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Athree-member junction is formed by a pair of semi-infinite plates in contact with fluid on one side
and a mechanical structure on the other. The latter is described by an impedance matrix. The
excitation is either a straight crested flexural wave traveling on one of the fluid-loaded plates and
obliquely incident on the line junction, or an acoustic plane-wave incident from any direction in the
fluid. The general solution for this type of scattering problem is derived and illustrative numerical
examples are given. The admittance matrix for the fluid-loaded plate junction without the
attachment plays a central role in the solution. It is verified that the general solution reduces to that
for a pair of plates with clamped and welded junction conditions as limiting cases when the frame
impedance is zero and infinite. The numerical results display two well-defined characteristic critical
angles for transmission of structural energy and diffraction of acoustic pressul@9®Acoustical
Society of America.

PACS numbers: 43.40.Dx, 43.40.Rj

INTRODUCTION at the drive location, and is diagonal for a uniform pl&t&?
as can be easily seen from symmetry arguments. The rein-

Discontinuities and reinforcements play a crucial role inforcement acts as a reaction load on the uniform plate, which
enhancing the amount of energy scattered and radiated frogan be directly determined using the plate admittance matrix
fluid-loaded structures. The analysis of a single scatterer aind the impedance matrix for the rib. In this way one solves
obstruction, acoustically isolated from others on the structhe scattering problem by a standard superposition of forces.
ture, contains the essential features of the problem and pro- The three-member problem of Fig. 1, on the other hand,
vides some quantitative information about the processes ireannot be solved in exactly the same manner. Consider a
volved. Thus some time ago, Lybnobtained simple flexural wave incident from plate 1 striking the dissimilar
approximations for the sound radiated from a beam attacheplate junction with an equivalent applied force and moment
to a plate. This work was subsequently complemented by theeplacing the rib. No matter how one chooses the effective
calculation of the force and moment admittances, obtainefbrces and moments at the junction, the equivalent line load
numerically by Nayak and analytically by CrightoA,with cannot cancel the incident wave on the second plate, plate 2,
further insights given by SmithThis was followed by com-  as it must. This is because plate 2 is a different wave-bearing
prehensive studies of transmission and acoustic scatterirgiructure. But, one can define and derive the analogous ad-
from a single rib on a panér.’ Recently, the effects of vary- mittance matrix for the pair of fluid-loaded plates in the ab-
ing junction conditions between the rib and plate have beegence of the internal attachment. An explicit solution has
studied by Gud:® We note that all these analyses concernedecently been given by the authdfsand it is a full matrix,
a reinforcement attached to a uniform panel. with coupling between force and rotation and between mo-

In this paper we consider the more general but practiment and deflection. The solution to the simpler but non-
cally realistic situation of a nonuniform structure with a re- trivial scattering problem for the dissimilar plate junction
inforcing member. The structural configuration is modeled asvithout the internal attachment is also required, but this too
a single rib attached to the junction of two dissimilar plates.has been recently solved, by Norris and Wickh&nTo-
The three-member junction is depicted in Fig. 1. We will gether, the analyses of Norris and Rebir€lgnd Norris and
investigate the consequences of the three-member junctiowickham™ provide the ingredients for the solution to the
on an obliquely incident wave, either acoustic or structuralthree-member scattering problem. In the limit that plates 1
although the numerical examples will focus on structuraland 2 are identical then the Norris and WickHasolution is
wave incidence. The related problem of a wave obliquelytrivial, and all that is required is the diagonal admittance
incident on a rib on a uniform plate was analyzed bymatrix3'*
Lyapunov® and more recently by Photiadis Oblique inci- In Sec. | we formulate the dynamic equations used to
dence was also briefly discussed by Crighton and Maidanikmodel the plates and internal frame, see Fig. 1. The plates are
for the case of a rib attached to a membrane. In general, thetescribed by the classical theory of flexure and the reinforce-
acoustic effect of an attached internal rib on a uniform platement is assumed to be adequately characterized by a two-
can be completely described by the line admittaf@meim-  degree-of-freedom attachment. The formal solution is out-
pedancgmatrix for the fluid-loaded plate. This is the matrix lined in Sec. Il where the whole result is split into three
relating force and moment to the plate deflection and rotatiomomponents. The first part is the specularly reflected field for
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Fluid, z >0 A 2 T2tk p=0, —o<x<®o, 0<z<», (5)
E =Ty . . .
N \ where k is the effective wave number, defined by
------- = k?=k?—kj. At the same time, elimination of the displace-
plate 1 I/ plate 2 mentw(x,y) between the two boundary conditiofty and
rib (3) gives a single equation for the pressure on each half-
plane(now line),
FIG. 1. The three-member junction and coordinate system. %15()( 0)=0, x<O0; <. F_)(x,0)=0, x>0, (6)

with the operators defined as
a plate of infinite extent composed entirely of plate 1 and is ) )
d
—4 2
i (W‘ %

relatively simple. The remaining two components rely on 1
previous results concerning two joined dissimilar plates

whereKL2 are the flexural wave numbers of the plates, and
a, , are the “null frequency” lengths,

— {9 .
Zi=1+a; 27" j=1,2, (7)

and their corresponding line admittance matfixThe de-
tailed, explicit form of the solution is presented in Sec. lll,
where several limiting cases of interest are discussed. Finally-
in Sec. IV, we discuss and show the various diffraction co- Kf=w2m] IBj, aj=m/p, j=1,2. (8)
efficients of the wave fields emanating from the junction. e.l_

close with illustrations of the reflected, transmitted, and ra- he null frequency at whiclka=1 (mw=pc) provides a
diated energies of the scattered wave fields. possible criterion for defining the transition from low- to

high-frequency regimes for each fluid-loaded plate.

Suppose that an internal frame is attached at the junction
of the two dissimilar plates located alomg-0. Concerning
the connection of all the componenfplates and internal

We consider time harmonic motion of frequeney0,  frame), coupling of out-of-plane to in-plane motion occurs
with the terme™'“! understood but suppressed. The fluid-because of the mismatch of neutral axes. To leading order,
loaded plates lie in the plane=0 and meet alongk=0, this coupling is assumed to be negligible and we have ig-
—oo<y<w, see Fig. 1. They are semi-infinite and uniform nored it. Or from a different point of view, an academic
but can differ in density, elastic properties, and thicknessproblem has been posed where we have chosen the neutral
The dynamic behavior of each plate is modeled by the clasaxes of the plates and that of the internal frame to coincide.
sical theory of flexure. Thus For simplicity, we characterize the internal frame as a

two degree of freedom attachment, with displacenves(t)

BjVVAW(x,y) —mjw w(x,y) =~ p(x,y,0), @ and rotationge(t). Its motion induces a reaction fordg-
wherew(x,y) is the plate deflection in the direction, and and torqueTg on the junction. The kinematics of the three
p(x,y,2) is the acoustic pressure in the fluid, which occupiesmember junction imply thatve=w(0) and ¢=—w’(0).
the half space €z<«. Also, m, , are the areal mass den- We define a rib impedance such that
sities, andB, , the bending stiffnesses of the distinct plates, [ —iew
andj=1 or 2 forx<0 andx>0, respectively. The relevant _z(fib>[ b
bending moment and effective shear force on either plate are ~lodk
given by the classical relations For example, ifmg, jg are the frame mass per unit length

M(X,y) = = B [W u(X,Y) + W 4y (X,Y)], (2a) and rotary inertia per unit length, respectively, then the im-

pedance is diagonal,
V(X,Y) =M ;= 2Bj(1—v))W y,\(X,Y), (2b)

- | (.L)mF 0
wherev; is Poisson’s ratio angi=1 and 2 forx<<0 and>0, 0 —i wJ'J'
respectively. The complex-valued acoustic pressure satisfies
the Helmholtz equa’[ion in the ﬂu|d, with wave number We note that the fOIIOWing analySiS is not limited to this
k= w/c, wherec is the fluid sound speed. Finally, the pres- Simple rib model, but can be applied to nonlocal impedances

sure and deflection are related by the continuity condition for wave-bearing internals.
The internal frame can be replaced by an equivalent

3) force and moment loading along the junction of the two
fluid-loaded plates. Equatiori6) hold for all nonzero values
of x, but not atx=0, where certain jump conditions need to
be imposed. Ak=0, the internal frame induces on the plate
system a phased-line force in the positize direction,
Frey, and a phased-line moment about thaxis in the
clockwise directionTre'*yY, such that

|. DEFINITION OF THE PROBLEM

F_
E

9

()= (10

> _9p _
pwW(X,Y) az(x,y,O), 0 <X,y <o,

wherep is the fluid mass density per unit volume.

The phase factoe'*yY is assumed for all dynamic quan-
tities, and is explicitly removed thereby suppressing yhe
dependence. Thus we defipeandw by

p(x,y,2)=p(x,2)e"Y, w(x,y)=w(x)ey, (4 _ —
: i — v M(0+)=M(0—)=~Te, (113
with analogous definitions foM(x) and V(x), and the _ _
Helmholtz equation becomes V(0+)—-V(0—)=—Fg. (11b
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The reduced moment and shear force follow fr@nas >k. We have selected this branch fprso that the Fourier

o ore o= superpositions of solutions are outgoing at infinity. Alsg,
M (%)= =Bl «x(X) = vkyw(x)], (129 is the plane wave reflection coefficient for plate 1. Thus

V(X)= = BIW ol X) — (2= ) koW ()], (12b) #(£)=1-2ID;(§), j=1 or 2, (17)

with the appropriate values taken Brandv depending a&  where
is positive or negative. B _ 4.2 22

The problem is therefore, that the presspisatisfies the D;j(&)=1—a;7(£) (x5 (£ +ky)"—1). (18)
Helmholtz equatior(5) and the boundary conditior§) on  Numerical calculations involving the branch cuts and the
the plates. The deflectioow and its first derivative choice of roots are simplified by givinga small imaginary
W' =dw/dx are both continuous at the junction, wheveis  part, i.e., k=|Kje's, O<e<l. This is consistent with the
related top by (3). In addition, the junction condition®),  physical restrictions imposed by the radiation condition, and
(11), and(12) must hold. Finally, the scattered wave fields in guarantees the existence of a strip of analyticity for certain
the fluid and on the plates must satisfy the radiation condifunctions. The strip is defined bye. 77" N.7% ", where. 7"
tion as/x*+z°—. are the upper and lower halves of the compéeplane. It is

assumed thab;(£)#0, ée 7" N7, and thatéye 7.

Il. FORMULATION OF THE GENERAL SOLUTION

A. Formal solution C. Solution b

We first write the total solution as the sum of three com- Using (13) with (16), the plate Eq(6) become
ponents,

P(X,2) = pa(X,2) + Pu(X,2) + Pe(X,2),
W(X) = Wa(X) +Wp(X) +We(X). (13

,Z"l[ﬁb(x,O)-kﬁc(x,O)]:O, x<0, (193
ZolPo(%,0)+Pe(X,0)]= = %5P4(x,0), x>0. (19

o _ We choose the pressupg such that the contribution from,
Similarly, _we _ split _the moment and force as i, the right member of Eq19b) is cancelled. This is accom-

M=Ma+Mp+ M, andV=V,+V,+V,, respectively. Each pjished by writingp, as a Fourier integral of the fori,
separate solution has an applied load at the junction of force

F,, and momenf,, for a=a, b, andc. Thus Pb(X,2)=—AgPo(X,2), (20)
Mo(0+)—M,(0—)=—T,, where
— — _ _ (14) _ 1 = G(&) gliéx=v(6)7]
vV, (0+)-V,(0-)=-F,, a=ab, andc. pO(X'Z)Eﬁ f_ 6 & dé, (21)
We choose the solutions so that they each satisfy the Helm-
holtz equation(5) and the first of the two boundary condi- and
Fions. of Eq.@. The second qondition of Eqb) a'nd. the 1, plate wave,
junction conditions ak=0 are in general, only satisfied by Ao=1 &, ) (22
the total solution. In this regard, we note that the conditions S1(§0) —#2(&),  acoustic wave.

(11) may be replaced by the equivalent pair We also define the generalized dispersion function
TatTp+Te=Tg, FatFptFc=F¢. (15 G(6)=Do(&)/KT(§)=D1(£)/K™(§), (23)

where K= (&) are the unique Wiener—Hopf factors of the

_ _ quotient function
The pressure, and displacement/, are chosen as the _
incident wave with horizontal wave numbéy (they com- K(£)=D1(&)/D2(8), (24)
ponent has been suppressed for convenijewbich satisfies such that
the boundary condition or<0. It is assumed to be one of Ry + — e — +
the following: K(O=K (HIK'(§), K (-9=1K"(§. (29

B. Solution a

Thus by definition,K* (&) are analytic in the half-planes
2¢*. An explicit formula forK ™ (¢) is given in the Appen-

e 7€)z plate wave, dix, based upon a factorization method developed by Norris
and Wickhant2 The form of the pressurg, in (20) follows
directly from some results concerning the acoustic diffrac-
(16)  tion from two joined flat plate&® It may easily be verified by

The plate wave numbej, is the root ofD(£) =0 [see(18) direc_t supst_itution ofp, defined by Eqs(20) through (24)
below] which exists at all frequencies, and corresponds to thdhat it satisfies

F_)a(xu Z) = ei §0X

X i} _ .
[e702+ 72, (£5)e” 7], acoustic wave.

subsonic flexural wave. The square rogt) = (£2—k?)/2 Z1pp(x,00=0, x<0, (263
is defined as an analytic function in the compleglane cut o= o=
so that its real part is non-negative. Along the real axis, Z2Pp(X,0) = = Z5pa(x,0), x>0, (26b)

y(€)=—iVk?— & for |&|<k and y(&)=+&—k? for |£]  as claimed.
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D. Solution ¢ where, following the analysis of Norris and Rebingkyhe
coefficientsA, andA; can be linearly related to the unknown

The plate equatior{19) are now reduced to homoge- - .
P quatior19) g loads at the junction,

neous equations fq,,

Z1Pe(X,00=0, X<0; Zp.(x,00=0, x>0.
27

The solution is apparentlp.=0, however, a nonzero ap- therefore, using Eq428) through(30) the additional pres-
plied forceF. and a moment . are required ax=0 inorder o o ig

to satisfy the junction conditions there. Tipe solution is

therefore analogous to that which describes the line admit-

tance at the junction of two plates, as discussed in Ref. 12. Pc(X.2)= 1 ﬁw
We first write thep, as a Fourier integral of the form

A

Ao

= —2i(N; + Nz)‘l[i_FTj. (30)

o0

(&1)(Ng+Np) ™+

gliéx=v(§)7]
G(§)

-T.
iF

P(X,2)= % fiof)c(g)e[ifva@)z] dé. (28) dé. (3D

The general solution of the homogeneous dual integral equa%(—) th-(l;h dee?egz{szoor; torIeE;(grgnQ)tt:nf:?r:g}t/r" blfjér'?h\;ef?/ '?jlrlr(])lzidre d
tions (27) which satisfies the kinematic continuity conditions vatl : X uid-

system of joined plates, and we refer the reader to Norris and

; 3
s thert L Rebinsky? for details. For our purposes, all that is required

Pe(€)=(Ag+AL1E)IG(§), (290  are the matricedl; andN,, which are defined as

|
. K A . Ok | ]
N, (9) = 2 9K2 , h=1 or 2, (32
y : y
1+m ln sinh op 1+ m) cosh op
|

and the numbet} is an averaged difference in the material P(X,2)=Pa(X,2)

properties of the two plates
1 (= A8 G(&)

S ——— ellox=n9z] g¢
9=1—(v2B>—v1B1)/(B2—By). (33 27 J - £= &0 G(§)
Also, *+e77" and =*{e " are the roots of _ A
A& =74(8), o =Pa(x2) A =1 50 [Po(x,2), (38
2+ 2=-2k2, 22re=ki- 18, (34)  Where Po(x,2) is defined in Eq(21), andA is a quadratic
Y Y polynomial,
where
2(£§— o) - _Tc}
A(E)=Ag— ————— (&,1)(N;+Ny) Y . _ °|. 39

. o .. The solution defined by Eq$38) and (39) is similar to that
Many of the subsequent equations are simplified by definitqyained by Norris and Wickharfor the scattered pressure

choices for the roots. We therefore choose them as from two joined flat plates. Note that the three member prob-
lem is now reduced to findind. and F, which define the
2_ .2 2 2_ 422 c c
=0~k HG=—G k) (36) polynomial A(€).

The roots depend on the wave numbgyandk, , and{;#{,

as long as$#0. We assume this to be the case, for simplic-
ity. Finally, oy and o, are defined by lll. EXPLICIT SOLUTION AND SPECIAL LIMITS

o= log K*(&), n=1 or 2. 37) A. Applied moment and force loading
The general solution depends upon the line loBdand

F., which represent the combined contribution of the frame

momentT and forceF ¢ plus a component from the moment
We now combinep, of Eq. (16), p, of Egs.(20) and and force jumpsT,+ T, andF,+F, generated at the junc-

(21), and p, of Egs.(28) through(30), to obtain, using Eq. tion. The latter are defined by E¢l4), and they occur be-

(13, cause the solutiom,+p, does not completely satisfy the

E. The total solution
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continuity conditions ax=0 for a two plate system. The

total force and moment balance at the junction requires that

(15) hold, or
_Tci_ =Tk —Ta—Tp
iFC_‘[iFF TliF iR, (40
Also, the unknownd . andF can be expressed as
[ _Tc- V_Vc(o)
iF |72 —iwl(0) ) “1

whereZ is the impedance matrix for two joined flat plates
under fluid loading? It is given explicitly below in(55).
Note that the vectors in Eq41) differ from those in, for
instance, Eq(9). Based upon the analysis in Ref. 12 we fin

it more convenient to redefine the impedance matrices so that

they relate vectors as i®1). This definition of the imped-

n—1
{m

2
An=G(&o) 2—1 HETKD
m= mT Ky

Tm “Om

gm_fo §m+§o

Note thatw,+w, and its first three derivatives are continu-
ous atx=0.
It follows from Egs.(45) and (46) that

~T,— Ty Ao+ (1= 9)kiNg
iF,+iFy Mg+ (1+9)KoNg

X

+(=1)"

. (47)

— A, . (48)

After substituting for thex ,’s using (47) and some straight-
forward algebraic manipulations, E¢48) can be written

g Simply as

—T,—T 1 3
iFa+iFﬂ=— > AG(&)[(£5-£5) Ny

ance is unconventional, but it can be easily reconciled with

standard procedur®.We therefore redefine the rib imped-
ance matrix to be consistent with this new definition; thus

—Te . w(0)
— _ 7(rib) =
iFJ 2 i (0) | (42)
Comparing(9) and (42), we have
- Zg-rib) Z<1n2b) |Z(2r_‘lj_b) Z(2r|2b) (43)
|z Zgp] g iz

Combining Eqs(40) through(42) with the second 0f13),
we find that

_Tc rib)y — _Ta_Tb
[iFJ:_Z(ZJFZ( ) [iFa+iFJ
] Wal0)+W(0)
2] oo 49

The jumpsT,+ T, and F,+F, follow from Egs. (12)
and(14) as

TatTo= (B2~ By)[(Wat+Wp) xx(0)—(1—9)

X KZ(W,+ W) (0)], (453
FatFo=(Bo—B1)[(WatWp) xx(0)—(1+9)
X K2 (W, +Wp) 4(0)]. (45b

The displacementv,+w,, can be found fairly readily from
the analyses of Norris and Wickhamand Norris and
Rebinsky'? Thus equatiort4.13 of Ref. 13 withA,= Ay,
and equatioriB.11) of Ref. 13 with appropriate modification
of the termsu, for oblique incidence, as given in E(9) of
Ref. 12, together imply that

(ix)"

n!

3
(By—By)(WatWp) = —Aogo n +0O(x%), (46)

where

3313 J. Acoust. Soc. Am., Vol. 98, No. 6, December 1995
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.
o)’

_ AG(&)
2(5(B,—By)

+<§§—§%>—1NZ]{ (49)

}:

Similarly,

{ W,(0) +wy(0)

—iW/(0)—iw[(0) [({F—&) My

- 1
) 1M2][ go}. (50)
where
. cosh o, +¢{, % sinh o,
M,;1= )
+Z, sinh o, cosh o,

n=1 or 2. (51)

Also, the matricedN,, andM , are related through the expres-
sion

Np(9)=Jn(3)My, (52
where(Ref. 12
. K 0
kj+ 2
Jn(9)= 2 (53
0 1 —2—zﬂky
Tz

Upon substitution 0f49) and (50) into (44), we obtain
the desired loads for problemas

A

[ iF, |~ 5 G(£0)Z(Z+2™) H(F- )

X[Iy(9) + Lo A(By—By) 12 M  +(5—€5) 1

X[Jo( ) — L5 %(Bo—By) 12 M}

. sa

o)’

where the junction impedance matixcan be written &<
Z={5(B,—By) (N1 +Np) (M3 —Mp) ™t (55

Hence, the polynomial(¢) using Eq.(39) is given by

A. Rebinsky and A. N. Norris: Wave scattering from junctions 3313



A .
;—?=1—(§—§o)(§,1)(M1—M2)1(Z+Z(”b))1
X{(£5=£) M L3(B— B Iy (9) +Z ™M,
+ (45— €0) M L5(B—B1)Ip(9) — 2™ M}
X 1 56
£l (56)
This can be further simplified as
A(¢) X1 Xs
—=1- 1)(X;+X
Ao (E€— &) (& D(X1+Xy)™ Ll fo (2 fo}
X 1 5
&ol’ (57)
where
X;={5(B,— BN +Z2™M
_ 42 rib (58
Xo={§(By—B1)Ny—Z"M,.

We have now completed the general solution for the prob
lem. Thus the functio®\(¢) of Eq. (57), combined with Egs.
(16), (21), and(38), provides a general and explicit formula

for the pressure in the fluid scattered from the three member

structure.

B. The limit of no rib, and of a clamped junction

It is of interest to examine two special limiting configu-
rations, which are independent of the internal member. Whe
Z™_,0, the limiting case of two fluid-loaded plates in
welded contact is obtained, namely

A
% =1 (£~ £0) (£ ) (Ny+Np) 2
0 lwelded
N, N, 1
[ﬁ 2 Hg | (59
17 %0 0]1 %0

Conversely, aZ ™ —, the limiting case of two clamped
plates is obtained. Thus using E&5) we find that

A
—f) — (£~ (&) (My=My)
0 clamped
M, Mz 1
60
X{a g 286 (©0

By settingk,=0 in the above expressions one recovers the

two-dimensional form of the polynomial for both the
welded and clamped cases, as derived by Norris an
Wickham?3

C. A uniform plate

We may now consider the limit of two completely iden-
tical plates, i.e., a single uniform plate of infinite extent, with
an attached internal frame. The “incident” pressyg re-
mains the same, but nopy, is identically zero. Various other
simplifications result from this limit. ThusD,(§)
=D,(£)=D(&), K*—1 and hences(£)=D(¢), using Eq.

3314 J. Acoust. Soc. Am., Vol. 98, No. 6, December 1995 D.

(23). For simplicity, letAB—0, keepingAm finite. Then,
1Zol, |4, and|gy|—o, while My, M5, N;, andN,—I. Thus
the c pressure becomes, using Egl),

_ 1 (= 4
=— i - [i1&x=v(§)7]
Pe=5— f_m(Fcﬂch)D el @l de. (61)

The c-loads at the junction follow from Eq44) and the
identitiesT,=T,=F,=Fp=w,(0)=w[(0)=0, as

{ i—F j = —VT/a(O)Z(Z+Z<rib))12("*’)[510}, (62)
and
_ (&)l pw?, plate wave,
We(0)= [ (&) 1—.72(£&y) ]l pw?, —acoustic wave. 63

The impedance matriX given by (55) (cf. Norris and
Rebinsky?) becomes in the limit of two identical plates

1 4 -
0 (_Zﬁ
5 pw* da
) - ( 1 dpw ! '
— 0
pw ga
identical plates, (64)
and we have shown that
5
- = j—2
pw’ da 2B ngl (&n)
n
y m+ 28,0, i1 43
) =1 an )
A&+ KD +slay’(é)|
(65
whereé;,... & are the five zeros dP(£) =D(¢€) 5(5) in. 77+

andD(&€)=2-D(¢§), i.e., they solve

[(£2+K2)2— k*]2(£2—k?) - x®a2=0 (66)

The complex angle$;,....65, are defined in accordance with
the Appendix asd,,=cos (£,/k) ands,=1 or —1 depend-
ing as ¢, is a zero ofD(&) or D(§), respectively. Thus
sp=1-D(&,).

Combining Egs(61), (62), and(64), we determineA for
two identical plates with an internal frame as

. 11
A(§)||demlcal_ D((‘é ; (f 50)(§ 1)(Y+Y(nb)) 1[50}'
(67)

whereY=2""and Y™ =(z"™)"* are the junction and rib
admittances, respectively. The total solution for the uniform
plate with an internal attachment then follows from Egs.
(39), (63), and(67) as

_ _ _ 9
P(X,2) = Pa(X,2) _Wa(o)( —ia 1)

X(Y+Y(rib))_l|:§1}pline(xlz)l (68)
0
and
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L= e B > -
pnne(x,2)=—-f D 1(gell&1dzlgg, (69) pS=7(0) \/ —e ™4k Kkr—o, (73)
27 ) _o wkr

The pressur@;;,. corresponds to a unit line force applied on wh

a uniform plate. Equatiori68) can be expanded by using ere

E.qs.(10), (43), and the off-diagonal form & in Eqg. (64), to ] 1 G(&) A&
give 1 2(0)==5 (&) G(o) E—&,' (74)
S x.2) = B(x.2)— peti (O] | 4 ‘_P) )
p(X,Z)— pa(xiz) pw Wa(o) Ja mF
d ip\"*ol %o 7 t
—i 60 % + E) 5 pline(xlz)- (70) T 40° 60 :-

This provides a relatively simple formula for the response
from an arbitrary rib to oblique incidence on a uniform plate.

IV. EXAMPLES

In all of the results shown here the material is the same
for the entire structure. The contrast at the junction is pro-
vided by a discontinuity in plate thickness with three varying
degrees of rib impedancéa) infinite, (b) zero, andc) finite.
When the rib impedance is infinite, the structure corresponds
to two plates clamped or fixed along the junction line. For
zero rib impedance, the internal frame disappears and the () Ipl,dB
structure behaves as two plates in welded contact. The nu-
merical results are all for the material combination of steel
and water, with a thickness change of 100% from the left
plate to the right. This corresponds &6=2, where« is the
thickness ratio,

a=h,/h;. (71)

We assume a steel rib of rectangular cross section of thick-
nesshg=0.5 in. and lengthg=4.5 in. with mass per unit
lengthmg and rotary inertia per unit length:=mg(h3/12
+12/3) [cf. Eq. (10)]. The frequency dependence is dis-
cussed in terms of the nondimensional frequefigyormal-
ized with respect to the coincidence frequeiagy of plate 1,
o Kk
O=—=— (72

5.
We1 Kl

Equation(71) implies thatx,= «,/+/a, and hence the coin-
cidence frequency of plate 2 is &=1/e=0.5. Finally, all

the results shown concern a subsonic flexural wave incident
from x<<0 (plate 1.

A. Diffraction coefficients

We assume that the observation distances from the junc-
tion are sufficiently large that far-field approximations can be
used. The acoustic response follows by applying the method
of steepest descent to the integ(a8), while the structural
response depends upon contributions from the poles associ-
ated with the subsonic flexural waves. All these diffracted
waves can be characterized by junction diffraction coeffi-
cients. We refer the reader to the paper of Norris and Ipl dB
Wickhart? for a more detailed discussion of these coeffi-  (€) ’
cients and their reciprocal identities. _ _

We first consider the scattered acoustic far-field pressur IG. 2. Polar plots'of the scattergd acoustic pressure gmplltude from the
. . . . . . . ree member junction for normal inciden@@) and two oblique angles of
in the fluid, which can be written in terms of the diffraction jncigence at a frequency 6=0.3. (a) infinite rib impedance(b) zero rib
coefficientz(6), impedance, an¢c) finite rib impedance.
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FIG. 3. The transmission coefficient as a function of oblique angle of incidence and freq(@nnfinite rib impedance(b) zero rib impedancec) finite
rib impedance, andd) same finite rib impedance as (o) but plate 2 is half the thickness of plate 1.

The scattering angl® is defined byé=k cos#, that is, it  respectively. Figure 3 shows the behavior of the transmission
measures the angle between the positivexis and the pro- coefficient as a function of the angle of oblique incidence
jection of the observation direction on tlxez plane. In Fig. and of frequency. Again, the incident wave is a subsonic
2, we show the directivity of acoustic diffraction for a sub- flexural wave on plate 1, and normal incidence corresponds
sonic wave launched on plate 1 striking the joint at differentto 0°. Several effects are evident from the curves. First, that
angles of incidence relative to normal, and for various rib the transmitted amplitude falls off rapidly at high angles of
impedances(a) infinite or clamped plategb) zero or welded incidence, and secondly that the angle at which the transmis-
plates, andc) finite. The curves in Fig. 2 indicate that at low sion begins to diminish is an increasing function of fre-
frequencies, e.g)=0.3, the total radiated power is smallest quency. Also, there appear to be different critical angles, and
for two welded dissimilar plates and largest when they ardhe angles depend upon the nature of the attachment.
clamped. The response for a finite rib impedance lies be- Consider first the case of a rib of infinite impedance,
tween the welded and clamped results. Fig. 3@). The transmission is apparently greatest at the criti-
Next, we turn to the scattered subsonic flexural wavescal angle defined by
We define the structural diffraction coefficients in terms of . crit_
the scattered on-surface pressure on either plate far from the > ¢f = Kixy. ()
junction, This angle relates the flexural wave number on plate 1 to the
1 fluid wave number, and can be expressed using(E2).as

o= Ay flito X767 x<0; . .
(75) sin o™= 0. 79

The value of the critical angle therefore depends strongly
Here & and &2 are the subsonic flexural wave numbers onupon frequency, which is evident from Figla For oblique
plates x<0 and x>0, respectively, i.e.Dl(ggl))=0 and angles of incidence beyond this critical value, the incident
D,(£))=0. The reflection and transmission coefficients arewave cannot travel through the adjacent fluid and transmis-
A(—§E)1))G(§§)1)) sion across the rigid rib is essentially suppressed. This phe-

— (@) 2)
pS:'—Zlexe[lgo x=v(&)71 x>0,

Phex= o DT~ nomenon was previously illustrated by Lyapufibaend by
265 K™ (&7)D1(&67) Photiadis! for the case of a uniform plate with an infinite
AER)G(£D)K(£2)) (76)  impedance line discontinuity. The results of Figa)3suggest

T o= ‘()1) (2‘)) , (2)0 ' that the effect is only weakly dependent on the properties of

(&7 — &6 )Da(&7) plate 2.
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By contrast, in Fig. &) we consider a rib of zero im- 1.0 - S
pedance. The same overall behavior is observed but a differ- j
ent critical angle is clearly operative, one which is indepen- j
dent of frequency. Physically, this critical angle describes the .
total internal reflection from a slow mediutthin plate into . =7~~~
a fast medium(thick plate and here it relates the flexural
wave number on plate 1 to that of plate 2,

Energy

sin "= Kyl Ky, (79

or, more specifically
0.0 e e N L . L L '
1/\/2, for identical materials, (80) 0 10 20 30 40 50 60 70 80 90

crit__

sin ¢

(a) Incident Angle (deg)
which is exactly 45° for the pair of plates considered. It can

also be observed to a lesser extent in Fig) &here it shows 1.op |
up as a kink in the curves after their maxima. Il
The case of a rib of finite impedance is shown in Fig. !

|

3(c), and exhibits a combination of the effects seen in the
two previous limiting cases. This is better observed by com-
paring differences in the transmitted energy which is dis-
cussed in the next section. But it is clear that the infinite
impedance(rigid rib) does not represent the actual state of
affairs with a finite impedance rib. The “plate” critical angle
<pf,”t associated with the zero impedance limit is more signifi-

cant in this case. The energy results below will reinforce this (11 il 0 B L U
conclusion. In Fig. &) we illustrate the opposite plate con- 0 10 20 30 40 50 60 70 80 90
figuration (e=3) with an identical finite rib impedance to (b Incident Angle (deg)

Fig. 3(c). For this case, the critical anglﬁ;‘;”t no longer is
real (it is compleX and it does not play a role in the trans-
mission. Thus, one will observe energy transmitted across
the rib for all angles of incidence. But, the effect of the
critical angleg{™ is observed as a ripple on the curves.

0.5+

Energy

|
I
|
!
!
!

B. Energy redistribution

_____ * reflected
—  transmitted
""""""""" diffracted

Energy

The flexural waves on each plate are both subsonic and
provide the only means of energy transmission away from
the junction, other than the acoustic radiation loss. Thus,
assuming both flexural waves propagate, i.e., that <p,§”‘,
then the statement of energy conservdiids

10 20 30 40 50 60 70 80 90
D( 582)) ¥ 582)) , (c) Incident Angle (deg)
D!(g(l))’y(g(l)) 'J/-‘ﬂe)(|
1150 0 FIG. 4. The reflected, transmitted, and diffracted energy at a three-member
1 4 (= junction as the oblique angle of incidence is varied at a frequen€=dd.3.
- - |g( 9)|2 de. (81) (a) infinite rib impedance(b) zero rib impedance, an@) finite rib imped-
Di(&él))v(fél)) ™ jo ance.

The three terms in the right member are each positive and
less than unity, and correspond to the fractions of energy In Fig. 4(b) the rib impedance is zero and almost all of
reflected on plate 1, transmitted on plate 2, and acousticallthe energy is transmitted for oblique angles of incidence less
radiated into the fluid. than the “plate” critical anglegof)”t given by Eq.(80). For

The separate components of reflected, transmitted, arghgles above this value the energy is completely reflected.
diffracted energy are shown in Fig. 4. For two clamped dis+or a rib of finite impedance, Fig.(d), we again obtain a
similar plateg Fig. 4(a)], most of the energy is carried by the mixture of the two limiting cases. We have chosen the di-
reflected signal. There is a sharp transition at the “fluid” mensions of the rilfi.e., impedanc&™) so that its transmis-
critical anglee$™ of Eq. (78) where the transmitted and dif- sion behavior will lie qualitatively midway in between that
fracted energies both become essentially zero. It is interestf zero and infinite. One can clearly see the simultaneous
ing to compare Fig. @) with Fig. 3(a), which shows a sig- effects of both critical angles. Acoustic radiation ceases be-
nificant transmitted pressure amplitude, but the associategbnd the fluid critical angle™( ~ 31°), while the transmis-

energy in Fig. 4a) is clearly small. sion of structural energy is totally suppressed at the plate

1= |~%flex| 2t
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general solution reduces to that of a pair of plates either
welded or clamped together. Explicit formulae for the struc-
tural scattering coefficients have been computed for various
parameter ranges. It is found that transmission of an incident
subsonic flexural wave is highly dependent upon the angle of
approach and the nature of the obstruction. In general, trans-
mission is fully suppressed when the angle of incidence is
greater than the critical angtp:,cj”t relating the two subsonic
wave numbers of the plates. As the rib impedance is varied,
transmission is greater for no rib in comparison to a rigid rib,
and the amount of transmitted energy for a rib of finite im-
pedance is intermediate between these. When the rib imped-
ance is finite, the stiffness of the reinforcement dictates the
amount of transmission.
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APPENDIX: FACTORIZATION OF K(§)

A semianalytical form foK ¥ Refs. 13, 14 is
1+ EE7) [Dy(0)
S (1+¢l€Y) [D4(0)

xexp[é1(€)—da()], (A1)

where the productHl’ are taken only over the three roots for
whichs,=1, and

1/2

K*(§)

5
cos’l(glk) 2
/ n=

(9 sin 8,— 6, sin @
2 1

cos 6—cos 6,

1
$()=5-

0 sin 6,—(7—6,)sin 6
s, dé,
cos 6+ cos 6,

with s,=1-D;(&,) and 6,=cos Y(£&/k). Here, &,
n=1,2,..,5, are the zeroes B £) such that, are in.7",
with no loss in generality, an@ is the rationalized form of
the dispersion relation for either plate, given by E&f). The
branch _of the inverse cosine is cdé&lk)

(A2)

FIG. 5. The energy redistribution at a three member junction as frequency is1 log[é/k+ y(§)/K], where the principal branch of the

varied for an oblique angle of incidence of 308) Infinite rib impedance,

(b) zero rib impedance, an@) finite rib impedance.

critical angleg

p

logarithm is taken,—7<Im log(-)<w. The form in(Al) is
used for practical calculations because it does not have any
possibly ambiguous square root functions in the preexpo-

ot _ 45°). Finally, the components of en- nent, and the integrand is smooth.

ergy are displayed as functions of frequency for an angle of
incidence of 30° in Fig. 5.

V. CONCLUSION

We have derived explicit expressions for the interaction
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