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1. INTRODUCTION

The possibility of flexural edge waves propagating paraliel to a free edge of an isotropic
plate was first noted by McKenna er al. [1], and discussed in specific detail by Thurston
and McKenna [2). The purpose of this letter is to show that such waves are always possible
in orthotropic thin plates under the most general anisotropy.

2. GUIDED EDGE WAVES

We consider flexural motion in a homogeneous, anisotropic, infinite thin plate, governed
by the classical theory of plate flexure [3]. The deflection W(x, y, #) satisfies the equation
of motion
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where p is the density per unit volume and A is the thickness. The shear forces per unit
length, S, and S|, are related to the moments by
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These relations are independent of the material symmetry, or anisotropy, of the plate,
which, because of the 2-D nature of the problem, is orthotropic in the most general case.
The constitutive relations for an orthotropic plate are [3]
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Substitution of these relations into eguations (1) and (2) yields
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where H = D, +2D,,. We note that positive deﬁmtcness of the strain energy density,

U=M W, - MW, +MW, )2, requires that the bending stiffnesses must satisfy the
constraints

D,>0, D,+D,>0, DD, —D?>0 (5)
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Now consider a plate that is infinite in the x-direction and semi-infinite in the
y-direction, with the infinite edge y = 0 free of tractions. Assuming that the plate lies in
y >0, we look for an inhomogeneous travelling wave solution of the form

W= (4, ek + 4, e—'fzkoy) ei(fku-tfwr)’ (6)

with y, > 0 and y, > 0. Here, e > 0 is the frequency and %, is the wavenumber for a plane
wave travelling in the x-direction in an infinite plate; i.e., k, = ©'*(ph/D.)"*. Substitution
of equation (6) into equation (4) implies that y, and ¥, are roots of

DI+ y3) =(D,+2D,)28%  Dylyi=D(E - D). (7

The boundary conditions require that both M, and V, vanish at the plate edge, where
V,=S8,— dM,, /oxis the Kirchhoff shear force [3]. Applying these, using equations (2), (3a)
and (6), yiclds

(D, &2 = D,y)A + (D1 &2~ Dy A, =0, (8a)
[(D\ + 4D )¢* — D,yiln A, + [(D, + 4D, )¢* ~ D, y3lp, 4, =0. (8b)

Setting the determinant to zero, we have
y(D &2 = DDy + 4D, )& ~ Dyl = 1Dy &% — Dy DDy + 4D, )&% — Dyyil. (9)

We then square both sides, divide by (y} — y3), and use the relations (7) to eliminate y3
and pZ: this gives a quadratic equation for &% The phase speed of the edge wave relative
to the plane wave in the infinite plate is ¢ = 1/, which solves the related equation

DDt —2¢*D, D, (D,D,— D?—-8D2)+(D.D,— D}y - 16D, D,D;,=0. (10)
The roots are

D,D,c*=D,D,— D} — 8D, + 4D, (D} + 4D3)", {an

where only positive roots are of interest. Taking the + sign gives

2 1_ 2
4D} +Di—2D,) a2

This is the main result of this letter.

Several comments are in order. First, real-valued solutions with 0 < ¢ < 1 always exist,
Thus the first inequality of equation (5) implies that (,/4D%, + D? — 2D,)* < D} which,
combined with the third of equation (5), guarantees that the right member of equation (12)
is positive and bounded above by unity. The speed ¢ is a material parameter independent
of frequency, and hence the dispersion characteristics of the edge wave are similar to those
for plane waves on an infinite plate; i.e., the wavenumber is proportional to the square
root of the frequency [2]. It is also clear from equation (12) that the relative speed ¢ is the
same when the free edge is parallel to the y-axis, in which case the reference wavenumber
is ky =" ph/D,)'".

For an isotropic plate, D,=D,=D, D,=vD and 2D, = (1 —v)D, where D is the
bending stiffness and v is the Poisson ratio. The relative speed then satisfies, from equation

(12),
= —=(1=v)(1=3)+2(1 —v)(1 - 2v + 2v)'3, (13)
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TARLE 1

The edge wave parameters for three highly anisotropic materials (data from reference [4],

moduli units are GPa) and an isotropic one with v = 1{3: the root v, is associated with the

plane wave parallel to the edge, and y, is strongly evanescent; the ratio A,jA, provides the
magnitude of the latter relative to the former

Material E, E, Vi Gy, l—¢ 7 v, AqfA,
Isotropic /3 8/3 1/3 1 1:552 x 1070 558 x 1072 1415 01985
Glass/epoxy 542 181 025 896 8225x107°  200x10°* 1568 01130

Boron/epoxy 208 20-8 030 695 1054x107* 469x1072 1385 (-1839
Graphite/epoxy 208 521 025 259 5%0x10* 1-95x 1072 1580 O-1111

in agreement with Thurston and McKenna {2]. This result is more revealing written as a
Taylor series in v,

4

c=1—%(1+2v+§v2+2v3+---). (14)

This provides an excellent approximation for the range of practical interest, 0 € v < 1/2,
with the greatest relative error less than 0-2%. More importantly, it shows that the speed
is very close to unity for isotropic plates. The associated decay terms are
=1 =cH vzj\/g and 7, =(1 + )" = ﬁ The smallness of y, indicates the edge
wave is a weakly inhomogeneous plane wave, in that the decay or variation in the direction
normal to the free edge occurs over many wavelengths.

This aspect is even more pronounced for anisotropic plates, as the following examples
demonstrate. The in-plane mechanical properties of a single lamina of fiber reinforced
material are E,, E,, G, and v,, in terms of which D,= (R/12)E,[/(1 —v,vy),
D, = (vy/vi)D,, D, = vy D, and D, = (W*[12)G,, [4], where v, E, = v,, E, . The edge wave
parameters for four materials, one of which is isotropic for comparison, are listed in Table 1.

The difference (1 — ¢), while small for isotropic plates, is even smaller in the presence
of anisotropy (by at least an order of magnitude for the examples in Table 1). Thurston
and McKenna {2] noted that the edge wave exists because the transverse stresses of the
plane wave are relieved at the edge, hence slowing the edge wave. Based upon these
congiderations, the data for (1 —¢) in Table 1 suggest that the transverse stresses
accompanying plane bending waves on orthotropic plates are small. We note that the
transverse stresses vanish in an isotropic plate when v =0, in which case the edge wave
is just the plane wave (¢ = 1). The natural analogue of the isotropic v is the effective Poisson
ratio for flexural waves in orthotropic plates, (v,;v,,)"*. Substituting this for v in equation
(14), and retaining only the leading order term, gives 1 — ¢ & &(v;;vy P = v h{(E [E, Vs
which is diminished by the factor (E,/E,)*. Therefore, looked at in another way, the
smallness of (1 — ¢) can be understood in terms of a small effective Poisson ratio governing
flexural effects.
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