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effective poroelastic medium is transversely isotropic, and wave solutions are discussed and 
compared with previous studies. ̧ 1995 Acoustical Society of America. 
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INTRODUCTION 

Biot's theory •'2 for linear dynamics of fluid-filled porous 
media is by now well established, with several experimental 
investigations that corroborate it very well. For example, the 
data of Plona et al. 3 display both the fast and slow wave in a 
layered, alternating fluid/solid system. It has recently been 
emphasized that sandstone and other porous granular 
media 4'5 display strongly nonlinear behavior, as compared 
with, for example, water or metals. The nonlinearity param- 
eter BIA for water, which is the ratio of a third-order elastic 

modulus to the second-order bulk modulus, is approximately 
5. The analogous quantity for sandstone can be on the order 
of 104. 4 What can one expect for the nonlinear behavior of a 
strongly nonlinear porous sandstone saturated with water? 
The nonlinear acoustical properties of the constituents are 
disparate, and it is not clear how this will affect the nonlinear 
acoustics of the fast and slow waves of the poroelastic me- 
dium. This paper is a first step toward an understanding of 
the nonlinear mechanics and dynamics of porous media, par~ 
ticularly the interplay between the nonlinearities of the con- 
stituents. We focus on the problem of deriving the governing 
equations, the strain energy functions, and describe some lin- 
ear wave solutions for a layered medium. 

Our objective is the governing nonlinear equations for a 
poroelastic medium--the nonlinear generalization of the 
Biot model. 2 We employ the "two-scale" technique of ho- 
mogenization for heterogeneous media with disparate length 
scales, which has been used to obtain the linear Blot 

theory. 6-m Homogenization leads directly to the macroscopic 
equations, and defines the microproblems which uniquely 
determine the coefficients in them. Burridge and Kostek n 
recently derived the nonlinear poroelasticity equations for a 
system with a granular solid skeleton whose elastic response 
is governed primarily by deformation at grain contacts. This 
is assumed to dominate the nonlinear effects, to the extent 

that the fluid can be considered as linearly elastic. Unlike 
Burridge and Kostek, u we do not assume that the solid non- 
linearity overwhelms the fluid's, but keep both on an equal 

footing with the purpose of comparing their interaction. 
Three sources of nonlinearity are traditionally distin- 

guished in continuum mechanics. First, there is the physical 
nonlinearity, that is, the nonlinearity associated with the de- 
pendence of the stress tensor on the tensor of finite deforma- 
tions. The second one is the nonlinearity of the universal 
equations of mass, momentum, etc., that is, those equations 
which have validity for all specific models of the continuous 
medium. The third one is geometrical nonlinearity, for ex- 
ample, the nonlinear relationship between displacements and 
the tensor of finite deformation. This classification of nonlin- 

earities is not absolute, and some changes occur when one 
switches from, for instance, the Eulerian to the Lagrangian 
description (e.g., the universal momentum equation appears 
to be nonlinear in the Eulerian description and linear in the 
Lagrangian description). In order to keep this paper as 
simple as possible, we choose the Lagmngian description 
and concentrate on the physical nonlinearity, which seems to 
be the most significant for water saturated sandstones. The 
assumption of a periodic microstructure is another significant 
physical assumption made for the purpose of simplifying the 
effects of nonlinearity. 

We consider in detail a layered fluid/solid medium. The 
general form of the nonlinear equations is derived, but we 
consider only linear wave solutions in this paper. Nonlinear 
waves and the interplay between the solid and fluid nonlin- 
earity will be explored in a separate paper. The stratified 
medium is perhaps the simplest realization of a porous me- 
dium, and has been examined in several studies, both 
theoretical •2-17 and experimental. 3 The first study by Rytov •"' 
considered wave motion parallel to the layers, and showed 
the existence of two waves: the fast and the slow. Bedford •5 
later showed that the slow wave is the long-wavelength 
manifestation of the second mode of the system. This is a 
rich system for wave motion, particularly when the waves 
are allowed to propagate in oblique directions. The definitive 
theoretical and experimental studies of Schoenberg and 
co-workers 3J3'14'16 describe the wave motion and slowness 
surfaces for fast and slow waves. We give for the first time 
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TABLE I. Material parameters, from ReL 3. 

Compressional speed Shear speed Density 
Material .- (m/s} (m/s) Ikg/m 3) 

Aluminum 6450 3150 2700 

Plexiglass 2700 1380 1200 
Water 1490 --- 1000 

the complete set of Blot equations for the stratified lluid/solid 
system, which includes fluid viscosity and elastic anisotropy. 

The paper proceeds as follows. The nonlinear equations 
of motion are outlined and the scaling procedure is defined in 
Sec. I. The main difficulty in any averaging theory of hetero- 
geneous media is to calculate the "effective" parameters (see 
Table I), which require solving simpler problems on typical 
unit cells. Explicit solutions can be obtained for the specific 
case of the layered medium, and are addressed in Sec. II. All 
moduli and parameters can be found for this simple geom- 
etry; in particular,.the time-dependent viscodynamic operator 
is expliqit. The effective nonlinear equations of motion are 
summarized in Sec. III. Section IV focuses on the linear 

limit, and comparisons are made with Scho:nberg's 
model u'•4 for a layered medium of fluid and isotropic solid 
in Sec. V. 

I. GOVERNING EQUATIONS AND SCALINGS 

A. The primitive field equations 

The volume V comprises fluid and solid regions. Vf and 
V s , with boundary 8V between them. The displacement 
fields are u i and U, in the solid and fluid, and the stress fields 
are o'ji and 3;ji, respectively. All equations are defined in 
terms of the reference or Lagrangian coordinates. The gov- 
eruing equations of motion and constitutive relations are 

fiji = o'ji(Fmn), (lb) 
in Vs, 

pin9 t U i - Dj•ji , (2a) 

•ji = -- P aji + 2 •at{Oj Ui} , (2b) 

p =.•DiUi), (2c) 

in Vi, and the confinui W conditions on aV •e 
Ui=ui, (3a) 

ni•ji= nj•ji. (3b) 
Here, Fii=Djui is the deformation gradient tensor in the 
solid, {aij}•(aii+aji)/2-6ijakkl3 is the symmetric devia- 
toric part of a second-order tensor, and n i is the unit normal 
on 3V directed into the fluid region. The summation of re- 
peated Latin suffices over 1, 2, and 3 is understood. 

Both the solid and fluid constitutive relations are nonlin- 

ear. We ignore, however, the "geometrical" nonllnearity in 
the fluid equation (2b) for the sake of simplicity (conceptu- 
ally, many of our conclusions remain valid without this as- 
sumption). Also, the equation of state for the pressure, Eq. 

(2c), is normally expressec in terms of the current (Eulerian) 
density, but we take a slightly different approach, and as- 
sume that it depends upcn the dilatation in the reference 
description. This is simpler, and leads to the same nonlinear 
effects that are normally present in homogeneous fluids up to 
second order. Also, we assume that the fluid equation of state 
possesses an inverse, 

OiUi=/..,(p). (4) 

The material nonlinearity •f the phases is then reflected in 
the nonlinear behavior of the functions .•,/j, and o'ji(Fm, ). 
The siress functions o'ii and the pressure are normally de- 
rived t¾om strain energy potentials, according to 

(5) o?•-c•(Di•) , -P= 
where Es(Djui) and Ef(DiUi) are the elastic strain energy 
functions for the solid and lluid, respectively. The homogeni- 
zation theory outlined below is not dependent upon the ex- 
istence of the strain energies, and the final equations do not 
involve them. However, we will see that the effective po- 
roelastic medium also possesses a strain energy function 
when E• and Ef exist. 

B. Asymptotic scaling 

In order to simplify the system of equations (1)-(3) we 
employ the method of homogenization. We assume the me- 
dium is characterized by two distinct spatial lengths, h • H, 
associated with the micro- and macroscales, respectively. 
The number, e--h/H, is a small parameter, e•l. Further- 
more, we assume that the viscosity scales as 

b = e2 r/. (6) 

References 7-9 and 11 provide a clear motivation for this 
choice. The results generated by the homogenization tech- 
nique are very sensitive to the presence or absence of the 
multiplier e 2 in the viscosity. Without it the "macro" equa- 
tions turn out to be of viscoelastic type, whereas the presence 
of the term e 2 in Eq. (6) leads to Blot-type equations, as we 
will demonstrate. We refer the reader to the cited papers for 
further details of the homogenization procedure. [See also 
the comment after Eq. (32).1 

We assume a two-scale expansion •s in terms of the slow 
or macroscopic spatial variable x, and the fast variable 
y=x/e, such that the spatial differential operator is 

(7) 
The fast variable y reflects the small-scale structure in the 
problern through the perturb.'ttion parameter e. Our goal is to 
eliminate the explicit dependence on y, leaving us with equa- 
tions in x. The governing equations (1)-(3), combined with 
Eq. (6), become 

•p.•8•ui= ( •8x• + aye) o)•, (Sa) 

in the solid phase, and 

epf •; U i = ( E•xj "[ By/) • ii , (9a) 
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Eji = - p 8•i + E2 r/4{ (•8• i + •yi) Ui}, (9b) 

(/(p ) = ( 8•,+ •- • Sy,) U i (9c) 
in the fluid. We consider 1he ansatz 

•i(•,t,•)=u•(•,t)+ • •.](X.},t), 

p(x,t,•)=pø(x,t)• • •npn(•,y,t), 

Ui(x,t,•)= • •nua' ' i •x,y,t), (10) 
a=0 

•ji(x,t,•)= • •n•*i(x,y,t), 
a=0 

•ji(x,t,•)= • •j•(x,y,t). 
n=0 

Substituting these exposions into the governing system and 
comp•ng like powers of • yields a sequence of asymptotic 
equations. •e leading-order equations, of order unity, are 

ß o_ o 1 
fiji-- O'ji( 4trnl•n -[- O]yrn/'tn)' 

for x and y in V s , 
0_ 

8yjX]i- 0, 
0_ 0 

8y i Ui ø = O, 
for x and y in Vf, and on 8V, 

0 U? = u i , 
O_ 0 

rtjEji -- rtjO'ji. 
The next set of equations, of order E, is 

o+ ! 

in 

2 O_ 0_[_ ,I PlOt Wi - OxjEji 

Z)i= -PlSji+ 2 
+ o,, 

in V/, and 

on 

(11a) 

(lib) 

(12a) 

(12b) 

(13a) 

(13b) 

(14a) 

(4%u•+O•ypUq 2) (14b) 

(15a) 

(15b) 

(15c) 

(16a) 

(16b) 

C. Homogenization of the asymptotic equations 
Introduce the relative fluid displacement vector 

w/ø(x,y,t), defined as 

w?(x,y,t) = •b[ U?(x,y,t) - u?(x,t)], (17) 
where O<•b<l is the porosity or volume fraction of the fluid, 
qS= V/IV. We can then rewrite Eq. (15c) as 

-_D(pø)+Sx,(u?+ q5 'w/ø)=-Sy, V•. (18) 
The dependence upon the fast scale may now be eliminated 
by averaging over y. A formal definition of the averaging 
procedure can be given for nonperiodic, statistically defined 
media; see, for example, Burridge and Keller. 7 Here, for the 
sake of simplicity, we assume periodicity on the small scale, 
so that the average is trivial. Thus integrating Eq. (18) over 
Vf, using the displacement continuity conditions (16a) and 
the assumed periodicity in y, gives 

•( -- O(p 0) -]- O•x/.l?) 4- V/I f O(,W? av(y) ß dVf ' ' 

=(l--(j•)v•-lf OVi/.• ff dr(y), X in V•. (19) 
J V s ' 

Substitution of Eqs. (12b) and (15b) into Eq. (15a) yields 

2 0 0 

= -- qS[pfo•t U i -1- 8•,p ], X,y in Vf, (20) 
while Eqs. (12c) and (13a) become, respectively, 

o•y,w?=O, y in V/, (21a) 
w/o=0, y on 8V. (2lb) 

Next, integrating Eq. (14a) over V s and Eq. (15a) over 
then adding the results and using the continuity conditions 
(16b) and periodicity, we find 

po,h,?(x,t)+pvi, fv ' o Jtw i dV(y) 

=_•4r/pO_[.(l_•b)V;i O f 0 
where 

0 = O• + ( 1 - •)0• (2•) 
is the average density. Finally, using Eq. (12b), we rewrite 
the boundary condition (13b) as 

%%ø, = -pøn,. (24) 
The system of equations (20) and (21) forms a closed 

boundary-value problem with respect to 0tw/ø(x,y,t), and in 
o and principle, one can express this function in terms of ui 

p0. Similarly, Eqs. (11) and (13b) give a well defined 
boundary-value problem with respect to u•, which enables us 
to present uJ as a function or functional of u/ø and pO. Both 
problems are solved explicitly for the case of a periodically 
layered medium in the next section. Inserting the results in 
Eqs. (19) and (22), we arrive at a closed master system of 
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equations with respect to u/e, pO, and w i , with the averaged 
relative fluid displacement defined as 

Wi(X,I ) • Vi I ;vlw?(x,y,t)dV(y). (25) 
II. CONSTITUTIVE THEORY FOR A LAYERED MEDIUM 

We consider periodically alternating fluid and solid lay- 
ers. The thickness of each fluid layer is I in terms of x and 
L=//E in terms of y. Let y=y-n be the coordinate in the 
direction of layering. The two microproblems defined at the 
end of the previous section then depend only upon y, and 
hence reduce to unidimensional problems. This is the gmat 
simplification that arises from the layering, and it is not 
present for any other configuration. 

A. The permeability operator 

The permeability operator results from the solution of 
Eqs. (20) and (21). Let 

ui=c•tw?, f•(x,t)= 2 0 --p.fc• t It i -- t•xipO; (26) 
then Eqs. (20) and (21i•) become 

--I 

OtOi = --ttilojTlr)ypl + T]pf O],Oi+ qSfi(x,t), (27a) 

lliC•yU i = 0. (27b) 

We consider y-periodic solutions of this system, The, bound- 
ary conditions are those foi' a rigid wall at y = 0 and y = L, 
which combined with th• incompressibility condition for w/ø, 
implies 

niu i = O<•oi = Pijoj, (28) 

where P(n)=l-n©n projects on to the horizontal plane. 
Contracting Eq. (27a) with n and using Eq. (27b) allows us 
to eliminate the pressure gradient term. Bearing in mind Eq. 
(28) we deddce that o i satisfies 

OtO ]-- Vag•O i= q•P ijf j( x, t), (29) 
where v= rl/pf is the kinematic viscosity. This can be solved 
by standard means, i.e., using a Fourier series in y. A very 
similar type of problem is discussed by Sneddon. lø Taking 
into account the initial data (o =0 for t<0), we find 

2 n 

31- øi(x'y't)=qSPii = n [1-(--l)n]sin L 

X f• ds e e-•("2•-'/t•2)(t-O•f)(x.•). (30) 
Averaging o•(x,y,t) over the layer yields tS•(x,t), which sat- 
isfies 

Oi(x,t)= Kij(t)*fj(x,t), K•j(t) = PijK(t), (31) 
where * denotes convolution, and 

K(t) = ck • ,,•__• (2n- 1-• exp - ,r•(2n- 1 )2 •-' . (32) 

-2 

-8 

' o:2 ' 3:4 ' o:6 ' ' 
vffL 2 

FIG. 1. The permeability function for the stratified medium in nondimen- 
sional units. 

Hence the permeability of the medium is a projection opera- 
tor onto the transverse plane. Also, K(t) is independent of E, 
because •'/L 2= O/pfl 2. 

Note that Eq. (31) iml:lies 

o•ttJ i( X,t ) ' , , = Kq(O)fi(x,t) + Kii(t ) fj(x,t), (33) 
where K(0) = 4• for the layered medium, and K'(t) is plotted 
in Fig. 1. it follows froin Eq. (32) as 

( ) 
8 v vt 

K'(t)=-½• exp -'rr-'(2n-1)2•-• . {34) 
This is a well behaved and convergent series, except for 
values of t approaching zero, where it is evidently singular. 
The behavior near zero can be seen by transforming the sum 
using the Poisson summation formula: for a given function 
g(x), 

f•'=g(.r)e-i2rrrax X½ g(n)= • dx. (35) 

Applylag this to the sum in Eq. (34) and performing the 
integration yields 

4v {l TM ( n2L2/l K'(t)=-½L•-•v t •+:E (-•)"exp --•-•/J' 
(36) 

The function K'(t) therefore has an integrable t -•12 singu- 
larity at zero. 

B. The stress and strain in the solid layers 

We now turn to the system defining the displacement u• 
in terms of the macroscopic parameters tt? and po, Eqs. (il) 
and (24). Proceeding as we did for the previous microprob- 
lem, we look for the affine solution depending on the vertical 
coordinate y only. Hence 

•.•.it• • = n jG i , (37) 
where the vector G t does not depend upon y. Then u• auto- 
matically satisfies the equilihrium equations within the solid 
region, Eq. (l l}. The traction boundary conditions of Eq. 
(24) become, using Eq. (1 lb), 
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n jcr di ( Sxmuø, + nmG ,) = - p øn i . (38) 
This is an algebraic system of three equations in three un- 
knowns, with solution 

G, = G,( Sxjuiø,pø). (39) 
Explicit versions of this will be discussed later, but for the 
moment the implicit solution of Eq. (39) is sufficient. The 
leading-order stress in the solid then follows from Eqs. (11b) 
and (37) as 

0 _ •rdi (c•x,,u0, + nmGn )_-- Tdi(SxmuO•,pO). (40) O'ji -- 

III. MACROSCOPIC EQUATIONS 

A. The general nonlinear equations 

We are now in a position to state the leading-order mac- 
roscopic equations of motion. The fundamental field vari- 
ables are the solid displacement u/ø(x,t) and the averaged 
fluid displacement Wi(X,t ), and their governing dynamic 
equations follow from Eqs. (22), (26), and (31). In order to 
simplify the notation, we make the replacements 
Up(x,t) '-• U i(X,t) and p0 (x,t) -•p (x,t). The dynamic equations 

p•;tti(X,t ) + pfr• t2 Wi(X,t) = •-ji,j(X,t), (41a) 

t9tWi(X,t)= --Kij(t)*[o•;Ud(X,t)+pflp,j(X,t)], (4lb) 
where Kid(t) is given explicitly in Eq. (32). The stress and 
pressure are related to the displacements by the right-hand 
side of Eq. (22) and Eq. (40), and by Eqs. (19) and (37), 
respectively, or 

tji(X,t ) = ( l -- q•)Tji(F,p) - •bp (x,t) 8g j, (42a) 
•(x,t): 0e(x,t) - 0•(P) - ( 1 - qb)niGi(F,p), (42b) 

where Fid = 8xjui --= ui,j is the macroscopic deformation 
gradient tensor, emlli, i , and •-----Wi, i is the relative fluid 
dilatation. 2 

Equations (42) provide the bulk stress rdi and the rela- 
tive fluid dilatation • in terms of the solid deformations Fid 
and the fluid pressure p. When the pressure is zero, the bulk 
stress is 

rji=(l-qb)Tji(F,O), p-O. (43) 
Hence we can identify (1 -qb)Tji(F,O) as the stress function 
for the dry frame, or the "open" system. 2 If the pores are 
sealed, or "closed, "2 then the associated stress function fol- 
lows from Eqs. (42) with •--0. 

B. Energy potentials 

The macroscopic elastic constitutive relation for the 
stress in Eq. (42a) can be related to the effective strain en- 
ergy. Comparison of Eqs. (42) and (A13) implies that the 
former •an be replaced by the simpler relations 

•w •w 

rji= 3Fji' P = c• ' (44) 

The effective strain energy follows from Eq. (A1), which 
becomes in the present notation 

W(F, if) = ( 1 - c))Es[Fdi + niGd(F,p)]+ qbEf(•(p)). 
. (45) 

Hence the effective medium is elastic in the sense that it 
possesses a stored energy potential W. Note,that W is a func- 
tion of the kinematic strains F and •, but its functional form 
is defined by F and p. The remaining identity (42b) is an 
implicit relation for p in terms of F and •, i.e., p =p(F,0. 

The related potential II is defined in the Appendix. It 
follows from Eq. (A7) that the two constitutive relations of 
Eq. (42) are equivalent to 

c•II c•II (46) 7)i-- o•Fji ' -- •= 8p 
The functional definition of II=II(F,p) is given in Eq. (A6), 
which becomes in the present notation 

II(F,p) = ( 1 - O)Es(Fdi + niGj(F,p)) 

+(1 - c) )pn•G•(F,p )- Ope 

+ 0 •(r/) d r/. (47) 
amb 

This is an explicit equation for 'the potential, apart from the 
fact that the functions Gi(F,p) are given by the implicit re- 
lation (38). A simpler form for II can be obtained by noting 
that it is a partial Legendre transform of the energy function 
W(F,0. The differential relations (44) and (46) imply the 
connection 

W = II + •p. (48) 

IV. LINEAR THEORY FOR THE STRATIFIED MEDIUM 

It is instructive to consider the limiting case for small 
amplitude waves, for which the linear constitutive equations 
in the solid and fluid are sufficient. The individual energy 
potentials are now 

E•(eij ) =, • 2 (49) 7Cuileijeil, Ef(e) = •Kfe , 

where Kj is the fluid bulk modulus and the elastic moduli 
possess the symmetries Cijkl = Skill and Cijkl=Ciikl. The 
linear stress in the solid is 

O-ji( llm,n ) = C jikll, lk,i . (50) 
The deformation gradient tensor F can be replaced in all 
expressions by the macroscopic linear strain tensor 
e=(F+Fr)/2, or eij=(uij+uj,i)/2. Equation (38) becomes 
a linear system for G i which can be solved easily, yielding 

Gi(e,p ) = - biklek I -- Q•l n•p, (51) 
where 

Qik= Cijkllljnl ' [•ikl = Q•] Cpjklrlj. (52) 
The functions rji of Eq. (40) then follow as 

Tji(e,p) = ( Slik I -- bmijbnklQmn)ekl- bkijnkp. (53) 
Using the fact that •'(p) = --p/Kf, which follows from Eqs. 
(5) and (49), the constitutive relations of Eq. (42) become 
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Tji(X,t)-- Cijktekt-M •MijP, 

•(x,t) =M-IMijeij+M-lp, 
where 

C•t•l= ( 1 - •)( Cijkl-- bmijbnt•lQmn), 

M = [•/tcl+ (1 - qS)ninjQ • I]-I, 
My= [4,•0 + ( 1 - 4,)nd,•v]M. 

(54a) 

(54h) 

(55a) 

(55b) 

(55c) 
0 

Note that Ciikl are the dry frame or open pore moduli; 
see Eq. (43). Equations (54) are equivalent to 

•'ji = C i•'lde t•l- M ij•, (56a) 

p = M •- Mijeij, (56b) 
where 

c _ 0 + -1 (57) Cijkl-- Cijkl M MijMkt, 

are the "closed pore" moduli (•---0). Also, (1- 
can be identified as the moduli for a state of plane xtress in 
the elastic solid. Thus Eq. (54a) indicates that macroscopic 
plane stress prevails when the pressure is zero, as expected. 

The potential [I follows by integrating rii and •, using 
Eqs. (46). The energy density then follows from Eq. (48). We 
find, after some simplification, that 

I p2 1 M 
C ijkle ije kl + •'-• , C i•t•le ije kl -- W•_• 0 H= • •2. 

(58) 

The former is a remarkably simple and physically appealing 
form. It deafly separates the strain energy into solid and 
fluid parts, where the latter depends upon the effective bulk 
modulus M. 

V. ISOTROPIC ELASTIC LAYERS AND WAVES 

A. The general equations 

Let • and/x be the Lam• moduli of the solid; then Eqs. 
(52) become 

Qñ I = (h + 2/z)*-ln©n+ p•*- •P(n), (59a) 

bikl-k+2t z niPtd+nt•Pit+nlPit•+nin•nt. (59b) 
It is a simple matter of algebra to show that the parameters in 
Eqs. (55) are now 

Ci•kl = ( 1 -- qS )( hoP ijP •! + 2 I.t,[ijkl), (60a) 
1 -q5 -l 

Mo=[ninj+[•+2tzc)\ ] • •'--•-• }PqlM, (60c) 
where •ij•l----(P•&P•t+ PaPjOI2 is the "in-plane" fourth- 
order identity tensor and Xo=2/•M(h+2tx) is the "plane 
stress" Lam• modulus. The two constitutive equations are 
(54a) and (54b), the former simplifying to 

•'ij = ( 1 -- •)(k0•P/i + 2/x•/j) - M-1M6p, (61) 

where •O=iq•te•t is the in-plane strain, and e=ejj. The 
constitutive relations (54b) and (61) are written with the 

solid strain e 6 and the flud pressure p as the fundamental 
variables for the poroelasdc medium. Alternatively, if we 
choose: the strains e 6 and • as the primitive variables, then 
the constitutive relations axe Eqs. (56). The energy potential 
W of Eq. (58) reduces to 

I p2 
W= • (1- (•)(•k0g2ff - 2[ggijgij ) q- 2M' (62) 

The Biot equations are tho•e of a transversely isotropic po- 
roelastic medium, as expected. The general Biot equations 
for a raaterial with this symmetry 2ø have eight independent 
moduli: five fbr the solid, one for the fluid, and two for the 

fluid/solid interaction. It is interesting that the present equa- 
tions only have five independent moduli, two each for Ci•l 
and M/j, and one for M. Three of the eight possible con- 
stants are identically zero. which can be ascribed to the 
plane-stress configuration of the solid. 

The equations of motion can be further simplified. Sub- 
stituting rij from Eq. (61) into Eq. (41a) gives a recoupled 
system of equations. We now let n=e3, where (e• ,e2,e3) 
form an orthonormal triad. then, using Eq. (33), we find 

pt•;tt 3 -I-p, 3 = 0, (63a) 

p•c)•u.- X0g,.- 2/z•ts,/•+ (X0/2/z)p,• 

= ( 1 -- (•) -IK' (t)*(p/a•u,+p.•), (63b) 
where the Greek suffices ot and/3 are restricted to I and 2, 
and the summation convention is implicit. Finally, eliminat- 
ing • between Eqs. (4lb) and (56b) gives 

Or( p + M ijeo) = m K( t) • ( c)] g + p• lp,aa), (64) 
where K is given in Eq. (32). The four equations in Eqs. (63) 
and (64) form a closed set of equations of motion for u(x,t) 
and p(x,t). Next, we consider four examples of wave solu- 
tions in the layered medium. 

B. Examples of wave motion 

1. Propagation in the vet•'ical direction 

As a first example consider motion in the vertical direc- 
tion only: u=u(x3,t)e 3 and w=w(x3,t)e 3. Then Eq. (4lb) 
implies w=0 while Eq. (42) gives •'ji=e33Mji and 
p=-e:•aM. The equation of motion (63a) becomes simply 

pO}u( x,t ) - M c•x•u( x,t ) := 0. (65) 
This is a scalar wave equation with wave speed M•. 

Z A dampeet shear wave 

Consider shear moticn in the horizontal plane: 
u=u(xl,t)e • and w=w(x•,t)e,_. The dynamic equations 
again reduce to a single equation for u: 

p.,o,Zu(x,t)- l•u(x,t):= ( 1 - 40-'K'(t)*ptat2u(x,t). 
(66) 

The shear wave propagates with a time delayed me•nory 
function for the inertial term. The appearance of K' reflects 
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the influence of the fluid viscosity on the shear wave in the 
solid. 

& Wave motion when the fluid is inviscid: 

Schoenberg's problem 

The limiting case of an inviscid fluid is relevant to ex- 
periments performed by Plona et aL 3 The fast and slow 
waves in the system are both nondispersive and nonattenuat- 
ing in this limit. But the anisotropy of the configuration 
means that both wave types exhibit directional dependence, 
which can be best understood by considering the slowness 
surfaces. Schoenberg m3'm4 derived the equalions for the slow- 
ness surface from the dispersion relation for the long- 
wavelength modes of a layered system of fluid and isotropic 
solid. We will demonstrate that exactly the same slowness 
surface follows from the governing Blot equations outlined 
above. 

The inviscid nature of the fluid means that the operator 
K is instantaneous, or K'-0. Differentiating Eq. (64) with 
respect to time then implies, using Eq. (33), that 

2 _ 2- -! 
c• t (p + Miieu) - MK(O)(c7 t e + p/ p,•,•), (67) 

where K(0)= •fi. Consider motion in the x•-x 3 plane with 
solutions of the form 

u•(t-SlX•-S3x3), u2=0, 

p =p(t- s IX l -- $3X3), (68) 
where s• and s 3 are the horizontal and vertical components 
of the slowness. Let v•0tu; then Eqs. (63) imply 

po 3 -- s3p = 0, (69a) 

(1 2 2 -x/l 2 2 _ (69b) --Cpl$1)Ol --Cpl/Cp$1p--O, 

where c e and cet are the wave speeds for longitudinal waves 
in the solid in bulk and as a thin plate, respectively. That is, 

(70) 
and therefore X0/2/z x/l 2 = -cp/c•. Eliminating o 3 be- 
tween Eqs. (67) and (69a) yields the third equation, 

(l-4•)x/1-2 2 s• s3\ cp/cs,o,- -oF-Tj=o. (71) 
Equations (69b) and (71) are satisfied if s I and s 3 are 

related according to 

p p•( 1 2 --Cpl$ I ) 
(72) 

where cœ = gf,• is the speed of sound in the fluid. Equa- 
tion (72) defines the slowness surface for the fast and slow 
waves, and it agrees with Schoenberg's 13 equation, derived 
by taking the low-frequency limit of the exact dispersion 
relation for a finely laminated medium of alternating solid 
and fluid layers (see also Refs. 3 and 14). We may rewrite 
Eq. (72) as 

4'p 2 2 2 2 S•-- --9 2 ($ fasl-- $ I ) ($s]ow-- $1 ), (73) 
pf(Cpl---$1) 

1.5 

o.i o . 0.5 1 .o 

FIG. 2. The slowness surfaces for two different stratified media, consisting 
of water/aluminum (Al) and water/plexiglas (P!). The material parameters 
are in Table I and the porosity is 4,=0.5 in each case. The ordinate and 
abscissa are the dimensionless horizontal and vertical slownesses 
= s• •x/'•p• and g3 = s3 M'f•P, respectively. The ellipse of Eq. (76), 
which becomes a circle in these units, is also shown. The plate slowness 
corresponds to • =0.268 for aluminum and .• =0.561 for plexiglas. 

where $fast<$slow are the horizontal slowness for the fast and 
slow waves propagating horizontally. They satisfy 

q6 2 2 _ qb +{•+ l•jfi) 1 -- -•, (74a) Cp, 

_ ( 4, 0 l-4, l (fi 2 a _ + •c--•) -n-. (74b) 
•ese slowness values were also obtained by Rytov •2 who 
analyzed waves •aveling horizontally in a flui•solid layered 
medium. 

Schoenberg •3 considered a Plexiglas/water system with 
•=0.6, while Plona et al. 3 considered •e s•e system with 
&=0.5, and also aluminumwater with &=0.5. In all cases it 
was found that sf•t<c•t • <Ss•ow, and •erefore the slowness 
surface of Eq. (73) comprises an inner closed sheet for 
0<s•sf•t, co•sponding to the fast mode, and an outer 
sheet for c•t•<s•Ss•ow which gives the slow mode. A stop 
band exists for sr•<s•< c•t • . •e value of sf• is ve• close 
to Cpt in all these cases, and yew accoate approximations 
can be obtained by iterating from this starting value; •us 

, I (1 - &)pf_ pf (75a) Op,c} cf 

(c2-c; h Sfast • i , _, (75b) 
c3t 

Thus the slowness surface is essentially •e ellipse 

- (76) 
p/ p M' 

punctuated by a small stop band to the left of si =c•t • . The 
slowness surfaces for two material combinations •e plotted 
in Fig. 2, which also shows the ellipse of Eq. (76•. 

•e displacement pol•zation follows from •s. (69a). 
For a given v•ue of s i, we have 

v I x• •1-- 2 2 Cpl/Cp V3 S3 
- 2 2 , - , (77) 

P Ps (l-CvlSO P P 
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where s 3 is defined by Eq. (73). Assume that sl>0 and 
s3>0, as in Fig. 2. The ratios vii p and v3/p are both posi- 
tive for the fast wave (the branch sly<slant). The stone ratios 
are negative and positive, respectively, for the slow wave. 
Thus the horizontal velocity is in phase with the acoustic 
fluid pressure for the fast wave, but out of phase for the slow 
wave. 

4. Dynamic compatibility 

The phenomenon of dynamic compatibility was noted 
by Biot in his first paper on the dynamics of isotropic porous 
media. t If the material parameters satisfy a certain constraint, 
then a wave solution exists which has no viscous attenuation 

and its relative fluid motion is zero, or w=0. Analogous 
compatibility conditions exist for the layered medium, as we 
now demonstrate for horizontal wave motion. Consider lon- 

gitudinal motion in the horizontal plane, u=u(x• ,t)e• and 
w=w(x• ,t)e•. This leads to a pair of coupled equations for 
u(x,t) and w(x,t), 

po•t•U_ [(1 c•)(Xo+21.t)+Mq2]•x2. u 2 -- + p fo• t W 

-MqO•w=O, (7aa) 
M 

c•,w+ K(t)*[ •t2u- •f •x2(qu+w)l=O, (78b) 
where q = (X + 2/xqb)/(k + 2/x). The system reduces to 

2 2 
pfOtu-Mq4•u=O, w=0, {79) 

if the physical parameters are related by 

Mqlpf= [( 1 - •P)(K0 + 2/x) + Mq2]lp, (80) 
or equivalently, if the densities are in the ratio 

pf x0(1-4,)+24,1 
This is the condition of dynamic compatibility, and when it is 
satisfied waves can propagate unattenuated by viscous drag 
with wave speed M-•p Alternatively, the fight-hand side 
of Eq. (81) may be written in terms of the bulk compres- 
sional sound speeds and Poisson's ratio of the solid, 
v s = kl2(k + ix), yielding 

p• 1 - %- ok( 1 - 2 %) 

pz v,_k(_2vO[(l_vO-t 2 2 ß (82) (%lc•) - 1 ] 
The right-hand member is an increasing function of 4• for 

'* 2 

most material combinations, i.e., c;,Icf( 1 - %) - l > 1 nor- 
mally. Therefore, for a given pair of materials, there is a 
unique value of the porosity at which compatibility is at- 
tained as long as p•lpf•(l - v•)lv s . 

VI. CONCLUSION 

The theory of homogenization has been used to derive 
the nonlinear equations for a fluid infiltrated solid skeleton 
starting from the fundamental equations governing the mo- 
tion on the microscale of the pores and grains. The cammical 
microgeometry of a layered system of alternating solid and 
fluid constituents has been analyzed in detail. The main re- 

suits are summarized in the "averaged" or macroscopic 
equations of motion (41), and the nonlinear constitutive re- 
lations of Eqs. (42). The viscous effects of the pore fluid are 
contained in the permeability convolution operator defined 
by Ko(t) of Eq. (32). The stress-strain relations in Eqs. (42) 
allow for arbitrary nonlinear behavior in the elastic solid and 
in the fluid. The key quantity is the vector function G i de- 
fined by Eqs. (38) and (39). We have also shown how the 
stress and strain are related to a macroscopic potential en- 
ergy, in the spirit of Biot's later work on nonlinear mechanics 
of porous media?l 

The linear limit of these equations is of interest, and we 
have derived for the first time in Secs. IV and V the full set 

of linear Blot equations for a layered medium. The predicted 
form of the slowness surface for isotropic elastic layers 
agrees with that obtained I:y Schoenberg •3J4 from the exact 
dispersion relation for the system. This gives us confidence 
in the general validity of the nonlinear Biot theory as derived 
here. 
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APPENDIX: ENERGY CONSIDERATIONS 

The leading-order term for the macroscopic energy den- 
sity, W, in the porous medium is a linear combination of the 
energy in the solid and the energy in the fluid, each averaged 
over its domain. The fluid energy follows from Eq. (15c) as 
Ef[•(pø)], which is independent of y, so that the sum of the 
average partial energy is 

JV• m - 
(A1) 

The purpose of this appendix is to convince the reader that W 
of Eq. (Al), considered as. a function of the independent 
macroscopic strain variables, does indeed yield the stress and 
pressure as partial derivafiw:s according to Eq. (44). We fol- 
low Sanchez-Paiencia 9 and first consider the function 

ø) = V-' + O,,,.u'.)dV(y) d V s ' _ 

+pøV-' • u•n• dS(y). (A2) 
J ,•Vs 

The point is that A is clearly a function of the arguments 
shown, because the field variables u] are implicit functions 
of both O•u• and p0, as discussed above [see Eqs. (1 l) and 
(13b)]. The first variation is 

ae,(%/,ø. + 
8A = V- I •V, c)[' O 

x a,fi.J)dV(y) 
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+ f as(y)+.øv-' fov? n' as(y). d c9V s 

(A3) 

The terms involving 8uJ annihilate one •other on account 
of •s. (12b), (13b), and the first of (5). We •e then left with 

• av(y) 

+ 8vøV -• &Oy,uJ dV(y). (A4) 
Thus, refeffing to •s. (37) and (40), we have 

Op ø' 

0A (AS) 
(1 - •)G,(•u•,p ø) = 0 , 

8(O•jui ) 
respectively. 

Consider the related •nction 

o o_ o o •poo.•u 

+ 6f "ø •(•)d•, (A6) 
a P•b 

where p• •s the ambient pressure. •, l•e A, is a function 
of the independent va•ables •u• and p0. T•ing 
de•vafives with respect to these, •d using the identities of 
•s. (A•) •d (4•), we obtain the identifies of Eq. 0•)- •us 

o• 

•(K •) = • • + • •, (AS) 
whe• 

•(F,•) = •(F,p) + •p. (A9) 
We will now demonstrate that • and W 

same. •e latter can be rew•nen using Eq. (15c) 

•(•-. + •.•)d•(y) 

JVf • 

•e first v•ation is 

a•?.•)% av(•) 

- w • •ø•f)aV(y), (•) 
where Eqs. (15c) and th• second of (5) have been used. 
integral over the fluid region can be simplified •nh•r using 
•s. (16a), (18), and inte•ation by pa•s, giving 

6W=V f (o9x.Su. 8y.&u.)o' i. dV(y) -1 o+ I o 
$ V s • J • J J 

- (kvo,5(ax,.?) 

+ p øV- • Lv•3u• ni dS(y). (AI2) 
•e te•s with 8u} again •sap• because of •s. (12b), 
(13b), and the first of (5), leaving 

•mn dr(y) - •pø a,n n 

-pø6(8•,w,). (A13) 
•is implies the identities of Eq. (•). and the equivalence 

t= w. (A14) 
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