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SUMMARY

Two canonical problems concernmg scattering of bendmg waves in thin p]ates are
solved. The scatterers are either a semi-infinite rigid strip or a semi-infinite crack in an
otherwise uniform plate of infinite extent. The exact scattered waves are represented by
Fourier integrals obtained using the Wiener~Hopf method. The far-field diffraction
' coefficient for the rigid strip is independent of the material parameters, and is thus a
universal parameter. The crack diflraction coefficient depends upon Poisson’s ratio but
this dependence is weak. Guided waves are generated on the free edges of the crack,
and can be defined in terms of a separate diffraction coefficient which vanishes if
Poisson’s ratio is zero.

1. Introduction

<, WHEN a wave strikes the tip of a crack in an elastic body it results in a diffraction
(' } pattern emanating from the tip as an equivalent source. The diffraction and
scattering phenomenon is well understood for cracks in extended elastic bodies;
see (1) for a review. However, there do not appear to be analogous solutions
available for cracks in thin plates. Our purpose here is to fill this gap, and
provide solutions for bending-wave diffraction from the tip of a crack in a thin ;
plate. We also consider the dual problem of diffraction from the tlp of a rigid
strip in a thin plate. .
We cast these problems within the framework of classical isotrop'ic thin-plate
theory for bending (2), and the solutions are found using the Wiener—Hopf
method (3). The rigid strip is considered first because itis analytically easier,
although the method of solution is essentially the same as for the crack. The
~.crack is.a.‘mathematical’ one in that its faces are infinitesimally close-together-
but do not come in contact with one another. The solutions obtained here are
of practxca] use within th limitations of thin-plate theory, which requires that
- the flexural wavelength 'be’many (20 or ‘more) times the thickness. Thin-plate
" singularities ocour at the vertex or tip' and these are not necessarily faithful
Voo _'representatzons of the’ stress-concentration mechanisms in real’ plates, which
' *“may have significant variations through the thickness. Despite the i inaccuracy
~ ofthe tip stresses we expect that the solution obtained here should be reasonable
L "for estimating the scattered response from the tip. Further! reﬁnements to the
o heory couId be made, such as including rotary inertia and shear effects. .
n'th spmt of: Mlndlms tieory One of the, major points! of:our analyms isits = -
e]anve s:mphcxty, and i oﬂ'ered as a ﬁrst approxxmatlon to the full problem
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608 A. N. NORRIS AND Z. WANG

One novel aspect of the crack scattering problem is that we need to include
the possibility of edge waves generated on the crack faces. This is similar to
the presence of Rayleigh surface waves on the faces of a crack in bulk material
(1), although the mechanics of the two waves are quite distinct. The edge mode ™
for fiexural waves, first noted by McKenna et al. (4) and discussed by Thurston
and McKenna (5), is subsonic but very close in speed to the bulk flexural wave;
in fact it reduces to a flexural wave with no decay away from the edge in the
particular case of zero Poisson’s ratio.

2. General theory .

We consider an infinite thin plate with either a rigid strip or crack located
on the half-line 0 < x < o0, y = 0; see Fig. 1. The motion is time harmonic with
the term e~ omitted but implicit throughout the paper. The transverse
displacement of the plate is W(x, y} (complex-valued) and satisfies

AW — kW =0, @0

where A is the two-dimensional Laplacian, and k* = w?m/D, with m the areal
plate density and D the bending stiffness. The symbol B denotes the scattered
field, and the total field is W' = W 4+ W™ where the incident field, W, is
of course also a solution to the bending-wave equation (2.1). We shall also need
the bending moment M, and the generalized Kirchhoff shear force ¥, (2),

My = “‘D(Vu/,xx + I/V.J’J’)’ }
I/)' = —D[(2 - V) I/V,xxy + VV-.\’)’)’]’

where v is Poisson’s ratio and the suffices preceded by a comma denote partial

derivatives.
The analysis is simplified by treating the symmetric and antisymmetric
problems separately. Split W as WS + W4, where WS(x, —y) = WS(x, y) and

(2.2)

.\'.

W ine

Oy
Fig. . The coordinate systems and the incident wave. The strip or crack
occupies the half-line x = 0, y = 0
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TABLE 1. The three conditions, (a), (b) and (c), for the four sub-problems
considered

Rigid/ Rigid/ Crack/ Crack/

Condition and range Sym Asym Sym Asym
@ f(x,O=0, ~0o<x<® W, w v, M,
by f(x,0)=0, —c0 <x <0 v, M, w, w
©) f(x,0)= —f"(x,0,0<x <o W W, M, v,

WhA(x, ~y) = — WA(x, y). Similatly, the incident field W™ can be split; for
example the symmetric part is 3f Win%(x, y) + W™(x, —y)]. There are four
sub-problems, for the symmetric and antisymmetric scattering from the rigid
strip and the crack. We deal with each one in turn. Superscripts $ and A will
be omitted where unnecessary, and we reiterate that the field W is the scattered
response which satisfies radiation conditions. The total response is the sum of
the incident and scattered fields. In each of the four sub-problems we have three
conditions on y = 0: (a), (b), and (c), which are determined by the symmetry
and the boundary conditions on the scatterer. The conditions are defined on
—0 <x <00, —00<x%0, and 0 € x < ou, respectively Table 1 lists the
conditions for each sub-problem.

We need only consider the displacement in the half-space y > 0, with the
remaining field determined by the prevailing symmetry. The scattered response
is represented as

o o dE

W(x, y) = J LAQ) e™* + B(§) e 77 o (2.3)

bl 4}
where

A= (& =13 y=(@@*+ DL o @4y

We also define for later use the functions L and G, which enter into the
expressions-for-the bendmg moment and-shear force, - = - :

LO=(-WE-1,  GO=(-nE+1. ]b.a$7

The radiation condition requires that the branch cuts of the square roots are

chosen such that Re(y, 1) 2 0 and Im(y, 4) < 0 for ~o0 < ¢ < oo, These ensure
that the scattered field propagates away from the scatterer.
Unique solutions are obtained once we specify the conditions at the tip, which

govern the nature of the mechanical smguiamty asr — 0, where r = (x? + y?)i, -

In particular, we requn'c that'the thin-plate strain-energy density be mtegrablc
in the nclghbourhood of the tip. The strain-energy density per unit area is a

,.‘.quadratlc form in the second. derivatives:of W(x,'y) (2). The behav:our of W
. hear the orzgm depcnds upon the asymptotzc dependcnce of - the transform -in

i
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(2.3). Thus, if A

!

A+B=0(""), |l - o0, (2.6)
then it is easily shown that
W= 0(r“~ ), r 0, 2.7

and the second derivatives are of order r®~%., Hence, the strain energy is
integrable if 2(e — 3) = —~1, or

o« = 5/2. | (2.8)

We shall show that the solutions are consistent with this tip condition.

3. Scattering from a rigid strip

.. 3.1 The symmaetric case

This is perhaps the simplest of the four cases, but it typifies the analysis for
all of them. Conditions (a), (b) and (¢), combined with the representation of
(2.3) and (2.4), imply respectively, that

AA(E) + yB() = 0,
AGA(L) + yLB() = 2V (%), (3.1
A(G) + B(E) = W) + W),

where
[0

W= (&)= —j Wire(x, 0) e %% [ dx. (3.2)
0

The (a) equation is obvious; (b) comes from the fact that Vi(x, 0) vanishes for
negative x and hence it can be represented by a transform like (2.3) with a
function proportional to V7, which must be analytic in the half-plane Im & < 0.
The choice of the factor 2 is for later convenience. The functions W+ and W~
in (¢) are analytic in the upper and lower halves of the ¢-plane, respectively.
The important point is that W~ is known from the boundary condition (c) in
Table 1. The functions ¥~ and W™ are unknown at this stage; their
determination is the essence of the Wiener-Hopf problem. Eliminating A and
B from (3.1) gives :

V=({$) .
----------- =Wt W . 33
Kod) &)+ (&) (3.3)
where
| A
Kps(&) = (I - };) = ; L&) -+ AEYTHEYAE). (3.4)

The suffix R stands for ‘rigid’, and the S for ‘symmetric’. The analytic splitting
of Kps = K 35K g5 can be performed by the standard technique, see the Appendix
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for details. Thus, Kg(¢) and Kyg(&) are analytic in the upper and lower
half-planes, respectively.

We now assume that the incident field is a plane wave, such that the only
singularity of W™ is a simple pole in the upper haif-plane at ¢ = &,. Then (3.3
can be rearranged;

e = K W () = KO WHE) + W (O[KAE) ~ KiiEo)]-
(3.5)

Either side of this equation is analytic in a separate half-plane and therefore
both are the same entire function f(£) (analytic in the entire complex plane).
We assume for the present that f = 0, and will show later that any other form,
such as a polynomial in £, yields a solution that is inconsistent with the tip
condition (2.8). Therefore,

V) = Kis(Co) Ks(EY W (D), (3.6)
and using (3.1} to find 4 and B, equation (2.3) becomes explicit:
* f I s O
Wix, y) = Kgs(&o) f Kgs(&) W‘({)(_ e M — e""y) et £ (3.7
-® A ¥ 2

3.2 The rigid strip: antisymmetric case
The three equations are now

A(S) + B(£) =0,
LAE) + GB(L) = 2M ~(£), (3.8)
AAQD) +yB(E) = TH (&) + T7(9),

where
T7() = %J Wits(x, 0) ™k k dx. (3.9
0

Elimination of 4 and B leads to the Wiener—Hopf equation

M) ,

: =THE+ T s 3.10

Kn(®) (&) (9 (3.10)
where ‘

Era(8) = 1[0 + 4O ]. (3.11)

Splitting Kys = K¢y Kga, and assuming that the incident wave is a plane wave,

we have
M7(&)
K ralé)

~ K TIE) = Kia@ T* (@) + T OLKE) — Kin(Eo)],
' (3.12)
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analogous to (3.5). By the same arguments, we have .\g
_ M7(&) = Kallo) Kral$) T (&), (3.13)
and equation (2.3} becomes

d¢

Wix, y) = —KE’A(éfo)Jw KealQ) T (€)e™™ — ™) e"‘"":,z-y—t (3.14)

3.3 The rigid strip. full solution
Let the incident field be a plane wave of unit amplitude with propagation

direction making an angle 6, with the strip, and incident from y = —oo;
specificaily, N
Winc — eik'(xcosﬂo+ysint}a), 0 < 60 <, (315)

...This range of incident angles is sufficient. Thus, &, = cos 0y, W™ = i/(& ~ &),
and T™ = A({y) W~. Combining equations (3.7) and (3.14) and using

Kps($) = A& Kral$) (3.16)
gives the total scattered field as
i @ x{kx dé‘:
Wix, y} = 5 _[_m KK iald) = L
i+ +
x [W (yeﬁkkiyl — ;te-rkiyl) — l(é‘o)(e“l"“’l — e"”"b’f)sgn y],

(3.17)

where 47, 9%, etc., are defined in the Appendix. This equation is valid for all
x and y. The behaviour near the ongm is easily surmised: the results in the
Appendix imply that Kg, = O(¢}) as |£] - co, and therefore, referring to
equation (2.6), we have a = 5/2. This is consistent with an integrable singuiarity
at the tip, from (2.8). It can now be seen in retrospect that had we taken any
entire function f(¢) other than zero the singularity would turn out to be non-
integrable. For example, f = constant # 0 yields & = 3/2, which does not satisfy
(2.8).

Let the observation point be defined by x=rcosf and y =rsinb,
0 < 6 < 2x; see Fig. 1. The contribution from the pole at & = ¢, yields the
specular contributions to the scattered field: the shadow and the reflection. The
‘shadow’ is defined in the forward region 6 < 8, in which the pole gives a
contribution of W = - W™, as expected. The reflection from the rigid strip
occurs on the ‘lit’ side, and its contribution from the pole is

Wix, y) = —2Kpallo) [ Kealéo) exp{A(€o)ky} — A&,) exp{y({o) kY}] gléokx
== {R(0p) exp(—iky sin 0g) — [1 + R(8,)] expiky(l + cos?,)!}
x exp(ikx cos ), 2n — By < 8 < 2m, (3.18)
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where the reflection coefficient R is
R(0) = —cos? 0 + isin 6(1 + cos?§):
= —exp{—icos”! cos?f}. (3.19)

This agrees, as expected, with the case of reflection from an infinite rigid strip.
Note that [R(8) =1 for real angles of incidence, as one might expect from
energy-flux conservation, and the phase of R is a smooth function of 6.

In addition to these specular effects the far field depends upon the ‘diffraction
coeflicient” D{#,, 0), defined such that

1

W= D(0,, ())(%«)2 g ini% pikr rrco, 0 <82 (3.20)
nkr

This contains the far-ficld information about the flexural wave in regions where
there is neither shadow nor reflection. We can also define D in the shadow and
reflection zones, although it is singular on the shadow and reflection boundaries,
= 8, and # = 2 — 0, respectively. The singularity arises from the definition
(3.20); one could develop a uniform solution valid across these boundaries using
standard methods (1). The diffraction coefficient can be found from (3.17) by
using the asymptotic integral approximation

1

jw Q&) exp{ikr(é cos 0 + iA(E)]sin 0|)} d¢ =~ Q(cos ) sin 9{(-2;)} g Tinia gikr
—w r

kr - 0. (3.21)

We note that A(¢) = —i(1 — 52)'21' for —1 < ¢ < 1, and so the asymptotic result
follows by the method of stationary phase, where the stationary phase point
oceurs at ¢ = cos 0. Hence, equations (3.17), (3.20) and (3.21) imply that
K galcos 8) K 7y(cos 8)

2(cos 8y — cos §)

x [sin 6 sin 0 4 ¥ (cos 6,)y*(cos B,) 1 (cos 0)y ~(cos 0], (3.22)

D{y, 0) =

We note from (A.3) and (A.15) in the Appendix that D satisfies the symimnetries
D{n — 6, m —~ 0y), 0<O<m,

D(f,, 0y =

(00 0) {D(Bm—n,éﬂ(y’(@p), n<0<2n, ?
. T+ ‘

as one would expect on the basis of reciprocity.

It is interesting to compare the diffracted field, which is directionally
dependent, with the quasi-monopole scattering field from a point constrained
to be fixed. Thus, if an infinite, homogeneous plate is fixed at » = 0, the scattered
field is easily found to be.

!

W(r, 0) = —HPkr) + HO(ikr), (3.24)

(3.23)
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FiG. 2. The magnitude and phase of the diffraction coefficient for a rigid strip,

from (3.22). The smooth quantity D = D(0,, 8)(cos 6, — cos 8)/2 is plotted to
avoid the singularities in the specular directions. (a) shows the magnitude

where H{) is the Hankel function of the first kind of order zero. It is easily
seen that this solution has the desired property that #(0, ) = —1.In particular,
the diffraction coefficient for the fixed point is —I. Plots of the amplitude and
phase of the diffraction coefficient D(6,, 8) of (3.22) are shown in Fig. 2. These
curves consider the smooth parameter D(8,, 8)(cos 0, ~ cos 8)/2, which is of
order unity in magnitude. One case of particular interest is for backscatter of a
wave incident straight towards the strip, 8, = 0, # = &, for which

DO, m) = =31 + DKL Kip(~1)
= —09384 + i0-4743 )
1-0515 e/67379, (3.25)

This is only slightly larger in magnitude than the diffraction from a fixed point
(unity), but the phase, 153-19°, is appreciably different. The curves in Fig. 2
indicate that the diffracted bending-wave amplitude is generally largest in all
directions for head-on incidence, 8, = 0. Also, apart from the particular case
discussed above for 8, = 0, 0 = r, the diffracted amplitude is smaller than unity,
and tends to zero in the direction of the strip.

4. Diffraction from a crack

4.1 The symmetric and antisymmetric solutions
Proceeding as before, the three equations for the symmetric problem are

W
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_ The erner—Hopf cquatlon is 7 o ‘l _
T-(¢)
= MYE+ M), - . (4.3
Ke®) (& (6),"" | | (4.3)
where
L_’Z G.Z -1
Kes(8) = (_ff - ";—) . (4.4)

e

Solving as"before, and using (2 3) and (4.1), the scattered field is found to be
- Wix, y) Kcs(fo) J = Kcs(é’)M (5){ "‘“" G ”‘”} Hhx (4.5)
¥

Slmllarly, the antxsymmetnc equations for the crack become
LA(Y) + GB() =
A(E) + B(G)y = —2W (%), (4.6)

AGA(E) + yLB(E) = VH(E) + V™ (£),
where

o

V(&) = V;nc(x, 0) e~ 1%  dx. @.7)

Dk3
The Wiener—Hopl equation is now

W)

= )t + V- R 4.8
Kold) ) () (4.8)
where :
Keald) = L2 — AGH™1, (4.9
The antisymmetric scattered field reduces to
W) = —KGG) | K@V OIG e™ — Le ] e, (410)

Note that the functions for the symmetric and antisymmetric cases are
related by
" Kes = AyKea, (4.11)

and hence the analytic splitting for both is very similar,

4.2 The full solution

We again consider excitation by the incident plane wave (3.15). Using the
relations (2.2}, and (2.2), we obtain
LG - iG(&y)A
T £—4&

)
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Combining equations (4.5) and (4.10) and using (4.11) and (4.12), the total
scattered field is found as

i o iﬁlcxd
Wix, y) = z:J K EKa(®) ot

- é - éo
A+(‘50)?+(§0) - Akiyl - yk|y|
e =00 L (ENL S GA eIy — G(E) 2
X [ ) (CoLye e” ") — G(Eo} (L)
X (G e Ml [ o=y gpn yJ. (4.13)

This equation is valid for all x and y. The integral has been simplified so that
it involves only the function K¢, and not Kg. The analytic splitting of K, is
discussed in detail in the Appendix, from which we sec that K&, = O(&73) as
|&] — oo. The parameter a of equation (2.6) therefore follows as o = 5/2, which
implies that the solution has an integrable singularity at the tip. Had we
assumed a non-zero entire function in the analytic splitting of the Wiener—Hopf
equation (4.3) then the solution would have a non-integrable singularity at the
tip, in violation of the thin-plate theory.

As before, we note that the pole at ¢ = £, gives the shadow W = — W in
the shadow region, and in the reflection zone we get
L 1+ R(f) }
Wix, y) = S R(8,) exp(—iky sin 0,) +
(x, 1) { (Oo) exp(—iky o) l:l~(1——v)zcos"'90

x exp{ky(l + cos? 60)%} exp(ikx cos 8,), 2n — 0, < 0 < 2=,
(4.14)

where R is now the reflection coefficient for a free edge,
R(O) = "
AGZ - .}JL2 E=cos
_ —(sin? 0 + v cos? 0)2(1 + cos? 6)F + isin O[1 + (1 — v) cos? 812
(sin? 8 + v cos? 0)*(1 + cos? §)F + isin O[1 + (1 — v) cos? 6]%
(4.15)

It is clear that [R| =1 for any angle, and the phase of R is plotted in Fig. 3.
The value at § = jn agrees with the reflection coefficient for a flexural wave at
a free end of a beam, R = i. However, unlike the reflection coefficient for the
rigid boundary conditions, the phase of R is not necessarily a smooth function
of 8. We shall say more,about this and its consequences below.

A crack-tip diffraction coefficient may be defined in the same manner as for
the rigid strip, using equation (3.20). Following the same type of analysis we
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FiG. 3. The phase of the reflection coefficient, R(f), for plane-wave reflection
from a free edge, from (4.15). The phase is defined by R(§) = expli¢], and is
plotted in degrees

find that
. -
D(0,,0) = K alcos 83K calcos 6)

2(cos B, — cos 0)
x 7" (cos 8y) L(cos 8,) A~ (cos 0)y ™ (cos )
x L{cos §)]. (4.16)

It is clear that this diffraction coefficient also satisfies the reciprocity relations
of (3.23). Figure 4 shows plots of the diffraction coefficient for various angles
of incidence. Note that the diffracted field is generally smallest for head-on
incidence, 8, = 0. It is also interesting to compare the curves in Fig. 4 with the
analogous curves for the rigid strip in Fig. 2. The overall dependence of the
diffracted amplitude on the angle of incidence in one case is roughly the reverse
of that in the other. The dependence upon Poisson’s ratio is illustrated in Fig. 5.

[sin 8,G(cos 8,) sin 8G(cos 0) + ¥ (cos B,)

4.3 The diffracted edge waves

Both K¢ and K¢, possess four simple poles at the same points, ¢ = 4§,
+iff, which are the roots of E(¢) = 0, where the edge function E is

E¢)y=1* -G, (4.17)
and f# is the positive root of
=3+ 201 - 2y + 2%

(3 + v)(1 — v)?

gt (4.18)
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Fic. 4. The diffraction coefficient for the crack. The quantity D = D{0,, ()
' (cos 0, — cos 0)/2, with D given by (4.16), is plotted to avoid the specular

singularities, (a) magnitude, (b) phase

‘

Thurston and McKenna (5) first showed that ¢ = § is a root, which may be
seen by multiplying E(¢) by L*y + G 24, and then solving the resulting quadratic’
equation for £* At the same time, it can be easily checked that thé thires other’
roots of (4.18) are also roots of E = 0: the negative root ¢ = — f follows because
E(£) is an even function far real & and the imaginary roots are an immediate
consequence of the property E(i&) = iE(£), also for real valued ¢. It can be easily

g

A
L
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(cy

8, = 135°

The crack

FiG. 5. Polar plots of the magnitude of D = D(8,, 0)(cos 8, — cos 0)/2 for
(g = 135° and for different values of Poisson’s ratio

verified, by applying the principle of the argument (6) to the function E, that
there are only four roots to E = 0.
It is clear, by rewriting (4.18) in the form

! '
/—3::1 =L@ = +vH7 — (1 —v)]? (4.19)
that f = 1 with equality only if v = 0. The existence of the poles ¢ = + at
‘subsonic’ speed is associated with the possibility of guided edge waves along
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the free cdge of a plate, first noted by McKenna et al. {(4) and discussed in detail
by Thurston and McKenna (5). These authors noted that the free edge relicves
the transverse stresses associated with flexural waves, and so reduces the speed
relative to the flexural wave. This effect vanishes for v = 0, in which case the
surface wave becomes a plane wave travelling parallel to the boundary. It turns
out that although f > 1, the difference § - 1 is very small, which follows from
the expansion of (4.18),

B=1+ v+ 2v+ 22 +20°+...)/16. (4.20)

Thus, the surface wave is very slowly decaying away from the boundary, and
is essentially like a plane wave traveiling along the boundary. The poles at the
imaginary values { = +iff imply that evanescent edge waves are also possible.
The scattered ficld of (4.13) generates edge waves on the two faces of the
crack, x > 0, y = £0. The amplitudes of these waves follow from the general
expression (4.13) by noting that KZ,(¢) has a simple pole at £ = §. The
amplitude of the edge wave on the faces of the crack may be written as

W(x, £0) = DY¥(05) €, edge wave, 421

where the edge-wave diffraction coefficient is determined by evaluating the
residue of the integrand in (4.13) at & = f. Using the result (A.26) we find that

2BK(BYKEA(B) v~ (B) K alcos O,)

IR CET Y )
« {il+(cos 60)'}’+(COS 00)L(COS OO)[G(B) i’%gj) - L(ﬁ) %;Eg;:’
+25in 6,G(cos 00)}, @22

where the quantity K(f) is given in (A.25). Note that the + on D* refers to
the upper (y = +0)orlower {(y = —0) faces of the crack, Plots of the diffraction
coefficient are given in Fig. 6.

The dependence of the edge-wave diffraction coefficient upon v as v — 0 may
be surmised from the resuits presented in the Appendix, particularly the
asymptotic behaviour of K{f) in (A.27). Apart from the special case of head-on
incidence, for which 8, is near zero and is discussed in detail next, we find that

DYE(B,) = 00%), v 0, (4.23)

and hence no edge waves are generated in this limit. However, in the same Hmit
the concept of the edge wave is ill-defined because the bulk wave propagating
parallel to the crack faces satisfics the no-stress conditions there, but is not
evanescent away {rom the edges. This wave is also defined by the bulk-wave
diffraction coefficients D(B}O, 0) and D(8,, 2n) on the faces y == +0 and y = —0,
respectively.
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Fic. 6. The magnitude of the edge-wave diffraction cocfiicients, D% and D4z
of (4.22), for different values of v

Both the edge-wave amplitude from (4.21) and the reflection coefficient, R(6,)
of (4.15), behave irregularly near the double point 8, = v = 0. This is evident
in the rapid variation in the phase of R(8,), shown in Fig. 3, as 0, — 0,
particularly for smali values of v. This phase sensitivity is associated with the
pole nearby at £ = fi, and the sensitivity is stronger for smaller values of v
because, as equation (4.20) indicates, the pole tends to unity monotonically
from above as v tends to zero. Expanding the two coefficients for small v and
to, with the specific scaling 8, = O(v*), and using the expansions of equations
(4.20) and (A.27) which hold in this limit, we find that

v — i\/890) 4 2(\/2 + i\/890)
Ro —(L2N0) - pese g2 Y EWS0) 0 424
(v2+fJ890 A e S s

Thus, R(0) = —~1 for v # 0, but if we set v =0 and then take the limit §, — 0
we find R = +1, in agreement with the behaviour depicted in Fig. 3. Similarly,
putting 6, = 0 and then performing the limit of v — 0 yields D% — 2, On the
other hand, setting v =0 first, yields D%'® = 0. We note, however, that the
limiting value of the sum (R + D%'*) is constant and equal to unity on the
lower, or lit, face y = —0.

The cause of this apparently non-analytic state of affairs is that in the double
limit of both 65 ~» 0 and v — 0 the edge wave becomes indistinguishable from
the reflected bulk wave. The description of the scattered field in terms of the
individual parts, reflected plus edge wave plus diffraction, is not suitable, but
rather, the edge wave and reflected bulk wave should be viewed together,
particularly near the tip where their phases are virtually the same. More

il

@

et
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generally, the phases along the crack edge of the two waves are Skx and kx,
and therefore as long as the difference is small we should consider the waves
as a single phenomenon. This will be the case for values of x such that
(8 — Dkx = o(1). In this region the phases are coherent.

We may calculate the combined effect in the coherent zone as follows. For
simplicity, we assume that f, = 0, so that the effect is due to the merging of
the poles at £ = fand { = 1. Inthe limits as § — 1 the two simple poles becomes
a double pole, and hence their residue contribution vanishes. Thus,

1 1 1 1 1
. == — b d B 4.25
(6 — EoHE — P) ﬂ—l(é—ﬁ tf-fo) (€~ 1) @29

The combined effect follows using (4.13) and (4.25), evaluating the pole
contributions (branch-cut contribution may be ignored as being of smaller
order), giving

Wix, £0) = vK &a(1) [res KGp(B)] {-———--~f (ﬁﬁ) — { (1)} e, (426)

where the residue can be determined from (A.26), and

Ayt
=——1— " (Ly — GA). 4.27
() & =Fae &= (4.27)
Expanding the right-hand member of (4.26) for small v implies that
Wix, £0) = e** [ /2v 4+ 00D, v -0. (4.28)

Thus, the difitacted edge wave on either face resulting from head-on incidence R
(0, = 0) disappears as Poisson’s ratio vanishes. The gencral dependence of thes-. r
edge-wave amplitude in equation (4.26) as a function of v is shown in Fig. 7. : C

5. Conclusion

The same type of Wiener—Hopf analysis could be applied to flexural wave

scattering from semi-infinite impedance strips, of which the rigid strip is a

’ limiting case (infinite impedance). By generalizing the thin-plate constitutive

theory one could also consider scattering from strips or cracks in orthotropic

thin plates, where the scatterer is aligned with a principal direction. Edge waves

are also possible in orthotropic thin plates (7), and so the analysis for the crack

would again involve a function possessing poles at slightly subsonic wave-
numbers, ‘ : ' i
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APPENDIX

Analytic factorization

The analytic factorization of the functions y and A of (2.4) is straightforward (3). We
have

AE =YL £ ez, (A
so that
ML = ANOATHE, WO =y ©)y (). (A.2)

The plus and minus functions are analytic in the upper and lower half-planes,
respectively, and have the symmetry properties

AT(=8) =270, (=8 =y7(, ¢&real. (A3)

Consider a function F(¢) which has the property that F(&) — 0 as [¢] - co.
We may then write F as a sum of functions analytic in either half-plane, F(£) = F* (&) +
F (), where (3, 1)

1 o« +id F(I)

FOEY L) >0, 4
Fre ZHiJ—w+idI—§dt’ fm¢>0 (A4a)
Fr) =irm O 4 me<o, (Adb)

2mi —oo-H'ct'_'é

and Im{ =d, ¢ delineate the Jower and upper boundary of the common strip
of analyticity, with d <0 < ¢. The functions we are interested in factorizing are
symmetric in &, F(—{)} = F({), and therefore we have from (A.4) that

FH=8=F7(), ¢ real. (A.5)

»
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We consider the rigid problem first, for which we let

(C))
F)=In-(14+—¢ A6
(&) 2( + v (A.6)
so that

Kga(8) = #(&) €™, , (AT
and

KEA(§) = y*(Z) ™9, (A-8)

Also, consider £ 2 0. The integral for F *(¢) can be deformed into the lower half-plane,
where it meets the continuous branch cut along the union of the line strips —1 <t <0
and 0 < ¢t £ —/, which has the outline of an inverted letter L. The quantity A() is purely
imaginary but discontinuous across the cut. On the northern and eastern facc;
AEY = —i(l — 52)5 whereas A(&) = i(1 — &2 )5 on the other faces. And y(¢) = (I + &%)
on all faces. Therefore, (A.4) becomes

F*({) = { J J }9(1) — (A.9)

(1 + 1% — (1 — 1)} 1=\
g(t) = ln|:(1 e ,:2)%] = —i2tan 1(1 . 32) . (A.10)

where

It is observed that £ = 0 is a singular point for the above integral. T'o remove it we
rewrite (A.9) as

F*) = 5}5 {fl + Lni}[g(r) - 9(0)] —dt— + 29 {f J }

. (A.il)
The second integral of (A.11) has an explicit form e,
0 "0 dt (1 + &2
16 = {J ; j } —in +icot~t &, A1)
-1 0o Jt—2¢ 1+¢

Notmg that g(O) = —Lin, it follows from (A.9) to (A1) that® - v b

e 1 1 ] ey e .
F (f)f;J I:S+C+S—i§j“:tan l(ﬁ—_) —-m]ds—-ll(g) (A.13)

Thc function Kg,(¢) may be ,computed from this relation and (A.8) by numcnpal
integration. The form chosen in'(A.13) is numerxcally efficient for £ = Q'evenas § 50
since the integrand remains bounded near s = 0 in this limit, For £ real but negative,
we may use (A.5) to write KM(é) =yH(&) exp{F(f)-— (- a)} In summary, for
&real ‘ .

L _.*<f>expEF+'<é>j e
K@) -1 K ® ; | o

p[ F ( ﬂ:)]?' ;<0 i

~
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and the minus function is evaluated using the symmetry prgperty
‘ s
Kgal€) = Kga(—£), € real. (A.15)

These forms avoid the complication of evaluating principal-valye integrals and are used
in the numerical calculations.

The special case of £ = 0 serves as a useful check on the integration code. Equation
(A.5) implies that F *(0) = F(0) = 4 In[4(1 - i)]. We can also verify this result directly
from the integral for F* by noting that for &= 0 the integral in (A.13) reduces to

1 o2 é d in
J. [n — tan"‘(}—wwsw) :l—f = J4 [E - G:I tan 20 d6 = §n ln 2, (A.16)
o L4 1+ st s o L4

where we have used the substitution tan = ((1 ~ s2)/(1 + 5%} and the result

lim (& — 6) In{cos 20) = 0. (A7)
G”i‘n
Hence, we obtain the identity F*(0) = —41In 2 — }in, in agreement with the previous

value for the same quantity. Therefore, letting & — 0, either formuta in (A.14) gives the
“same answer, Kg,(0) = 274 ¢”®/® which can be compared with the numerical result as
a check.

In order to split the crack functions K and Kc,, of (4.4) and (4.9), we consider the
related function

K(&) = —(1 = v)(3 + V&* — ) Keal&)/¥(&)
= —(1 -3 +v) gi:__:) {(A.18)
O ED

where E(¢) is defined in (4.17) and §§ is the surface wavenumber, from (4.18). The function
K(£) has no poles at the edge wavenumbers ¢ = +8, +ifi, and it tends to unity as
[£} — c0. Hence we can use the same methods as above to first write

InK=F"+F-, {A.19)

where F'* has the same form as before, (A.9), but with

b tan-! gzog(l—rﬂ
g{1) = —i2 tan [LZ—(T) )| {A.20)

Proceeding as before we find by analogy with (A.13) that

TR B LR N § ?_Z(EE(L*S’)*JJ} -
i K (f}“?i,[o |:§l—§+s~ff]{[an [Ll(s) 14 s af 4 —#O)

(A.21)
where I{¢) is given by (A.[2). The splitting of K., then follows from (A.18) as
? (EYK () o Ez0
K& =4 (B + OB — (1 ~ )3 + ) (A.22)
Keall)/Ka(=0), £ <0,
and
Keald) = Kea(—£&), & real. (A23)

These forms have the desirable property that they avoid the evaluation of principal-vaiue
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integrals and are used for numerical caleulations, The case of £ = 0, for which
K*0) = J(K©@) = B*((1 — )3 + )i 274 ¢~ ix8, (A.24)

again provides a check for the numerical code.

The residue of the functions K, Keg, K@, etc., at the pole £ = § can be easily
determined from the value of K at ¢ = f. The latter can be reduced to the following
form, using equations (4.18) and (A.18):

(L= 23 + (B — D G(p)
(1= 2+ 207 — (1 — 2v + 2v2)%) L(B)

In particular, we need the residue of K,, which can be expressed, using equations
(A.18), (A.22), (A.23), and (A.25), as

{A.25)

K(p)=

KX(DK Y

SOKP) v () (A26)
LK (B] 77 (B)
The value of K(f) increases monotonically from zero to 0:295799 ... as v goes from
zero (0 4, and near zero it has the Taylor-series expansion

KB =3+ 4.--. (A27)

Thus, the strength of the pole, and hence the edge wave, diminishes as v — 0. Finally,
we note that the function K simplifies in the special case of v = 0, for which ¢ = y? and
L =22% and

res Koale=p = 128

23 fz—fH?) -
K(é)_z(m , v 0. {A.28)

In this case the poles disappear as they merge with the branch points at £ = +1 and
¢=+i
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