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An asymptotic approximation is obtained for the dispersion relation of flexural waves
propagating in an infinite, flat plate, with material properties periodic in one direction. The
approximation assumes that the wavelength is long compared with the length of the unit
period, but makes no assumption about the magnitude of the variation of material
parameters. The leading order term corresponds to an effective plate with areal density
equal to the mean and bending stiffnesses which could be predicted from purely static
considerations. The first departure from the dispersion relation for an effectively uniform
plate depends upon a parameter Q,, which is discussed in detail. An expression is found
for Q, for plates with arbitrary periodic variation in material properties. It turns out that
£}, vanishes for waves travelling normal to the layering if either the areal density or the
bending stiffness is uniform throughout the plate. Numerical comparisons of the exact and
asymptotic dispersion relations suggest that the cubic term in the dispersion relation is
always small.

1. INTRODUCTION

An inhomogeneous periodic medium behaves at very long wavelengths like an effectively
uniform medium with properties defined by an equivalent effective medium [1]. The concept
of an effective medium is really only valid for static deformation, since waves at any finite
frequency must exhibit dispersion if allowed to propagate far enough. However, at long
wavelengths or, equivalently, low frequency, the effective medium picture is the natural
starting point for understanding the dynamic response of a periodic structure. The
description of waves in petiodic structures is well understood [2-4] and is sufficiently
developed that the finite frequency response of most structures of interest can be easily
analyzed on the computer. The propagation at any given frequency depends upon the
Bloch waves of the system and their dispersive behavior, as in any periodic material [5].
However, at low frequencies, only the fundamental Bloch waves are significant. These
correspond to the modes which have initial behavior predicted by the effective medium.

In this paper we examine the propagation of low frequency flexural waves in a periodic
plate, with a view towards deriving the static effective medium and the first correction
beyond the static approximation. We show by a formal asymptotic expansion that the
dispersion curve of a periodic plate is approximated to first order by an equivalent uniform
plate. The first correction to this provides some deviation from the uniform effective plate
dispersion. The results are obtained for obliquely propagating bending waves on a plate
which is periodic in one direction only, and classical plate theory is used for simplicity.
The findings here are similar to recent work on the low frequency dispersion of acoustic
and elastic waves in layered media [6-9]. The major difference is that in the latter case the
equivalent static effective medium is non-dispersive, whereas in the plate problem the
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effective medium supports dispersive bending waves, as on a uniform plate. In the acoustic
case, the first correction to the effective medium dispersion equation is crucial as this is
the first cause of signal dispersion of a pulse propagating over many layers [7, 9].

The paper proceeds as follows. The equations of motion for a plate with unidirectional
inhomogeneity are presented in section 2. The main analysis is performed in section 3,
where we use a regular perturbation procedure to obtain the first few terms in the low
frequency dispersion relation of the fundamental Bloch waves. No assumption is made
about the periodic nature of the plate, which may be smoothly varying or piecewise
continuous. The only assumption is that the wavelength far exceeds the period iength. The
asymptotic expansion may be developed to any desired order but it becomes progressively
more difficult to find the higher terms. We deal only with the first two non-zero terms in
the dispersion relation. Some applications and simplifications of the general results are
discussed in section 4. Specific formulac are provided for the two- and three-phase
laminated materials, which are used later in section 6 for some numerical examples. In
section 5, we briefly describe the propagator matrix procedure which we used to compute
the “exact” dispersion curves of section 6. Finally, some comparisons between the exact
and asymptotic predictions for the dispersive behavior of the fundamental waves are
presented in section 6.

2. EQUATIONS OF MOTION

We consider flexural motion in an inhomogeneous, infinite thin plate, governed by the
classical theory of plate flexure {11]. The undeflected surface lies in the x—y plane and it
bends in the z-direction, the displacement ¥ measuring the deflection of the middle plane
of the plate. The equation of motion for the plate is

as, + a8, _ W
ax Ty e
where p(x) is the density per unit volume. The shear forces per unit length, S, and S,

result from the shearing stresses 1,, and 7,, within the plate, and are related to the moments
by

()

oM, oM, oM, M,
8= dx dy’ YT ay ox @

We assume that the plate is isotropic, with the usual constitutive relations

w82 aw 9 W
Mx:ﬁD(dEX‘T-FV?;’Q, My=—’D(Fy‘2—+V"é;2”{), MxyzD(l—'V)Ea—y

(3

The bending stiffness D is

_Er
T =Yy’

and E and v are the Young's moduius and the Poisson ratio, respectively.

The inhomogeneity is assumed to exist only in the x-direction, so that each of the
fundamental parameters, h(x), p(x), E(x) and v(x), may depend upon x but not on y.
We consider time harmonic motion of frequency . The basic equations (1)—(3) can be
recast as a system of ordinary differential equations in x. The pertinent quantities that are
continuous at each level of x are W, its derivative W /éx, the moment M, and the effective
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shearing force S, — 0M,,/dy. Justification for the choice of these parameters, especially the
last, can be found in the beok by Timoshenko [11]. The dependence of the y component
of the wavenumber vector is expected to go as @' On the basis of these observations,
we assume

W =w(x,w)e" M, =m(x,w)e’, S, — OM,, [0y = 5(x, w) e’ C))
where
f=ow"qy —ot. (5

The parameter g is essentially a horizontal wavenumber, and is left as a free parameter
to be specified. Define the four-vector V(x) as

iwmw
V)= | io'm ), (6)

w dw/dx
5

then the equations of motion for bending waves in the thin plate may be written in matrix
form

dV/dx = iw'*NV, )
where
0 H
N(x)=|:Q 0], (®)
_ 1 0 B —vg? /D
H_[—2q2D(l —v) 1:|’ Q"[ph — D1 —v))g* _qu]- ©

This vector formalism is standard in unidirectional materials, such as layered media, and

leads to many useful simplifications. For instance, the energy fiux in the x-direction is given
by

F = —Re(—iwow e”) Re (s ) + Re (—iw %:— c“’) Re (m €%, (10)

where 6 is defined in equation (5). The time average flux over a period may be written
succinctly as

F, =307 "VTJV* (n
where
0 0 0 1
001 0
J 0106 0}’ (12)
1 0 0 0

and the asterisk denotes the complex conjugate. Premultiplying equation (7) by V*7J, and
making use of the fact that N is real and satisfies the relation

N'J = JN, (13)
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we deduce the identity

(d/dx)(VTIV¥) = 0. (14)

Combined with equation (11}, this means that the average flux is conserved at any position
on the piate.

3. THE LOW FREQUENCY DISPERSION RELATION FOR PERIODIC PLATES
3.1. ASYMPTOTIC ANALYSIS

We now consider plates which are periodic in the x-direction with period L. All material
parameters, including the matrix N, are periodic functions of x, such that f{x + L) =f(x)
for any parameter f. The system (7) therefore admits of Bloch wave solutions, which are
analogous to free waves in a uniform medium. The associated Floquet or periodicity
condition is

V(x + L) = V(x) e, (15)

Solutions of equations (7) and (15) are known as Bloch waves, and the relation between

the frequency w and the x-wavenumber p, for given ¢, defines the dispersion relation. We

will be particularly interested in the fundamental, or lowest, Bloch wave dispersion
equation,

We follow the method developed by Norris [8] and Norris and Santosa [9] to derive an

asymptotic approximation to the dispersion relation at low frequencies. We non-dimen-
sionalize the problem by letting

x =3L, © = dwy, (16)

where w, is a constant frequency which will be defined later. The equations of motion (7)
may be rewritten as

dV/dz = ia'*NV, (17)
where
NGE) = wlPLN(x), V(%)= V(x). (18)

The solution to equation (17) for & <1 may be formally expressed as a Neumann, or
Peano [10], expansion

£ £ * x
V(J?)=[I+ic§”2j N+(ia§”z)2j NN+ (icalfzyj NJN jN+ - ] Y, (19
where I is the unit matrix and, for brevity, we adopt the notation

J‘EN = ‘F N(x,) dx,, J.JE N ~N = J‘x N(x,) dx, -[Il N(x,) dx;,
0 o 1] o

rﬁ IN .(N = 'rﬂ(xl) dx, r N(xy) dx, f Rx,) dx,.
0 (1] 0

Let 7 =pL and £ =0, then the Floquet condition (15) becomes

V(1) = ¥(0) €”. (20)
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Substituting from equation (19) into equation (20), we derive the dispersion relation in the

form
det {[Hi@‘”jl N+ (ica’”)zjl NJN +(ioa”2)3j1 NIN J‘N+ - ]
~ M1 +ip + ()2 +GpY/6 + - ']}=0- (1)

Although equation (21) is theoretically valid and convergent at all frequencies 10, it is not
of much practical use except at low frequency, & < 1. We will now develop an asymptotic
expansion for the dispersion relation in this asymptotic limit, assuming also that p < 1.
Specifically, we will find solutions for which the two small parameters scale according to
@ = O(pY). The starting point is the Ansatz

@' = plQ + Dyip + BGFY + - . (22)

The motivation for the initial term comes from the dispersion relation in a uniform plate or
beam. It can be shown that the exact dispersion relation for the Bloch modes is such that @?
is an even function of p:

w*(p) = w*(—p). (23)

The proof of this is very similar to the same proof for Bloch waves in periodic elastic solids;
see Behrens [1] for details. One consequence of equation (23) is that the coefficient Q, in
equation (22) is identically zero. We will see below that this comes out of the asymptotic
analysis, although in a more indirect manner. The term £, is not zero, in general, and this
coefficient will be our primary objective. Higher order coefficients are too complicated to
consider.

Using equation (22), equation (21) may be written as

det 5(ip) =0, (24)
where the 4 x 4 matrix S can be expressed as a power series in (i),
8(p) =8, +ifS, + (IPYS, + - - -, (25)
The coefficient matrices are increasingly complicated:
1
S, =2, '( N-1, (26a)
I 1
S =7 J‘ NJN I+ Q’J. N, (26b)
i 1 1
sz=gij NJNJN—§I+93IN+2Q,92J NJ.N, (26c)
where
Q. =Qwl’L, i=1,23 27N

Notice that in order to ensure the scaling 5 ~ &', we need to have £, = 0(1). Expanding
equation (24) as a function of i, using standard identities for determinants, we obtain the
dispersion relation explicitly as a power series in the asymptotic parameter 3,

ISol +1i5 tr {8,8,} + () ltr {8,8,} +tr {§;8, 1+ - - =0. (28)

In this equation, 8, is the cofactor matrix of S,, Si is the derivative with respect to ip of the
cofactor matrix of § at if =0 and | | denotes determinant. Each of the coefficients of the
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df’ﬁ‘ercn_t powers in g must vanish identically, implying identities for the coefficients in the
dispersion relation (22). We will derive the first three of these, beginning with €, .

3.2. THE COEFFICIENT {2, AND THE EFFECTIVE PLATE
The leading order term in equation (28) implies

1Se[ =0, (29)
from which we deduce that Q, satisfies
D, Q7+ 2D, +2D,,)¢* 2 + D,g* — {ph> =0, (30)
where
D, ={D~",  D,=AD)+ XD ' - (v*’D), (31a,b)
2D, ={D)—<Dv), Dy ={v>D, (31c, d)

and (- ) denotes the average of a quantity over the unit cell. The dispersion relation (30)
corresponds to an equivalent plate which is uniform but anisotropic, with the equation of
motion for the effective normal displacement given by

d* a4 o4 W
—+32 2 — — | W —=0.
(Dx ax‘+ (D, +2D,,) p 6y2+Dy ay“) + {ph> o 0 (32)
Another way of deriving this static effective medium is to simply replace the inhomogeneous

matrix N by its average, N—+(N). Disentangling this effective matrix yields the following
relations for the moments in the effective medium

3w W
Mx_ —Dx axg —DI. ayz ] (33&)
o'W aw arw
--02% _p’ "  M,=2D,——. 3
My==DiGr-Ds, M=, (33b, )

Substitution of these relations into equations (2) for the shear forces and then into equation
(1), with the replacement pk—{ph>, yields equation (32).

The constitutive relations (33) are identical to those of a uniform orthatropic plate [11],
which is not surprising considering the microstructure. The same type of effective equations
for static deformation of inhomogeneous plates have been derived by Kohn and Vogelius
[12], Lewifiski [13] and others using mathematical techniques from the theory of
homogenization. These studies do not, however, yield the first corrections to the static
behavior. We note that the effective areal density is simply the average over the plate, and
the principal bending stiffnesses are D, and D,. If D is constant then D, > D,, whereas
D,z D, if v is constant. Using the inequality

{feX{flg>~ {20,

it follows that both D, and D, are smaller than the averaged bending stiffness {D>, This
is quite different from the analogous situation in acoustics or elasticity [8, 9]. For instance,
a periodically layered elastic medium with each layer isotropic produces an cffective
medium which is transversely isotropic. The effective shear modulus associated with
SH-wave propagation normal to the layers is the harmonic average of the shear moduli,
analogous to the bending stiffness D,, which is the harmonic average of D. However, the
modulus associated with SH waves travelling parallel to the layers is simply the average
shear modulus, whereas in the plate the analogous stiffness D, is less than or equal to the
average stiffness, with equality only if the Poisson ratio is uniformly zero throughout the
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plate. The difference between the present results and those for acoustic waves can,
therefore, be ascribed to a Poisson effect.
In general, equation (30) implies that £, has four roots for a given ¢. Define

(2 = {(1UD,)(D(ph> + g1~ D.D,+ (D, + 2D, )" £ gD +2D,) 712 (34)

Two roots are always purely imaginary and of equal magnitude, Q, = +iQ{*, correspond-
ing to equally evanescent waves in either x-direction. The other two roots, 2, = + {7,
are real and of opposite sign if ¢ is small. However, if the horizontal slowness exceeds the
critical value defined by the horizontal stiffness, i.e., if

q*>{ph>(D,, (35)
then all four roots are purely imaginary, implying that no wave can propagate.
In closing this subsection, we note that the previously undefined constant frequency w,
of equation (16) may be determined by setting 8, = 1, implying that
wy = L72Q3. (36)

The present asymptotic theory is valid for frequencies which are small relative to w,. At
this frequency, the wavelength of a flexural wave in the “effective” plate is commensurate
with the length of the unit period. The asymptotic theory is therefore valid for wavelengths
which are much longer than the periodic length. Finally, we note that in uniform materials,
wy= hC, /Lz\/ﬁ, where C, =./E/p(1 —v?) is the longitudinal wave velocity in thin
plates.

3.3. THE COEFFICIENT £,

Although we know from equation (23) that the second coefficient in the asymptotic
expansion of the low frequency dispersion relation vanishes, the explicit derivation of this
identity provides some results which are essential for finding the next term Q,. We begin
with the identity

1 1 2 1 1 T
R IR INAR R L
which allows us to rewrite S, as

81 =380 + (1 + Q,/2))S, + (2,/2)F + 321 T, (37

1 1 T
Jufo-([ o fw) °
T= ' 1 T
° Jofu-(Jwfe)

Then, since 8,8, =I(S,|I, substitution of equation (37) into the second order term in
equation (28) gives

ISo1G 1 {So} +4(1 + /2 ) + (2,/Q) tr {8, } +4Q3 1r {81} =0,
and with the help of equation (29), we obtain explicitly

B r {§,T}
Q=-Q} 2-—t?{—§§ . (38)

where
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It can be shown without much difficulty that

_§ =[ I+ 2QCHY —2T) @, ((H)Y — ¥Q)) (39)
"R - QCQXKHY) T+ QHCHY —2IXKQ) |
where Q and H are the cofactor matrices of Q and H of equation (9), and
T, =JjQu"‘jQuJ; lezijlz‘jQJz J:
= JHII JQI] - J.Qn J‘HZI + J.J\Qz] - JQzl f!
Iy= J‘HZI J‘le - JQ[Z '[HZI + J‘.[Q“ - an J‘,
Ty=—Ty, Ty=-T),, Typy=—Ty, Tu=-T,. (40)
Hence, the denominator and numerator in equation (38) are, respectively,
—tr {8} =4+44°Q1(D,+2D,)D;',  tr{§,T} =0, (41)
which implies, as expected, that
2,=0. (42)

Hence, the presence of the periodic structure does not introduce any apparent damping
in the dispersion relation for the Bloch waves of the system.

3.4. THE COEFFICIENT £}

Because £2, is identically zero, the first dispersive effects above and beyond those
associated with a uniform plate are defined by the magnitude of the coefficient €, in the
dispersion relation (22). It follows from the requirement that the third order term in
equation (28) must vanish, implying that

Q3=t—r—{§:?w[—ﬂ?tr{SulefoN}+§tr Sy} —itr {Sgs,}]. (43)

In order to simplify the evaluation of the right member, we note that it may be shown,
using equations (8), (27) and (39), that

tr {So(ND} = —4Q7 [l + ¢*Q1D (D + 2D,)), (44)
tr {Sojl NJN jN} =-Qtr {((H) - QIQ)) J' QJHJ.Q
+<Q>(1—9%<Q>)f' HJQ fﬂ}
(] o fufo[ e Jnfo)
+ (&))MJI Q&JHHJQ:] +8o)s J.l Qu J.HuJQn
([ mfofme ' fo )
+So)x j ' Hy, JQH J Hy +(So)a J] Hy f Ou JHQ. {45)
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The summation convention on repeated suffices is assumed in equation (45). The one
remaining term in equation (43),

A=1tr188,}, (46)

is a little more difficult to evaluate. However, using some identities from Appendix A, it
is possible to express it in the easily computed form

A =18+T| -7l (47)

The coefficient {2, can therefore be evaluated, in general, from equations (43}447).

3.5, NORMAL INCIDENCE
Before discussing some of the implications of the asymptotic approximation to the
dispersion relation, we first demonstrate that the coeflicients £, and , simplify consider-
ably for waves propagating normal to the layer, for which g = 0. We refer to this particular
case as normal incidence. The explicit form of Q, foliows from equation (34) as
Qi =(D"H " ph> L. (48)

The coefficient 2, is still a little involved, even for ¢ = 0. However, the identities (45) and
(47) simplify to

wfs [~ n [n)
- - U /D) ﬂph + J oh H(l/m t <1/D>f fphx T ph f f(x/D)],

(49)
and
1 I 1 | 1 I
A= it U JQ —J Qx| = —(9‘.‘/2)“ J(l/D)—j (x/D)][ j jph ~j phx].
The remaining terms in equation (43) follow from equations (41) and (44), which, when

(50
combined with equations (49) and (50), yield a fairly explicit expression

1 1 i 1
93=—(m/4){j (/D) Jph +j oh H(I/D)+<1/D>J j phx+<Ph>J j(x/o)
+%U' j /D)~ j (x/D)]U' jph - j l phx] —%Qr“} . s1)

Note that £, vanishes identically if either D or ph is constant, which does not imply that
the medium is non-dispersive. It means that the first possible term in the low frequency
expansion of the dispersion curve is zero. This contrasts with the case of acoustic waves
travelling normal to a periodic set of layers, for which the first dispersive term, analogous
to £2,, vanishes if and only if the acoustic impedance is constant [7, 9].

4. DISCUSSION AND APPLICATIONS
4.1, SPEEDS AND MODAL FREQUENCIES

The first three terms of the dispersion relation (22) may be used to define an asymptotic
approximation to the dispersion relation, valid for low frequency and long wavelength.
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The dimensional form of the approximation can be expressed as @ = w(p), or p = p(w),
where

@' =p[@ —p L+ -],  p=o"1Q +ol¥ Q)+ ] (52)

Once Q, and {2, are obtained, the associated phase and group speeds in the direction
normal to the layering, C, and C,, respectively, can be calculated from equation (52) using
C,=o/p and C, = dw/dp. Thus, as functions of frequency,

C,=0"Q [l —oLl¥ /@) + 1,  C,=20"Q[1 ~30L¥Q,/2)+ ], (53a,b)
or
C, = 2C, — 4w 2LH2,/2?) + O(w ™). (54)

The final relation is interesting because it clearly shows how these dispersion relations differ
from the case of a uniform anisotropic plate. Hence, C, = 2C, at all frequencies for normal
incidence (¢ =0) according to simple plate theory for a uniform plate, but
C, =2C,+ O{w*?) according to ¢quation (54), with the difference depending upon the
parameter £,.

The asymptotic dispersion relation can also be used to estimate the resonance
frequencies of a finite length of a periodic plate or beam. Consider, for example, a beam
of length L, in the x-direction, with given support conditions at either end. Then the modal
condition is that pL, =r,, where r,, n = 1,2,3, ..., are known numbers; e.g., r, = nn for
a simply supported beam. A first approximation to the modal frequencies uses the
dispersion relation for the effective beam, implying that

w =r{(Q}/LY). (35)
A better estimate follows from equation (52) as
@’ = oP[1 = 2r(2/Q) (LY L})). (56)

This approximation is only valid if the length L, includes many periods, or L < L,, so that
the correction to the effective medium prediction will be relatively small.

4.2, LAMINATED MATERIALS

The general expressions that we have obtained for €, and £, are valid for arbitrary
periodic variation in the material properties. If the material is piecewise constant, or
laminated, then the integrals in these expressions may be reduced to finite sums. For
simplicity, we assume that the periodic medium is composed of no more than three uniform
phases over the unit cell, and labelled consecutively in the same order in which they are
arranged. Let the volume fraction for phase i be n,, such that n, + n, + n; = 1; then the
spatial average of any material parameter g becomes simply <{g> =Y., ng,. The value
of ©, may then be obtained directly from equation (34). In order to obtain £},, we note
the identities

1 3 3 k
=1 2 1L 2
f a|bla=tY atbmi—1 Y abniy an;
k=1 k=1 i=1
3 k 3 k i

1 2

"‘5 Z akﬂk 2 a;b,-ni + Z aknk Z bjnj Z a,-n!-,
k=1 i=1 k=1

J=l i
] 3
J. b jfa =t Y abni+annbn,
i=1

+ Ha, bynymy(ny + 1) + @y bymns(ny + my) + @ bymyny () + my)),
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i 1 3
1 3,1 2
J J-ax =3 Z ani+3 z an; + @ nyn;,
i

=1 i=1
I 1 3
j b j‘a -~ J. alb=3Y Y (ba—ab)nn,.
j=li=1
We restrict our attention to the case of normal incidence (g = 0), for which &, follows from
the previous identities and equation (51) as
Q= (Q329){niniF,G\, + nini FGyu + nini F5 Gy
— i [y (F1a Gy + Fy Gp) + my(Fy Gy + Fiu Gio) + 1y (Fyy Gy + Fy G}
(57)
where
Fy=1/D;~ /D, G, = (ph), — (ph);.

Thus, as mentioned previously, 2, vanishes if cither D or ph are independent of x. Finally,
we note that the dispersion parameter simplifies considerably for the practically significant
case of a two-phase laminate (n, = 0),

2, = (@724)n3n3(1/D, — 1/Dy)({ph), — (ph)y). (58)

Note that the dispersive effect of 2, may either slow the wave (@, > 0), or make it faster
{£2, < 0), in contrast to the acoustic case in which the first dispersive term always reduces
the wave speed [9].

4.3, EVANESCENT WAVES

The dispersion relation (52) implicitly assumes that both Q, and £, are real. However,
it is possible to have Q, purely imaginary, and since £2, depends upon @Q,, it will also be
imaginary, corresponding to evanescent waves by analogy with the evanescent waves which
exist in a uniform plate. However, unlike the uniform case, the magnitudes of the real and
evanescent branches can differ for the inhomogencous plate. Noting that £, is an odd
function of 2, it follows from equations (30) and (52) that the complete set of four
asymptotic dispersion curves is described by

p==u,  p=tin, (59)
where, assuming for the moment that ¢* < {ph)/D,, both y and n are real and positive,

wl? w2 _
p=omll +oLl T, Q7)) 1 =gmilt @L*r; Q1) (60)
1 1
with Q) defined in equation (34), and
I(2,) = 27°,(Q). (61)

Consider, for instance, the case of normal incidence (g = 0), for which (= Q> but
(i) = — I, (2{7); see equations (51} and (61). Hence, referring to equations (59) and
(60}, we see that u ##, with the difference occurring in the higher order terms. Finally,
we note that if ¢*>{ph)/D,, then, as mentioned in section 3.2, all four branches are
evanescent.

4.4. COMPARISON WITH SHEAR AND ROTARY INERTIA EFFECTS

It is of some interest to compare the effects of periodic inhomogeneity with those of more
sophisticated approximations to the exact dispersion equation for flexural wave propa-
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gation in a uniform thin plate. Both lead to deviations from the classical dispersion of
Kirchhoff plate theory. Here, we consider the effects of shear and rotary inertia of the thin
plate, which are not taken into account in the classical theory. The systematic procedure
for including these effects is contained in the Mindlin theory for plates, e.g., reference [14],
section 8.3.1. However, if we restrict our attention to waves travelling normal to the
layering, i.e., ¢ = 0, then Mindlin’s theory reduces essentially to Timoshenko’s theory of
beamn flexure [14, 15), which may be written in a form similar to equation (7),

dV/dx = i [N(x) + wB(x)]V(x), (62)
where V(x) and N{x) are as before, and
¢ 0 0 1/
00 0
= 3
B¥)=16 09 0 o (63)
¢ 0 0 0

Here, x = Ghjy and © = pl, where G = E{2(1 + v) is the shear modulus, y is a dimension-
less factor indicative of the transfer of shear force across a section and is approximately
unity, and 7 is the moment of inertia for the plate, 7 = 4%/12.

The dispersion equation for wave solutions of the form V(x) = V(0) e“"** follows from
equation (62) as

A — (@D + phlk)A? — (1 — @ (@ /x)ph/D = 0. (64)
The root of interest is
A= (1/A)[1 + (w/HAY(O D + ph[x) + O (@), (65)
where
A, = (D/ph)"*. (66)

Comparing equation (66) with equation (52), it is clear that A, can be identified with £,
and 43 (@/D + ph/x) with Q,°@, L2 Hence, the deviations from classical theory depend
upon 4€;°Q; L? for the inthomogeneous plate, and (@ /D + ph/x) for effects due to shear
and rotary inertia. Considering, for simplicity, the case of a two-phase periodic plate, then
the former follows from equation (58) as

giniL(1/D, — 1/D,)((ph), — (ph)2), (67)
while the latter is
(pR*/12D)[1 + 2x f(1 - v)). (68)

The maximum value of n2n3 is 1/16, and if we simplify matters further by taking y =1 — v,

then the ratio of the two dispersive effects may be expressed as
periodic effect 1 L*A4ph A(1/D)

shear and rotary 24 k2 ph (1/D)’

(69)

with obvious notation. In general, the term L?/A? in equation (69) is necessarily large, and
the remaining terms are small. The utility of equation (69) is in estimating which effect is
more significant for long wavelength propagation in an inhomogeneous plate. Of course,
at high frequencies both of these refinements to the classical plate theory become equally
inadequate.
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5. THE EXACT DISPERSION RELATION

In this section we summarize the theory for the exact dispersion relation in a piecewise
uniform plate, according to the classical plate theory. No attempt is made to include effects
such as those discussed in the previous section. The results derived here will be used for
numerical comparisons with the asymptotic theory in the next section. The starting point
is the well known result for laminated materials that

V(x + L) = PV(x), (70)
where P is the propagation matrix for one period,

P=]Tpier, 1)
i=1

P; is the propagation matrix for the ith layer, given in Appendix B, and # is the
number of layers in the period. The Floquet condition (15) can therefore be written
as

PV(x) = e"V(x). (72)

Then, using the fact that det P = 1, the condition that there is a non-trivial solution for
V becomes

(" — L") + L") — Lie? + 1 =0, (73)
with
L=tu@®), L=i[tc@®P-tw@®)), L=u®"). (74)

Equation (73) is the exact form of the dispersion relation, the four roots of which may
be written as e¥0't, j = 1,2,3,4, where p,,,, pa)» Py and p, are complex. It follows from
equation (23) that the eigenvalues must have the properties

Py = —Puys Payy= —Puyy. (75)

One immediate consequence of equation (75) is that f; = I,, and hence we have, from

gquation (73), that
cosh (ipL) =1 (1, + /L 41, + 9), (76)

which is consistent with equation (286) of Cremer et al. [2]. Here, we give an explicit

expression for the propagation matrix which was not given by reference [21,
Let

ip=1iy +4, (77
where y and J are real, then equation (76) may be written as
cosh (6L)cos (yL) +isinh (6L)sin (yL) = (4, £ /1] — 4, + 8)/4. (78)

When (I, + /13 — 41, + 8)/4 is real, the explicit forms of the dispersion relation can be
obtained, as shown in Appendix C, which are used to check our asymptotic dispersion
relations in section 6.

6. NUMERICAL TESTS AND CLOSURE

The general theory outlined in sections 3 and 4 is demonstrated here for a very simple
periodic plate. Our main point in this example is to illustrate the order of magnitude of
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Figure 1. Dispersion curves for normally incident waves. The parameters plotted are given in equations (60)
and (77). Note that the y-curves and the n-curves, with and without 'y, overlap each other.

the dispersive effects described by the asymptotic theory. The plate parameters used in the
following numerical tests are listed in Table 1.

The ratio defined in equation {69) is about 1-70 x 10° for this plate and a uniform plate
with the same E, p, v and & = 0-075 m, meaning that the effects of periodic inhomogeneity
are much more significant than those of shear and rotary inertia.

In Figures ! and 2 are shown dispersion curves for the plate, using both the exact
dispersion relation and the asymptotic relation (60), with and without the I'; term in the
latter. The case of normal incidence (g = 0) is considered. It turns out that the inclusion
of the correction to the static effective medium predictions has almost no impact on the
asymptotic curves, y and #, of equation (60). The deviation of the exact parameters é and
v (see equation (77)) from one another and from the asymptotic curves is due to higher
order effects. Note that the dimensionless wavenumber pL ranges from 0 to 3-0 in Figure
1, which is far beyond the limits where one would expect the asymptotic theory to hold.
However, the agreement between the exact and asymptotic theory is reasonable even at
pL = 1. These results suggest that the first correction to the static effective medium theory
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60 o056 10 15 20 25 30 35 40
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Figure 2. The phase velocity C, and group velocity C,, corresponding to £{*) (see equations (532, b)}.
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TasBLE 1

Plate parameters

EM/m’)  pkgm’) v h(m) K@ o om LW
198 x 10" 785x10° 030 005 010 025 050 1000

is penerally small, corresponding to the fact that €, itself is small. For this example, the
pertinent dimensionless quantity ,/Q, is approximately 2-70 x 107°. In general, this
quantity will probabiy be smaller, and will never be of order unity. On this basis we can
safely conclude that the first correction to the static effective medium is insignificant.

The modal frequencies can also be computed using equations (55) or (56). The first
correction to the effective medium for the first few modal frequencies will be insignificant,
since both L/L, and @,/Q2, are small.
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APPENDIX A: DERIVATION OF EQUATION (47)

We begin with an identity for the determinant of the sum of two matrices, which is very
useful in the following developments:

IC+:zD|=|C|+z tr {CD} + ¥ tr {F;D} + - - - + (z¢ YD) tr {CD} + z9D|. (AD)
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Here, C and D are matrices of order d, € and D are the cofactor matrices of C and D,
respectively, and Fj is the derivative with respect to z of the cofactor of F=C+zD at
z =0, According to the definition of the cofactor, we have

2, i
SOIm=(_d—_‘__2)!eij“»kfenm~-pqsllqsﬂjn‘.-S()kpn (A2)

where e, is the permutation tensor of order 4 on the integers 1, 2,. .. ,d, e.g., ;... .= 1,
etc., and the summation convention is assumed in (A2) and the following. It follows from
the definition in equation (46), that

A =%[TZ—)!S,,-,,,S”qe,-j_.,k,em...mSoj,, -+ S (A3)
Substituting for 8, from equation (37), we find
A =4tr (A8 + (d — 1)/ tr (8,Se) + ((d — 1)/2) tr (§,8%) + (d — 1) tr (§,T)
+tr(AgT) + (1/2(d — 20T, Tyl k1€ g Som ™ ** St (A4)
where
A(z) =S, + z8%. (AS)

Applying equations (A1)-(A3), we find that the first term in equation (A4) is the
coefficient of z? in the expansion of the determinant of A, whjch vanishes on account of
equation (29). The second and third terms also vanish, since 5,5, = |5 |I. Finally, we are
left with

- 1
A=(d—1)urET) +tr(AT) +5(_d——2)' T Ty s€mn g Som " Sup- (AB)

Now let
B(z)=5,+:zT. (A7)
Again making use of equation (Al), we obtain
1So+ zT) = [So| + 2 tr (S D) + H2) tr {B; T} + (2%/2) tr {S, T + 29T} (A8)
The first term vanishes on account of equation (29). It is easy to show that

, 1
BOim =(d—_F2_)|-'et'j---k!emn-'-pq TIqSOjn o -Ska! (Ag)

and therefore

A =3t (S,T) +tr (A;T) + 3 tr {B; T} (A10)
Combining equations (A8) and (A10), we have
A=18,+zT[+ B ~2)tr (8 T) + tr (A;T) — (2%/2) tr (S, T) — 2T (ALl)

The term tr (S,T) vanishes, using equation (41), and it may be proved without much
difficulty that

tr (A;T) =1tr (8, T) = 0. (A12)
Hence, we deduce the following general expression for A for arbitrary values of z:
A=[S,+ =TI —z4T|. (Al13)

Putting z =1 gives the identity (47).
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APPENDIX B: THE PROPAGATOR MATRIX

The propagator matrix for the ith layer follows from equation (1) and the fact that V
is continuous:

p: = U,RO;S8,(x; - x; . DOTRTIUSY (B1)
where
1 0 0 0
(Dv)q® 0 (Da?); 0
U= 0 ~ig, 0 0 ' (B2)
0 —i(DR—vadg® 0 —iDa?,
1 0 0 0
0 0 ife, 0
.7‘= ! B3
v ~(vjadg® D, 0 ' (B3)
0 0 —iQ2—v)alq® if(Da’)
I E . 1 —EF!
= ! Tl= e B4
o, [0 F] 0, [0 o ] (B4)
T+ B[y +8 1-58 . 1 L+ —148
F.= ' F'le— "I,  (BS
=73 [1-3.- i+p TR EL-t1+8 14p | Y
_i-gii—if 1418, L I=B -1 t+i
E=—3 [1+i,8,. t~ig ] PFTTT li4i t-if (B0
ek ‘2 2 " _ (pihi/ DY + 47 |7
() o] G o
S,-(x) _ diag (eimlfzajx, e—iw'ﬂa,-x, ewlﬂa,- ﬂ,—x’ e—wlﬂzui B x), (BS)
and
1 1 11
7 P L N R-! = (R¥)" (B9)
I O S S S o - ’

i =i -1 1
where the asterisk denotes the complex conjugate. These results are motivated by the fact
that the displacement in the ith uniform layer has the form
W = (ai eiwlfzu,-x +a, e-imlizu,—x +a, ew”l.'t, Bix +a, efcn”zﬂ,‘ B x) ei(mifzqy—ml], (BIO)

where a;, j =1, 2, 3, 4, are constants.
We note that the propagator matrix in equation (46} of Cremer et al. [2] is for the special
case of normal incidence and for the four-vector

(@W o1, 3*°W|axdt, M,, S,), (B11)

rather than the vector V of equation (6). Therefore, the propagator of Cremer er al. [2]
is equivalent to Cp,C~', with ¢ = 0 in p, and
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—o" 0 0 0
0 0 -i 0
= 1
¢ 0 —ie® 0 0 12
0 0o 0 1

APPENDIX C: EXPLICIT DISPERSION RELATIONS
It may be shown, using equation (59), that

B® =L+ /I —4L+38) (CD

are always real for low frequencies. Let us assume that this is true for all frequencies.
Actually, this assumption can be checked once 7, and I, are obtained. If this is the case,
then it may be shown from equation (C1) that

B-| <1, |B*>1, if|i—2L,—4 < /F—~al,+3, (C2)

and

B-|<1, |B*|<]l, ifFi—26,—4<— /P —4L+8, (C3)

while

IB-|>1, [B* =], if7{—2L~4> ./} - 4L+ 8. (C4)

In summary, when equation (C2) is valid, the roots are

vL =cos ' (I, — ST~ al, + 8)j4, & =0,

and

8L =cosh='[(, + /T — 4L+ 8)/4],  yL =nm, (CS)
where n =0,2,4, ... if B¥>0 and n=1,3,5,... if B < 0. When equation (C3) is

valid, the roots are
yL =cos~ ' [(1, £ /13 — 41, + 8)/4], 8 =0. (Co)
When equation (C4) holds, we have

8L =cosh~'[(f, + /T~ 4L + 8)/4],  yL =nm, (C7)
where n =0,2,4, ... if B¥>0,and n =1,3,5,... if B <0,



