
used to reconstruct the ray paths in parametric form, and to 
determine the positions of the stationary points following the 
procedures described in the two previous subsections. The 
final solution for the scattered field can be computed from 
Eq. (82). 

The initial complex wavefront curvature 
=/2•(0)+i/22(0) is an arbitrary parameter that needs to be 
prescribed. In principle,/2•(0) could be any real number, and 
/.ta(0), associated with the beamwidth, should be chosen in 
such a way that the initial wave field along the coupling 
curve is smooth as the result of the beam summation. Actual 

numerical tests confirm that the choice of gl(0) hardly af- 
fects the final solution. Similar tests, using the 36 surface 
rays, also show that the initial wave field defined by the 
beam superposition is smooth if 0.41c<1•2(0)<2.0/c. 
Based on these findings, the calculations reported here use 

•1(0) •-0, /•2(0) = 0.821C. (97) 

The far-field scattering amplitude defined by Eq. (45) is 
shown in Fig. 3 for six different directions, defined by the 
angle 0 between the backscattering and observation direc- 
tion. Three curves are plotted for each 0: the Gaussian beam 
superposition, the exact thin shell prediction, and the ray- 
asymptotic solution of Norris and Rebinsky. l 

Numerical results for backscattering are shown in Fig. 
3(a), and are seen to agree well with the two reference solu- 
tions over a wide frequency range. We notice some discrep- 
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FIG. 3. The far-field scattering amplitude vs nondimensional fluid wave number at dift•renl observation directions. The solid curves. the dashed curves, and 
the diamonds correspond to the exact solutions, the ray-based asymptotic solutions (Ref. !), and the present results. respectively. (a) 0=0% (b) 0= 15.82 ø, (c) 
0=30 ø, (d) 0=60 ø, (e) 0=75 ø, (O 0=-90ø. 

ancies at the higher frequency resonances, which probably 
result from the truncated are length of each beam. Thus the 
attenuation along a ray decreases as the frequency increases 
because the imaginary part in the dispersion equation (3) 
decreases. This suggests that we should trace rays for longer 
distances in order to match the resonances adequately at high 
frequencies. As partial confirmation we note that the ray so- 
lution of Norris and Rebinsky I uses rays of infinite arc 

length, and matches well with the exact solution at the reso- 
nances. 

Comparisons for bistatic scattering are shown in Fig. 
3(b)-(f). Note that the observation angle in Fig. 3(b) is 
0=15.82 ø , the critical angle for longitudinal membrane 
waves. In this case the launching point of one of the rays is 
at a caustic, and the surface field at that point is singular 
according to the pure ray theory (although the ray theory 
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far-fieM prediction of Ref. 1 is not singular at this angle). In 
the present formalism the surface amplitudes at caustics are 
always finite, and no special treatment is necessary. In gen- 
eral, the comparisons for various angles, in Figs. 3(b)-(f), 
indicate that the beam superposition results match the pure 
ray predictions of Ref. 1 very well. This is to be expected, 
especially at higher frequencies where the superposition can 
be shown to reproduce the ray theory exactly. 19 There are 
some discrepancies between the beam superposition and the 
exact solution, and these discrepancies tend to propagate to 
higher frequencies as the observation angle increases. We 
believe that these discrepancies are due to the simplified ap- 
proximation used for the specular field, which is not uni- 
formly valid at all observation directions. 

We note that the pure ray theory prediction of Ref. 1 for 
bistatic scattering is also not uniformly valid in all directions. 
Specifically, backscatter from a sphere requires special treat- 
ment because the number of rays reaching the observer goes 
from 2 to c• as 0•0. One can, of course, derive uniform 
theories to account for the transition, but they require prior 
knowledge of the ray picture. In contrast, the Gaussian beam 
method treats backscattering exactly the same as bistatic 
scattering, and consequently the expression for the field ra- 
diated from the membrane waves is uniformly valid for all 
observation directions. 

We find that the beam solution for backscattering (0=0) 
is less sensitive to the number of beams used and to numeri- 

cal errors in the ray paths and the ray tube widths. This is 
because, in backscatter, each beam makes an equal contribu- 
tion to the far field and the errors are averaged out in the 
Gaussian beam summation. For bistatic scattering, however, 
only those beams near the plane spanned by the incident and 
observation direction give appreciable contributions to the 
far field. In that case the accuracy of the beam method is 
more sensitive to the accuracy of individual beams and the 
density of the beams, or the total number of beams used. 

IV. CONCLUSION 

The Gaussian beam summation method is normally used 
to model wave propagation through nonuniform media. In 
this paper, we have developed the first application of the 
method to scattering from a wave beating object. The beams 
are used to model the on-surface dynamics on fluid-loaded 
smooth elastic shells of arbitrary shape, and also provide a 
natural means to calculate the scattered acoustic far field. At 

the same time, we have incorporated the Gaussian beam 
method into the ray-based scheme developed in Ref. 10. The 
outcome is a hybridized scheme, in which the coupling of the 
incident wave to the membrane waves and the subsequent 
wave propagation on the shelfs surface are described by 
pure ray theory, whereas the radiation from the surface mem- 
brane waves is determined by the Gaussian beam method. 

The scheme outlined here provides a new procedure for 
numerically solving the scattering problem for submerged 
elastic shells. It is closely related to pure ray theory, but has 
demonstrated several advantages over the ray method. First, 
the surface field remains finite even at caustics, which is a 
common feature of the Gaussian beam method. Second, the 

method removes the need to perform two-point ray tracing, a 
task which is equivalent to finding the rays that connect the 
launching point and the coupling point. Finally, the beam 
summation automatically provides a uniform result at all ob- 
servation directions. There is no need to distinguish certain 
observation directions, as is required using pure ray theory. 

The numerical comparison tests on the sphere show that 
the accuracy of the present scheme depends on the number of 
the Gaussian beams used, as well as their initial beamwidth. 

These two parameters are chosen in such a way that the 
beam summation can accurately reproduce the continuous 
wave field along the coupling curve. For instance, one may 
set r/= l in Eq. (43) and then select the values of the param- 
eters N and/x2(0 ) accordingly. In general, the numerical re- 
sult depends less on/z2(0 ) as N is increased. In summary, the 
present scheme not only provides a robust numerical tool for 
the study of the acoustic scattering by arbitrarily curved, 
smooth elastic shells, but it also allows us to extract the 

physical mechanisms from numerical results. 
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