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The classical solution for the Scholte wave along a fluid and isotropic substrate s well known.
However, when the substrate is either a weakly amsotropic solid, or the adjoining fluid is subject to
a hydrostatic pressure, the analysis of Scholte wave propagation becomes rather complex and
lengthy computations are required to obtain the solution. The purpose of this paper is to apply
simple and computationally efficient expressions in the determination of Scholte wave speeds for
substrates with either weak anisotropy or in the presence of uniform initial stresses and strains in the
substrate and fluid media. Both of these two simple expressions are for the incremental change in
the Scholte wave speed Av/v from an appropriately selected isotropic, reference substrate and
adjoining fluid under no hydrostatic pressure. The predictions of the Scholte wave speeds from the
derived expressions agree to well within 1%—-2% with the other approximation techniques for the
high-frequency asymptotes of the Stoneley wave velocity dispersions in a fluid-filled borehole
traversing either a weakly anisotropic formation or a formation with initial stresses and strains

caused by a borehole pressurization. © 1995 Acoustical Society of America.

PACS numbers: 43.25.Fe, 43.20.Bi

INTRODUCTION

The speed of a wave along the flat interface of a two-
phase system comprising a uniform solid and an inviscid
fluid is a function of both the anisotropy of the solid and the
state of deformation and prestress in the solid and liquid.
Both effects are considered here as small departures from the
standard configuration of a fluid overlying an isotropic solid.
Our motivation comes from the fact that acoustic measure-
ments on rock are normally made in a [uid-filled borehole
environment. Depending upon the prevailing geological
stratigraphy the material symmetry axes may be obliquely
oriented relative to the borehole axis, as occurs in dipping
beds. As a consequence the resulting anisotropy can be rather
complex in the borehole coordinates. A fast and simple
means to determine the Scholte wave speed under arbitrary
conditions of anisotropy is required.

Our interest in prestress and its influence on the Scholte
wave is based upon the fact that the nonlinear properties of
sandstone can be orders of magnitude greater than typically
seen in metallic materials,' as supported by data from recent
experiments.? The large nonlinearity is reflected in the mag-
nitude of the third-order moduli relative to the second-order
moduli. For example, the standard measure of fluid nonlin-
earity is the parameter B/A, which is approximately 5 for
water. The corresponding ratio of, for example, the solid
elastic moduli C,44/12 can be on the order of 1000 in mag-
nitude, as it is for material II in Table II. Such enormous
nonlinearity suggests that wave speeds should be very sensi-
tive functions of confining pressure and stress. Conversely,
measurement of the sensitivity of the speeds to the level of
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pressure could provide a technique of determining the rock
nonlinearity, in the same way that variations in the speed of
Rayleigh waves as a function of the prestress applied to a
solid are used to measure acoustoelastic parameters.’

The theoretical analysis of two joined fluid/solid half-
spaces in a state of uniform prestress is similar in many
respects to the Rayleigh wave problem for a solid only, first
considered by Hayes and Rivlin* and recently revisited in
Ref. 5, but it is complicatec. by the possibility of slip at the
interface between the solid and fluid. Thus the prestress can
alter the material contact of particles at the fluid/solid bound-
ary, thereby destroying the connectivity of the points in the
original, or Lagrangian, description. This is a rather subtle
but nontrivial difficulty, and requires a reconsideration of the
basic theory of acoustoelasticity to account for this possibil-
ity. The correct formulation was described in some detail in a
recent paper by Norris et ai.,® and will be reviewed briefly
below.

We consider the generic problem of this type here: the
Scholte wave and its depencence upon prestress, both in the
fluid and solid. The Scholte wave solution for the unstressed
system is introduced in Sec. 1. The effect of weak anisotropy
is considered first in Sec. II. The theory of acoustoelasticity
for fluid/solid composite systems is summarized and applied
to the problem at hand in Sec. III. We follow the method
developed by Norris ez al.’ and use a modified stress tensor
which both simplifies the traction conditions and makes the
fluid stress symmetric. The results of Secs. I and III are
applied in Sec. IV to two problems of relevance in borehole
acoustics.
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I. INTERFACE WAVES

An inviscid fluid occupies the half-space V;: x,>0, and
solid lines in V: x,<<0. The wave travels in the x; direction,
with exponential decay into the solid and no dependence
upon the third direction. The dependence in the fluid is also
exponential, but not necessarily decaying. A true interface
wave decays in both media, whereas a ‘“leaky” interface
wave can have exponential growth in the fluid. This distinc-
tion and its consequences are discussed at greater length be-
low. The materials are specified by the fluid density and bulk
modulus p; and A, respectively, by the solid density p,, and
the Lamé moduli A and gx. Time harmonic motion of fre-
quency w is assumed.

The equations of motion in the solid and fluid are, re-
spectively,

Tt psw’u;=0,  x,<0, (1a)

AV p+prw?p=0, x,>0, (1b)

where u denotes the infinitesimal displacement, ¢ is the
acoustic velocity potential with associated velocity u=du/dt
=V ¢, and 7;; are stresses in the solid:

7= Cijrati 4 - )]

The notation f = aflax j 1s understood here, and the summa-
tion convention is assumed for repeated lower case Latin
subscripts The undeformed solid is isotropic with elastic
moduli  C;jyy=N\8;; 8+ pu(6y 95+ 8,;6). The displace-
ments for the 1nterface wave are confined to the x,-x, plane,
with u=(u,.u,), where

[ .
u=D Re — ¢/0x171
w

[(s,—ia)e“*2+(B,— is)Re“’B"‘?],
(5,iy)Pe”“72, x,>0,

XZ<O,

©)

and D has the dimensions of the square of a velocity. The
phase speed along the interface is defined by the real part of
the slowness s:

v=1/Re(s). 4)

The Scholte wave corresponds to a real-valued s which is
slower than all the other waves in the problem. However, we
maintain the possibility of s being complex valued in order
to consider pseudo-Rayleigh waves. The decay parameters
are

a= \/52— 1/v,2,.

2_
s 1/vj’

ﬁ=\/s2—1/v§, y=
] 5)
where v, = V(AN+2u)lp,, v, Vulp,, and vy

= A/pf are the bulk compressional, shear, and acoustic
wave speeds, respectively. The square-root function in Eq.
(5) is defined such that « and B8 have non-negative real parts,
while ¥ is real and positive if 5 is real and gredter than 1/v.

The complex numbers s, R, and P are found by satisfy-
ing the interface conditions, continuity of normal displace-
ment and normal stress, and zero shear stress, which imply
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Y a s P
0 2sa 52+ﬂ2 1> =0. 6
plp s*+B* 258 R

The slowness therefore satisfies the equality

a
(s*+ B —4aps’+ - P o, )
or alternatively F=1, where
pro
F(s,\,p,p, ,A,pf)E4U‘:s2ﬁ(a—ﬁ)— ﬁ ®

The associated wave speed is denoted as v(A,u.p;,A,py).
We will need the following velocities and displacement gra-
dients in the solid for later use:

i; =D Re{(se“**2+ R Be“F*2) ¢!}, (9a)
=D Im{(ae“**2+ Rse“P*2)¢'¥}, (9b)

u =D Re{ — (52 2+ Rs BeP*2) ¥}, c)

U, =D Re{(a’e“* 2+ RsBe“P2)e'}, (9d)

Uy =D Im{— (sae®*2+ Rs eF*2)e¥}, (9¢)
where ¢=w(sx,—t), and R follows from Eq. (6) as

R=—-2sal(s*+ B).

Il. WEAK ANISOTROPY
A. Isotropic reference moduli

The solid is assumed to be weakly anisotropic so that it
may be approximated by an isotropic medium to leading
order. We are interested in the first-order deviations of the
interface wave speed from the isotropic value. Only the true
interface wave, the Scholte wave, will be considered, al-
though the later analysis for the effects of prestress is not
limited in this manner. In general, the fourth-order tensor of
elastic moduli display the symmetries

Ciiei=Cjirts  Cijr= Cuij» (10)

reflecting the symmetry of the stress and the existence of a
potential energy, respectively. There may be as many as 21
independent moduli, or C;;=C,; in the Voigt notation,

where 1=1,2,3,4,5,6 correspond to ij
=11,22,33,23,31,12, respectively. Let
}:=C127 i2=Ceg, (1)

and define the effective isotropic moduli associated with
these Lamé conslants,

C:]kl A, Ot (O Ot 8,0;). (12)
The wave speed in the anisotropic system is

Vanis=0(X, 1,p,A.pp) + AD, (13)

where A¢ is the additional shift in speed due to the aniso-
tropic elastic moduli C,j,+AC;;, with

Acijkl:Cijkl—éijkl- (14)
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It is assumed that the moduli AC; are small relative to the
reference isotropic ones. Standard perturbation theory can
now be used.

B. The perturbation integral

The perturbation in velocity associated with the incre-
mental moduli AC;;y, is’

Av fVSACijkluj.i”I.k dv
v 2fypuudv

(15)

The integral in the numerator involves the strains u . | 5,
U3, and u, , through the elements of AC;, with i, j, k, and
I=1 and 2 only. Only four of these are nonzero: ACy,,
AC,., ACy4, and AC,4. Furthermore, the integrals involv-
ing the latter two are zero because of the fact that the strains
11 and u, , are exactly 90° out of phase with the strains
uy, and u,; for the Scholte wave solution. The integrals
over one wavelength in the x, direction therefore vanish,
leaving only two independent integrals,

jv AC,-jk,uj_,-ul‘k dV:AC”fv (u|_|)2 dV

+AC22I (le‘z)2 dv. (16)
v

The wave speed in the presence of the weak anisctropy is
therefore, from Egs. (13), (15), and (16),

—u(X Ap)+ (Ci—Cy) 1_1
Uams U( ’.U-sPs, ’pf C66 IO
(C11+C3—2C,—4Ce) | T

+ 11 22 i2 66) _2 -, (17)
Ces Il 4

where I, I,, I,, and, for later use, I, are defined as

10=ung a-udv, (18a)
V.Y

I':fv [(uy.1)% = (u22)*1dV, (18b)

b= [t v, (139

Iy= fv [(uy) 2+ (uq )1V, (18d)
and

-1
F=U pi-a dv)(f pi-a dV) . (19)
v, v

The unperturbed interface waves are assumed to be
wave solutions with planar phase fronts. The integrals for [,
1,,1,, and I3 can then be performed over a plane of constant
phase, which we select as the plane x, =0. Furthermore, the
unperturbed wave motion is independent of x;, and so the
integral reduces to one over x,. The range is 0=<x, < for
V;and —oo<x,=<0 for V,. The integrals in Eq. (18) can be
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performed directly using the expressions for the velocities
and displacement gradients. in Eq. (9), yielding

| 1 [s2+a? N R? 2. 3

C—E T ﬁ(s +B°)+2sR|, (20a)
; 1 [s2+a? + 2sFR 20
1—_L'IZ, 2o a+ B (20b)

stvo' 2sBR ” s

= —+ o= - §° -
I, T s (~ta)+s BR-, (20c)
L=v3s,. (20d)

Note that the four integrals are dimensionally equivalent, and
they appear in Eq. (17) only as ratios of one another. We
have taken advantage of these properties and removed extra-
neous common factors in Egs. (20). Also, it is shown in the
Appendix that

2

F=l—a2(]+7—2 {—1-2-—]—2+4U:(a—ﬂ)[2aﬂz
s U[ l)p
pY' |
+5a—B)] p}B] . @n

Also, I'=1 with equality waen p,=0. which is the Rayleigh
wave limit. In summary, Fq. (17) provides a concise and
simple formula to determine the Scholte wave speed for ar-
bitrary anisotropy in the solid.

lll. SMALL-ON-LARGE THEORY
A. The equations of motion

The basic system of Huid and isotropic solid is now
assumed to be deformed in such a manner that the prestress
and strain are compatible with the equations of static equi-
librium. We are interestecl in the subsequent ‘“‘small-on-
large” motion. In order to calculate the change in the Scholte
wave speed relative to the unstressed case, one might follow
the standard procedure for :coustoelastic problems, and treat
the dynamics in terms of the original or Lagrangian coordi-
nates. This approach is not suitable when both solid and
inviscid fluid are present, as the following example may il-
lustrate. A solid cube is immersed in a fluid, which is then
brought to a pressure p. Scholte waves are subsequently
propagated along one side cf the block. An initial area of d§
on the solid surface is converted into an area of (1 —p/
(2K))dS, where K is the sclid bulk modulus. Assuming that
the fluid dilates in an isotropic manner, the corresponding
area of the original fluid at the interface becomes (1—p/
(2A))dS. The areas are not the same, indicating the slip of
fluid particles at the interface. Any description of the dynam-
ics in terms of Lagrangian coordinates is therefore highly
suspect, because of the obvious difficulty of satisfying the
continuity of the Cauchy traction between the solid and fluid.
In other words, the Lagrangian description is quite unsuitable
for this problem. An appropriate strategy is to formulate ev-
erything in terms of the Piola—Kirchhoff stress in the “inter-
mediate™ configuration. However, it turns out that the jump
in the area mapping still enters into the correct formulation
of the small-on-large tracticn continuity conditions, thereby
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making the formulation rather difficult. Furthermore, the
Piola—Kirchhoff stress tensor in intermediate coordinates is
not symmetric, even for an ideal fluid.

A general method for dealing with acoustoelastic prob-
lems for fluid/solid composite media is described by Norris
et al® The equations of motion for the small-on-large motion
u(x,t) are cast in terms of the intermediate or “laboratory”
coordinates x, not the original coordinates. It is assumed that
the liquid and solid are both subject to uniform deformation,
so that the prestress in the fluid is a hydrostatic pressure p
above ambient. The prestrain in the solid is defined by the
initial displacement w, or more to the point, by its deforma-
tion gradient with components w; =dw;/dx;. The associ-
ated strain is e;;= (w; ;+w; ;)/2, with trace e=e,; . The pre-

stress in the solid is Tij s

0= Cijuert (22)

where C;;; are the isotropic elastic moduli, with Lamé con-
stants A and g. The continuity of the normal stress across the
interface implies

2= =P (23)

We may think of e, ¢, and p as the three parameters de-
fining the prestress, in terms of which

P
2u”
24)
The difficulty of the area changes and the associated
satisfaction of the traction continuity conditions is dealt with
by adding a divergence-free stress, and is discussed in detail
elsewhere.® The small-on-large versions of Egs. (1) and (2)

A p A
822=_5‘1—L€_ﬁ, €33~ 1+’2—’u" e—e“+

become?®
Tyt pw’u;=0, x,<0, (25a)
AV2h+pwlhp=0, x,>0, (25b)
7= Cijuit 1 - (25¢)
The new densities and elastic moduli are
- p
Pf=( 1+ Z) Py (26a)
A=|1+|1+ B\ p A 26b
5s=(l—e)psv (260)

Cijir=Cijiut (6:i0u— 840 )P+ i 81— CijxWm m
+ Cijklmnwm,n + ijklwi,p+ Cipkle,p

+Cijpwipt CijipWip » (26d)

where B = p2d%pldp?|, is the usual nonlinear modulus of
prd’pldp?l,,

a fluid, and Cjj4, are the third-order moduli of the solid.
Some aspects are fairly obvious, such as the dependence of
the fluid density and bulk modulus on the background pres-
sure. Similarly, the transformation p,— p, is an immediate
consequence of the volumetric change under the prestrain.
The stress tensor 7;; is related to but not exactly the same as
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the Piola—Kirchhoff stress in the intermediate configuration.
It includes a divergence-free part proportional to the pressure
p. Note that there is no mention made of the deformation in
the fluid because it is arbitrary in the sense that an inviscid
fluid can undergo any amount of shear deformation at no cost
in energy. This is consistent with the notion that the state of
an ideal fluid is defined completely by its pressure level. The
derivation of these constitutive equations is rather involved,
and we refer to Norris er al® for full details. The effective
elastic constants C, it defined in Egs. (25¢) and (26d) with-
out the divergence-free part proportional to the pressure p
are similar to Thurston’s effective elastic constants Bijy in
the intermediate configuration, for wave propagation in a
prestressed medium.? However, it should be carefully noted
that C ijet= Bjiw » because of a slight difference in our nota-
tion in Eqs. (25a) and (25c) and that of Thurston’s notation
used in Eq. (36).2

The significant feature of the model for the present pur-
pose is that the traction and displacement continuity condi-
tions for the small-on-large motion are in exactly the same
form as those for the original equations in the unstressed
configuration. The acoustoelastic equations are therefore in
their natural or divergence form, which allows us to use stan-
dard methods for dealing with partial differential equations
of this type, specifically standard perturbation analysis’ for
acoustoelastic problems. We now apply the general methods
of perturbation theory to estimate the change in wave speed
for the interface wave of Sec. I. We approach this in two
parts, first identifying new effective isotropic moduli, and
then considering the increment in speed due to the deviations
from this medium.

B. The isotropic maduli

The elastic moduli of Eq. (26d) satisfy the second sym-
metry property of Eq. (10), but not the first. The problem is
therefore essentially different from that of a weakly aniso-
tropic medium. We proceed as before by first subtracting out
an isotropic part in the moduli, so that the complexity of the
shifted moduli is reduced. Thus we consider the shifted iso-
tropic moduli C ijir. Of Eq. (12) where we now choose the
new Lamé moduli as

a=Cyn. (27

We assume that the third-order moduli are isotropic, and let
Cyx stand for Cjjyy,, according to the standard notation.
The three independent third-order moduli can be taken as
Ci11> Cii2, and C,5, in terms of which the others are
Ci66=(Cini—Cyi)/4, C14y=(Cy 12— Cy23)/2,  and
C456=(C 66— Cir44)/2. It follows from Eq. (26d) that

-

A=C1i22s

(28a)

f=pt(p+Cig)lerteyn)+(Cray—p)ess—p.  (28b)

The speed of the interface wave in the presence of the
deformation is given by

vdef:v(x‘vﬁ"ﬁs ’A-’ﬁf)+A6, (29)

where the pérturbation AD now depends upon the eight
moduli AC;;,, with i, j, k, and /=1 and 2 only, and

}:=}\+()\+C112)(311+6’22)‘_*'(C123—)\)€33+P,
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-~ A

AC;i=Cij—Cijur - (30)
It turns out that five of these are identically zero; thus
AC122=0, ACy7 =0,

ACy;1=0, AC=2ule);—ey,),

AC1=2(A+3u+Cige)(e11—ex3), AC, 12=0,

ACyyp=—2(N+2u+Cig6)(ey1—€32),
AC|22]:0. (31)

The first two identities in (31) are a consequence of the
choice of the “background” isotropic elastic moduli ¢ ikl »
and the second pair follow by direct calculation. Use has also
been made of the fact that the prestress in the fluid and solid
are in equilibrium. Specifically, the constraint (23) has been
used in obtaining the final four identities in (31) for the in-
cremental moduli AC;j;, . It is interesting to note that

AC 111 +ACy;—AC;,=0, (32)

regardless of the prestress. This relation does not held in the
weakly anisotropic problem, even though the reference
moduli of Eq. (11) appear to be similar to those of Eq. (27).

C. The perturbation integral

We again use the perturbation integral of Eq. (15), which
applies equally well to the present acoustoelastic problem.®
When combined with Eqgs. (31) the integrand can be consid-
erably simplified, with the result

jv AC,-jk,uj,,-u,'k dv

=2(ej1—ep) fv dV{u[(ug,)?+ (uy1)?]

+(A 20+ Cg6)[ (1)) — (222} (33)

We have also made the replacements (X, m—(\,u) in Eq.
(33), consistent with the first-order nature of the approxima-
tion.

The leading-order correction to the phase speed after
deformation now follows from Eqs. (15), (29), and (33} as

2
v, C I, 1
(_g+_'6_6 _'+_3]
5 r | Iy I

X(ey—en)lu, (34)

where I, 1, and I; are defined in Eq. (18), and T" in Eq.
(19). Explicit expressions are given in Appendix A for these
integrals. All the formulas there are valid for either the pure
subsonic interface wave (Scholte wave), or a leaky wave, as
defined in the Appendix. For the Scholte wave we recover
the simpler expressions of Eq. (20) for I,, I, and I, and
(21) for I'. In summary, Eq. (34) provides a relatively simple
means to compute the dependence of the phase speed of
Scholte interface waves on the prestress.

Vger=0 (N, 2. v"i’ﬁf) +

IV. APPLICATIONS AND EXAMPLES

We focus on two examples of relevance to horehole
acoustics. We consider how anisotropy influences the flex-
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TABLE L. Material properties for Bakken shale.

P Cu Cp Cy Cy Ciy
(kg/m®) (GPa) (GP3) (GPa) (GPa) (GPa)
2230 409 10.3 8.5 269 10.5

ural or n=1 nonaxisymmetric mode in a circular fluid-filled
borehole, and the pressure: dependence of the speed of the
axisymmetric Stoneley mode (n=0). The dispersive proper-
ties of both modes are we.l understood for undeformed iso-
tropic configurations.” They differ in their low-frequency
form; the flexural wave speed becomes the speeds of shear
waves in the formation, while the quasistatic limit of the
Stoneley mode is known as the tube wave. Previous studies
have considered the influence of weak anisotropy'® and bore-
hole pressurization' on the tube wave speed. The full fre-
quency dependence of the mode under the influence of an-
isotropy or pressurization is discussed by Sinha et al. 112 e
will only consider the high-frequency limits, where both
modes travel with the speed of the Scholte wave for the fluid
and solid.

A. High-frequency flexural waves in anisotropic
formations

The high-frequency limit of the flexural or n=1 mode
of a circular borehole depends only upon the conditions in
the vicinity of the borehole wall. That is, the curvature of the
bore wall can be neglected and all that is required to estimate
the speed of the wave are the local elastic properties of the
wall. Hence we can use the analysis of Sec. Il to determine
the flexural wave speed for arbitrary weak anisotropy.

At the same time, the wave is characterized by a sagittal
plane in which the dominant motion occurs, and we need to
define our coordinates to reflect the choice of plane. The
deformation associated with Scholte waves in isotropic sub-
strates with an overlying fluid is exclusively in the sagittal
plane containing the surface normal and propagation direc-
tion. On the other hand, deformation associated with such
waves in arbitrarily anisotropic substrates may have defor-
mation components both parallel and normal to the sagittal
plane. This type of deformation occurs because of the cou-
pling between the SH- and S V-wave polarizations. However,
for materials with transversely isotropic (TI) symmetry, the
SH waves are always decoupled from the ¢SV waves for
any propagation direction. Consequently, it is expedient to
consider Scholte wave propagation along a given direction
with deformation in either of the two orthogonal sagittal
planes. The two sagittal planes contain the propagation di-
rection and either the SH- or ¢S V-wave polarization.

As an illustrative example, consider Bakken shale as a
TI substrate material with »; as the TI-symmetry axis. The
anisotropic constants of this material are shown in Table I.
Calculations have been performed from Eq. (17) for the
Scholte wave speed for motion in the sagittal plane contain-
ing the propagation direction and surface normal along x;
and x, directions, respectively. The deformation associated
with the Scholte waves corresponds to the g5 V-wave polar-
ization. The other orthogcnal Scholte wave solution for
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FIG. 1. Scholte wave velocity as a function of propagation direction 8 from
the TI-symmetry axis. Results are for deformation in the ¢S V-polarization
plane in Bakken shale.

propagation along the same x; direction corresponds to the
SH-wave po]arization.ll The propagation direction is being
measured from the TI-symmetry axis. The anisotropic elastic
constants required for a propagation direction 6 measured
from the TI-symmetry axis are readily obtained by an or-
thogonal transformation of elastic constants referred to the
principal axes. The angle 9 denotes a rotation about the x,
axis. The transformation relationship for the elastic constants
in the compressed Voigt’s notation is explicitly given in Refs.
11 and 13.

Figure 1 shows the Scholte wave speed as a function of
the propagation direction 4 as calculated from Eq. (17). The
Scholte wave speeds are for deformation in the sagittal plane
containing the ¢SV polarization. The isotropic constants for
the unperturbed solution are given by Eq. (11). Comparison
of the Scholte wave speeds for the four propagation direc-
tions (#=0°, 45°, 60°, and 90°) with the high-frequency as-
ymptotes of the gSV-polarized flexural waves in Fig. 4(b) of
Ref. 11 shows the correct trend for the high-frequency limit
of the flexural wave speeds. The differences between the
Scholte wave and flexural wave speeds at 10 kHz are ap-
proximately on the order of 3%. However, a part of these
differences is due to the fact that the flexural wave disper-
sions have not yet “saturated” at 10 kHz. It should also be
noted that other choices for the aforementioned isotropic
constants yield slightly different values for the Scholte wave
speed. As is the case with any perturbation model, the back-
ground solution should be selected so that the perturbative
deviation of the Scholte wave speed from the isotropic case
is relatively small due to the material anisotropy.

B. High-frequency waves in a pressurized borehole

We now turn to the pressure dependence of the Stoneley
wave speed in a circular borehole. The low-frequency, or
tube wave, behavior under pressurized conditions has been
analyzed in some detail by Johnson ef al.' The full descrip-
tion of the pressurized Stoneley mode over the entire fre-
quency range of interest is discussed in a separate paper.'?
Here we address the high-frequency end of the spectrum,
where the 2-D analysis of Sec. Il is directly applicable.

The deformation associated with the prestress is a posi-
tive hydrostatic pressure p in the fluid and a nonuniform
deviatoric plane strain field in the solid. The plane of strain is
perpendicular to the borehole axis, and the principal strain
axes are the radial and circumferential directions, with
strains —p/2p and p/2u at the bore wall, respectively.’
This is an example of a slip surface because of the different
area mapping on either side of the boundary. Thus the virgin
area dS on the solid surface is increased to (1+ p/(2p))dS.
Assuming the fluid is compressed axially as a plug of length
L while it expands laterally, then the length of the plug after
compression is (1+p(A~ Y+ ™ Y)L. Tt follows that the area
dS on the fluid side of the surface decreases to
[1+p(A~"+(21)"")1dS. The point is that the concept of
Lagrangian coordinates is clearly of little or no utility in
dealing with the interface, and one needs to resort to a theory
of the type presented in Sec. 1IT and discussed in Ref. 6.

The high-frequency limit of the modal wave speed de-
pends upon the prestress conditions in the vicinity of the
bore wall. Thus, with the Cartesian x,, x,, and x;, axes
replacing the axial, radial, and azimuthal directions, we have

e;1=0, ep=—ep=—pl2u. (35)

The deformed isotropic elastic density and moduli are there-
fore, from Eqs. (26) and (28),

A D
Ps= P> )‘z)‘_(k—l‘l’+cl44) ;'

A p
2= p—(2p+Cys6) ; (36)

The perturbed wave speed is then given by Egs. (34)—(36).
Note that the shift in v depends upon two of the three third-
order elastic moduli, viz., C 44 and C\54=C 44+ 2Cs6.-
The properties of two distinct rock types are listed in
Table TI, along with the Scholte wave speed for water over-
lying the solid. The nonlinear parameter for water is taken as
B/A=5. Table 1I also gives the Scholte wave speeds for
pressure levels of 2000 psi (13.8 MPa) in rock I and 500 psi
(3.45 MPa) in 11, as computed from Eq. (34). Rock II is

TABLE 1l. Material properties of the two rock materials. The parameters for rock II are for a dry Berea

sandstone.
p A © U, U, v Cias Cres p v+Av
Rock (kg/m®) (GPa) (GPa) (m/s) (mss) (mss) (GPa) (GPa) (MPa) (m/s)
1 2135 195 6.5 3022 1745 1332 193 —578 138 1331
n 2062 1.1 464 2320 1500 1156 2702 —4543 345 1257
from Ref. 14
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FIG. 2. Stoneley wave dispersions before and after borehole pressurization
of 2000 psi. Results are for a borehole of diameter 8§ in. surrounded by
formation L. The dashed lines are the Scholte wave speeds from Table 1.

much more nonlinear than I, hence the smaller value of pres-
sure considered. In both cases the changes in the fluid prop-
erties are insignificant compared with those for the solid
moduli. Thus, at the higher pressure of 13.8 MPa, we thivc
Z)flpf= 1.006, AJA=1.037. In comparison, we have A\
=0.94 and @/p=1.12 for formation I at p=13.8 MPa,
whereas the same quantities are AMA=2.10 and Wp=1.15
for formation 11 at 25% the same pressure level. The large
value of M\ in the latter case means that the present theory
is limited to low-pressure levels for rocks with such strong
nonlinearity.

Figures 2 and 3 show how these nondispersive calcula-
tions compare with the numerical results of a perturbation
analysis for the Stoneley wave mode in a borehole of radius
0.1016 m. The theory behind these curves is described in a
separate paper.'? The horizontal dashed lines show the non-
dispersive Scholte wave speeds before and after borehole
pressurization. We notc that agreement with the dispersive
theory for both rocks I and II is well within 1%-2%. A part
of the discrepancy for rock II can be partly ascribed to the
strongly nonlinear nature of this rock. However, we believe
the discrepancy is in equal measure due to the fact that the
dispersion curve for the undeformed rock Il has not “satu-
rated” even at the relatively high frequencies considered.
The deformed curve, on the other hand, is flat at the high-
frequency end, and the discrepancy between the limiting

1300
after e
1250 |
=z
E
S
2 1200}
3
§ before
1150 | wn=s
100, r 8 1z 16
f (kHz)

FIG. 3. Dispersion curves for the Stoneley wave with and without pressur-
ization of 500 psi. The computation is for a borehole of diameter 8 in.
surrounded by formation II. and the dashed lines are from Table IL.
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speed and the Scholte wave estimate is comparable to the
deviation of the undeformed dispersion curve from the unde-
formed Scholte wave speed.

V. CONCLUSION

The speed of a Scholte wave in a slightly anisotropic
medium is given by formula (17), where the effective isotro-
pic moduli X and £ are defined in Eq. (11). The Scholte wave
speed in a system under arbitrary initial stress is given by Eq.
(34), where the reference isotropic constants are given by
Egs. (26a)—(26¢) and (28). In either case, the remaining
quantides I, /,, I, I, and T follow from Egs. (20) and
(21) with the reference isotropic moduli and densities used in
these expressions. The formula for the wave speed in the
presence of prestress can also be applied to consider leaky
pseudo-Rayleigh waves, with the necessary modification to
Eq. (34) discussed in the Appendix. We stress the simplicity
of the expressions for the modified wave speeds. The only
computational difficulty involved is to find the roots of the
standard equation for Scholte waves in the isotropic configu-
ration. Everything else is explicit and easily computed for
arbitrary conditions of anisotropy and prestress. The ex-
amples given illustrate the utility of the theory for estimating
the spced of borehole wavzs in anisotropic and prestressed
rock formations.
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APPENDIX: THE NUMBER I' AND OTHER INTEGRALS

The integral in the denominator of Eq. (15) is clearly a
measure of the total energv of the wave mode considered.
The associated integral is over the full range — o <x,<<oo_If
the wave motion considered is subsonic relative to all bulk
wave speeds, v<v, with a=f, s, and p, then the wave is a
true interface wave in the sznse that it decays exponentially
away from the interface. This is the “Scholte’” wave, and its
kinetic energy is bounded. We are also interested in “leaky”
interface waves, specifically the “pseudo-Rayleigh” wave
that occurs when the Rayleigh wave speed exceeds the fluid
bulk wave speed. This is not a true interface wave in the
sense of the Scholte wave. The reasons are various, but all
stem from the fact that the slowness root for s lies on the
“wrong” Riemann sheet for the square-root function y. The
root corresponds to a value of vy which yields a solution that
grows exponentially in the fluid as the field point recedes
from the interface. The wavz motion still decays in the solid
half-space. However, the exponential growth in the fluid in-
dicates that the kinetic energy in the denominator of Eq. (15)
is not defined for such a wave mode. It is clearly meaning-
less to ascribe a finite energy to this wave solution, which is
another indication of the unphysical nature of the pseudo-
Rayleigh wave considered in isolation.

In order to include the possibility of considering leaky
waves, we use an analytical device to remove the kinetic-
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energy integral in favor of a similar integral over the solid
region only, which is finite and has physical meaning. Con-
sider the variation of s for a uniform change in the fluid
density p;. The shift is determined from the identity

gs  [(oF\[oF\™! A
a—'pf—— (9—pf 3% (A1)
which, combined with Eq. (4), implies
— AP R SEr9s (A2)

At the same time, the shift in phase speed caused by a
change in the fluid density only can be determined by per-
turbation theory as

a®(s+ y*s)

Av _IVprfﬁ'l.ldV Apf ApffvpuudV

v 2fypu-udV  2p; 2p; fypuudv
(A3)

Comparison of Eqs. (19), (A2), and (A3) yields the identity

Py
=]4+2 —
r=1+2 v JdF/ds

® o 1+20p, R (
—= vps Re

The real number I now follows from Eqgs. (8), (19), and (A4)
as

I'=l1-v Re[

The parameters s, 3, «, y, and —R are all real positive
numbers for the Scholte wave, and the phase speed is simply
v=1/s. Both numerator and denominator of the bracketed
quantity in Eq. (A5) are real positive numbers, and I' reduces
to Eq. (21).

Finally, we provide expressions for the integrals I, /;,
and I3 in Eqgs. (34) when the wave is not a pure interface
mode. Then s is complex valued, and we find from Egs. (9)
and (18) that

I;=3Re(J;+K;), j=0,1, and 3 (no sum), (A6)

where J, J, , and J5 are given by the right-hand members of
the expressions for I, I;, and I5 in Eq. (20), and

2 2 2 2 -1z
s|“+|a sa+t+s
I Ui ||2" +HBP| | [55+58)
ata ﬁ at+f
s|*~lal*  2sBR “n
R Bl (7 4 5
- 2 =
Ki=lsl Ko K=700% (&+pBw?’

with the bar over a quantity indicating the complex conju-
gate.
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(llv})—(lluf,)+4v§(a—ﬂ)[2a32+s2(a—ﬁ)]psy3/pfﬂ
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