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The equations of motion and the nonlinear constitutive theory of fluid-filled poroelastic media are
derived from the fundamental equations of elasticity and fluid mechanics for the constituents. A
two-scale spatial expansion and the method of homogenization are employed. Explicit equations are
obtained for the special case of a medium consisting of alternating solid and fluid layers. The
linearized theory is examined in depth for the particular case of isotropic solid layers. The governing
effective poroelastic medium is transversely isotropic, and wave solutions are discussed and
compared with previous studies. © 1995 Acoustical Society of America.
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INTRODUCTION

Biot’s theory"? for linear dynamics of fluid-filled porous
media is by now well established, with several experimental
investigations that corroborate it very well. For example, the
data of Plona et al.? display both the fast and slow wave in a
layered, alternating fluid/solid system. It has recently been
emphasized that sandstone and other porous granular
media*> display strongly nonlinear behavior, as compared
with, for example, water or metals. The nonlinearity param-
eter B/A for water, which is the ratio of a third-order elastic
modulus to the second-order bulk modulus, is approximately
5. The analogous quantity for sandstone can be on the order
of 10*.* What can one expect for the nonlinear behavior of a
strongly nonlinear porous sandstone saturated with water?
The nonlinear acoustical properties of the constituents are
disparate, and it is not clear how this will affect the nonlinear
acoustics of the fast and slow waves of the poroelastic me-
dium. This paper is a first step toward an understanding of
the nonlinear mechanics and dynamics of porous media, par-
ticularly the interplay between the nonlinearities of the con-
stituents. We focus on the problem of deriving the governing
equations, the strain energy functions, and describe some lin-
ear wave solutions for a layered medium.

Our objective 1s the governing nonlinear equations for a
poroelastic medium—the nonlinear generalization of the
Biot model.2 We employ the “two-scale™ technique of ho-
mogenization for heterogeneous media with disparate length
scales, which has been used to obtain the linear Biot
theory.®~ ! Homogenization leads directly to the macroscopic
equations, and defines the microproblems which uniquely
determine the coefficients in them. Burridge and Kostek'!
recently derived the nonlinear poroelasticity equations for a
system with a granular solid skeleton whose elastic response
is govemed primarily by deformation at grain contacts. This
is assumed to dominate the nonlinear effects, to the extent
that the fluid can be considered as linearly elastic. Unlike
Burridge and Kostek,!! we do not assume that the solid non-
linearity overwhelms the fluid’s, but keep both on an equal
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footing with the purpose of comparing their interaction.

Three sources of nonlinearity are traditionally distin-
guished in continuum mechanics. First, there is the physical
nonlinearity, that is, the nonlinearity associated with the de-
pendence of the stress tensor on the tensor of finite deforma-
tions. The second one is the nonlinearity of the universal
equations of mass, momentum, etc., that is, those equations
which have validity for all specific models of the continuous
medium. The third one is geometrical nonlinearity, for ex-
ample, the nonlinear relationship between displacements and
the tensor of finite deformation. This classification of nonlin-
earities is not absolute, and some changes occur when one
switches from, for instance, the Eulerian to the Lagrangian
description (e.g., the universal momentum equation appears
to be nonlinear in the Eulerian description and linear in the
Lagrangian description). In order to keep this paper as
simple as possible, we choose the Lagrangian description
and concentrate on the physical nonlinearity, which seems to
be the most significant for water saturated sandstones. The
assumption of a periodic microstructure is another significant
physical assumption made for the purpose of simplifying the
effects of nonlinearity.

We consider in detail a layered fluid/solid medium. The
general form of the nonlinear equations is derived, but we
consider only linear wave solutions in this paper. Nonlinear
waves and the interplay between the solid and fluid nonlin-
earity will be explored in a separate paper. The stratified
medium is perhaps the simplest realization of a porous me-
dium, and has been examined in several studies, both
theoretical'*~"” and experimental.® The first study by Rytov'?
considered wave motion parallel to the layers, and showed
the existence of two waves: the fast and the slow. Bedford'">
later showed that the slow wave is the long-wavelength
manifestation of the second mode of the system. This is a
rich system for wave motion, particularly when the waves
are allowed to propagate in oblique directions. The definitive
theoretical and experimental studies of Schoenberg and
co-workers>!31416 describe the wave motion and slowness
surfaces for fast and slow waves. We give for the first time
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TABLE I. Material parameters, from Ref. 3.

Compressional speed Shear speed Density

Material .- (nv/s) (m/s) {kg/m’)
Aluminum 6450 3150 2700
Plexiglass 2700 1380 1200
Water 1490 -e 1000

the complete set of Biot equations for the stratified fluid/solid
system, which includes fluid viscosity and elastic anisotropy.

The paper proceeds as follows. The nonlinear equations
of motion are outlined and the scaling procedure is defined in
Sec. I. The main difficulty in any averaging theory of hetero-
geneous media is to calculate the “effective” parameters (see
Table I), which require solving simpler problems on typical
unit cells. Explicit solutions can be obtained for the specific
case of the layered medium, and are addressed in Sec. II. All
moduli and parameters can be found for this simple geom-
etry; in particular, the time-dependent viscodynamic operator
is expligit. The effective nonlinear equations of motion are
summarized in Sec. III. Section IV focuses on the linear
limit, and comparisons are made with Schoznberg’s
model'*'* for a layered medium of fluid and isotropic solid
in Sec. V.

I. GOVERNING EQUATIONS AND SCALINGS
A. The primitive field equations

The volume V comprises fluid and solid regions. V, and
V,, with boundary dV between them. The displacement
fields are u; and U, in the solid and fluid, and the stress fields
are o0j; and 5 4i» Tespectively. All equations are defined in
terms of the reference or Lagrangian coordinates. The gov-
eming equations of motion and constitutive relations are

psa,zu =D;oj;, (1a)

;= 0ji(F ), (1b)
inVv,,

ppdU;=D;%;, (22)

%;=—pd;+273{D;U}, (2b)

p=7ADUy, (2c)
in Vf, and the continuity conditions on JV are

Ui=u;, (3a)

n;2;=n;oj;. (3b)

Here, F;;=Dju; is the deformation gradient tensor in the
solid, {a;;}=(a;;+a;;})/2— 6,;;a,,/3 is the symmetric devia-
toric part of a second-order tensor, and n; is the unit normal
on @V directed into the fluid region. The summation of re-
peated Latin suffices over 1, 2, and 3 is understood.

Both the solid and fluid constitutive relations are nonlin-
ear. We ignore, however, the “geometrical” nonlinearity in
the fluid equation (2b) for the sake of simplicity (conceptu-
ally, many of our conclusions remain valid without this as-
sumption). Also, the equation of state for the pressure, Eq.
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(2c), is normally expressec. in terms of the current (Eulerian)
density, but we take a slightly different approach, and as-
sume that it depends upcn the dilatation in the reference
description. This is simpler, and leads to the same nonlinear
effects that are normally present in homogeneous fluids up to
second order. Also, we assume that the fluid equation of state
possesses an inverse,

D;U;=(Ap). “)

The material nonlinearity of the phases is then reflected in
the nonlinear behavior of the functions .7, Z, and o;,(F,,,)-
The stress functions o;; and the pressure are normally de-
rived from strain energy potentials, according to

9, IE;

T i P XD ®

where E (D;u;) and E(D;U;) are the elastic strain energy
functions for the solid and fluid, respectively. The homogeni-
zation theory outlined below is not dependent upon the ex-
istence of the strain energics, and the final equations do not
involve them. However, we will see that the effective po-
roelastic medium also possesses a strain energy function
when E; and E; exist.

B. Asymptotic scaling

In order to simplify the system of equations (1)-(3) we
employ the method of homogenization. We assume the me-
dium is characterized by two distinct spatial lengths, h<<H,
associated with the micro- and macroscales, respectively.
The number, e=Ah/H, is a small parameter, e<1. Further-
more, we assume that the viscosity scales as

7=€. (6)

References 7-9 and 11 previde a clear motivation for this
choice. The results generatzd by the homogenization tech-
nique are very sensitive to the presence or absence of the
multiplier € in the viscosity. Without it the “macro” equa-
tions turn out to be of viscoelastic type, whereas the presence
of the term € in Eq. (6) leads to Biot-type equations, as we
will demonstrate. We refer the reader to the cited papers for
further details of the homogenization procedure. [See also
the comment after Eq. (32).]

We assume a two-scale expansion'® in terms of the slow
or macroscopic spatial variable x, and the fast variable
y=x/¢, such that the spatial differential operator is

D=3, +€'d, . @)

The fast variable y reflects the small-scale structure in the
problem through the perturbation parameter e. Our goal is to
eliminate the explicit dependence on y, leaving us with equa-
tions in x. The governing equations (1)—(3), combined with
Eq. {6), become

€p,d; =(€d, +8,)05i, (8a)
oj=0.[(3, +e '3, Ju,] (8b)
in the solid phase, and

epfﬂ,zU (er? +4, )E,,, (9a)
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3=—po; +52qﬁ{(ea +4, )U} (9b)
AUP)Y=(3,+ € '3,)U; ¢)

in the fluid. We consider the ansatz

ui(x,t, €)= uO(x H+ E "ui(xy.1),

n=

p(x.1,€)=po(x,t)+ >, €p"(x,y,1).
n=1

[

Udx.t,)= 2, eUNxy.1), (10)
n=0

Uji(X,t,€)= 2 E"a';-l,-(x,y,t),
n=0

2i(xt,€)= Zo e"E;i(x,y,t).

Substituting these expansions into the governing system and
comparing like powers of € yields a sequence of asymptotic
equations. The leading-order equations, of order unity, are

0._
a’!y_crj,-—O, (11a)
0' L G T +8 L b, (11b)
forxandyin V,,
0_
0).j21i—0, (12a)
5= =P8, (12b)
3,.U7=0, (12¢)
for x and y in V¢, and on 4V,
U=u0, (13a)
The next set of equations, of order ¢, is
p532u0-0 0 ity a'],, (14a)
doi(d, ul+a, ul)
1 e L S 1 2
o= (3 u,+9, 2 J (14b)
4 IF ,, o d
nV,,
pai U=, E°+a z},, (15a)
35=—p'8i+299{d, U}, (15b)
Ap°)=0d,U]+3, Uy, (15¢)
in Vf, and
Ui=u,, (16a)
nEL=nal, (16b)
on dV.
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C. Homogenization of the asymptotic equations

Introduce the
w?(x,y,t), defined as

wixy.0) = LU (x,y,1) —ul(x,1)], (17)

where 0<¢<1 is the porosity or volume fraction of the fluid,
¢=V4V. We can then rewrite Eq. (15¢) as

—Ap®)+a, (uj+d 'wW))=-0a,U]. (18)

relative fluid displacement vector

The dependence upon the fast scale may now be eliminated
by averaging over y. A formal definition of the averaging
procedure can be given for nonperiodic, statistically defined
media; see, for example, Burridge and Keller.” Here, for the
sake of simplicity, we assume periodicity on the small scale,
so that the average is trivial. Thus integrating Eq. (18) over
V¢, using the displacement continuity conditions (16a) and
the assumed periodicity in y, gives

B(—AP°)+ I, u)+ V! f . ey dV(y)
f

=(1 —¢)v;‘f d,u; dV(y), x in Vj. (19)
Ve © ¢
Substitution of Egs. (12b) and (I15b) into Eq. (15a) yields
proywi+dy (p' $8;;— 21319, wih)
=- ¢[Pf33

while Eqs. (12¢) and (13a) become, respectively,

“?+‘9¥.p0]’ xy in Vj, (20)

8yiw?=0, y in Vg, 21a)

w?=0, y on V. (21b)

Next, integrating Eq. (14a) over V; and Eq. (15a) over V,,
then adding the results and using the continuity conditions
(16b) and periodicity, we find

paul(x,1)+psVy " f S aw] av(y)
f

== ¢ p’+(1- )V, '—f i dV(y), (22)

where

p=dps+(1-)p; (23)
is the average density. Finally, using Eq. (12b), we rewrite
the boundary condition (13b) as

n;0%=—p°n; (24)

lj'

The system of equations (20) and (21) forms a closed
boundary-value problem with respect to o",w?(x,y,t), and in
principle, one can express this function in terms of u? and
p°. Similarly, Eqs. (11) and (13b) give a well defined
boundary-value problem with respect to u;, which enables us
to present u; as a function or functional of #? and p°. Both
problems are solved explicitly for the case of a periodically
layered medium in the next section. Inserting the results in
Eqs. (19) and (22), we arrive at a closed master system of
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equations with respect to u?, pO, and w;, with the averaged
relative fluid displacement defined as

wi(x,t)= Vf_l Iv wl(x,y,1)dV(y). (25)
!

Il. CONSTITUTIVE THEORY FOR A LAYERED MEDIUM

We consider periodically alternating fluid and solid lay-
ers. The thickness of each fluid layer is ! in terms of x and
L=l/e in terms of y. Let y=y-n be the coordinate in the
direction of layering. The two microproblems defined at the
end of the previous section then depend only upon y, and
hence reduce to unidimensional problems. This is the great
simplification that arises from the layering, and it is not
present for any other configuration.

A. The permeability ope;'ator

The permeability operator results from the solution of
Egs. (20) and (21). Let

v,=d,w?, fi(x,0)= —p,»(?, u; —r?,lp (26)
then Egs. (20) and (215) become

dwi=—nipy ' d,p"+ npg ' Sjvi+ Bfi(x.0), (272)

n,-&_vvi:(). (27b)

We consider y-periodic solutions of this system. The bound-
ary conditions are those for a rigid wall at y=0 and y=1L
which combined with the incompressibility condition for w?,
implies

U,=O¢v,-=P,-jvj, (28)

where P(n)=I-n®n projects on to the horizontal plane.
Contracting Eq. (27a) with n and using Eq. (27b) allows us
to eliminate the pressure gradient term. Bearing in mind Eq.
(28) we deduce that v, satisfies

001—1)0:‘:70,-: lﬁPu’fj(X,[), . (29)

where v= 5/p; is the kinematic viscosity. This can be solved
by standard means, i.c., using a Fourier series in y. A very
similar type of problem is discussed by Sneddon.'® Taking
into account the initial data (v=0 for 1<0), we find

@

2 . ny
vi(xv,Vvt)=¢PijZl S [1=(=1)"]sin —=

1 ]
v f de e_,,(,,27;-/L2)(t—§)fj(x~§). 30
0

Averaging v,(x,y,t) over the layer yields v;(x,t), which sat-
isfies

vi{x,0)=K(1)*f;(x.1),

where * denotes convolution, and

K;j(t)=P;K(1), (31)

o

8 1 vt
= —_ _ _ 2 _ 2 — z 3
K(t) ¢ '7T2 "§=l,l (2”—])2 exp ar (2" 1) L2 . (-2)
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FIG. 1. The permeability function for the stratified medium in nondimen-
sional units.

Hence the permeability of the medium is a projection opera-
tor onlo the transverse plane. Also, K(¢) is independent of e,
because L *=7/p flz.

Note that Eq. (31) imf lies

30,(x,8) = Ki(0)f(x.) + Ki( ) *f(x.1), (33)
where K(0) = ¢ for the layered medium, and K'(¢) is plotted
in Fig. 1. It follows from Eq. (32) as

8v ” , vt
— ¢ 1z 2 exp(—w‘(Zn— 1)° P) (34)

n=

K'(r)=

This is a well behaved and convergent series, except for
values of ¢ approaching zero, where it is evidently singular.
The behavior near zero can be seen by transforming the sum
using the Poisson summation formula: for a given function
g(x),

w«

> eln)= 2

n=-—-o

g(x)e 2mmx gy (35)

Applying this to the sum in Eq. (34) and performing the
integration yields

4v n’L
K(t)‘-—¢——7== + S‘ (—1)" exp| — t)
(36)

-2 singu-

The function K'(r) therefore has an integrable ¢
larity at zero.

B. The stress and strain in the solid layers

We now turn to the system defining the displacement u;
in terms of the macroscopic parameters #° and p*, Egs. (11)
and (24). Proceeding as we did for the previous microprob-
lem. we look for the affine solution depending on the vertical
coordinate y only. Hence

8_\.1_14,-‘ = an[ N (37)

where the vector G, does not depend upon y. Then u] auto-
matically satisfies the equilibrium equations within the solid
region, Eq. (11). The traction boundary conditions of Egq.
(24) become, using Eq. (11b),
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ai(d, u, %4 n,,G,)=—pn;. (38)

JJ’

This is an algebraic system of three equations in three un-
knowns, with solution

GH:Gn(ﬁ):ju?’pO)‘ (39)

Explicit versions of this will be discussed later, but for the
moment the implicit solution of Eq. (39) is sufficient. The
leading-order stress in the solid then follows from Egs. (11b)
and (37) as

o= o'j,-(é?xmu2+ann)ETﬁ(ﬁxmuS,pO). (40)

Ill. MACROSCOPIC EQUATIONS
A. The general nonlinear equations

We are now in a position to state the leading-order mac-
roscopic equations of motion. The fundamental field vari-
ables are the solid displacement u’(x.t) and the averaged
fluid displacement w(x,?), and thelr governing dynamic
equations follow from Egs. (22), (26), and (31). In order to
simplify the notatlon we make the replacements

u¥(x,t)—u,;(x,t) and p O(x,1)— p(x,t). The dynamic equations
are

p(?%u,-(x,t)-pr(?,zw,-(x,t):'rji,j(x,t), (413)

dwi(X,1)= _Kij(t)*[atzuj(x’t)"‘t’f_ 'p Jx0] (41b)

where K;;(t) is given explicitly in Eq. (32). The stress and
pressure are related to the displacements by the right-hand
side of Eq. (22) and Eq. (40), and by Egs. (19) and (37),
respectively, or

Tji(x’t) = (1 - ¢)T]1(F’p) - d)p(x’t) 5ij s

C(x5t) = ¢e(xat) - ‘b@(p) - (1 - ¢)niGi(F9p)’
(9xju,- = u,-,j
gradient tensor, e=u,;, and {=—w,;
dilatation.”

Equations (42) provide the bulk stress 7;; and the rela-
tive fluid dilatation £ in terms of the solid deformations F;

and the fluid pressure p. When the pressure is zero, the bulk
stress is

7=(1=$)T;(F,0), p=0. (43)

Hence we can identify (1— @) T ;(F, 0) as the stress function
for the dry frame, or the open” system If the pores are
sealed, or “closed, »2 then the associated stress function fol-
lows from Egs. (42) with {=0.

(42a)
{42b)

where F;; = is the macroscopic deformation

is the relative fluid

B. Energy potentials

The macroscopic elastic constitutive relation for the
siress in Eq. (42a) can be related to the effective strain en-
ergy. Comparison of Egs. (42) and (A13) implies that the
former can be replaced by the simpler relations

- oW oW

Ti= p=3§—.

T (44)
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The effective strain energy follows from Eq. (Al), which
becomes in the present notation

W(F,{)=(1— $)E,[F ;i+n,G,(F.p)]+ ¢E,<@<p5).(45)

Hence the effective medium is elastic in the sense that it
possesses a stored energy potential W. Note that Wi is a func-
tion of the kinematic strains F and ¢, but its functional form
is defined by F and p. The remaining identity (42b) is an
implicit relation for p in terms of F and {, i.e., p= p(F.0).

The related potential IT is defined in the Appendix. It
follows from Eq. (A7) that the two constitutive relations of
Eq. (42) are equivalent to

Il ; Jl
Tii= o —6= .
TR p

The functional definition of II=II(F,p) is given in Eq. (A6),
which becomes in the present notation

II(F.p)=(1~— ¢)E3(Fji+niGj(F’p))

+(1—¢)pn,G,(F.p)—dpe

(46)

p

+¢|  dndn. (47)

Pamb

This is an explicit equation for the potential, apart from the
fact that the functions G,(F,p) are given by the implicit re-
lation (38). A simpler form for IT can be obtained by noting
that it is a partial Legendre transform of the energy function
W(F,{). The differential relations (44) and (46) imply the
connection

w=I1+{p. (48)

IV. LINEAR THEORY FOR THE STRATIFIED MEDIUM

It is instructive to consider the limiting case for small
amplitude waves, for which the linear constitutive equations
in the solid and fluid are sufficient. The individual energy
potentials are now

E (eij):

where «; is the fluid bulk modulus and the elastic moduli
possess the symmetries C;;;=Cyy; and Cijpy=Cjip - The
linear stress in the solid is

it n) = Cjiiti - (50)

The deformation gradient tensor F can be replaced in all
expressions by the macroscopic linear strain  tensor
e=(F+FN/2, or e;;=(u; ;+u;;)/2. Equation (38) becomes
a linear system for G which can be solved easily, yielding

1Cijui€ijers s Efe)=sxse’, (49)

Gie.p)=—buen— Qi nip, (51)
where

Qu=Cijrnjny . bikl:Qi_plcpjklnj- (52)
The functions T; of Eq. (40) then follow as

T,/(e.p)=(Cijti = brmijbnr1Qmn) e biijhil- (53)

Using the fact that Z\p)=—p/«, which follows from Egs.
(5) and (49), the constitutive relations of Eq. (42) become
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7ji(%,0) = Cliyen—M ™" M;;p, (54a)

Lx,0)=M""Me;;+M 'p, (54b)
where

C?jkl= (1= ) Cijrr= b i ukc1Qmn)» (55a)

M=[¢lks+(1—$nn;05' T, (55b)

My;=[8;;+(1— )by M. (55¢)

Note that C%k, are the dry frame or open pore moduli;
see Eq. (43). Equations (54) are equivalent to

75i=Cijen—Myd, (56a)

p=M{—Me;;, (56b)
where

fju:C%kt*‘M—]Miijt, (57)

are the “closed pore” moduli ({=0). Also, (1 —q&)_’C?jk,
can be identified as the moduli for a state of plane :tress in
the elastic solid. Thus Eq. (54a) indicates that macroscopic
plane stress prevails when the pressure is zero, as expected.
The potential II follows by integrating 7;; and £, using
Eqgs. (46). The energy density then follows from Eq. (48). We
find, after some simplification, that
1 2 1 M
W= 5 C?ikleijekl+ 2p_M 1= 5 Ciineijer— £ 2
(58)

The former is a remarkably simple and physically appealing
form. It clearly separates the strain energy into sclid and
fluid parts, where the latter depends upon the effective bulk
modulus M.

V. ISOTROPIC ELASTIC LAYERS AND WAVES
A. The general equations

Let A and g be the Lamé moduli of the solid; then Eqgs.
(52) become

Q*'=(A+2x)*'n®n+ u*'P(n), (59a)

Pyt n Pyt Pytnnn,. (59b)

b:kr=m

It is a simple matter of algebra to show that the parameters in
Eqgs. (55) are now

Cii= (1= B)NoPiiPu+ 2 ), (60a)

¢ 1-¢\! _

M—(K-fﬂ\”# , (60b)
AN2ud

M= "i"j‘*‘(m Pij]Ma (60c)

where I;;,=(P;P;+PyP;)I2 is the “in-plane” fourth-
order identity tensor and Ay=2uN(A+2u) is the “plane
stress” Lamé modulus. The two constitutive equations are
(54a) and (54b), the former simplifying to

7iy= (1= $)(NoéPy+2pe,)— M~ 'Myp, 1)
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where é;;=1;;;e, is the in-plane strain, and e=e;;. The
constitutive relations (54b) and (61) are written with the
solid strain e;; and the flud pressure p as the fundamental
variables for the poroelasiic medium. Alternatively, if we
choose the strains eij and { as the primitive variables, then
the constitutive relations are Eqs. (56). The energy potential
W of Eq. (58) reduces to

2

1 _2 o p
W= ) (1= @)(Noe“+2ueje; )+ (62)

2M°
The Biot equations are those of a transversely isotropic po-
roelastic medium, as expected. The general Biot equations
for a material with this symmetry? have eight independent
moduli: five for the solid, one for the fluid, and two for the
fluid/solid interaction. It is interesting that the present equa-
tions only have five independent moduli, two each for C?jk,
and M;;, and one for M. Three of the eight possible con-
stants are identically zero. which can be ascribed to the
plane-stress configuration of the solid.

The equations of motion can be further simplified. Sub-
stituting 7;; from Eq. (61) into Eq. (41a) gives a decoupled
system of equations. We now let n=e,, where (g,,e,.e;)
form an orthonormal triad. Then, using Eq. (33), we find

pdiuz+p 3=0, (63a)
PsOita=No€ o= 2118 g g+ (Ng/218)P o
=(1-¢) 'K (1)*(p;3lutp o) (63b)

where the Greek suffices « and B are restricted to 1 and 2,
and the summation convention is implicit. Finally, eliminat-
ing £ between Eqs. (41b) and (56b) gives

0:(P+Mijeij)=MK(t)*(3,25+P;1P,aa), (64)

where K is given in Eq. (32). The four equations in Egs. (63)
and (64) form a closed set of equations of motion for u(x,t)
and p(x.r). Next, we consider four examples of wave solu-
tions in the layered medium.

B. Examples of wave motion

1. Propagation in the vertical direction

As a first example consider motion in the vertical direc-
tion only: u=u(x;,r)e; and w=w(x;,)e;. Then Eq. (41b)
implies w=0 while Eq. (42) gives 7;;=e33M;; and
p=—e43M. The equation of motion (63a) becomes simply

pc?,zu(x,t)—Ma:u(x,t):O. (65)

This is a scalar wave equation with wave speed VM/p.

2. A damped shear wave

Consider shear moticn in the horizontal plane:
u=u(x,,t)e, and w=w(x,,t)e,. The dynamic equations
again reduce to a single equation for u:

pedtu(x,0)— pdu(x,1)=(1— $) "K' (£)*p,0%u(x,1).

(66)

The shear wave propagates with a time delayed memory
function for the inertial term. The appearance of K’ reflects
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the influence of the fluid viscosity on the shear wave in the
solid.

3. Wave motion when the fluid is inviscid:
Schoenberg’s problem

The limiting case of an inviscid fluid is relevant to ex-
periments performed by Plona et al3 The fast and slow
waves in the system are both nondispersive and nonattenuat-
ing in this limit. But the anisotropy of the configuration
means that both wave types exhibit directional dependence,
which can be best understood by considering the slowness
surfaces. Schoenberg'>' derived the equations for the slow-
ness surface from the dispersion relation for the long-
wavelength modes of a layered system of fluid and isotropic
solid. We will demonstrate that exactly the same slowness
surface follows from the governing Biot cquations outlined
above.

The inviscid nature of the fluid means that the operator
K is instantaneous, or K'=0. Differentiating Eq. (64) with
respect to time then implies, using Eq. (33), that

FHp+Me;;)=MK(0)(32e+p; "D na). (67)

where K(0)= ¢. Consider motion in the x,
solutions of the form

— x5 plane with

u(t—sx1— 53X3),

(68)

S3X3), u2=0, u3(t—s1x|—

p=p(t—s5,x,—53x3),

where s, and 55 are the honzontal and vertical components
of the slowness. Let v=4,u; then Eqs. (63) imply

pu3—s3p=0, (69a)

(1 —c,z,,s%)u 11—Vl —c,z,,/cpzs,p=0,

where ¢, and c,,; are the wave speeds for longitudinal waves

in the solid in bulk and as a thin plate, respectively. That is,
ca=(N+2u)lp,,  ch=(No+2u)p;, (70)

and therefore N\g/2p = V1 —cf,,/c:‘,. Eliminating v; be-
tween Egs. (67) and (69a) yields the third equation,

(69b)

2 2

5] 53
(—-P)v1— l/c S| — (—— p—f——)p 0. ()
Equations (69b) and (71) are satisfied if s, and s, are
related according to

-9
p:(l_cpl l) (C Sl)

(72)

where c; = Vy/py is the speed of sound in the fluid. Equa-
tion (72) defines the slowness surface for the fast and slow
waves, and it agrees with Schoenberg’s'® equation, derived
by taking the low-frequency limit of the exact dispersion
relation for a finely laminated medium of alternating solid
and fluid layers (see also Refs. 3 and 14). We may rewrite
Eq. (72) as

ép
ngm (sfasl_sl)(ss]ow_sl) (73)

1144 J. Acoust. Soc. Am., Vol. 98, No. 2, Pt. 1, August 1995

15

S

095 05 1.0 15

§
FIG. 2. The slowness surfaces for two different stratified media, consisting
of water/aluminum (Al) and water/plexiglas (Pl). The material parameters

are in Table I and the porosity is ¢=0.5 in each case. The ordinate and

abscissa are the dimensionless horizontal and vertical slownesses §,
= 5,VPM/p; and 55 = s3yM/p, respectively. The ellipse of Eq. (76),
which becomes a circle in these units, is also shown. The plate slowness c;,'
corresponds to §,=0.268 for aluminum and §,=0.561 for plexiglas.

where 5,4 <5 40w are the horizontal slowness for the fast and
slow waves propagating horizontally. They satisfy

1— 1
— (Star+ Soow) = iﬁ (i + ¢) - (74a)
Pr PrCy \P; Ps | Cp
ow—| 2t —7] = 74b)
Pj‘ fasts sl fcf A cp cpl (

These slowness values were also obtained by Rytov!? who
analyzed waves traveling horizontally in a fluid/solid layered
medium.

Schoenberg' considered a Plexiglas/water system with
¢=0.6, while Plona et al.® considered the same system with
¢$=0.5, and also aluminum/water with $=0.5. In all cases it
was found that sfag,<c;,‘<ss,0w, and therefore the slowness
surface of Eq. (73) comprises an inner closed sheet for
0<s,$sfasl, corresponding to the fast mode, and an outer
sheet for ¢, <1< Sgow Wthh gives the slow mode. A stop
band exists for St <S5 1<Cpy !. The value of s, is very close
to cp,; in all these cases, and very accurate approximations
can be obtained by iterating from this starting value; thus

2 l (1 _¢)P/ Pr

Sqow™ . (75a)
slo ¢ ps ¢ M
2 1 (1_¢)pf 'y

Stast™ 2 2 —2__—2]- (75b)

Cot PpsCp \CpTC,
Thus the slowness surface is essentially the ellipse
¢s2 201
— 2= (76)

o p M’
punctuated by a small stop band to the left of 5,= c;,'. The
slowness surfaces for two material combinations are plotted
in Fig. 2, which also shows the ellipse of Eq. (76).

The displacement polarization follows from Egs. (69a).
For a given value of 5, we have
vy _ | V1i—¢ !2,,/(:2 Uz 83

—5r =—, 77
p o (1- st p p (
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where s is defined by Eq. (73). Assume that s,>0 and
§3>0, as in Fig. 2. The ratios v,/p and vs/p are both posi-
tive for the fast wave (the branch s, <s,). The same ratios
are negative and positive, respectively, for the slow wave.
Thus the horizontal velocity is in phase with the acoustic
fluid pressure for the fast wave, but out of phase for the slow
wave.

4. Dynamic compatibility

The phenomenon of dynamic compatibility was noted
by Biot in his first paper on the dynamics of isotropic porous
media." If the material parameters satisfy a certain constraint,
then a wave solution exists which has no viscous attenuation
and its relative fluid motion is zero, or w=0. Analogous
compatibility conditions exist for the layered medium, as we
now demonstrate for horizontal wave motion. Consider lon-
gitudinal motion in the horizontal plane, n=u(x;,?)e, and
w=w(x,t)e,. This leads to a pair of coupled equations for
u(x,t) and w(x,r),

patu—[(1= ¢} (No+2u)+Mg*1Tu+ psdw

~Mqd*w=0, (78a)

» M,
aw+K(1)* 5,u—p—c9x(qu+w) =0, (78b)
f

where g=(A+2u)/(X+2u). The system reduces to

pfﬂ,zu—Mqa_fu:O, w=0, (79)
if the physical parameters are related by
Mqlp=[(1-$)(Aog+2u)+Mq*1lp, (80)
or equivalently, if the densities are in the ratio
A Agt+2 2
Ps _ _o+[o—# 2 ®1)
pr 2 [N(1=¢)+2ud| M

This is the condition of dynamic compatibility, and when it is
satisfied waves can propagate unattenuated by viscons drag
with wave speed VM q/p;. Alternatively, the right-hand side
of Eq. (81) may be written in terms of the bulk compres-
sional sound speeds and Poisson’s ratio of the solid,
v,=N/2(\+ ), yielding

Ps 1~v,— (1 -2v)
oy v—d(1-20)[(1-v,) () —1]

The right-hand member is an increasing function of ¢ for
most material combinations, i.e., cﬁ/c}(l —v,)—1>1 nor-
mally. Therefore, for a given pair of materials, there is a
unique value of the porosity at which compatibility is at-
tained as long as p,/ps>(1—v)/v,.

(82)

VI. CONCLUSION

The theory of homogenization has been used tc derive
the nonlinear equations for a fluid infiltrated solid skeleton
starting from the fundamental equations governing the mo-
tion on the microscale of the pores and grains. The canonical
microgeometry of a layered system of alternating sclid and
fluid constituents has been analyzed in detail. The main re-
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sults are summarized in the “averaged™ or macroscopic
equations of motion (41), and the nonlinear constitutive re-
lations of Egs. (42). The viscous effects of the pore fluid are
contained in the permeability convolution operator defined
by K;,(t) of Eq. (32). The stress—strain relations in Egs. (42)
allow for arbitrary nonlinear behavior in the elastic solid and
in the fluid. The key quantity is the vector function G; de-
fined by Egs. (38) and (39). We have also shown how the
stress and strain are related to a macroscopic potential en-
ergy, in the spirit of Biot’s later work on nonlinear mechanics
of porous media.?!

The linear limit of these equations is of interest, and we
have derived for the first time in Secs. IV and V the full set
of linear Biot equations for a layered medium. The predicted
form of the slowness surface for isotropic elastic layers
agrees with that obtained ty Schoenberg'*!* from the exact
dispersion relation for the system. This gives us confidence
in the general validity of the nonlinear Biot theory as derived
here.
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APPENDIX: ENERGY CONSIDERATIONS

The leading-order term for the macroscopic energy den-
sity, W, in the porous medium is a linear combination of the
energy in the solid and the e¢nergy in the fluid, each averaged
over its domain. The fluid energy follows from Eq. (15¢) as
E f[(y(po)], which is independent of y, so that the sum of the
average partial energy is

w=y~! f EJ3, unt 3, up)dV(y)+¢ENApM]
‘ (A1)

The purpose of this appendix is to convince the reader that W
of Eq. (Al), considered as a function of the independent
macroscopic strain variables, does indeed yield the stress and
pressure as partial derivatives according to Eq. (44). We fol-
low Sanchez-Palencia” and first consider the function

A(axmug,pﬂ) =y! Jv Es(é’xmu2+ z?_,.mu,',)a'V(y)

+p0V_lJ:w uln; ds(y). (A2)

The point is that A is clearly a function of the arguments
shown, because the field variables u/ are implicit functions

of both axmuf} and p®, as discussed above [see Egs. (11) and
(13b)]. The first variation is

0, 4 1
HES(ﬂxmun-{-nymu")

—y-1
SA=V f s

X (dy 8u+ 3, Su;)dV(y)
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+ 5p°V"LV u,!n,- ds(y)+p°v-! Lv éu,!n,- ds(y).
5 5 (A3)

The terms involving Su}- annihilate one another on account
of Eqgs. (12b), (13b), and the first of (5). We are then left with

SA=8(d, ul)V™! J T AV(Y)
m v

s

+6ptv! I 3, u; dV(y). (A4)
v, O
Thus, referring to Eqs. (37) and (40), we have
o o A
(1= )G, u.p")= 5.0
AS
(1= DT, (3, up®) = = »
HenttnP )= 505,
respectively.
Consider the related function
T1(3, up.p®)=A(d, ulp°)—pp°3, u;
p(]
+¢ d(ndn, (A6)

Pamb
where p,n, is the ambient pressure. [, like A, is a function
of the independent variables 6‘xmug and p°. Taking its partial

derivatives with respect to these, and using the identities of
Eqgs. (A5) and (42), we obtain the identities of Eq. (46). Thus

Oll(F,p)=1;;6F ;;— {8p (A7)
or

SI(F,{) = 7,,8F ;;+ p 8¢, (A8)
where

[I(F,{)=TI(F,p) +{p. (A9)

We will now demonstrate that I1 and W are one and the
same. The latter can be rewritten using Eq. (15¢) as

w=y~! f E (3, uy+3, up)dv(y)
V m m

5

+v! f EQ9d, Up+3a, U,)dV(y). (A10)
Vf m m
The first variation is
sSW=v-! J (3, 6uj+3d, buj)ol; dV(y)
Vs i -1
-v! f p°8(p°)av(y), (A11)

v
f
where Egs. (15c) and the second of (5) have been used. The

integral over the fluid region can be simplified further using
Egs. (16a), (18), and integration by parts, giving
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sw=v~! f , (dy )+, Suj)aly dV(y)
— ¢p° (3 u7)—p° (I wi)

+poy~! LV duln; dS(y). (A12)

The terms with 5u} again disappear because of Eqs. (12b),
(13b), and the first of (5), leaving

W= 5(8xmu2)( v IV 0'(,:,,, dV(Y)_ ¢’p05mn

083 w). (a13)

This implies the identities of Eq. (44), and the equivalence
I=w. (A14)
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