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A three-member junction is formed by a pair of semi-infinite plates in contact with fluid on one side
and a mechanical structure on the other. The latter is described by an impedance matrix. The
excitation is either a straight crested flexural wave traveling on one of the fluid-loaded plates and
obliquely incident on the line junction, or an acoustic plane-wave incident from any direction in the
fluid. The general solution for this type of scattering problem is derived and illustrative numerical
examples are given. The admittance matrix for the fluid-loaded plate junction without the
attachment plays a central role in the solution. It is verified that the general solution reduces to that
for a pair of plates with clamped and welded junction conditions as limiting cases when the frame
impedance is zero and infinite. The numerical results display two well-defined characteristic critical
angles for transmission of structural energy and diffraction of acoustic pressure. ©1995 Acoustical
Society of America.

PACS numbers: 43.40.Dx, 43.40.Rj

INTRODUCTION

Discontinuities and reinforcements play a crucial role in
enhancing the amount of energy scattered and radiated from
fluid-loaded structures. The analysis of a single scatterer or
obstruction, acoustically isolated from others on the struc-
ture, contains the essential features of the problem and pro-
vides some quantitative information about the processes in-
volved. Thus some time ago, Lyon1 obtained simple
approximations for the sound radiated from a beam attached
to a plate. This work was subsequently complemented by the
calculation of the force and moment admittances, obtained
numerically by Nayak2 and analytically by Crighton,3 with
further insights given by Smith.4 This was followed by com-
prehensive studies of transmission and acoustic scattering
from a single rib on a panel.5–7 Recently, the effects of vary-
ing junction conditions between the rib and plate have been
studied by Guo.8,9 We note that all these analyses concerned
a reinforcement attached to a uniform panel.

In this paper we consider the more general but practi-
cally realistic situation of a nonuniform structure with a re-
inforcing member. The structural configuration is modeled as
a single rib attached to the junction of two dissimilar plates.
The three-member junction is depicted in Fig. 1. We will
investigate the consequences of the three-member junction
on an obliquely incident wave, either acoustic or structural,
although the numerical examples will focus on structural
wave incidence. The related problem of a wave obliquely
incident on a rib on a uniform plate was analyzed by
Lyapunov10 and more recently by Photiadis.11 Oblique inci-
dence was also briefly discussed by Crighton and Maidanik6

for the case of a rib attached to a membrane. In general, the
acoustic effect of an attached internal rib on a uniform plate
can be completely described by the line admittance~or im-
pedance! matrix for the fluid-loaded plate. This is the matrix
relating force and moment to the plate deflection and rotation

at the drive location, and is diagonal for a uniform plate,11,12

as can be easily seen from symmetry arguments. The rein-
forcement acts as a reaction load on the uniform plate, which
can be directly determined using the plate admittance matrix
and the impedance matrix for the rib. In this way one solves
the scattering problem by a standard superposition of forces.

The three-member problem of Fig. 1, on the other hand,
cannot be solved in exactly the same manner. Consider a
flexural wave incident from plate 1 striking the dissimilar
plate junction with an equivalent applied force and moment
replacing the rib. No matter how one chooses the effective
forces and moments at the junction, the equivalent line load
cannot cancel the incident wave on the second plate, plate 2,
as it must. This is because plate 2 is a different wave-bearing
structure. But, one can define and derive the analogous ad-
mittance matrix for the pair of fluid-loaded plates in the ab-
sence of the internal attachment. An explicit solution has
recently been given by the authors,12 and it is a full matrix,
with coupling between force and rotation and between mo-
ment and deflection. The solution to the simpler but non-
trivial scattering problem for the dissimilar plate junction
without the internal attachment is also required, but this too
has been recently solved, by Norris and Wickham.13 To-
gether, the analyses of Norris and Rebinsky12 and Norris and
Wickham13 provide the ingredients for the solution to the
three-member scattering problem. In the limit that plates 1
and 2 are identical then the Norris and Wickham13 solution is
trivial, and all that is required is the diagonal admittance
matrix.3,11

In Sec. I we formulate the dynamic equations used to
model the plates and internal frame, see Fig. 1. The plates are
described by the classical theory of flexure and the reinforce-
ment is assumed to be adequately characterized by a two-
degree-of-freedom attachment. The formal solution is out-
lined in Sec. II where the whole result is split into three
components. The first part is the specularly reflected field for
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a plate of infinite extent composed entirely of plate 1 and is
relatively simple. The remaining two components rely on
previous results concerning two joined dissimilar plates13

and their corresponding line admittance matrix.12 The de-
tailed, explicit form of the solution is presented in Sec. III,
where several limiting cases of interest are discussed. Finally
in Sec. IV, we discuss and show the various diffraction co-
efficients of the wave fields emanating from the junction. We
close with illustrations of the reflected, transmitted, and ra-
diated energies of the scattered wave fields.

I. DEFINITION OF THE PROBLEM

We consider time harmonic motion of frequencyv.0,
with the terme2 ivt understood but suppressed. The fluid-
loaded plates lie in the planez50 and meet alongx50,
2`,y,`, see Fig. 1. They are semi-infinite and uniform
but can differ in density, elastic properties, and thickness.
The dynamic behavior of each plate is modeled by the clas-
sical theory of flexure. Thus

Bj¹
2¹2w~x,y!2mjv

2w~x,y!52p~x,y,0!, ~1!

wherew(x,y) is the plate deflection in thez direction, and
p(x,y,z) is the acoustic pressure in the fluid, which occupies
the half space 0,z,`. Also, m1,2 are the areal mass den-
sities, andB1,2 the bending stiffnesses of the distinct plates,
and j51 or 2 for x,0 andx.0, respectively. The relevant
bending moment and effective shear force on either plate are
given by the classical relations

M ~x,y!52Bj@w,xx~x,y!1n jw,yy~x,y!#, ~2a!

V~x,y!5M ,x22Bj~12n j !w,xyy~x,y!, ~2b!

wheren j is Poisson’s ratio andj51 and 2 forx,0 and.0,
respectively. The complex-valued acoustic pressure satisfies
the Helmholtz equation in the fluid, with wave number
k5v/c, wherec is the fluid sound speed. Finally, the pres-
sure and deflection are related by the continuity condition

rv2w~x,y!5
]p

]z
~x,y,0!, 2`,x,y,`, ~3!

wherer is the fluid mass density per unit volume.
The phase factoreikyy is assumed for all dynamic quan-

tities, and is explicitly removed thereby suppressing they
dependence. Thus we definep̄ and w̄ by

p~x,y,z!5 p̄~x,z!eikyy, w~x,y!5w̄~x!eikyy, ~4!

with analogous definitions forM̄ (x) and V̄(x), and the
Helmholtz equation becomes

S ]2

]x2
1

]2

]z2
1 k̄2D p̄50, 2`,x,`, 0,z,`, ~5!

where k̄ is the effective wave number, defined by
k̄25k22ky

2. At the same time, elimination of the displace-
mentw(x,y) between the two boundary conditions~1! and
~3! gives a single equation for the pressure on each half-
plane~now line!,

L1p̄~x,0!50, x,0; L2p̄~x,0!50, x.0, ~6!

with the operators defined as

L j[11ajFk j
24S ]2

]x2
2ky

2D 221G ]

]z
, j51,2, ~7!

wherek1,2 are the flexural wave numbers of the plates, and
a1,2 are the ‘‘null frequency’’ lengths,

k j
45v2mj /Bj , aj5mj /r, j51,2. ~8!

The null frequency at whichka51 (mv5rc) provides a
possible criterion for defining the transition from low- to
high-frequency regimes for each fluid-loaded plate.

Suppose that an internal frame is attached at the junction
of the two dissimilar plates located alongx50. Concerning
the connection of all the components~plates and internal
frame!, coupling of out-of-plane to in-plane motion occurs
because of the mismatch of neutral axes. To leading order,
this coupling is assumed to be negligible and we have ig-
nored it. Or from a different point of view, an academic
problem has been posed where we have chosen the neutral
axes of the plates and that of the internal frame to coincide.

For simplicity, we characterize the internal frame as a
two degree of freedom attachment, with displacementwF(t)
and rotationfF(t). Its motion induces a reaction forceFF

and torqueTF on the junction. The kinematics of the three
member junction imply thatwF5w̄(0) andfF52w̄8(0).
We define a rib impedance such that

FFF

TF
G52Z̄~rib!F2 ivwF

2 ivfF
G . ~9!

For example, ifmF , j F are the frame mass per unit length
and rotary inertia per unit length, respectively, then the im-
pedance is diagonal,

Z̄~rib!5F2 ivmF 0

0 2 iv j F
G . ~10!

We note that the following analysis is not limited to this
simple rib model, but can be applied to nonlocal impedances
for wave-bearing internals.

The internal frame can be replaced by an equivalent
force and moment loading along the junction of the two
fluid-loaded plates. Equations~6! hold for all nonzero values
of x, but not atx50, where certain jump conditions need to
be imposed. Atx50, the internal frame induces on the plate
system a phased-line force in the positivez direction,
FFe

ikyy, and a phased-line moment about they axis in the
clockwise direction,TFe

ikyy, such that

M̄ ~01 !2M̄ ~02 !52TF , ~11a!

V̄~01 !2V̄~02 !52FF . ~11b!

FIG. 1. The three-member junction and coordinate system.
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The reduced moment and shear force follow from~2! as

M̄ ~x!52B@w̄,xx~x!2nky
2w̄~x!#, ~12a!

V̄~x!52B@w̄,xxx~x!2~22n!ky
2w̄,x~x!#, ~12b!

with the appropriate values taken forB andn depending asx
is positive or negative.

The problem is therefore, that the pressurep̄ satisfies the
Helmholtz equation~5! and the boundary conditions~6! on
the plates. The deflectionw̄ and its first derivative
w̄85dw̄/dx are both continuous at the junction, wherew̄ is
related top̄ by ~3!. In addition, the junction conditions~9!,
~11!, and~12! must hold. Finally, the scattered wave fields in
the fluid and on the plates must satisfy the radiation condi-
tion asAx21z2→`.

II. FORMULATION OF THE GENERAL SOLUTION

A. Formal solution

We first write the total solution as the sum of three com-
ponents,

p̄~x,z!5 p̄a~x,z!1 p̄b~x,z!1 p̄c~x,z!,

w̄~x!5w̄a~x!1w̄b~x!1w̄c~x!. ~13!

Similarly, we split the moment and force as
M̄5M̄a1M̄b1M̄ c andV̄5V̄a1V̄b1V̄c , respectively. Each
separate solution has an applied load at the junction of force
Fa , and momentTa , for a5a, b, andc. Thus

M̄a~01 !2M̄a~02 !52Ta ,
~14!

V̄a~01 !2V̄a~02 !52Fa , a5a,b, and c.

We choose the solutions so that they each satisfy the Helm-
holtz equation~5! and the first of the two boundary condi-
tions of Eq. ~6!. The second condition of Eq.~6! and the
junction conditions atx50 are in general, only satisfied by
the total solution. In this regard, we note that the conditions
~11! may be replaced by the equivalent pair

Ta1Tb1Tc5TF , Fa1Fb1Fc5FF . ~15!

B. Solution a

The pressurep̄a and displacementw̄a are chosen as the
incident wave with horizontal wave numberj0 ~the y com-
ponent has been suppressed for convenience! which satisfies
the boundary condition onx,0. It is assumed to be one of
the following:

p̄a~x,z!5ei j0x

3H e2g~j0!z, plate wave,

@eg~j0!z1R1~j0!e
2g~j0!z#, acoustic wave.

~16!

The plate wave numberj0 is the root ofD1(j)50 @see~18!
below# which exists at all frequencies, and corresponds to the
subsonic flexural wave. The square rootg(j)5(j22 k̄2)1/2

is defined as an analytic function in the complexj plane cut
so that its real part is non-negative. Along the real axis,
g(j)52 iAk̄22j2 for uju, k̄ and g(j)5Aj22 k̄2 for uju

. k̄. We have selected this branch forg so that the Fourier
superpositions of solutions are outgoing at infinity. Also,R1
is the plane wave reflection coefficient for plate 1. Thus

Rj~j!5122/Dj~j!, j51 or 2, ~17!

where

Dj~j!512ajg~j!„k j
24~j21ky

2!221…. ~18!

Numerical calculations involving the branch cuts and the
choice of roots are simplified by givingk̄ a small imaginary
part, i.e., k̄5uk̄uei e, 0,e!1. This is consistent with the
physical restrictions imposed by the radiation condition, and
guarantees the existence of a strip of analyticity for certain
functions. The strip is defined byjPH1ùH2, whereH6

are the upper and lower halves of the complexj plane. It is
assumed thatDj (j)Þ0, jPH1ùH2, and thatj0PH

1.

C. Solution b

Using ~13! with ~16!, the plate Eq.~6! become

L1@ p̄b~x,0!1 p̄c~x,0!#50, x,0, ~19a!

L2@ p̄b~x,0!1 p̄c~x,0!#52L2p̄a~x,0!, x.0. ~19b!

We choose the pressurep̄b such that the contribution fromp̄a
in the right member of Eq.~19b! is cancelled. This is accom-
plished by writingp̄b as a Fourier integral of the form,13

p̄b~x,z!52A0p̄0~x,z!, ~20!

where

p̄0~x,z![
1

2p i E2`

` G~j0!

G~j!

e@ i jx2g~j!z#

j2j0
dj, ~21!

and

A05H 1, plate wave,

R1~j0!2R2~j0!, acoustic wave.
~22!

We also define the generalized dispersion function

G~j![D2~j!/K1~j!5D1~j!/K2~j!, ~23!

where K6(j) are the unique Wiener–Hopf factors of the
quotient function

K~j!5D1~j!/D2~j!, ~24!

such that

K~j!5K2~j!/K1~j!, K2~2j!51/K1~j!. ~25!

Thus by definition,K6(j) are analytic in the half-planes
H6. An explicit formula forK1(j) is given in the Appen-
dix, based upon a factorization method developed by Norris
and Wickham.13 The form of the pressurep̄b in ~20! follows
directly from some results concerning the acoustic diffrac-
tion from two joined flat plates.13 It may easily be verified by
direct substitution ofp̄b defined by Eqs.~20! through ~24!
that it satisfies

L1p̄b~x,0!50, x,0, ~26a!

L2p̄b~x,0!52L2p̄a~x,0!, x.0, ~26b!

as claimed.
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D. Solution c

The plate equation~19! are now reduced to homoge-
neous equations forp̄c ,

L1p̄c~x,0!50, x,0; L2p̄c~x,0!50, x.0.
~27!

The solution is apparentlyp̄c[0, however, a nonzero ap-
plied forceFc and a momentTc are required atx50 in order
to satisfy the junction conditions there. Thep̄c solution is
therefore analogous to that which describes the line admit-
tance at the junction of two plates, as discussed in Ref. 12.
We first write thep̄c as a Fourier integral of the form

p̄c~x,z!5
1

2p E
2`

`

p̃c~j!e@ i jx2g~j!z# dj. ~28!

The general solution of the homogeneous dual integral equa-
tions ~27! which satisfies the kinematic continuity conditions
is then13

p̃c~j!5~Ā01Ā1j!/G~j!, ~29!

where, following the analysis of Norris and Rebinsky,12 the
coefficientsĀ0 andĀ1 can be linearly related to the unknown
loads at the junction,

F Ā1

Ā0
G522i ~N11N2!

21F2Tc
iF c

G . ~30!

Therefore, using Eqs.~28! through~30! the additional pres-
sure is

p̄c~x,z!5
1

ip E
2`

`

~j,1!~N11N2!
21

3F2Tc
iF c

G e@ i jx2g~j!z#

G~j!
dj. ~31!

The derivation of Eq.~30! is lengthy, but is very similar
to the derivation of the admittance matrix for the fluid-loaded
system of joined plates, and we refer the reader to Norris and
Rebinsky12 for details. For our purposes, all that is required
are the matricesN1 andN2, which are defined as

Nn~q!5F S 12
qky

2

ky
21zn

2D cosh sn S 12
qky

2

ky
21zn

2D zn
21 sinh sn

S 11
qky

2

ky
21zn

2D zn sinh sn S 11
qky

2

ky
21zn

2D cosh sn
G , n51 or 2, ~32!

and the numberq is an averaged difference in the material
properties of the two plates

q[12~n2B22n1B1!/~B22B1!. ~33!

Also, 6z1PH
6 and 6z2PH

6 are the roots of
R2~j!5R1~j!, or

z1
21z2

2522ky
2, z1

2z2
25ky

42z0
4, ~34!

where

z0
45v2Dm/DB. ~35!

Many of the subsequent equations are simplified by definite
choices for the roots. We therefore choose them as

z1
25z0

22ky
2, z2

252z0
22ky

2. ~36!

The roots depend on the wave numbersz0 andky , andz1Þz2
as long asz0

4Þ0. We assume this to be the case, for simplic-
ity. Finally, s1 ands2 are defined by

sn5 log K1~zn!, n51 or 2. ~37!

E. The total solution

We now combinep̄a of Eq. ~16!, p̄b of Eqs. ~20! and
~21!, and p̄c of Eqs. ~28! through~30!, to obtain, using Eq.
~13!,

p̄~x,z!5 p̄a~x,z!

2
1

2p i E2`

` A~j!

j2j0

G~j0!

G~j!
e@ i jx2g~j!z# dj

5 p̄a~x,z!2AS 2 i
]

]xD p̄0~x,z!, ~38!

where p̄0(x,z) is defined in Eq.~21!, andA is a quadratic
polynomial,

A~j!5A02
2~j2j0!

G~j0!
~j,1!~N11N2!

21F2Tc
iF c

G . ~39!

The solution defined by Eqs.~38! and ~39! is similar to that
obtained by Norris and Wickham13 for the scattered pressure
from two joined flat plates. Note that the three member prob-
lem is now reduced to findingTc andFc which define the
polynomialA(j).

III. EXPLICIT SOLUTION AND SPECIAL LIMITS

A. Applied moment and force loading

The general solution depends upon the line loadsTc and
Fc , which represent the combined contribution of the frame
momentTF and forceFF plus a component from the moment
and force jumpsTa1Tb andFa1Fb generated at the junc-
tion. The latter are defined by Eq.~14!, and they occur be-
cause the solutionp̄a1 p̄b does not completely satisfy the
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continuity conditions atx50 for a two plate system. The
total force and moment balance at the junction requires that
~15! hold, or

F2Tc
iF c

G5F2TF
iFF

G2F2Ta2Tb
iF a1 iF b

G . ~40!

Also, the unknownsTc andFc can be expressed as

F2Tc
iF c

G5ZF w̄c~0!

2 iw̄c8~0!G , ~41!

whereZ is the impedance matrix for two joined flat plates
under fluid loading.12 It is given explicitly below in ~55!.
Note that the vectors in Eq.~41! differ from those in, for
instance, Eq.~9!. Based upon the analysis in Ref. 12 we find
it more convenient to redefine the impedance matrices so that
they relate vectors as in~41!. This definition of the imped-
ance is unconventional, but it can be easily reconciled with
standard procedure.12 We therefore redefine the rib imped-
ance matrix to be consistent with this new definition; thus

F2TF
iFF

G52Z~rib!F w̄~0!

2 iw̄8~0!G . ~42!

Comparing~9! and ~42!, we have

FZ11~rib! Z12
~rib!

Z21
~rib! Z22

~rib!G5vF i Z̄21
~rib! Z̄22

~rib!

Z̄11
~rib! 2 i Z̄12

~rib!G . ~43!

Combining Eqs.~40! through~42! with the second of~13!,
we find that

F2Tc
iF c

G52Z~Z1Z~rib!!21H F2Ta2Tb
iF a1 iF b

G
1Z~rib!F w̄a~0!1w̄b~0!

2 iw̄a8~0!2 iw̄b8~0!G J . ~44!

The jumpsTa1Tb and Fa1Fb follow from Eqs. ~12!
and ~14! as

Ta1Tb5~B22B1!@~w̄a1w̄b! ,xx~0!2~12q!

3ky
2~w̄a1w̄b!~0!#, ~45a!

Fa1Fb5~B22B1!@~w̄a1w̄b! ,xxx~0!2~11q!

3ky
2~w̄a1w̄b! ,x~0!#. ~45b!

The displacementw̄a1w̄b can be found fairly readily from
the analyses of Norris and Wickham13 and Norris and
Rebinsky.12 Thus equation~4.13! of Ref. 13 withĀn5A0dn0,
and equation~B.11! of Ref. 13 with appropriate modification
of the termsum

6 for oblique incidence, as given in Eq.~59! of
Ref. 12, together imply that

~B22B1!~w̄a1w̄b!52A0(
n50

3

ln

~ ix !n

n!
1O~x4!, ~46!

where

ln5G~j0! (
m51

2 zm
n21

4~zm
2 1ky

2!

3S esm

zm2j0
1~21!n

e2sm

zm1j0
D . ~47!

Note thatw̄a1w̄b and its first three derivatives are continu-
ous atx50.

It follows from Eqs.~45! and ~46! that

F2Ta2Tb
iF a1 iF b

G52A0Fl21~12q!ky
2l0

l31~11q!ky
2l1

G . ~48!

After substituting for theln’s using ~47! and some straight-
forward algebraic manipulations, Eq.~48! can be written
simply as

F2Ta2Tb
iF a1 iF b

G52
1

2
A0G~j0!@~z1

22j0
2!21N1

1~z2
22j0

2!21N2#F 1j0G . ~49!

Similarly,

F w̄a~0!1w̄b~0!

2 iw̄a8~0!2 iw̄b8~0!G52
A0G~j0!

2z0
2~B22B1!

@~z1
22j0

2!21M1

2~z2
22j0

2!21M2#F 1j0G , ~50!

where

Mn
615F cosh sn 6zn

21 sinh sn

6zn sinh sn cosh sn
G ,

n51 or 2. ~51!

Also, the matricesNn andMn are related through the expres-
sion

Nn~q!5Jn~q!Mn , ~52!

where~Ref. 12!

Jn~q!5F 12
qky

2

ky
21zn

2 0

0 11
qky

2

ky
21zn

2
G . ~53!

Upon substitution of~49! and ~50! into ~44!, we obtain
the desired loads for problemc as

F2Tc
iF c

G5 A0

2
G~j0!Z~Z1Z~rib!!21$~z1

22j0
2!21

3@J1~q!1z0
22~B22B1!

21Z~rib!#M11~z2
22j0

2!21

3@J2~q!2z0
22~B22B1!

21Z~rib!#M2%F 1j0G , ~54!

where the junction impedance matrixZ can be written as12

Z5z0
2~B22B1!~N11N2!~M12M2!

21. ~55!

Hence, the polynomialA(j) using Eq.~39! is given by
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A~j!

A0
512~j2j0!~j,1!~M12M2!

21~Z1Z~rib!!21

3$~z1
22j0

2!21@z0
2~B22B1!J1~q!1Z~rib!#M1

1~z2
22j0

2!21@z0
2~B22B1!J2~q!2Z~rib!#M2%

3F 1j0G . ~56!

This can be further simplified as

A~j!

A0
512~j2j0!~j,1!~X11X2!

21F X1

z1
22j0

2 1
X2

z2
22j0

2G
3F 1j0G , ~57!

where

X15z0
2~B22B1!N11Z~rib!M1 ,

~58!
X25z0

2~B22B1!N22Z~rib!M2 .

We have now completed the general solution for the prob-
lem. Thus the functionA(j) of Eq. ~57!, combined with Eqs.
~16!, ~21!, and~38!, provides a general and explicit formula
for the pressure in the fluid scattered from the three member
structure.

B. The limit of no rib, and of a clamped junction

It is of interest to examine two special limiting configu-
rations, which are independent of the internal member. When
Z~rib!→0, the limiting case of two fluid-loaded plates in
welded contact is obtained, namely

A~j!

A0
U
welded

512~j2j0!~j,1!~N11N2!
21

3F N1

z1
22j0

2 1
N2

z2
22j0

2GF 1j0G . ~59!

Conversely, asZ~rib!→`, the limiting case of two clamped
plates is obtained. Thus using Eq.~55! we find that

A~j!

A0
U
clamped

512~j2j0!~j,1!~M12M2!
21

3F M1

z1
22j0

22
M2

z2
22j0

2GF 1j0G . ~60!

By settingky50 in the above expressions one recovers the
two-dimensional form of the polynomialA for both the
welded and clamped cases, as derived by Norris and
Wickham.13

C. A uniform plate

We may now consider the limit of two completely iden-
tical plates, i.e., a single uniform plate of infinite extent, with
an attached internal frame. The ‘‘incident’’ pressurep̄a re-
mains the same, but nowp̄b is identically zero. Various other
simplifications result from this limit. Thus D1(j)
5D2(j)[D(j), K6→1 and henceG(j)5D(j), using Eq.

~23!. For simplicity, letDB→0, keepingDm finite. Then,
uz0u, uz1u, and uz2u→`, while M1, M2, N1, andN2→I . Thus
the c pressure becomes, using Eq.~31!,

p̄c5
1

2p E
2`

`

~Fc1 i jTc!D
21~j!e@ i jx2g~j!z# dj. ~61!

The c-loads at the junction follow from Eq.~44! and the
identitiesTa5Tb5Fa5Fb5w̄b(0)5w̄b8(0)50, as

F2Tc
iF c

G52w̄a~0!Z~Z1Z~rib!!21Z~rib!F 1j0G , ~62!

and

w̄a~0!5H 2g~j0!/rv2, plate wave,

g~j0!@12R~j0!#/rv2, acoustic wave.
~63!

The impedance matrixZ given by ~55! ~cf. Norris and
Rebinsky12! becomes in the limit of two identical plates

Z5F 0 S 1

rv2

]m3

]a D 21

S 1

rv2

]m1

]a D 21

0
G ,

identical plates, ~64!

and we have shown that12

1

rv2

]m j

]a
5

1

2pB (
n51

5

~jn!
j22

3F p12snun
4~jn

21ky
2!1snk

4/ag3~jn!
G , j51 and 3,

~65!

wherej1,...,j5 are the five zeros ofP(j)5D(j)D̄(j) inH1

and D̄(j)522D(j), i.e., they solve

@~j21ky
2!22k4#2~j22 k̄2!2k8/a250. ~66!

The complex anglesu1,...,u5, are defined in accordance with
the Appendix asun5cos21(jn/ k̄) andsn51 or 21 depend-
ing as jn is a zero ofD(j) or D̄(j), respectively. Thus
sn512D(jn).

Combining Eqs.~61!, ~62!, and~64!, we determineA for
two identical plates with an internal frame as

A~j!u identical5
w̄a~0!

D~j0!
~j2j0!~j,1!~Y1Y~rib!!21F 1j0G ,

~67!

whereY5Z21 andY~rib!5~Z~rib!!21 are the junction and rib
admittances, respectively. The total solution for the uniform
plate with an internal attachment then follows from Eqs.
~38!, ~63!, and~67! as

p̄~x,z!5 p̄a~x,z!2w̄a~0!S 2 i
]

]x
,1D

3~Y1Y~rib!!21F 1j0Gpline~x,z!, ~68!

and
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pline~x,z!5
1

2p i E2`

`

D21~j!e@ i jx2g~j!z#dj. ~69!

The pressurepline corresponds to a unit line force applied on
a uniform plate. Equation~68! can be expanded by using
Eqs.~10!, ~43!, and the off-diagonal form ofZ in Eq. ~64!, to
give

p̄~x,z!5 p̄a~x,z!2rv2w̄a~0!F S ]m1

]a
1

ir

mF
D 21

2 i j0S ]m3

]a
1
ir

j F
D 21 ]

]xGpline~x,z!. ~70!

This provides a relatively simple formula for the response
from an arbitrary rib to oblique incidence on a uniform plate.

IV. EXAMPLES

In all of the results shown here the material is the same
for the entire structure. The contrast at the junction is pro-
vided by a discontinuity in plate thickness with three varying
degrees of rib impedance:~a! infinite, ~b! zero, and~c! finite.
When the rib impedance is infinite, the structure corresponds
to two plates clamped or fixed along the junction line. For
zero rib impedance, the internal frame disappears and the
structure behaves as two plates in welded contact. The nu-
merical results are all for the material combination of steel
and water, with a thickness change of 100% from the left
plate to the right. This corresponds toa52, wherea is the
thickness ratio,

a5h2 /h1 . ~71!

We assume a steel rib of rectangular cross section of thick-
nesshR50.5 in. and lengthl R54.5 in. with mass per unit
lengthmF and rotary inertia per unit lengthj F5mF(hR

2/12
1 l R

2/3) @cf. Eq. ~10!#. The frequency dependence is dis-
cussed in terms of the nondimensional frequencyV, normal-
ized with respect to the coincidence frequencyvc1 of plate 1,

V5
v

vc1
[
k2

k1
2 . ~72!

Equation~71! implies thatk25k1 /Aa, and hence the coin-
cidence frequency of plate 2 is atV51/a50.5. Finally, all
the results shown concern a subsonic flexural wave incident
from x,0 ~plate 1!.

A. Diffraction coefficients

We assume that the observation distances from the junc-
tion are sufficiently large that far-field approximations can be
used. The acoustic response follows by applying the method
of steepest descent to the integral~38!, while the structural
response depends upon contributions from the poles associ-
ated with the subsonic flexural waves. All these diffracted
waves can be characterized by junction diffraction coeffi-
cients. We refer the reader to the paper of Norris and
Wickham13 for a more detailed discussion of these coeffi-
cients and their reciprocal identities.

We first consider the scattered acoustic far-field pressure
in the fluid, which can be written in terms of the diffraction
coefficientC ~u!,

p̄s5C ~u!A 2

p k̄r
e2 ip/4eik̄r , k̄r→`, ~73!

where

C ~u!52
1

2
g~j!

G~j0!

G~j!

A~j!

j2j0
. ~74!

FIG. 2. Polar plots of the scattered acoustic pressure amplitude from the
three member junction for normal incidence~0°! and two oblique angles of
incidence at a frequency ofV50.3. ~a! infinite rib impedance,~b! zero rib
impedance, and~c! finite rib impedance.
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The scattering angleu is defined byj5 k̄ cosu, that is, it
measures the angle between the positivex axis and the pro-
jection of the observation direction on thex-z plane. In Fig.
2, we show the directivity of acoustic diffraction for a sub-
sonic wave launched on plate 1 striking the joint at different
angles of incidencew relative to normal, and for various rib
impedances:~a! infinite or clamped plates,~b! zero or welded
plates, and~c! finite. The curves in Fig. 2 indicate that at low
frequencies, e.g.,V50.3, the total radiated power is smallest
for two welded dissimilar plates and largest when they are
clamped. The response for a finite rib impedance lies be-
tween the welded and clamped results.

Next, we turn to the scattered subsonic flexural waves.
We define the structural diffraction coefficients in terms of
the scattered on-surface pressure on either plate far from the
junction,

p̄s5Rflexe
@ i j0

~1!x2g~j0
~1!

!z#, x,0;
~75!

p̄s5T flexe
@ i j0

~2!x2g~j0
~2!

!z#, x.0.

Herej0
~1! andj0

~2! are the subsonic flexural wave numbers on
plates x,0 and x.0, respectively, i.e.,D1(j0

(1))50 and
D2(j0

(2))50. The reflection and transmission coefficients are

Rflex5
A~2j0

~1!!G~j0
~1!!

2j0
~1!K1~j0

~1!!D18~j0
~1!!

,

~76!

T flex5
A~j0

~2!!G~j0
~1!!K1~j0

~2!!

~j0
~1!2j0

~2!!D28~j0
~2!!

,

respectively. Figure 3 shows the behavior of the transmission
coefficient as a function of the angle of oblique incidence
and of frequency. Again, the incident wave is a subsonic
flexural wave on plate 1, and normal incidence corresponds
to 0°. Several effects are evident from the curves. First, that
the transmitted amplitude falls off rapidly at high angles of
incidence, and secondly that the angle at which the transmis-
sion begins to diminish is an increasing function of fre-
quency. Also, there appear to be different critical angles, and
the angles depend upon the nature of the attachment.

Consider first the case of a rib of infinite impedance,
Fig. 3~a!. The transmission is apparently greatest at the criti-
cal angle defined by

sin w f
crit5k/k1 . ~77!

This angle relates the flexural wave number on plate 1 to the
fluid wave number, and can be expressed using Eq.~72! as

sin w f
crit5AV. ~78!

The value of the critical angle therefore depends strongly
upon frequency, which is evident from Fig. 3~a!. For oblique
angles of incidence beyond this critical value, the incident
wave cannot travel through the adjacent fluid and transmis-
sion across the rigid rib is essentially suppressed. This phe-
nomenon was previously illustrated by Lyapunov10 and by
Photiadis11 for the case of a uniform plate with an infinite
impedance line discontinuity. The results of Fig. 3~a! suggest
that the effect is only weakly dependent on the properties of
plate 2.

FIG. 3. The transmission coefficient as a function of oblique angle of incidence and frequency.~a! infinite rib impedance,~b! zero rib impedance,~c! finite
rib impedance, and~d! same finite rib impedance as in~c! but plate 2 is half the thickness of plate 1.
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By contrast, in Fig. 3~b! we consider a rib of zero im-
pedance. The same overall behavior is observed but a differ-
ent critical angle is clearly operative, one which is indepen-
dent of frequency. Physically, this critical angle describes the
total internal reflection from a slow medium~thin plate! into
a fast medium~thick plate! and here it relates the flexural
wave number on plate 1 to that of plate 2,

sin wp
crit5k2 /k1 , ~79!

or, more specifically

sin wp
crit51/Aa, for identical materials, ~80!

which is exactly 45° for the pair of plates considered. It can
also be observed to a lesser extent in Fig. 3~a! where it shows
up as a kink in the curves after their maxima.

The case of a rib of finite impedance is shown in Fig.
3~c!, and exhibits a combination of the effects seen in the
two previous limiting cases. This is better observed by com-
paring differences in the transmitted energy which is dis-
cussed in the next section. But it is clear that the infinite
impedance~rigid rib! does not represent the actual state of
affairs with a finite impedance rib. The ‘‘plate’’ critical angle
wp
crit associated with the zero impedance limit is more signifi-

cant in this case. The energy results below will reinforce this
conclusion. In Fig. 3~d! we illustrate the opposite plate con-
figuration ~a51

2! with an identical finite rib impedance to
Fig. 3~c!. For this case, the critical anglefp

crit no longer is
real ~it is complex! and it does not play a role in the trans-
mission. Thus, one will observe energy transmitted across
the rib for all angles of incidence. But, the effect of the
critical anglef f

crit is observed as a ripple on the curves.

B. Energy redistribution

The flexural waves on each plate are both subsonic and
provide the only means of energy transmission away from
the junction, other than the acoustic radiation loss. Thus,
assuming both flexural waves propagate, i.e., thatw , wp

crit ,
then the statement of energy conservation13 is

15uRflexu21
D28~j0

~2!!g~j0
~2!!

D18~j0
~1!!g~j0

~1!!
uT flexu2

2
1

D18~j0
~1!!g~j0

~1!!

4

p E
0

p

uC ~u!u2 du. ~81!

The three terms in the right member are each positive and
less than unity, and correspond to the fractions of energy
reflected on plate 1, transmitted on plate 2, and acoustically
radiated into the fluid.

The separate components of reflected, transmitted, and
diffracted energy are shown in Fig. 4. For two clamped dis-
similar plates@Fig. 4~a!#, most of the energy is carried by the
reflected signal. There is a sharp transition at the ‘‘fluid’’
critical anglew f

crit of Eq. ~78! where the transmitted and dif-
fracted energies both become essentially zero. It is interest-
ing to compare Fig. 4~a! with Fig. 3~a!, which shows a sig-
nificant transmitted pressure amplitude, but the associated
energy in Fig. 4~a! is clearly small.

In Fig. 4~b! the rib impedance is zero and almost all of
the energy is transmitted for oblique angles of incidence less
than the ‘‘plate’’ critical anglewp

crit given by Eq.~80!. For
angles above this value the energy is completely reflected.
For a rib of finite impedance, Fig. 4~c!, we again obtain a
mixture of the two limiting cases. We have chosen the di-
mensions of the rib~i.e., impedanceZrib! so that its transmis-
sion behavior will lie qualitatively midway in between that
of zero and infinite. One can clearly see the simultaneous
effects of both critical angles. Acoustic radiation ceases be-
yond the fluid critical anglew f

crit( ; 31°),while the transmis-
sion of structural energy is totally suppressed at the plate

FIG. 4. The reflected, transmitted, and diffracted energy at a three-member
junction as the oblique angle of incidence is varied at a frequency ofV50.3.
~a! infinite rib impedance,~b! zero rib impedance, and~c! finite rib imped-
ance.
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critical anglewp
crit( ; 45°). Finally, the components of en-

ergy are displayed as functions of frequency for an angle of
incidence of 30° in Fig. 5.

V. CONCLUSION

We have derived explicit expressions for the interaction
of an incident acoustic or plate wave with a three-member
junction. The main results are in Eqs.~38! and ~57!, which
determine the acoustic pressure in the surrounding fluid. The
quadratic functionA(j) of Eq. ~57! contains all the informa-
tion about the obstruction and the fluid structure interaction
at the junction. When the rib impedance is zero or infinite the

general solution reduces to that of a pair of plates either
welded or clamped together. Explicit formulae for the struc-
tural scattering coefficients have been computed for various
parameter ranges. It is found that transmission of an incident
subsonic flexural wave is highly dependent upon the angle of
approach and the nature of the obstruction. In general, trans-
mission is fully suppressed when the angle of incidence is
greater than the critical anglewp

crit relating the two subsonic
wave numbers of the plates. As the rib impedance is varied,
transmission is greater for no rib in comparison to a rigid rib,
and the amount of transmitted energy for a rib of finite im-
pedance is intermediate between these. When the rib imped-
ance is finite, the stiffness of the reinforcement dictates the
amount of transmission.
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APPENDIX: FACTORIZATION OF K(j)

A semianalytical form forK1 Refs. 13, 14 is

K1~j!5
P8~11j/jn

~2!!

P8~11j/jn
~1!!

FD2~0!

D1~0!G
1/2

3exp @f1~j!2f2~j!#, ~A1!

where the productsP8 are taken only over the three roots for
which sn51, and

f~j!5
1

2p E
p/2

cos21~j/ k̄!
(
n51

5 S u sin un2un sin u

cosu2cosun

1
u sin un2~p2un!sin u

cosu1cosun
D sn du, ~A2!

with sn512Dj (jn) and un5cos21(jn/ k̄). Here, 6jn ,
n51,2,...,5, are the zeroes ofP(j) such thatjn are inH1,
with no loss in generality, andP is the rationalized form of
the dispersion relation for either plate, given by Eq.~66!. The
branch of the inverse cosine is cos21(j/ k̄)
5 i log[j/ k̄1g(j)/ k̄], where the principal branch of the
logarithm is taken,2p,Im log~•!,p. The form in ~A1! is
used for practical calculations because it does not have any
possibly ambiguous square root functions in the preexpo-
nent, and the integrand is smooth.
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