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The classical solution for the Scholte wave along a fluid and isotropic substrate .s well known. 
However, when the subshate is either a weakly anisotropic solid, or the adjoining fitrid is subject to 
a hydrostatic pressure, the analysis of Scholte wave propagation becomes rather complex and 
lengthy computations are required to obtain the solution. The purpose of this paper is to apply 
simple and computationally efficient expressions in the determination of Scholte wave speeds for 
substrates with either weak anisotropy or in lhe,presence of uniform initial stresses and strains in the 
substrate and fluid media. Both of these two simple expressions are for the incremental change in 
the Scholte wave speed Av/v from an appropriately selected isotropic, reference substrate and 
adjoining fluid under no hydrostatic pressure. The predictions of the Scholte wave speeds from the 
derived expressions agree to well within 1%-2% with the other approximation techniques for the 
high-frequency asymptotes of the Stoneley wave velocity dispersions in a fluid-filled borehole 
traversing either a weakly anisotropic formation or a formation with initial stres:;es and strains 
caused by a borehole pressurization. ¸ 1995 Acoustical Socie.ty of America. 

PACS numbers: 43.25.Fe, 43.20.Bi 

INTRODUCTION 

The speed of a wave along the flat interface of a two- 
phase system comprising a uniform solid and an inviscid 
fluid is a function of both the anisotropy of the solid and the 
state of deformation and prestress in the solid and liquid. 
Both effects are considered here as small departures from the 
standard configuration of a fluid overlying an isotropic solid. 
Our motivation comes from the fact that acoustic reteasure- 

ments on rock are normally made in a fluid-filled borehole 
environment. Depending upon the prevailing geological 
stratigraphy the material symmetry axes may be ohliquely 
oriented relative to the borehole axis, as occurs in dipping 
beds. As a consequence the resulting anisotropy can be rather 
complex in the borehole coordinates. A fast and simple 
means to determine the Scholte wave speed under arbitrary 
conditions of anisotropy is required. 

Our interest in prestress and its in,fluence on the Scholte 
wave is based upon the fact that the nonlinear properties of 
sandstone can be orders of magnitude greater than typically 
seen in metallic materials, • as supported by data from recent 
experiments? The large nonlinearity is reflected in the mag- 
nitude of the third-order moduli relative to the second-order 

toodull. For example, the standard measure of fluid nonlin- 
earity is the parameter B/A, which is approximately 5 for 
water. The corresponding ratio of, for example, the solid 
elastic moduli Ci66//.g can be on the order of 1000 in mag- 
nitude, as it is for material II in Table II. Such enormous 

nonlinearity suggests that wave speeds should be v. ep• sensi- 
tive functions of confining pressure and stress. Conversely, 
measurement of the sensitivity of the speeds to the level of 

pressure could provide a technique of determining the rock 
nonlinearity, in the same w•ty that variations in the speed of 
Rayleigh waves as a function of the prestress applied to a 
solid are used to measure acoustoelastic parameters? 

The theoretical analysis of two joined fluid/solid half- 
spaces in a state of uniform prestress is similar in many 
respects to the Rayleigh wave problem for a solid only, first 
considered by Hayes and Rivlin 4 and recently revisited in 
Ref. 5, but it is complicatec. by the possibility of slip at the 
interface between the solid and fluid. Thus the prestress can 
alter the material contact of particles at the fluid/solid bound- 
ary, thereby destroying the connectivity of the points in the 
original, or Lagrangian, de,,cription. This is a rather subtle 
but nontrivial difficulty, and requires a reconsideration of the 
basic theory of acoustoelasticity to account for this possibil- 
ity. The correct formulation was described in some detail in a 
recent paper by Norris et ai., 6 and will be reviewed briefly 
below. 

We consider the generic problem of this type here: the 
Scholte wave and its depencence upon prestress, both in the 
fluid and solid. The Scholte wave solution for the unstrrssed 

system is introduced in Sec. I. The effect of weak anisotropy 
is considered first in Sec. II. The theory of acoustoelasticity 
for fluid/solid composite systems is summarized and applied 
to the problem at hand in Sec. HI. We follow the method 
developed by Norris eta!., 6 and use a modified stress tensor 
which both simplifies the traction conditions and makes the 
fluid stress symmetric. The results of Secs. II and [II are 
applied in Sec. IV to two problems of relevance in borehole 
acoustics. 
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I. INTERFACE WAVES 

An inviscid fluid occupies the half-space Vf:x2>O, and 
solid lines in Vs: x2<O. The wave travels in the x• direction, 
with exponential decay into the solid and no dependence 
upon the third direction. The dependence in the fluid is also 
exponential, but not necessarily decaying. A true interface 
wave decays in both media, whereas a "leaky" interface 
wave can have exponential growth in the fluid. This distinc- 
tion and its consequences are discussed at greater length be- 
low. The mateddais are specified by the fluid density and bulk 
modulus pf and A, respectively, by the solid density Ps, and 
the Lam• moduli )t and /x. Time harmonic motion of fie- 
queni•y t, is assumed. 

The equations of motion in the solid and fluid are, re- 
spbctively, 

Tij.i+Ps6O2uj:O, X2<0, (la) 

A Vg•b+ p/6o2•b=0, X2•>0, (lb) 
where u denotes the infinitesimal displacement, qb is the 
acoustic velocity potential with associated velocity •lmc7u/a•t 
= V •b, and rq are stresses in the solid: 

tij = CijklUl.l.. (2) 

The notation fd------c•f/•xj is understood here, and the summa- 
tion convention is assumed for repeated lower case Latin 
subscripts. The undeformed solid is isotropic with elastic 
moduli Cijkl=hSijSkl+].z(Sil•Sjl-{ - 8il•jk ). The displace- 
ments for the interface wave are confined to the x•-x2 plane, 
with u=(u I .u2), where 

i 
u=D Re -- e itø(sxl-t) 

6O 

[(s,- iot)e .... 2+ (/3,- is)Re'•3'•2], x2<0, x (s,iy)Pe_O, yx2, x2>0 ' (3) 
and D has the dimensions of the square of a velocity. The 
phase speed along the interface is defined by the real part of 
the slowness s: 

l/Re(s). (4) 

The Scholte wave corresponds to a real-valued s which is 
slower than all the other waves in the problem. However, we 
maintain the possibility of s being complex valued in order 
to consider pseudo-Rayleigh waves. The decay parameters 

(5) 

where o = x/(k+2/z)/p•, us = •f•-•,, and o I 
= Ax•pf' are the 6ulk compressional, shear, and acoustic 
wave speeds, respectively. The square-root function in Eq. 
(5) is defined such that ot and/3 have non-negative real parts, 
while y is real and positive if s is real and greater than 1/of. 

The complex numbers s, R, and P are found by satisfy- 
ing the interface conditions, continuity of normal displace- 
ment and normal stress, and zero shear stress, which imply 

s/ 0 2sot s2+/• 2 

p[/tx s'+/32 2s/3 ] 
The slowness therefore satisfies the equality 

(S2+j•2)2--40t/3S2+ P4ff:it =0, 
v s Ps Y 

or alternatively F---- 1, where 

F(s,)t,tZ,Ps ,A,pf)_=4v•4s2 /3( ot_ /3)_ 

(6) 

(7) 

(8) 

The associated wave speed is denoted as v(k,lx,ps,A,pi). 
We will need the following velocities and displacement gra- 
dients in the solid for later use: 

fi • = D Re{(se'ø•*'2 + R/3e'øttx2) ei½}, (9a) 

ti 2 = DIm{( ote'ø"x• + RseO, ttX•)ei½}, (9b) 

u l.l = D Re{- (s2e•ø•x2+ Rs]3e'øt•z)ei•ø}, (9c) 

U2, 2: D Re{ (ot2e •ø"•2 + Rs/3eøtt•2)e ' ½}, (9d) 

u2. • = DIm{ - (sure •ø• + Rs2eø'tl'•2)ei½}, (9e) 
where tp=6O(sx•-t), and R follows from Eq. (6) as 
R = - 2sct/(s 2 + j•2). 

II. WEAK ANISOTROPY 

A. Isotropic reference moduli 

The solid is assumed to be weakly anisotropic so that it 
may be approximated by an isotropic medium to leading 
order. We are interested in the first-order deviations of the 

interface wave speed from the isotropic value. Only the true 
interface wave, the Scholte wave, will be considered, al- 
though the later analysis for the effects of prestress is not 
limited in this manner. In general, the fourth-order tensor of 
elastic moduli display the symmetries 

C,jkl: Cjikl, Cijkl: Ctdij, (10) 
reflecting .the symmetry of the stress and the existence of a 
potential energy, respectively. There may be as many as 21 
independent moduli, or C•j=Cst in the Voigt notation, 
where I= 1,2,3,4,5,6 correspond to ij 
= 11,22,33,23,31,12, respectively. Let 

(li) 
and define the effective isotropic moduli associated with 
these Lam6 constants, 

•ijkl= i •ijakl-{- I•( (Sik (Sjiq- ailiSjk). (12) 
The wave speed in the anisotropic system is 

vanis = o(K,l•,ps ,A,pf) + A•, (13) 
where At5 is the additional shift in speed due to the aniso- 
tropic elastic moduli •ij&t + •Cijkl, with 

A C o•l = C ijkl-- • i]kl . (14) 
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It is assumed that the moduli AC u are small relative to the 
reference isotropic ones. Standard perturbation theory can 
now be used.' 

B. The perturbation integral 

The perturbation in velocity associated with the incre- 
mental moduli ACiikl is ? 

Al• f VsACijklUj,ibll,k dV 
o 2.fv06.6 dV (15) 

The integral in the numerator involves the strains u l.•, u 1.2, 
u2, l, and u2. 2 through the elements of ACijkl with i, j, k, and 
l= 1 and 2 only. Only four of these are nonzero: ACid, 
AC22, ACi6, and AC26. Furthermore, the integrals involv- 
ing the latter two are zero because of the fact that the strains 
Ul. l and u2. 2 are exactly 90 ø out of phase with the strains 
ul, 2 and u2. • for the Scholte wave solution. The integrals 
over one wavelength in the x, direction therefore vanish, 
leaving only two independent integrals, 

f ACijktuj.iUl,kdV=AC"fv,(Ul.')2dV Vs 

+Ac22fv (u2.•) 2 dV. (16) 
The wave speed in the presence of the weak anisotropy is 
therefore, from Eqs. (13), (15), and (16), 

Oani•=O(•,fi,p,,A,p/)+[(C•l--C22) I i C66 Io 

(C11+C22-2C12-4C66) I2} F + 07) 

where I o, I I , 12 , and, for later use, 13 are defined as 

and 

Io=o;2 f a.a dV, (18a) 
J V s 

I• = fv [(Ul'l)2-- (u2'2)2]dV' (18b) 

12= fv [(u•A)2+ (u•'•)•]dV' (18c) 
$ 

13= fv,[(Ul.i)2+(u2.1)2]dV, (18d) 

F=( fv?l.fi dV)( fvpfi.il dV) -I (19) 
The unperturbed interface waves are assumed to be 

wave solutions with planar phase fronts. The integrals for I 0, 
1•, 1•, and 13 can then be performed over a plane of constant 
phase, which we select as the plafie x• = 0. Furthermore, the 
unperturbed wave motion is independent of x 3, add so the 
integral reduces to one over x 2 . The range is 0<•x,<oo for 
V/and -oo<x2<•0 for V$. The integrals in Eq. (18) can be 

performed directly using Ihe expressions for the velocities 
and displacement gradient,,, in Eq. (9), yielding 

I c = • (s 2 +/32) + 2sR (20a) o, 2• --+ o7fi ' 

I [s•+• 2 2s15•R] 
l•=v7 [ 2• + •]' (20b) 

s4+ a • 2s•R 
12- 2• + ff+fl ("2+a2)+s2flR2' (20c) 

• 2 
I3 = v]s 1o. (20d) 

Note that the four integrals am dimensionally equivalent, and 
they appear in •. (17) only as ratios of one anothen We 
have taken advantage of these properties and removed extra- 
neous com•non factors in Eqs. (20). Also, it is shown in the 
Appendix that 

_1•_ 1 4 

(20 
psfi J 

Also, F•I with equalily w•en pf• O. which is the Rayleigh 
wave limit. In summa•, i•. (l•) provides • concise and 
•implc formula [o determine •he Scholle wave speed fo• • 
bittory aniso•mpy in •he solid. 

III. SMALL-ON-LARGE THEORY 

A. The equations of motion 

The basic system of Ituid and isotropic solid is now 
assumed to be deformed in such a manner that the prestress 
and strain are compatible with the equations of static equi- 
librium. We are interester[ in the subsequent "smalbon- 
large" motion. In order to calculate the change in the Scholte 
wave speed relative to the t nstressed case, one might follow 
the standard procedure for r coustoelastic problems, and treat 
the dynamics in terms of tire original Or Lagrangian coordi- 
nates. This approach is not suitable when both solid and 
inviscid fluid are present, as the tbllowing example may il- 
lustrate. A solid cube is immersed in a fluid, which is then 

brought to a pressure p. Scholte waves are subsequently 
propagated along one side cf the block. An initial area of dS 
on the solid surface is converted into an area of (1-pl 
(2K))dS, where K is the sclid bulk modulus. Assuming that 
the fluid dilates in an isotropic manner, the corresponding 
area of the original fluid vt the interface becomes (1-p/ 
(2A))dS. The areas are nol the same, indicating the slip of 
fluid p•.rticles at the interface. Any description of the dynam- 
ics in terms of Lagrangian coordinates is therefore highly 
suspecl, because of the obvious difficulty of satisfying the 
continuity of the Cauchy tra:tion between the solid and fluid. 
In other words, the Lagrangian description is quite unsuitable 
for this problem. An appropriate strategy is to formulate ev- 
erything in terms of the Piola-Kirchhoff stress in the "inter- 
mediate" configuration. However, it turns out that the jump 
in the area mapping still enters into the correct formulation 
of the small-on-large tracticn continuity conditions, thereby 
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making the formulation rather difficult. Furthermore, the 
Piola-Kirchhoff stress tensor in intermediate coordinates is 

not symmetric, even for an ideal fluid. 
A general method for dealing with acoustoelastic prob- 

lems for fluid/solid composite media is described by Norris 
et al. 6 The equations of motion for the small-on-large motion 
u(x,t) are cast in terms of the intermediate or "laboratory" 
coordinates x, not the original coordinates. It is assumed that 
the liquid and solid are both subject to uniform deformation, 
so that the prestress in the fluid is a hydrostatic pressure p 
above ambient. The prestrain in the solid is defined by the 
initial displacement w, or more to the point, by its deforma- 
tion gradient with components ladi,j•C•14•i[C•X.]. The associ- 
ated strain is eij= (wi.j+ wj.i)/2, with trace e----ekk. The pre- 
stress in the solid is (r/j, 

O'ij = C ijkle kl , (22) 

where Cijkt are the isotropic elastic moduli, with Lain6 con- 
stants )t and/z. The continuity of the normal stress across the 
interface implies 

rr22= -p. (23) 

We may think of e, e•, and p as the three parameters de- 
fining the prestress, in terms of which 

e22=-•-•e-2-•, e33 = 1+ e-ell+•-•. 
(24) 

The difficulty of the area changes and the associated 
satisfaction of the traction continuity conditions is dealt with 
by adding a divergence-free stress, and is discussed in detail 
elsewbere. 6 The small-on-large versions of Eqs. (1) and (2) 
become 6 

•ii,i+ •5•eo2ui= 0, x2<0, (25a) 

/• V2 4-{-/•f•02 4----- O, x2>O, (25b) 

•i j----- • i jklbt l,k ' (25C) 
The new densities and elastic moduli are 

(l - e)0s, (26c) 

-{- C ijklmnW m, n "[- C pjkiW i,p "l- C ipklW j, p 

+ Cijptw•. t, + Cij•,Wl.•,, (26d) 

where B = p•d2p/dp2[o! is the usual nonlinear modulus of 
a fluid, and Ci•nt,,,,• are the third-order moduli of the solid. 
Some aspects are fairly obvious, such as the dependence of 
the fluid density and bulk modulus on the background pres- 
sure. Similarly, the transformation p•/• is an immediate 
consequence of the volumetric change under the prestrain. 
The stress tensor •j is related to but not exactly the same as 

the Piola-Kirchhoff stress in the intermediate configuration. 
It includes a divergence-free part proportional to the pressure 
p. Note that there is no mention made of the deformation in 
the fluid because it is arbitrary in the sense that an inviscid 
fluid can undergo any amount of shear deformation at no cost 
in energy. This is consistent with the notiou that the state of 
an ideal fluid is defined completely by its pressure level. The 
derivation of these constitutive equations is rather involved, 
and we refer to Nords et al. 6 for full details. The effective 

elastic constants •Okt defined in Eqs. (25c) and (26d) with- 
out the divergence-free part proportional to the pressure p 
are similar to Thurston's effecti've elastic constants B/jnl in 
the intermediate configuration, for wave propagation in a 
prestressed medium? However, it should be carefully noted 
that •'/j•t= Bjilk , because of a slight difference in our nota- 
tion in Eqs. (25a) and (25c) and that of Thurston's notation 
used in Eq. (36). 8 

The significant feature of the model for the present pur- 
pose is that the traction and displacement continuity condi- 
tions for the small-on-large motion are in exactly the same 
form as those for the original equations in the unstressed 
configuration. The acoustoelastic equations are therefore in 
their natural or divergence form, which allows us to use stan- 
dard methods for dealing with partial differential equations 
of this type, specifically standard perturbation analysis 7 for 
acoustoelastic problems. We now apply the general methods 
of perturbation theory to estimate the change in wave speed 
for the interface wave of Sec. I. We approach this in two 
parts, first identifying new effective isotropic moduli, and 
then considering the increment in speed due to the deviations 
from this medium. 

B. The isotropic moduli 

The elastic moduli of Eq. (26d) satisfy the second sym- 
metry property of Eq. (10), but not the first. The problem is 
therefore essentially different from that of a weakly aniso- 
tropic medium. We proceed as before by first subtracting out 
an isotropic part in the moduli, so that the complexity of the 
shifted moduli is reduced. Thus we consider the shifted iso- 

tropic toodull C•j•i of Eq. (12) where we now choose the 
new Lam• moduli as 

•.= Cl122, [•= C2121 . (27) 

We assume that the third-order moduli are isotropic, and let 
Ct• • stand for Co•,t•, according to the standard notation. 
The three independent third-order toodull can be taken as 
Cl• •, C• 2, and Ci23, in terms of which the others are 
C166=(C111--C112)14, Ci44=(C112-C123)]2, and 
C456=(CI66--C144)[2. It follows from Eq. (26d) that 

•=•t+(•.+Cl12)(ell+e22)+(C123-•t)e33+P, (28a) 

[•=11.-I-([z-FC!66)(ell-l-e22)-l-(C!44--iz)e33-P. (28b) 

The speed of the interface wave in the presence of the 
deformation is given by 

Vd•f = V (•,/2,t5s ,•,•Sf) + At, (29) 
where the p•rturbation At• now depends upon the eight 
moduli ACok t with i, j, k, and l= 1 and 2 only, and 
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A cqk• = (:ij•- (:okt. (30) 
It tums out that five of these are identically zero; thus 

ACl122=O, 

AC2211 =0, ,'•Ci212=2t.t(ell-e22), 

ACllll=2(X+31L+Ci66)(ell--e22), AC2 •2=0, 

A C2222 = - 2(X + 2•+ C•66)(e• - e22), 

ACi221 =0. (31) 

•e first two identities in (31) •e a consequence of the 
choice of the "background" isotropic elastic moduli 
and the second pair follow by di•ct c•culation. Use has •so 
been made of •e fact that •e p•s•ss in the fluid and solid 
are in equilibrium. S•cifically, •e constraint (23) has been 
used in obt•ning •e final four identities in (31) for the in- 
eremental moduli AC0• t . It is interesting to note that 

ACli l• + A C2222- ACi2•2= 0, (32) 

reg•dless of •e prestress. This relation d•s not hold in •e 
weakly aniso•opic problem, even though the reference 
toodull of •. (11) appe• m be simil• to those of •. (27). 

C. lha pe•urbation intagral 

We again use the peaurbation inm•al of •. (15), which 
applies equally well to •e present acoustoelastic problemfi 
When combined wi• •s. (31) •e integrand can be consid- 
erably simplified, wi• the result 

f V,.•CijklUj,iUl.k dV 
=2(ell--e22) fv• dV{•[(u2.1)2+(Ul,I)2] 

+ (X + 2• + C• 66)[(u L l) 2- (u2,2)•] }. (33) 

We have also made •e replacements (•,•)•(X,g) in Eq. 
(33), consistent with the first-order nature of the approxima- 
tion. 

The leading-order co•ection to •e phase s•ed a•er 
defo•afion now follows from •s. (15), (29), and (33) as 

x (e•l - e22)Fo, (34) 

where I 0, li, and I• •e defined in •. (18), and I' in Eq. 
(19). Explicit exp•ssions •e given in Appendix A for these 
integrals. All •e fo•ulas there •e v•id for either the pure 
subsonic inte•ace wave (Scholm wave), or a le•y wave, as 
defined in the Ap•ndix. For the Scholte wave we recover 
ß e simpler expressions of •. (20) for I0, Ii, and I•, and 
(21) for F. In summaw, •. (34) provides a •latively simple 
means to compute the dependence of the phase speed of 
Scholte interface waves on the p•stress. 

IV. &PPMG&TIONS &ND 

We f•us on two exmples of relevance to borehole 
acoustics. We consid• how anisotropy influences the flex- 

TABLE !. Material properties for Bakken •hale. 

P Ct• C•, CL• C33 C44 
(kg/m3! (GPa) (GP•) (GPa} (GPa) (GPa) 

2230 40.9 10.3 8.5 26.9 10.5 

ural or n = 1 nonaxisymmetric mode in a circular fluid-filled 
borehole, and the pressure dependence of the speed of the 
axisymmetric StoneIcy mode (n = 0). The dispersive proper- 
ties of both modes are we, l understood for undeformed iso- 

tropic configurations. ø They differ in their low-frequency 
form; the flexural wave s[eed becomes the speeds of shear 
waves in the formation, while the quasistatic limit of the 
Stoneley mode is known as the tube wave. Previous studies 
have considered the influence of weak anisotropy m and bore- 
hole pressurization I on the tube wave speed. The full fre- 
quency dependence of the mode under the influence of an- 
isotropy or pressurization is discussed by Sinha et al. 11,•2 We 
will only consider the high-frequency limits, where both 
modes travel with the speed of the Scholte wave for the fluid 
and solid. 

A. High-frequency flexural waves in anisotropic 
formations 

The high-frequency li•nit of the flexural or n = l mode 
of a circular borehole depends only upon the conditions in 
the vicinity of the borehole wall. That is, the curvature of the 
bore wall can be neglected and all that is required to estimate 
the speed of the wave are the local elastic properties of the 
wall. Hence we can use the analysis of Sec. II to determine 
the fie,rural wave speed fm arbitrary weak anisotropy. 

At the same time, the wave is characterized by a sagittal 
plane in which the dominant motion occurs, and we need to 
define our coordinates to reflect the choice of plane. The 
deformation associated with Scholte waves in isotropic sub- 
strates with an overlying fluid is exclusively in the sagittal 
plane containing the surface normal and propagation direc- 
tion. On the other hand, deformation associated with such 

waves in arbitrarily anisotropic substrates may have defor- 
mation components both p-'•rallel and normal to the sagittal 
plane. This type of deformation occurs because of the cou- 
pling between the SH- and SV-wave polarizations. However, 
for materials with transversely isotropic (TI) symmetry, the 
SH waves are always decoupled from the qSV waves for 
any propagation direction. Consequently, it is expedient to 
consider Scholte wave propagation along a given direction 
with deformation in either of the two orthogonal sagittal 
planes. The two sagittal planes contain the propagation di- 
rection and either the SH- or qSV-wave polarization. 

As an illustrative example, consider Bakken shale as a 
TI substrate material with J:• as the TI-symmetry axis. The 
anisotropic constants of thi; material are shown in Table I. 
Calculations have been performed from Eq. (17) for the 
Scholte wave speed for motion in the sagittal plane contain- 
ing the propagation direction and surface normal along x• 
and xz directions, respectively. The deformation associated 
with the Scholte waves corresponds to the qSV-wave polar- 
ization. The olher orthogcnal Scholte wave solution for 
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FIG. 1. Scholte wave velocity as a function of propagation direction 0 from 
the Tl-symmetry axis. Results am for deformation in the qSV-polarization 
plane in Bakken shale. 

propagation along the same x I direction corresponds to the 
SH-wave polarization. il The propagation direction is being 
measured from the Tl-symmetry axis. The anisotropic elastic 
constants required for a propagation direction 0 measured 
from the TI-symmetry axis are readily obtained by an or- 
thogonal transformation of elastic constants referred to the 
principal axes. The angle 0 denotes a rotation about the x 2 
axis. The transformation relationship for the elastic constants 
in the compressed Voigt's notation is explicitly given in Refs. 
I l and 13. 

Figure I shows the Scholte wave speed as a function of 
the propagation direction 0 as calculated from Eq. (17). The 
Scholte wave speeds are for deformation in the sagittal plane 
containing the qSV polarization. The isotropic constants for 
the unperturbed solution are given by Eq. (11). Comparison 
of the Scholte wave speeds for the four propagation direc- 
tions (0=0 ø, 45 ø, 60 ø, and 90 ø) with the high-frequency as- 
ymptotes of the qSV-polarized flexural waves in Fig. 4(b) of 
Ref. 11 shows the correct trend for the high-frequency limit 
of the flexural wave speeds. The differences between the 
Scholte wave and flexural wave speeds at 10 kHz are ap- 
proximately on the order of 3%. However, a part of these 
differences is due to the fact that the flexural wave disper- 
sions have not yet "saturated" at 10 kHz. It should also be 
noted that other choices for the aforementioned isotropic 
constants yield slightly different values for the Scholte wave 
speed. As is the case with any perturbation model, the back- 
ground solution should be selected so that the perturbalive 
deviation of the Scholte wave speed from the isotropic case 
is relatively small due to the material anisotropy. 

B. High-frequency waves in a pressurized borehole 

We now turn to the pressure dependence of the Stoneley 
wave speed in a circular borehole. The low-frequency, or 
tube wave, behavior under pressurized conditions has been 
analyzed in some detail by Johnson et aL I The full descrip- 
tion of the pressurized Stoneley mode over the entire fre- 
quency range of interest is discussed in a separate paper. •2 
Here we address the high-frequency end of the spectrum, 
where the 2-D analysis of Sec. Ill is directly applicable. 

The deformation associated with the prestress is a posi- 
tive hydrostatic pressure p in the fluid and a nonuniform 
deviatoric plane strain field in the solid. The plane of strain is 
perpendicular to the borehole axis, and the principal strain 
axes are the radial and circumferential directions, with 

strains -p/21• and p/21x at the bore wall, respectively. 9 
This is an example of a slip surface because of the different 
area mapping on either side of the boundary. Thus the virgin 
area dS on the solid surface is increased to ( l +p/(2l•))dS. 
Assuming the fluid is compressed axially as a plug of length 
L while it expands laterally, then the length of the plug after 
compression is ( 1 +p(A - • +/x- l))L. It follows that the area 
dS on the fluid side of the surface decreases to 

[l +p(A-I+ (2/•)-I)]dS. The point is that the concept of 
Lagrangian coordinates is clearly of little or no utility in 
dealing with the interface, and one needs to resort to a theory 
of the type presented in Sec. III and discussed in Reft 6. 

The high-frequency limit of the modal wave speed de- 
pends upon the prestress conditions in the vicinity of the 
bore wall. Thus, with the Cartesian xl, x2, and x 3, axes 
replacing the axial, radial, and azimuthal directions, we have 

ell=0, e2,_ =--e33=--p/2/x. (35) 

The deformed isotropic elastic density and moduli are there- 
fore, from Eqs. (26) and (28), 

p 
f•: ].L -- ( 2•.t,-[- C456) --. (36) 

The perturbed wave speed is then given by Eqs. (34)-(36). 
Note that the shift in o depends upon two of the three third- 
order elastic moduli, viz., C144 and C166=Ci44"1-2C456. 

The properties of two distinct rock types are listed in 
Table II, along with the Scholte wave speed for water over- 
lying the solid. The nonlinear parameter for water is taken as 
B/A =5. Table lI also gives the Scholte wave speeds for 
pressure levels of 2000 psi (13.8 MPa) in rock I and 500 psi 
(3.45 MPa) in II, as computed from Eq. (34). Rock II is 

TABLE 11. Material properties of the two rock materials. The parameters for rock II are for a dry Berea 
sandstone. 

p k /.L Vp 1]. V C14 4 C16 6 p v+Av 
Rock (kg/m 3) (GPa) (GPa) (m/s) (m/s) (m/s) (GPa) (GPa) (MPa) (m/s) 

I 2135 19.5 6.5 3022 1745 1332 193 -578 13.8 1381 
H 2062 I l. 1 4.64 2320 1500 I 156 2702 - 4543 3.45 1257 

from Reft 14 
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FIG. 2. Sloneley wave dispersions betbre and after borehole pre•surization 
of 2000 psi. Results are for a borehole of diameter 8 in. surrounded by 
formation L The dashed lines are the Scholte wave speeds from Table II. 

much more nonlinear than I, hence the smaller value of pres- 
sure considered. In both cases the changes in the fluid prop- 
erties are insignificant compared with those for the solid 
moduli. Thus, at the higher pressure of 13.8 MPa, we have 
•71p7 = 1.006, •IA= 1.037. In comparison, we have [/X. 
=0.94 and •//•=1.12 for formation I at p=13.8 MPa, 
whereas the same quantities are •/h = 2.10 and/d/.• = 1.15 
for formation 1I at 25% the same pressure level. The large 
value of •/h in the latter case means that the present theory 
is limited to low-pressure levels for rocks with such strong 
nonlinearity. 

Figures 2 and 3 show how these nondispersive calcula- 
tions compare with the numerical results of a perturbation 
analysis for the Stoneley wave mode in a borehole of radius 
0.1016 m. The theory behind these curves is described in a 
separate paper.•2 The horizontal dashed lines show Ihe non- 
dispersive Scholte wave speeds before and after borehole 
pressurization. We note that agreement with the diqpersive 
theory for both rocks I and II is well within 1%-2%. A part 
of the discrepancy for rock II can be partly ascribed to the 
strongly nonlinear nature of this rock. However, we believe 
the discrepancy is in equal measure due to the fact that the 
dispersion curve for the undeformed rock II has not "satu- 
rated" even at the relatively high frequencies considered. 
The deformed curve, on the other hand, is flat at the high- 
frequency end, and the discrepancy between the limiting 
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FIG. 3. Dispersion curves for the Stoneley wave with and without pressur- 
ization of 500 psi. The computation is for a borehole of diameter 8 in. 
surrounded by formation II. and the dashed lines are from Table II. 

speed and the Scholte wace estimate is comparable to the 
deviation of the undeformed dispersion curve from the unde- 
formed Scholte wave speed. 

V. CONCLUSION 

The speed of a Schoke wave in a slightly anisotropic 
medium is ?•iven by formula (17), where the effective isotro- 
pic moduli X. and • are defined in Eq. (11). The Scholte wave 
speed in a system under arbitrary initial stress is given by Eq. 
(34), where the reference isotropic constants are given by 
Eqs. (26a)-(26c) and (281. In either case, the remaining 
quantities I0, /•, 12, 13, and F follow from Eqs. (20) and 
(21) with the reference isotropic moduli and densities used in 
these expressions. The formula for the wave speed in the 
presence of prestress can also be applied to consider leaky 
pseudo-Rayleigh waves, with the necessary modification to 
Eq. (34) discussed in the Appendix. We stress the simplicity 
of the expressions for the modified wave speeds. The only 
computational difficulty involved is to find the roots of the 
standard equation for Scholte waves in the isotropic configu- 
ration. Everything else is explicit and easily computed for 
arbitrary conditions of anisotropy and prestress. The ex- 
amples given illustrate the utility of the theory for estimating 
the speed of borehole waves in anisotropic and prestressed 
rock formations. 
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APPENDIX: THE NUMBER F AND OTHER INTEGRALS 

The integral in the denominator of Eq. (15) is clearly a 
measure of the total energy of the wave mode considered. 
The associated integral is over the full range -oo<x2<oo. If 
the wave motion considered is subsonic relative to all bulk 

wave speeds, o<o• with a=f, s, and p, then the wave is a 
true imerface wave in the s:nse that it decays exponentially 
away from the interface. This is the "Scholte" wave, and its 
kinetic energy is bounded. We are also interested in "leaky" 
interface waves, specifically the "pseudo-Rayleigh" wave 
that occurs when the Rayleigh wave speed exceeds the fluid 
bulk wave speed. This is not a true interface wave in the 
sense of the Scholte wave. The reasons are various, but all 
stem from the fact that the slowness root for s lies on the 

"wrong" Riemann sheet for the square-root function 3/. The 
root corresponds to a value of 3/which yields a solution that 
grows exponentially in the fluid as the field point recedes 
from the interface. The waw motion still decays in the solid 
half-space. However, the exponential growth in the fluid in- 
dicates that the kinetic energy in the denominator of Eq. (15) 
is not defined for such a wave mode. It is clearly meaning- 
less to ascribe a finite energ • to this wave solution, which is 
another indication of the unphysical nature of the pseudo- 
Rayleigh wave considered in isolation. 

In order to include the possibility of considering leaky 
waves, we use an analytical device to remove the kinetic- 
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energy integral in favor of a similar integral over the solid 
region only, which is finite and has physical meaning. Con- 
sider the variation of s for a uniform change in the fluid 
density O/- The shift is determined from the identity 

aos , (Al) 
which, combined with Eq. (4), implies 

au I aFlaes\ 
•-=Ap[o Re / a'-•--•s]' (A2) 

At the same time, the shift in phase sp•ed caused by a 
change in the fluid density only can be determined by per- 
turbation theory as 

v 2J'vpfi.fi dV 2pf 2pf J'vp•.fi dV' 
(A3) 

Comparison of Eqs. (19), (A2), and (A3) yields the identity 

F• 1 +2 pf ao [ aFlap•\ - -- - 1 + top/Re k O•-s }' (a4) 

The real number r uow follows from Eqs. (8), (19), and (A4) 
as 

I 

o2(s+ 

Re{ (AS) 

The parameters s, /3, or, y, and -R are all real positive 
numbers for the Scholte wave, and the phase speed is simply 
v = 1Is. Both numerator and denominator of the bracketed 

quantity in Eq. (A5) are real positive numbers, and F reduces 
to Eq. (21). 

Finally, we provide expressions for the integrals I0, It, 
and 13 in Eqs. (34) when the wave is not a pure interface 
mode. Then s is complex valued. and we find from Eqs. (9) 
and (18) that 

/j=«Re(Jj+Kj), j=0,1, and 3 (no sum), (A6) 

where J0, Jl, and J3 are given by the right-hand members of 
the expressions for Io, It, and 13 in Eq. (20), and 

112+11 (11+1_12 / zc0-+a /3+/3 l+2a• a'-•-•-]' 
(A7) 

Is14-1•l 4 2s/3R 
K,=llg0, 

with the bar over a quantity indicating the complex conju- 
gate. 
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