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A procedure is described to generate fundamental solutions or Green’s functions
for time harmonic point forces and sources. The linearity of the field equations
permits the Green’s function to be represented as an integral over the surface of
a unit sphere, where the integrand is the solution of a one-dimensional impulse
response problem. The method is demonstrated for the theories of piezoelectricity,
thermoelasticity, and poroelasticity. Time domain analogues are discussed and
compared with known expressions for anisotropic elasticity.

1. Introduction

Point force solutions for elliptic, homogeneous, linear second order partial differ-
ential equations in three spatial dimensions can be represented by either three-
dimensional infinite Fourier integrals or by finite, one- or two-dimensional inte-
grals over a closed surface. The equations of static elasticity serve as the most
appropriate example, for which the basic problem is to find the displacement

u(zx) satisfying Q(V)u(z) = §(=). (1.1)

Here, 6(x) = 6(x1)6(z2)6(x3) is the spatial Dirac delta function, and @ is the
second order acoustical tensor, defined below in equation (4.1). Direct application
of transforms yields

u@) =0 [ [" [" @@ ewlig- o) de. (1.2)

The tensor function Q~*(£) is homogeneous of degree —2 in €. Armed with this
simple property alone we can use Synge’s result (1957)

ery [~ [ [ @@ ewlit-w) e = g f @M (myden), (13

where the integral is around the unit circle formed by the intersection of the plane
n - € = 0 with the unit n-sphere. The one-dimensional finite integral expression
for the static Green’s function of elasticity is well known, and goes back to the
start of the century. Thus Willis (1965) demonstrated the equivalence of the ring

1 This paper was produced from the author’s disk by using the TEX typesetting system.
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integral expression of Synge (1957) and the earlier results of Fredholm (1900),
as developed by Kroner (1953). The ring integral solution was also derived by
Lifshitz & Rozenzweig (1947), and has been used to develop series solutions for the
Green’s function (Mura & Kinoshita, 1971). There are, of course, many indirectly
related works, of which we mention only Indenbom & Orlov (1968), who obtained
the Green’s function in terms of lower dimensional Green’s functions.

This paper describes a related procedure to generate Green’s functions for the
time harmonic equations of theories with extra field variables. The additional
variable, e.g. electric potential, temperature, leads to equations that are elliptic
in the highest spatial derivatives. The starting point is the ‘plane wave’ repre-
sentation of the Dirac delta function in R® (Gelfand & Shilov 1964, p. 77), see
equation (2.5); below. Burridge (1967) used this to express the time dependent
anisotropic elastic Green’s function as an integral over the unit m-sphere, his
equation (4.6). Duff (1960) had previously shown that the same Green’s function
may be written as an integral over the slowness surface, which is the Herglotz—
Petrovskii representation for elasticity (Gelfand & Shilov 1964, p. 139). The two
representation are of course closely related to one another, as demonstrated by
Burridge (1967). More lengthy, but equally valid derivations of the time depen-
dent Green’s function using Fourier integrals have been given by Mura (1987)
(his equation (9.23) is similar to Burridge’s (4.6)), and by Every & Kim (1994).
The plane wave representation is essentially the same as the Radon transform,
which was used recently by Wang & Achenbach (1993, 1994) to generate Green’s
functions for anisotropic elasticity.

The theories of poroelasticity and thermoelasticity are not hyperbolic, and
hence explicit Herglotz—Petrovskii formulae cannot be found for the fundamen-
tal singular solution in the time domain. We therefore focus on the time har-
monic Green’s functions. Fundamental solutions for isotropic thermoelasticity
and poroelasticity are known (Kupradze 1978; Bonnet 1987), but with the excep-
tion of the work by Kazi-Aoual et al. (1988) who consider transversely isotropic
poroelasticity, there are no Green’s functions available for anisotropic versions of
these theories, The theory of piezoelectricity is also considered here because the
formalism for all three theories is similar and each collapses to simple elasticity
when the additional field variable is ignored. Also, the time dependent Green’s
functions can be found for each theory when the dispersion is set to zero (it is
identically zero for piezoelectricity), giving formulae similar to Burridge’s (1967)
for elasticity.

The plane wave transform method is outlined in §2 and the general solution
is derived and discussed in §3. These results are general, and do not pertain to
any one field theory. Applications to the three field theories are discussed in §4.
The notation is introduced as it arises, although we note that both vector and
subscript notation are used, with the summation convention implied for repeated
lower case Latin subscripts. Also, the terms ‘matrix’ and ‘tensor’ are sometimes
used for the same object with the understanding that the two are related by the
choice of a basis.

2. Problem definition
We are concerned with solutions to equations of the form
L(V,0,) V(z,t)=—-F9¢x)H(); V(e,t)=0, t<0, (2.1
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where x is in R3, H(t) is the unit step function, H(t) =0fort <0 and H(t) =1
for t > 0. The field variable, V(z,t), is a three or four dimensional vector,
the first three components of which are the elastic displacement, and the fourth
can be temperature or pore fluid pressure, if thermoelasticity or poroelasticity is
considered. The right-hand member in equation (2.2) represents a three- or four-
dimensional point force at the origin of strength F(©. The specific form of the
linear differential operator L for each theory will be given later. The analogous
basic problem in the frequency domain is

L(V,-iw) U(z) = —FO §(z), (2.2)

where U(z,w), or more simply just U (x), is complex valued. The two solutions
are related by the Fourier transform

Ve, t) = (2r)" / Ul(e,w) (—iw) ™' e dw, (2.3)
Our emphasis is on the Green’s functions of (2.2), the steady state time harmonic
problem, with associated physical quantities given by Re{...e™**}. This implicit
dependence upon time is omitted henceforth except when we return to the ex-
plicit time dependent solution of (2.1). The solution to (2.2) depends upon the
frequency w through its appearance in the differential operator L(V, —iw). The
desired solution of (2.2) also satisfies the radiation conditions at infinity, namely,
it must represent outgoing waves as |z| — oo.

The solution of elliptic equations of this type is discussed in detail by John
(1955) and by Gelfand & Shilov (1964, p. 122). The method relies on a repre-
sentation of §(x) as an integral over a spherical surface. We look for solutions in
terms of the transform,

(@) = - /Inl:ly”(n .z, n)d2(n), (2.4)

872

where g(x) can be either a scalar or vector function, and the prime denotes the
derivative with respect to m - . For example, g(z) = (2r|z|)™! and g = é§(x)

correspond to the ‘transforms’ g = |n - x| and § = —é(n.x), respectively, or
(Courant & Hilbert 1962; Burridge 1967)
1 1 1
— = — 6(n - z)dN(n), 6m=——/ 8(n-x)d2(n). (2.5
2= [, S maam, 8@ =g [ 8(nzanm). (25)

The first of these is easily checked, while the second is a direct consequence of

the first combined with the identity V2(1/|z|) = —4w6(x). Let
_ 1 FT NV
U(2) = 5 /|n|=1 T"(n -z, n)d2(n), (2.6)

then substitution in equation (2.2) yields

1 d -
—i . _ g(0) om . _
|72 /lnl:ld.Q(n) [I} (ndn 2’ 1w) Un-z,n)—F"(n-x)|=0. (2.7)

This is satisfied if the transform U solves the ordinary differential equation

d —
—i . = .
L (n In s’ 1w) Un-z,n)=F%§n-x), (2.8)
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for each m on the unit sphere. We have thus reduced the spatial dimension of the
problem from three to one.

3. Solutions

(a) The unidimensional Green’s matriz

The general problem depends upon the matrix operator L, which is a second
order differential operator for the three field theories considered below. In each
case equation (2.8) reduces to the generic form,

KT (n-z,n)+iwCn)U +w* MU =F?4n-x), (3.1)
where K, C, and M have the properties
K(n)=K"(n)=K(-n), C(n)=C"(n)=-C(-n), M =M". (3.2)

All three matrices can also depend upon w, although the explicit dependence will
be omitted for brevity. The transform for direction n is represented as

TU(n-z,n)=G(n-z,w n)FO. (3.3)
The ‘unidimensional Green’s matrix’ then satisfies the matrix equation
P <_idi§’ w, n) G =168, Et=n-=z, (3.4)

where P(k, w, n), or more simply P(k), is the symmetric fundamental matrix
governing equation (3.1),

Pk, w, n)=w’M —wk C(n) — k* K(n). (3.5)

The fundamental eigenvalue problem associated with (3.1) is to find solutions
of the foorm U = Ae*™® for the homogeneous equation, which correspond to
non-trivial solutions of

P(k,w,n)A=0, det P(k,w, n)=0. (3.6)

The dispersion relation (3.6), is a quartic (or cubic) equation in k? (see Appendix
A), for which the roots are +k,, « = 1,..., N, where N = 4 (or 3) is the problem
dimension. The roots +k, are assumed to be radiating, which means that they
have non-negative imaginary parts, or positive real parts if Im k, = 0. We define
for later use the N phase speeds v, = w/ky, o = 1,..., N. The associated null
vectors are A,, which are normalized according to

A, -A,=1, foreach «, (3.7)

however, in general, they are mutually orthogonal only if C' = 0. The symmetry of
P implies that A, is simultaneously a right and a left null vector of P(k,,w, n).
The matrix P(k, w, n) is complex-valued and symmetric but not necessarily
Hermitian. Matrices of this type are common in elastic wave theory, although
their canonical structure has only recently been investigated (Scott 1993b). They
can admit of non-trivial null vectors with the property A - A = 0 under certain
circumstances (Hayes 1984; Scott 1993a,b). It is therefore assumed that (3.7)
holds for those values of k, w, and n necessary for computing the Green’s function.
A simplified version of the dispersion relation appropriate for thermoelasticity and
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poroelasticity is presented in Appendix A. The quartic nature of the relation is
evident from equation (A 2).

The null vector of equation (3.6); is not necessarily invariant under a reversal of
the direction m, or under a change of sign for k, i.e. A,(ky, —n) # A, (Ko, n) and
A, (=ky,n) # A o(ka, n). However, it is unchanged under a s1multaneous reversal
of both parameters because it depends upon k, and n in the combination k,mn,
or A = A(kn). We will use this parity property below to simplify the Green’s
function. In particular, we define A(+1) = A(+kn) , and if the argument is
absent it is taken to mean A(km), the null vector of (3.6);. This distinction
based upon the parity will not enter the final expression.

We now drop all explicit dependence upon w and n in order to concentrate on
the ¢-dependence (recall that £ = n - x). Let

_ d
G(©) = P (g ) (o), (38)
3
where P*(k) is the transposed matrix of cofactors of P(k), which satisfies
P P* = P*P = I det P. (3.9)

Note that P* is symmetric, which is a consequence of the symmetry of P. It
follows from equations (3.4) and (3.8) that the scalar function 1) must satisfy the
ordinary differential equation

[detP ( ;6)] W(E) = 8(6). (3.10)

This may be solved quite easily, using a Fourier transform, for example, to give

[eS) 1k:§ dk. N 1e‘k €]

WO=00" | G pm — 2 T PETL

(3.11)

where the prime denotes the derivative with respect to k. Thus, from equations
(3.8) and (3.11),

é\’: i1 P*(kosgné) oikalél (3.12)

det P )] |k=ka
(b) Simplification of the transform

The transform Green’s matrix G can be related to the null vectors by the
alternative formula

N gikalél

G(E) = 3 5 Aaben8) ® Aulogno), (3.13)

where the parameters A\, have dimensions of stiffness,
Ao =2 Aq- (M + K) A,. (3.14)

The equivalence of equations (3.12) and (3.13) can be shown as follows. First, we
note that

[det P(k)]' = tr P'(k)P*(k) = tr (—2kK — wC)P*(k). (3.15)

Proc. R. Soc. Lond. A (1994)



180 A. N. Norris
At the same time, equations (3.6), and (3.9) imply
tr (—k*K —wkC +W*M)P*(k) =0, k=k, a=1,...,N. (3.16)
It is then a simple matter to see that
[det P(k,)] = (—=1/k)tr (W*M + K*K)P*(k), k=k,, a=1,...,N. (3.17)

Finally, we note that the cofactor matrix is related to the dyadic formed from
the null vectors by

A, (sgné) ® A,(sgné) = P*(kasgné)/tr P*(ks). (3.18)
Equations (3.17) and (3.18) together yield the identity
iP" (kasgn §) A, (sgné) ® A,(sgnf), (3.19)

[det P(E)Toep.  2ikara

which in turn implies the equivalence of equation (3.12) and the pair (3.13) and
(3.14).

The general solution for the point forces is given by equations (2.6), (3.8), and
either (3.12) or (3.13). Using the latter, and the result

2
adg—z el = 21k §(¢) — k2 e*lél) (3.20)
we deduce
1: iko|n-z|
=g /Inl i 1 ‘) + sikg e ]

XA Ag(sgné) ® Ag(sgné) F@dN(n). (3.21)

The é§(n - ) picks out the ring integral around the circle {n -z = 0} N {|n| = 1},
and the remaining integral can be reduced to one over the hemisphere {n -z >
0} N{|n| = 1} by using the parity property of the null vector. Thus

- A, 04, o
Ule, w) = sz }{Z FO d(n)

— 5 / Z =A@ A, PO d0(n), (3.22)

where the f-integral is around the same unit circle as in equation (1.3), and the
second integral is over the hemisphere. This is the central result of the paper.
We include the ‘force’ F(® in the integrals because it may also depend upon the
direction n, as occurs in the piezoelectric equations discussed in §4, where it has
the parity F(©(—n) = F©(n), consistent with the reduction to the hemisphere
integral. When F(© is independent of 7 it can be removed from the final result,
and U is then the fundamental matrix solution.

(¢) Solutions in the time domain

Analytic evaluation of the integral in (2.3) is not generally feasible because
the frequency occurs in the integrand in a very nonlinear manner. Progress can
be made if the equations are nondispersive in the sense that K, M and C are

Proc. R. Soc. Lond. A (1994)



Dynamic Green’s functions 181

each independent of w. They are consequently real-valued matrices (note that
i = 4/—1 can only occur in the combination —iw) and all of the phase speeds v,
a=1,...,N, are real and constant as functions of frequency. That is, they are
nondispersive. Also, it can be seen that the integrand in the ring integral of (3.22)
does not involve frequency, while the final integral depends upon w through the
combination {iw exp(iwn - €/v,)}. The inverse transforms are then simple, with
the outcome

V(z,t) = 7r2|m| ?{ZA D Aa £ 4g(n)

1 A,® A,
32 /ﬂ ;::1 b(vat —m - m) ==—==FdN(n), t>0. (3.23)

a

The second term gives the transient wavefronts that spread from the source point,
ultimately leaving only the first term, which is the static response. The latter
can also be identified as the zero frequency component of the frequency domain
solution in equation (3.22). The second integral is the same whether it is over the
hemisphere or the whole sphere, because ¢t > 0 by assumption.

The impulse response solution for the related problem

L(V, 8,) W(z,t) = —FO§(x)6(t); W(e,t)=0, t<0, (3.24)

is simply W = 90V /dt. The explicit form for W when the material is non-
dispersive follows from equation (3.23) as

Va
Wz, ""%‘2 / Z 8ot~ n-2) % 4, ® 4, FOdn), ¢>0. (3.25)
This generalizes equation (4.6) of Burridge (1967) for anisotropic elasticity. In fact
his equation is the limiting case of all three theories described in the next section
when the additional field variable is ‘turned off’. The step function response of
equation (3.23) has also been derived by Every & Kim (1994) for the elastic case.

Finally, we note that the time harmonic Green’s function of equation (3.22)
can be computed directly from the time dependent version of equation (3.25).
The two are related by the forward Fourier transform

U(z,w) = / W (z,t) e dt. (3.26)
0
The equivalence follows from
- / §(vat — - x) v, dt = 6(n - @) + ik, e " H(n-z), (3.27)
0

where k, = w/v,. The identity is easily proved by integrating by parts, with
Vo > 0 by assumption. It is then straightforward to obtain (3.22) by combining
equations (3.25) through (3.27). Thus the time harmonic elastic Green’s function
follows simply from Burridge’s formula. It can also be obtained by Fourier integral
methods (Every & Kim 1994) or by the Radon transform (Wang & Achenbach
1994).
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4. Three different theories

Subscript notation will be used where i, j, k and [ take the values 1 through 3,
and refer to components relative to an orthonormal basis. In each theory u; are
the elastic displacements, and o;; and ey = (ux; + u;x)/2 are the stresses and
strains. Subscripts preceded by a comma denote the partial derivative. The mass
density is represented by p, and the elastic stiffnesses, which satisfy the usual
symmetries, are C;; = Cki;j = Cijik. We define the second order tensor Q, with
components

Qir(n) = Cijun;n. (4.1)

The source strength F(© is a four-dimensional vector for the theories considered,
comprising a three-vector, £(©), and a scalar, R(¥, both constants. We also define

f(z)=fP6é(z), R(z)=R" =), (4.2)

where f represents the applied force and the meaning of R depends upon the
theory. Each theory may be reduced to the classical elastic limit, in which case
N = 3, the stiffness and mass tensors are simply K = Q and M = pI, re-
spectively, and C = 0. Then A, are the eigenvectors of the acoustical tensor Q,
with eigenvalues A\, = pv2. Finally, we note that the Green’s functions all reduce
to explicit formulae for isotropic materials. This particular limit is discussed in
Appendix B.

(a) Piezoelectricity
The governing dynamic equations are (Auld 1973)
PU; 4t = 0455 + pfi, D;; = pR, (4~3)
and the linear constitutive relations are
0ij = Cijrier — ekij B, D; = e;p e + €, Ey. (4.4)

Here, D and F are the electric displacement and electric field, and f and R are the
applied force and charge densities per unit mass. The piezoelectric stress constants
and the permittivity constants satisfy the usual symmetries, ey;; = ex;i, and
€;; = €;i, respectively. The piezoelectric effect cannot exist for isotropic materials
because the only isotropic third order tensor with the required symmetries is
ek = 0. Define the vector p, and the scalar p, by

pi(n) = epijnen;, p(n) = e nny, (4.5)

and introduce the electric potential ¢, such that E = —V¢, then equations (4.3)
become

QV)u —puw+p(V)¢=—pf,  p(V) -u—uV)p=rpR (4.6)

We assume the solutions can be represented by transforms % and ¢. Substitu-
tion into (4.6) gives

Q(n)u"(n-z,n)+ pw’T+ p(n)d"(n-z,n) = pfO%(n - z), (4.7a)
p(n)-w"(n-z,n)—p(n)¢"(n z,n) = —pRO(n - z)- (4.70)
Eliminating ¢” from (4.7 a) using (4.7b) yields a single equation for @, of the
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form of (3.1) with
U=u, FO=p[f®_RO, p],
K(n)=Q+p'p®p, M=pI, C=0.

The time harmonic displacement transform for arbitrary point sources at the
origin then follows from equation (3.22). The phase speeds v, = w/k, are real
and non-dispersive, so that the time domain results of equations (3.23) and (3.25)
apply. Also, \,(m) are the eigenvalues of K(n) with A\, = pv2, and A, are the
corresponding eigenvectors. The electric potential then follows from (4.7b) and
the solution for u. For example, the time dependent solution analogous to (3.23)
is

1 1 A, ®A
o (0) . a e} (0)
oz, t) = 3zl ] j{— lpR +p E . F df(n)

(4.8)

a=1 «

1

N
2 /ﬁ C{Slé(vat—nw:zz)p-

The eigenvectors need not be evaluated explicitly, but can be related to the
matrices via the identity (3.18), and P*(k) may be taken as the cofactor matrix
of \,I — K. Note that the ‘force vector’ F(© of (4.8), is anisotropic in the sense
that it depends upon n. This feature distinguishes the piezoelectric equations
from those considered below. In fact, the reader will note that the piezoelectric
formulation does not follow the prescription outlined in §2, because we cannot
begin with an equation like (2.2).

Aa®Aa

(0)
L FOdam), >0 (49)

(b) Thermoelasticity

We follow the notation of Chandrasekharaiah (1986) for the theory of ther-
moelasticity with thermal relaxation. The equations are

PU; ¢ = 0455 + pfi, q;,; + Bop S,t = pR, (4-10)
and the linear constitutive relations are
0ij = Cijmern — Bij0, pS = (pc/bo) 0+ Bijeij, @+ 7q, = —kij60,;. (4.11)

The new field variables, g, S and 6, are heat flux, entropy deviation, and the
temperature elevation above the ambient temperature 6y, respectively. The ther-
moelasticity coefficients 3;; = B;; can be related to the coefficients of thermal
expansion, c¢ is the specific heat per unit mass in the isothermal state, 7 is the
thermal relaxation time, k;; are the elements of the thermal conductivity tensor,
and R is the internal heat source strength per unit mass.

Define

bi(n) = Bimng,  K(n) = [0o(T + (—iw) )] kinin;, (4.12)
then the equations (4.11) become, after transforming to the frequency domain

and eliminating o;;, S and g,

Q(V)u + pw?u + iw b(V) (—G;w) = —pof, (4.13a)
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¢ b PR
Cw) T8 Ty T e
The singular solution, or Green’s function, is defined by the point force and

source of equation (4.2). The problem is therefore explicitly four dimensional,
and can be reduced to the generic form. Referring to equation (3.1), we have

iwb(V) - u + k(V) (4.13b)

__ _ T
U= {u, (—iw)'8}7, FO= {pf<°>, pR<°>/90} , (4.14a)

0 b(n)
R A A T A O
0 k(n) 0 pc/by b7 (n) 0
(4.140)
The dispersion relation (3.6), can be simplified using a method of Chadwick

(1979), with the details in Appendix A. The matrices K and K defined there
correspond to the isentropic and isothermal acoustical tensors, respectively. Dis-
persion enters the solution through the frequency dependence of , see equation
(4.12),. The dependence vanishes as w — oo, and the time domain results are
therefore relevant to the propagation of wavefronts, or more specifically, to the

propagation of signals with frequency content w > 771

(¢) Poroelasticity
The notation of Biot (1962) will be adopted. The equations of motion are

PUi e+ PeWie = T35 5 + pfiy  Prllige + Mg * Wi = —Dy, (4.15)
where * denotes the convolution operator. The linear constitutive relations are
0ij = Cijrie + Mi¢, p= Mije;; +M¢, (;=—divw,+ R. (4.16)

The field variables ¢, w and p, are related to the fluid. Thus, p is the pressure de-
viation from the ambient pore pressure, w is the relative fluid displacement, and
¢ is a fluid dilatation measure. The coefficients M;; = M;, are elastic moduli cou-
pling the solid and fluid deformation, and m;;(t) = m;;(¢) are linear viscodynamic
operators in the time domain (Biot 1962). They are more easily dealt with in the
frequency domain, and we define for later use the transforms m;;(w) = mj;(w).
The convolution operator reduces to simple multiplication in the frequency do-
main. The elements m;;(w) are frequency dependent complex densities associated
with the pore fluid mobility and permeability. Also, p; is the fluid density, and R
represents the source in the fluid phase. Equation (4.16)3 defines R as a rate of
volume injection, which can be related to the conventional notion of a volumetric
mass source (Cleary 1977; Rudnicki 1986).
Define

@,k(n) = (Cijkl — M_lMiijl) n;ng, (417 CL)
b,(n) = — [M_lMij + Pt (m_l)i]‘] njg, K,(‘TL) = (mfl)ij nn;, (417 b)

then the frequency dependent equations of poroelasticity reduce to

Q(V)u+w(pI — pFm VYu + iw b(V)(_%) = —f, (4.18a)
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P w* p

Ciw) T M (—iw)

The first of these is obtained by using equations (4.16); and (4.16), to express
o;; in terms of e;; and p. This is used in (4.15);, while w is eliminated from
the same equation by using (4.15), to write it in terms of u and Vp. Equation
(4.18d) is found by equating the two different expressions for ¢ obtained first
from equation (4.16),, and secondly from (4.15), by using it as before to express
w, then taking the divergence, and finally invoking the definition of ¢ in (4.16)s;.
The fundamental solution is generated by the point sources of equation (4.2), so
that the problem is again four dimensional, with

iwb(V) - u+ (V) (4.18b)

T={u (-w)'p)", FO={® RO} (4190)
[Z)’(n) 0 ] pl —pim™ 0 ]
K(n) = , M= : (4.19b)
0 k(m) 0 M

and C is given by equation (4.14b).

The dispersion depends upon the behaviour of the ‘mass’ tensor m(w) as a
function of frequency. Its low frequency content is determined by the permeability
of the pore space, and at high frequencies it assumes the properties of inertia,
in that m(®) = lim,,_,., m(w) is positive definite. The existence of this limit is
physically clear. Thus, m(*) is determined by the inertial resistance of the pore
space to an inviscid fluid. The crossover from low to high frequencies is a sensitive
function of the pore space geometry, and beyond the scope of the present paper.
However, the time domain results of §3 are applicable to signals with frequency
content in the high frequency regime, and they follow simply by the replacement
m(w) — m(*®),

Part of this work was completed while the author was a visitor at Schlumberger-Doll Research
Laboratories, Ridgefield, CT, U.S.A.

Appendix A. The dispersion relation

The dispersion relations for thermoelasticity and poroelasticity are similar be-
cause in both cases the matrix P is of the form

WM — k*K —wkb
P(k) = , (A1)

—wk bT w?m — k’k

where M and K are symmetric, 3 X 3 matrices. For the thermoelastic medium
we have, from equation (4.14), M = pI, m = pc/co, K = Q, with b and &
given by (4.12). In the poroelastic case M = pI — pim~t, m=1/M, K = Q,
with the other parameters as defined in (4.18). The similarities between the two
theories has been noted by many, including M. A. Biot, who repeatedly drew
upon the analogy in his works. More recently, Bonnet (1987) pointed out that
the Green’s function for isotropic poroelasticity can be written down directly
using Kupradze’s (1978) formula for the Green’s function of isotropic thermoe-
lasticity. The analogy between the theories is also useful for considering the static
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behaviour of heterogeneous media (Norris 1992) The dynamic theories differ for

anisotropic materials in that the mass matrix M is isotropic for thermoelasticity
but it can be anisotropic for porous media. This distinction does not affect the
present analysis.

The dispersion relation given by equations (3.6), and (A1), can be expressed
in terms of the determinants of symmetric, 3 x 3 matrices. Thus

det P = w’m det(w’M — kQ/IE) — K’k det(w’M — K’ K)
= w?m det(w’M — K K) — k’k det(w?’M — K*K), (A2)
where
— -1
K:K—i—lb@b, M:M+Eb®b. (A3)
m

Equation (A 2) may be obtained by expanding the determinant of P in (A1).
Focusing on the 44 element, we have

N N w'M —k*K  —kb
det P(k) = —k*k det(w’M — k°K) + w® det . (A1)
—kbT m
The second determinant can be simplified as
WM — k’K + (K2 /m)b®b —kb I
det =m det(w’M — k’K), (A5)
—kbT m

proving the identity (A 2);. The other can be derived in the same way.

A result of Scott (1989) concerning the ordering of the eigenvalues of the isen-
tropic and isothermal acoustical tensors can be generalized to the matrices K
and K (or M and M).

If we define their real eigenvalues as Xl < /A\g < XS and XI < Xg < Xg, respec-
tively, then it clear that under appropriate conditions of positivity on the moduli

they are all positive, with )\J < /\ for j = 1, 2, and 3. A simple extension of
Scott’s (1989) analysis shows that the two sets satlsfy the additional inequalities

A1 < A2 and Ay < A3. The six eigenvalues are therefore interlaced,
A< << << (A6)

Further useful results concerning the null vectors for thermoelasticity can be
found in Scott (1993a).

Appendix B. The isotropic limit

__In this limit we have, referring to equation (A1), M =751, b(n) = bn, and
K=An®n+u(I —n®n), with p, b, k and A all independent of n. The roots

of the dispersion relation are then given by k, = w/v,, where v, are independent
of n and

kb s o A
= B1
(B1)

vf+v§:—5+—+—, vivi =

IS
w
I
S
-~
Il
SURS

K
]
m
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The cofactor matrices associated with A, ® A, can then be easily obtained. The
integrals in equation (3.22) can be evaluated using the identity

1 1 . 1 .
de ik ikon-x dn — ko |z
W'm’]{ (M) + 57 [ ihae (n) = —— el (B)

with the final result being
v I +w VeV 0 oikslz|

Uz, w) = i
0 0| 4rlxl
1 2 w2k =mu))VOV  (iw) bV | gikalel
e Y (-1)° _ B S
m(UQ Ul) a=1 (IU))_lbv p— A’U;Q 47rlw|
x pLFO, (B3)
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