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The interaction of an acoustic field with a smooth thin shell in a fluid is described by the
superposition of a background field plus membrane waves on the shell. The former is defined by
a local impedance condition, which accounts for the inertia of the shell, but takes no account of
the in-surface, membrane effects. The shell’s flexural stiffness turns out to be of secondary
importance. The bulk of the paper deals with the coupling mechanism between the acoustic field
and the supersonic membrane waves, both longitudinal and shear. The coupling is mediated by
the shell curvature, and vanishes when the curvature vanishes. Ray methods are used to express
the membrane waves by curved wave fronts with amplitudes subject to a transport equation over
the curved shell surface. The coupling, and decoupling or launching, then reduces to solving an
ordinary differential equation for the unknown ray amplitude. In essence, the transport equation
is forced, or “beaten” by the locally phase-matched background field. Explicit expressions are
obtained for the coupling and detachment coefficients on arbitrarily curved regions. These are
combined, using ray theory for the propagation over the shell, to give the scattered field due to
rays traveling over the shell. The general results are explicitly tested on the cylinder and sphere,
for which the ensemble of surface rays can be summed into a resonance form, and numerical
comparisons are made with the exact results for these canonical geometries.

PACS numbers: 43.20.Rk, 43.20.Fn, 43.30.Gv, 43.40.Rj

INTRODUCTION

Our purpose here is to present a theory that quantita-
tively describes the coupling mechanism whereby mem-
brane waves are excited on and shed from elastic shells
under heavy fluid loading. The central idea is that the su-
personic, leaky membrane waves can be represented by ray
methods as they travel over the shell, and their excitation
occurs when the transport equation for the rays is forced
by the incident field. In fact, as we will see, the forcing is
through an intermediate, or background field, which ac-
counts for the nonmembrane shell effects. The idea of a
background field has been discussed recently in several
articles,’® including a paper by one of the present
authors.’ In the latter work the additional field due to the
membrane effects was represented by the global dry mem-
brane modes of the structure. However, the present ap-
proach differs in that all membrane effects are explicitly
local. Modes may be formed by combining rays, and ex-
amples of this will be presented for the canonical shapes,
but our present emphasis is unambiguously on local, ray-
type representations that are valid for arbitrary local sur-
face geometry.

The motivation behind this work is the well-accepted
notion that acoustic scattering from fluid-loaded elastic
shells at high frequencies is most naturally viewed as a ray
phenomenon.7'll In fact, most of our intuitive understand-
ing of experimental data on acoustic scattering from com-
plex structures is based upon ray concepts.!? The present
treatment of the membrane waves relies on recent work on
ray equations for wave propagation over thin shells by
Pierce,!’ Norris and Rebinsky,l4 and Norris;!® see also
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Refs. 16-19. At the same time we approximate the “back-
ground” field by a local impedance condition, ¢ which re-
sults in a simple closed-form approximation for the spec-
ular field. We note that the ray point of view contrasts with
the usual mathematical description of scattering in terms
of a superposition of modes, although such an approach is
perfectly natural in dealing with the separable targets—the
cylinder and the sphere. A good review and an exhaustive
list of references for scattering from the separable shells is
provided by Gaunaurd and Werby.2’ The modal represen-
tation for these canonical shapes can be developed into a
form that clearly displays the rays bouncing off the shell
and traveling over its surface.”’ However, such global-to-
local analytical techniques (Poisson summation, Watson
transform) are apparently limited to these two particular
shapes.

The reader should keep in mind that the present anal-
ysis incorporates several simultaneous approximations—
both physical and mathematical. The physical approxima-
tions may be grouped under the rubric of ray methods,
with specific applications to non-Euclidean two-
dimensional (2-D) spaces, i.e., curved surfaces. The asso-
ciated mathematical “approximation” is to reduce the par-
tial differential equations of the coupled fluid—structure
system to ordinary differential equations (ODEs) along
rays. The coupling mechanism then reduces to solving an
inhomogeneous ODE for the ray amplitude on the shell (in
fact, the ODE can be solved by explicit quadrature). The
general framework is simplified by the use of “thin shell”
theories that are physically valid only when the wave-
lengths of interest are much longer that the thickness 4. At
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the same time, we employ ideas from geometrical optics,
requiring that the wavelengths be short in comparison with
a typical radius of curvature, R. Both approximations may
be justified from asymptotic arguments, but the asymptot-
ics are in a sense conflicting. Unless we take the limit of
h/R -0, it would be necessary to scale this ratio with the
wavelength. One could proceed in this manner, but the
complications would quickly hide the physical arguments.
In summary, the methods proposed are primarily physical,
and would be difficult to justify on purely formal, mathe-
matical grounds. Some comments on these issues will be
made later, but we emphasize that our philosophy here is
to arrive at the simplest ray-theoretic description possible.
Such issues as penumbral transitions,?! better shell
theories, > interactions with discrete surface discontinui-
ties, etc., could be included in the theory. However, these
subjects are beyond the purview of this paper and will be
discussed elsewhere.

The outline of the paper is as follows. We first deal
with the 2-D case, as it illustrates the major features in the
simplest manner. Section I describes the coupling and ra-
diation mechanisms for membrane (longitudinal in 2-D)
waves on arbitrarily curved 2-D shells. A formal asymp-
totic scaling is defined that illustrates the length scales of
the coupling mechanism. The general theory is illustrated
by application to the canonical case of a circular shell, for
which comparison with an exact solution is possible. The
fully three-dimensional case is discussed in Sec. 1I. The
general theory treats an arbitrarily curved, smooth thin
shell, and includes the possibility that the material proper-
ties (thickness, stiffness, etc.) are also smoothly varying,.
The physical principles are the same for the coupling and
radiation as in two dimensions, but the added geometrical
complexity of arbitrarily curved shells in three dimensions
requires more algebra. Several new concepts are intro-
duced, including the notion of a coupling curve along
which membrane wave fronts are excited. Both longitudi-
nal and shear waves are possible and must be considered
simultaneously. We treat both wave types in parallel by
introducing an effective curvature that determines the
amount of coupling. For instance, the effective curvature
for shear waves is proportional to the difference in princi-
pal curvatures of the surface, and hence vanishes on a
spherical region. The main results of the 3-D analysis are
summarized at the end of Sec. II. Several applications of
the general theory are given in Sec. III, where numerical
results are presented for the scattered fields predicted for
the separable shapes, and comparisons are made with the
exact solutions. Finally, we note that time harmonic mo-
tion is considered throughout, with the term ¢~ under-
stood but suppressed.

. TWO-DIMENSIONAL COUPLING
A. The asymptotic scaling and shell equations

An understanding of the local scattering phenomena is
required to determine the coupling of an incident signal to
the membrane waves on an arbitrary shell. We assume that
the main excitation occurs at points on the structure at
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FIG. 1. The local coordinate system on the shell near the coupling point
x=0.

which the incident wave is near the critical angle for the
supersonic membrane wave. At such angles, the traditional
geometric optics treatment of acoustic ray theory is inac-
curate because of rapidly varying nonspecular behavior.?
This is corrected by considering an inner or local problem
in the neighborhood of these “coupling points” where the
quickly varying signal is accounted for by a multiple scales
analysis. The latter approach is motivated by a recent ar-
ticle by Tew and Ockendon? on the use of multiple scales
to describe scattering from an impedance surface near the
critical angle.

The supersonic, leaky membrane wave in the shell is
assumed to have complex-valued surface wave number
k=kf sin 8;, where kf=m/cf is the fluid acoustic wave
number, and the angle 6, is complex, but only slightly so.
Define the real angle 6, by

sin ,=sin 8y+i5, &>0, (1)

where 5«1. The fact that 8 is small means that the surface
wave is only weakly radiating, or leaky. Now consider a
plane wave incident at angle 6™ with the local normal to
the shell. The incident wave reflects in a normal or “spec-
ular” manner when 6546, but if 6" =8, then coupling
occurs and a membrane wave is excited. We assume, for
simplicity, a 2-D situation, such that the shell has a locally
parabolic shape at the point of incidence, given as
z+x2/2Ry=0, where R, is the radius of curvature at that
point (see Fig. 1). Define a small parameter

e=1/k/Ry, (2)

such that k,Ry>1 by assumption. The local analysis is
valid for incident waves near the critical angle, which oc-
curs if 6‘“°—65=0(61/2) or, specifically,

sin @™ =sin O,+ €A, (3)

where A=0(1). Also, let the coupling point coincide with
the origin, and consider positions x such that
ksJex=0(1). Now define the slow scale through the di-
mensionless position vector:

X= Jeksx. (4)
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We will be concerned with the “inner region” where
X=0(1).

Scaling the frequency is a rather delicate issue for thin
shells, on account of the muliitude of characteristic fre-
quencies at our disposal: specifically, the ring, null, coinci-
dence, and Poisson frequencies. For a shell of radius R,
and thickness # € R, the ring frequency is a low-frequency
parameter associated with the fundamental membrane
mode, and occurs at k r=¢,/C Ry, where p is the longltu-
dinal plate wave speed. The null frequency, at
k;=p,/ph, where p,and p are the fluid and solid densi-
ties, provides a rough separation between the low-
frequency, heavy-fluid-loading regime in which the shell
acts more like a pressure release surface, and higher fre-
quencies where fluid loading is weak and the surface is
more like a rigid target.>® The coincidence frequency de-
fines the transition of the flexural wave on a flat plate from
subsonic to supersonic, and is given by kf
= (c/cp) 1 J_ /h The Poisson frequency, introduced by
Kaplunov et al.,? is, like the ring frequency, a membrane
frequency that depends upon the shell curvature. However,
it is a high-frequency local (as opposed to global) param-
eter that defines the frequency where the exterior pressure
effects the membrane shell equations directly. This results
in a membrane forcing proportional to the in-surface gra-
dient of the pressure and proportional to the Poisson’s
ratio.>?? Such effects are ignored in most shell theories,
including those used here, which are based directly upon
the work of Green and Zerna® and coincide with other
shell theories commonly used, e.g., Ref. 19. Kaplunov
et al.? have shown that for a sphere of radius R, the Pois-
son frequency occurs at kf = (cp/cf) \/( 1 —7)/vhR0 (the
value k,=xo/R, in the notation of Ref. 2), where v is the
Poisson’s ratio of the plate. Note that the Poisson fre-
quency becomes infinite as the Poisson effect vanishes
(v—0). It helps to consider a specific example. All of the
calculations in this paper are for steel shells in water, with
Ry/h=90, c;=1482, c,=5435, p;=1000, p=7800, and
v=0.289, all in mks units. The value of the dimensionless
frequency kR, at the ring, null, Poisson, and coincidence
frequencies is then 3.67, 11.6, 62.0, and 85.0, respectively.

In this paper we are concerned with the membrane
coupling effect in the midfrequency range, which is defined
as the range of frequencies between the ring and Poisson
frequencies. At the same time, we assume that the coinci-
dence frequency lies outside this range (above it), hence
allowing us to ignore bending effects in the shell equations
and thus simplifying the analysis. The midfrequency range
specifically includes the null frequency, so that fluid-
loading effects are critical. In practice, this means that the
“background” response is neither that of a rigid or a soft
surface, but is truly intermediate.? We assume that the
midfrequency range is large in the sense that we may use
the geometrical optics limit £,R,» 1, but at the same time
we have the additional constraint of thin shell theory, i.e.,
that A/Ry<1. These conditions are met for the example of
the steel shell in water with Ry/A=90 if we consider the
midfrequency range to be defined roughly as 5 <k R, < 60.
At the lower end of the range the geometrical optics as-
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sumptions break down, while at the high end we encounter
discrepancies arising from the simplicity of the shell theory
used here. One could probably push the upper limit of
applicability to higher values through the use of more so-
phisticated shell theories.?

Let s be the arclength on the shell near the point of
interest, and v(s) and w(s) be the in-surface and normal
components, respectively. The shell is approximated lo-
cally as a parabolic surface described by the equations of
motion for a thin cylindrical shell with equivalent radius of
curvature. The final approximated local form of the equa-
tions of motion are

d* 2 1 dw o, 5
a2t YR ds (52)
1 dv -

——b—kzw L (5b)

where k,=w/c,, c, is the longitudinal plate velocity, and C
is the extensional stiffness. See Appendix A for further
details. The local equations (5) follow from the 3-D equa-
tions for a cylindrical thin shell [Egs. (A2)] by neglecting
bending effects (8—0) and the term w/a’ in the w equa-
tion (A2c).

In addition, the continuity condition for time-
harmonic motion is

dp
protw=5, (6)

where p, is the fluid density and n is the normal to the
surface S. At this stage we introduce some impedances that
enter into many of the subsequent formulas:

Z,,=—iwph, Z=pscrsecO;, Z(0)=pqcsec.
)]

Thus, Z,, is the masslike impedance of the shell, Z_ is the
local impedance for a membrane surface wave, and Z ;(3)
is the impedance that will enter into geometrical optics
approximations for specularly reflection. We note that
Zs=Zf( 95) ’:’..Zf(eo).

B. The background wave field

We first determine the outer or background solution,
which consists of inertial effects on the shell and produces
the specular reflection into the fluid for angles of incidence
away from the critical, i.e., 6"°546;. It is also the driving
mechanism for the inner or local problem, when 6™°~8, in
the sense of Eq. (3). We are mainly interested in the mid-
frequency regime defined above, and therefore flexural ef-
fects are ignored; in fact, we have explicitly expunged them
from the shell equations (5). Consider the ansatz

p=p O tepMy .-, (8a)
w=w®+ew®+---, (8b)
v=ev® + M4 ---. (8c)

Note that the v displacement is scaled to be smaller than
the pressure and the normal displacement. Upon substitu-
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tion into Eq. (5b), one obtains the leading-order approxi-
mations for the w equation as

i0Z,w® =p©®, (9)

where Z,, is defined in (7). Combined with the leading-
order contribution to the continuity equation (6), Eq. (9)
results in a local impedance boundary condition on the
surface S,
p? e

=221 g,

an Z (10)

This local impedance condition has been previously de-
rived and discussed by Norris and Vasudevan® and by Ka-
plunov, Nolde, and Veksler.? Equation (10), together with
the Helmholtz equation,

v2p@ +iip® =0, (11)

defines the background field or outer solution p'? in the
surrounding volume V. This is the response with no cou-
pling to the longitudinal membrane wave.

The background pressure p‘® is composed of the sum
of the incident and scattered wave fields, p‘® =p™" 4 p*(9),
We assume an incident wave field in the fluid in the form of
a curved wave front or a Gaussian beam, which has local
paraxial form?6

P™°(x) =P, exp{ik [[n™ - x+3Mp(m™-x)*]}, (12)

where P, is the amplitude, M, is the wave-front curv-
ature (which could be complex valued), and
n'"=sin @™ a,—cos 6™ a, and m"™=a,An"™ are unit
vectors. Here, {a,,a,,a;} form a right-handed orthonormal
triad (see Fig. 1 for a description of the local coordinates).
The background scattered field p*® in the surrounding
fluid may be written in a geometrical optics form similar to
the incident wave field (12), i.e., as a curved wave front or
Gaussian beam [assuming the incident curvature satisfies
MR,=0(1)}]:

PO (x) =Py exp{ik J[n* - x+iMy (m*+x)?]}, (13)

where n**=sin 8" a,+cos 6™ a, and m*“=a, An*. Equa-
tion (13) is local in the sense that the amplitude and cur-
vature are independent of position. This is all that is re-
quired for our purposes, but we note that one could use
geometrical optics®® to analytically continue p**? to the
far field. The reflected amplitude and wave-front curvature
are given by

By=R(0™)Py, My=My+2/(Rycosb;), (14)
where
R(O)=[2Z,—Z/(D])/[Z.,+Z(0)]. (15)

In summary, the background wave field p* is de-
scribed by the incident pressure of Eq. (12), plus the scat-
tered pressure of Eqs. (13)-(15). The displacement w®
can be determined using Eq. (9). The specular approxima-
tion of Eqgs. (14) and (15) is consistent with the more
general equations of Kachalov,”' who derived specular and
penumbral approximations using a more general local shell
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impedance function that includes bending effects. We pre-
fer to keep the background field as simple as possible, par-
tially to explore the extent to which flexural effects are
significant. As we will see, very good approximations can
be attained with this simple background response.

C. Generation of the membrane wave

We now consider the inner solution that describes the
behavior of the shell when the incident field couples to the
longitudinal membrane wave. As the membrane wave trav-
els supersonically along the shell energy is constantly
leaked back into the surrounding fluid, interfering with the
reflected wave field generated by the outer solution dis-
cussed above. The total wave field produced in the sur-
rounding fluid, with both background and membrane wave
components, changes significantly in magnitude and phase
with position when the angle of incidence 6™ is near the
critical angle 6,.

A different approximation is required to include cou-
pling to the longitudinal wave. The leading-order solution
is represented as a sum of the background solution plus an
additional component generated by the longitudinal wave.
This additional component will be referred to as the inner
solution. We assume, for simplicity, that the shell material
properties are uniform for X=0(1), and start with the
ansatz

p=p P —iwZ FO(X)ehmxy---, (16a)
w=w® +FO(X)e*+---, (16b)
v=®(X)e*+- -+, (16¢c)

where the inner solution consists of an unknown amplitude
function ¢ dependent upon the slow variable X multiplied
by a phase that varies according to the fast variable x. Note
that ¢(X) has an argument that can be both in the fluid
and on the surface, although it is understood that the shell
displacements are only defined on .S. The impedance Z; of
(7) appears in Eq. (16a) by virtue of the fact that this is
the impedance appropriate to the membrane wave, and the
vector m=sin 6, a; +cos 8.a,. At this stage we do not scale
<& with ¢, although it will transpire that ®=0( Je).

The coeflicient F may be found by substituting the
above response into the w equation (5b). Note that in the
local region the arclength s is reasonably approximated by
x and that the normal derivative is the z component to
leading order. Using the fact that the background solution
satisfies Eq. (9), an algebraic equation is obtained to lead-
ing order for the coefficient F, giving

lees[Zm/(Zm"'Zs)] an

This approximation uses the fact that sin 8,~c¢,/c,, and
the definition [see Eq. (2)] €,=1/kRy= € csc 8,. The pres-
sure solution given by Eq. (16a) must also satisfy the
Helmholtz equation, which governs the response in the
surrounding fluid. Upon substitution of Eq. (16a), one
obtains
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Vp+Ip=— 20k’ JeZFe*™ *m - Vy®+0(€) =0.
(18)

Therefore, to O(Je),
m - Vy® (X) =0, (19)

which means that ® must be a function only of the com-
ponent (a, Am)-X. Noting that (a,Am)+ X=X cosd,,
we write the general solution as

B(X) =D(sec 0,(a, Am) - X)=D(X). (20)

The amplitude function & is determined from the con-
dition that there is no forcing of the longitudinal wave on
the surface S. Thus, with the form of the F known, sub-
stitute the inner response given by Egs. (16) into the v
equation (5a), yielding

( )

1 dw® F F dd (X)
+ R x —"‘x+—qu>(X)+ k,J’ ——=0.
0

(V2))

The terms linear in @ vanish because of the dispersion
relation satisfied by the surface wave number; or alterna-
tively, &k is determined by the vanishing of its coefficient.
Setting the latter to zero and using (17) to approximate F
yield the dispersion relation

Z, 1
i)

(22)

The second term on the right-hand side is asymptotically

smaller than the first, but it introduces the crucial complex

part to k, associated with the radiation loss into the fluid.
The remaining terms in Eq. (21) imply

F
(143

on S.
(23)

The term in parentheses may be replaced by unity without
any significant error because F/2ikR, is of O(€*), from Eq.
(17). The outer solution for w® is required to determine
the amplitude function of the inner solution, ®. In general
circumstances, w® is composed of contributions from the
direct incident wave plus, possibly, flexural waves that
have traveled to the point of interest from some distance
source on the shell. Such waves could be common on com-
plex structures where discontinuities act as sources and the
flexural waves could, in theory, influence points far away
on the structure because they propagate subsonically and
therefore suffer no radiation loss. However, for our pur-
poses we can safely ignore any flexural wave contributions
to the w'?, since they are out of phase with the membrane
wave and their presence in the right member of Eq. (23)
would have an insignificant effect in exciting the membrane
wave. By the same reasoning, we may safely replace w®
by the part of the normal displacement that is excited di-
rectly, or locally, by the incident acoustic wave. The phase
is then approximately matched, so that to a good approx-

dx V¥ ax ¢

_ dB(X) dw®
21kR0)2lk \,—
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imation dw®/dx=ikw'®, and Eq. (23) then reduces to

d<I_>(X) \fe }
_ v, (0),—iks
X =2 we™ ™, 24)

The outer contribution to w® follows from Eq. (9),
using the background pressure fields of Eqs. (12) and
(13),

w®= Mexp(zkx)cxp (AX+1 MOXZ)]
inZ,,
on S, (25)
where
ﬂozcos 0,4+ M cos® 6,. (26)

After substitution of Eq. (25) into Eq. (24), using Eq.
(15), the inner solution amplitude function is found to be

\/— Po

X
f exp|i| AS+- MOS'Z)
——ia)Z,,,+ZS — o0

_£ Po |2 o—iA/2M,
—iw Z+Z, qi{o

J'V-W(th/n‘lo)
X

— ac

&5 ds, 27
where the lower limit of integration is chosen to satisfy the
radiation condition.”? The integral in Eq. (27) has the
form of a complex error function, which can be written in
terms of Fresnel integrals. However, the behavior of the
integral can be best surmised by examining what happens
as the upper limit of integration tends to £ 0 (X~ + ),
for which the integral becomes

exp[(i/z)Mo(X+A/A‘40)21+

\/1—rei”/4H(X) + — —
IN2Mo(X +A/Mp)

(28)

where H is the Heaviside step function. The first term of
Eq. (28) denotes the supersonic membrane wave traveling
along the surface of the shell in the local region, and the
other term describes the modifications to the (outer) spec-
ular field. For intermediate values of X the integral pro-
vides a smooth, although oscillatory, transition region in
which the membrane wave is created.?

The leading term of Eq. (28) provides the coupling
coefficient or the initial amplitude of the generated surface
membrane wave. Thus, the amplitude of the longitudinal
wave traveling along the shell’s surface is & - &, where

Je P, [mi
€

- —iNY/2¥y
—in Z,,+Z;, Y M,

(Dsurf - (29)
Referring to the ansatz (8), we see that the in-surface
displacement is O(Je), in contrast to O(€) for the outer
solution. Thus the “beating” of the acoustic wave, com-
bined with the shell curvature, results in an enhanced tan-
gential displacement, which in turn launches a membrane
wave. The simplest case is that of an incident plane wave,
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for which My=0. The exponential term in Eq. (29) intro-
duces a decay unless the angle of incidence is 8=6,. As-
suming that 8=48,, the surface wave amplitude for a plane
wave reduces to

Je P, 2mi

Dourt= —i0 Zp+Z, \cos 6,

(30)

Note that the amplitude 18 O(Je), as compared to the
smaller O(€) of Eq. (8c) for the background in-surface
response. The in-phase beating of the membrane wave
therefore induces a coherent response of magnitude
O(e~?) relative to the background, and dominates the
in-surface response.

D. Coupling from the shell to the fluid

The coefficient describing the amount of coupling to
the membrane wave was calculated in the previous subsec-
tion, and provides the initial condition for the generated
surface wave. As the membrane wave travels along the
shell its energy is shed into the surrounding fluid through
radiation leakage. The resulting attenuation is described by
the imaginary part of the membrane wave number k. In
order to determine the response in the surrounding fluid, in
particular the energy that “leaks” to the far field, the
Helmholtz equation must be satisfied with the pressure
along the surface appropriate to a membrane wave. Ac-
cordingly, we start with the following surface fields, which
are based upon the inner solution of Eqs. (16):

{pww}={—ivZF,F1}Ve™, on S, 31
where V,, is an arbitrary amplitude with dimension of
length. The field in the surrounding fluid may be deter-
mined by applying Green’s theorem,

, Gap aG d
P(x )= J.S( an_pa_n) Sy

where G is the 2-D free-space Green’s function,
G(xx")=(—i/4)HS" (ks|x—x'|), and the normal in
(32) is exterior to the empty shell. Using the boundary
values of (31), Eq. (32) becomes

(32)

(3G
p(xr)=iwsz0f ¢ (E—tkfcos o,G)ds. (33)
N

Consider the configuration shown in Fig. 2, with
x'=R'sin 0 a;,+ R’ cos @a;. We assume that the domi-
nant contribution to the radiated field originates from
points on the surface S for which x lies in the neighbor-
hood of the origin. Then,

|x—x’| =R’ —x sin 8+ (cos 8/Ry+cos® 0/R")x*/2,

while Eq. (33) and the large argument approximation for
G imply
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FIG. 2. The configuration and location of the coordinate system for the
launching of a wave from a point x on the surface to some position x’ in
the far field.

P(x’) =wk ZFVy(cos 8+cos 6,)G(0,x’) fdx

chp[ikf[ (sin 8,—sin 9)x

cos @ cos? 6\ x?
) e

R TR |2

The integral can be evaluated by the method of stationary
phase and has an exponential term of the form

cos @ cos’\1~}
(=) |
(35)

which is exponentially small unless =0,, where 0, is de-
fined in (1). Hence, the main contribution to the radiated
wave field from the region near x=0 lies in the direction
6=20,, and follows from (34). This simplifies in the far
field (R'>R,) to

i
exp[ -3 k(sin 6,—sin )2

' 1 1\ | 27
p(x’)=G(0,x")2iw cot 6 \/ZVO(E_+E) cos 6y

(36)

The approximation sin 8y=cz/c, has been used here. Note
the similarity of this expression to that for the launch co-
efficient in Eq. (30).

Combining Egs. (30) and (36) allows us to compute
the contribution to the scattering from membrane waves
for arbitrary incidence. For example, suppose the incident
field originates from a point source at x’, couples to the
membrane wave at x; on S, and radiates from Xx,, also on
S, to the field point x. For simplicity, we assume that both
the source and receiver are in the far field (their distance
greatly exceeds the radii of curvature). Along the surface
between the coupling points, the amplitude of the mem-
brane wave goes as 1/ \/pcph(s), if the shell parameters
vary smoothly between s=s, and s=s, at x; and x,."> Oth-
erwise it remains constant, although there is some inevita-
ble decay resulting from the fact that k has a small positive
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FIG. 3. Circular cylindrical shell with coordinate system, source direc-
tion, and observation poiat locations.

imaginary part. Combining all these results, we find that
the radiated response due to the membrane wave is

p(x) =G(x'x)G(x,,x) D\ D, exp(i Jrz k ds), 3an
5

where the “diffraction” coefficients are defined by

b .(4ﬂ.pcpzs)l/2\[7
~ 7 Z.+2, R

Note the phase term due to the launch and scattering, in
addition to the phase from the propagation over the shell.
Also, the result (37) is clearly the same under the inter-
change of the source and receiver points, as required by
reciprocity. Suppose, for simplicity, that the shell is uni-
form between the launch and radiating points, with ar-
clength of L separating them. If the incident plane wave is
of amplitude P, at the launch point, then the scattered field
is

(38)

—idr  ZZ, L
P(X):k—&)mPoG(Xz,X)e"‘ . (39
We next use this simple result to test the theory on the 2-D
circular shell.

E. Example: The cylindrical shell

We consider an incoming plane wave scattered by a
circular cylinder of radius a. For this canonical geometry,
Ry=a and the exact far-field scattering amplitude can be
determined and compared with that obtained from the ray
description. The far-field scattering amplitude is defined by

F =1im [ \2r/ae~*r (p—p™)], (40)
r—w

where r is measured from the center of the cylinder to the

far field (see Fig. 3). The coordinate system is now placed

at the center of the cylinder as opposed to that used in the

previous calculations where it was located on the surface of

the shell at the location of each incident ray.
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Recall that the total response consists of an interaction
between the specularly reflected wave field with that shed
by the leaky membrane wave traveling along the cylinder’s
surface. The former follows from Eq. (13), yielding

psc(o) =Py Z(Y)[1+2r'/(acos )] ~in

X explik /(r' —a cos )], (41)
where
r'=—acos Y+ P —a’ sin 1), (42)

and the impedance Z /(1) is defined in Eq. (7). Next, the
leaky membrane waves are described by Eq. (39) with the
arclength between the launch and radiating points L to be
determined. If the far-field scattering amplitude is calcu-
lated on the clockwise (cw) side of the cylinder than the
arclengths traveled by the membrane waves traveling coun-
terclockwise and clockwise are 2a(mr—y—6;) and
2a[mH(8y— )+ —06,), respectively, where H is the
Heaviside function. Each wave circumnavigates the cylin-
der continuously giving an additional arclength of 27a per
cycle, and their contributions to the phase in Eq. (39) can
be written as

1

I2TKaQ ?

i eik21mm= I ( 43)
m=0Q

—e

where the complex-valued surface wave number % is deter-
mined from Eq. (22). Then, the radiated response of the
total contribution of the leaky membrane waves is

dr  Z,Z, 4Ueemb)
\/81rlkfr' l_e,'z”ka
Y {eﬂka[ﬂH(Bo— V) +3$—6g) +e'2ka(ﬂ—¢—80)}_

mem

= =h Z 2y

(44)

Now the far-field scattering amplitude given by Eq.
(40) is evaluated using Eqgs. (41), (42), and (44) to obtain

F = Jcos YR (P)e Zkracos ¥

jka(m—264)
I I S T
ka \ikpa (Z,,+Z,) 1—¢2ma

cos[ka(m—2¢)], ¢>6,,
X cos(2kath)e™, <0y,

where .% has been normalized with respect to the incident
wave-field amplitude and a phase shift corresponding to
the diameter of the cylinder. The term in curly braces in
Pp™™ has been rearranged in the above to illustrate better
the behavior at the resonances occurring when %a is almost
equal to an integer. Note that the membrane wave expres-
sion (44) and its contribution to (45) are both discontin-
uous at ¥=46,. This nonuniformity arises from the simple
ray summation used. One could modify these expressions
to account for the uniform transition that occurs as
passes 6, associated with the smooth “turn-on” of a mem-
brane wave.

The far-field scattering amplitude predicted by the
above asymptotic formulas is compared in Fig. 4 with the
exact calculation for the thin shell equations of Appendix

(45)
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FIG. 4. Comparison of exact and ray-based form functions for a circular cylindrical shell with broadside plane wave incidence. The different observation
directions are (a) 0°, (b) 30%, (c) 60, and (d) 90°. Note that the agreement improves with increasing k. As the observation angle increases, the ray
theory averestimates because of the simple approximation used for the specular wave field.

A. The parameters used in these and later calculations are
for a steel shell in water (see Sec. I A). We note that the
asymptotic theory accurately predicts the locations of the
resonances for the midfrequency regime. For small values
of ka, the inaccurate prediction of the asymptotic theory
is not unexpected since it is based upon a high-frequency
ansatz, although the qualitative agreement is still good.
Also, as the scattering angle increases from 0° (the back-
scatter direction), the discrepancy in the mean level pre-
diction increases, which may be ascribed to the simple
form chosen for the specularly reflected field. It is evident
from Fig. 4 that some of the resonances disappear as the
scattering angle increases from 0°. In the second term of
Eq. (45), the numerator may also be equal to zero for
some of the resonances. After applying ’'Hdpital’s rule, the
behavior of this term can be described by sin(2n1)), where
n is an integer value of ka. Therefore, the second term is
zero for 2ny/n. For example, when the scattering angle is
30°, every sixth resonance disappears in the far-field scat-
tering amplitude in comparison to that obtained for back-
scatter.

Il. THREE-DIMENSIONAL THEORY

There are two major areas of complication in going
from two to three dimensions. First, the geometrical details
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are that much harder, and, of course, the shell dynamics
are more sophisticated. Therefore, some geometrical con-
cepts need to be introduced before considering the shell
equations and the coupling mechanism.

A. Local geometry at the coupling point

We begin by describing the surface .S near the point x,
at which the incident pressure phase matches the mem-
brane wave, whether longitudinal or transverse. Let n be
the surface direction vector of the membrane ray produced
“at” x,. We will consider the most general case of a
smooth but arbitrarily curved and inhomogeneous shell in
the neighborhood of x3. The vector n subsequently follows
a ray path n=n(s), where s is the ray arclength. The sur-
face ray can be calculated by integration of the ray equa-
tion, as discussed by Norris.!* Let r be the coordinate for
curves orthogonal to the ray, in the direction n' =a;An.
The directions of principal curvature at x, are denoted by
a; and aj;=a; A\ a;, with principal radii of curvature R; and
Ry and principal coordinates ' and 8". We also consider
general curvilinear coordinates @' and 6 on the shell, with
corresponding direction vectors a,=x,, «=1,2, and nor-
mal a;=a; Aa,/|a; Aa,| directed out of the shell. Greek
sub- or superscripts assume the values 1 or 2, and the
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suffix ,a denotes differentiation with respect to 6% The
surface metric and curvature tensors are ¢,5=4,ag, and
d,g=1," 8,5, respectively. The local form of the surface
near x, may be written

x=x0+9“aa—%da59"6ﬂag+ e

1 (61)2 (611)2
_ I i,
_x0+9 aI+0 Ay 2 ( RI —+ RH )83+
L 1/ P 2sr 16
=Xo+sm+m ) (R” +E+E)Ia3+ , (46)

where the first form is general, the second is in terms of the
principal coordinates, and the final is in terms of the ray
coordinates, (8',6%) - (s,r), with

1 n% n%l

—=—at—, (47a)
R" R; Ry

1 n%l n%

—=—4=, (47b)
R, Ry Ry

1 11 “
RT—nlnn(R—H—RI), (47¢c)

where n; and ny; are the components of n in the principal
directions. Thus, R and R, are the normal radii of cur-
vatures of the surface for curves parallel and perpendicular
to n.

B. The coupling point and the coupling curve

We will need to match the incident phase to the sur-
face wave on S. The paraxial approximation to the incident
phase is ¢i“°=k f(ni"C-x+§x-M-x), where n™ is the in-
cident central ray direction at x,. The incident wave-front
curvature is defined by M, which could be complex valued,
but is symmetric with M+-ni"=0. The Snell condition for
the incident ray is

n" =sin 6, n—cos 6, a;. (48)
The incident phase becomes, using (46) and (48),
5 7 2sr)

. 1
¢ =k S+-2‘ cot 00(ﬂ+E+R_T

1
+zcscOpx+M-x{, on S (49)

2
For simplicity, the remaining analysis is based on the as-
sumption that the incident field is a plane wave, so that
M=0.

The incident wave also couples to the membrane wave
at other points in the neighborhood of x,. In order to find
these points and their locus, we note that the normal to §
is locally approximated by a; = a3 + dg@ﬁaa , which can also
be expressed in terms of the principal and ray coordinate
systems. The coupling condition for a plane wave is basi-
cally that n'™-a = —cos 6;. Applying this in the neigh-
borhood and using the condition that x, is a coupling
point, and Eq. (48), we deduce that the nearby points
must satisfy '
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dgn°6F=0, (50)
or, equivalently,

S r ny Ry

S D0 or Hep i, (51)

R, Rr Ry~ Ry

in ray coordinates and principal coordinates, respectively.
This equation defines the local tangent to the coupling
curve. A global differential equation for the coupling curve
could be easily constructed by analytically continuing
(50); however, we will only examine the local tangent to
the curve at x,. If one of the principal curvatures vanishes,
then it is clear that the coupling curve is locally parallel to
that principal direction. An important example of this is
when S is a developable surface, such as a cone or cylinder,
which has zero Gaussian curvature at all points,
1/RRy;=0. The coupling curves are always parallel to the
directions of zero curvature on these surfaces. In general,
the curvature of the coupling curve is given by
1/Rc= d"’ﬂmamﬁ, where m is the unit tangent vector to the
curve. A simple calculation gives

X 2 2 2, -1
RC=RIRH(1[5+ZI}) (ﬂ+ﬂ) . (52)
' Ri Ry /\R1 Ry
The curvature 1/R vanishes at points on the shell which
have zero local Gaussian curvature. Hence, it vanishes at
every point on a cone or a cylinder, or any developable
surface.

C. Thin shell equations and background field

Before dealing with the coupling to membrane waves
we first summarize the shell equations used. The full set of
equations for an inhomogeneous, isotropic shell are' 1

C™'V{Cl(1—v)eB+vela™®]} + k=0, a=12,

(53a)
[+ (1—v)d3el +vdief—kow=—p/C, (53b)
with
[ =C'V V{(h/12)C[(1—v)a*aP"V, V. w
+a®BvAw]}, : (54)
where V, denotes the covariant derivative, and

Azaaﬂvmvﬁ is the surface Laplacian. The displacement
vector of a point originally on the middle surface is decom-
posed into tangential and normal components as
u=uv"a,+wa;, and the in-surface strains are
eag=(ag, Vo u' +a, V") /2 +dogw.  The  parameter
C=Eh/(1—+*) is the extensional stiffness, where E is the
Young’s modulus, and v is the Poisson’s ratio of the shell
material. Also, the longitudinal plate wave speed is
012,=C/ph! and for future reference, the transverse wave
speed is ¢, = c,y(1—v)/2. These equations are supple-
mented by the continuity condition (6) on S and the
Helmholtz equation for the pressure in the exterior fluid.

The approximate 2-D equations (5) follow quite easily
from Eqgs. (53) by dropping the term I' involving the bend-
ing stiffness. We will neglect this term also in the 3-D
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analysis. This approximation is justified by a separate anai-
ysis of membrane waves'* and by restricting the frequency
to lie below the coincidence frequency.® We return to this
point later, but note that it results in a simpler system at
this stage, which is the natural generalization of the 2-D
system (5). The ansatz for the background wave field is
again given by (8) with the generalization v—v® This im-
plies that the in-surface displacements decouple, and we
again obtain Eq. (9). Thus, the background field satisfies
the relatively simple impedance boundary condition (10).

D. Coupling to membrane waves

The scaled position X and a slowly varying amplitude
function ®(X) were used in the 2-D analysis. In the
present 3-D analysis we will work directly with x without
recourse to a slow scale. This simplifies the equations, but
it makes the distinctions between the fast and slow depen-
dencies less obvious. We will see that the equation that
generalizes (24) is a forced transport equation for the am-
plitude of the membrane wave.

1. The membrane wave

The ansatz for p, w, and the in-surface displacement is
similar to the previous one [Eqgs. (16)], but for the sake of
simplicity we will only look at the fields on the surface. The
pressure can be continued into the fluid quite easily. We
assume

Ua qa)
w—w O —p(s)eit{ F(s), (55)
p—p(o) —iwZ(s)F(s),

where q is the normalized polarization vector of the mem-
brane wave; q=n for longitudinal waves, and q=n" for
transverse waves. Also, ¢ is the surface phase function,
which defines the surface wave number k,

ko=V d=kn,.
Thus, n is the phase direction of the membrane wave. The
amplitude factor F follows from Ref. 14 as
P i Z, _ i
" kRy Z,,+2Z, T2kR,

where now R, is an effective local radius of curvature at the
launch point, given by

1 1/Ry +v/R,, longitudinal,
R_O_ 2/Ry, transverse.

(56)

[1+2(6p)], (57)

(58)

The dispersion relation for the fluid loaded membrane
waves is

o 1—v Z, 1

P It R R Z 4 Z, R

(59)
where ¢=c, for longitudinal waves, and c¢=c¢, for trans-
verse waves. The asymptotic results [(57)-(59)] follow by
applying ray theory to the general shell equations and
looking for solutions that are predominantly in-surface.
The method is outlined below, and details are given by
Norris and Rebinsky,14 who discuss all except the term
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(1—v)/RRy;. This term is of second order, because by
assumption the wave number far exceeds the curvature in
magnitude. It can be obtained by regrouping higher-order
terms with the leading-order terms in the asymptotic for-
malism of Norris and Rebinsky,'* and is discussed
elsewhere.!® We retain the term here because it turns out to
provide a better approximation to the dispersion relation at
low frequencies for the spherical shell example discussed in
Sec. III.

The solution given by Eq. (55) evolves according to
ray theory in the absence of the applied forcing from p‘©
and w'?, in which case the phase ¢ can be described by the
paraxial approximation. This requires tracing the ray on S
and solving the wave-front curvature along the ray path.
The ray amplitude V(s) evolves according to the transport
equation, which in turn depends upon the wavefront cur-
vature. The ansatz (55) assumes a similar type of solution,
except that the amplitude is now driven by the external
forcing, but only over a finite region. Outside that region
the unforced transport equation takes over.

2. The eikonal equation

Substituting (55) into the in-surface equilibrium equa-
tions (53a) and defining the in-surface amplitude compo-
nents

Ve="vq¢®
give

{22 — (K/2) [(1+v)nngVP+ (1—v) P°]

(60)

+ikFd3VP} +iC™'VHC{[ (1-v)/2]
X (KVE+ KPV®) vk, V7aFY) + ivkoV ghP
+i[ (1—v) /2] (KPV gV + kPa®*V , V)

e O =, (61)

where dg= (1 —v)dg+vdiag. The first term in parentheses
determines the wave number k. Setting it to zero, contract-
ing with g,, and dividing by V give

(K/2) [1—v+ (14 v) (ngg?) ) =2+ ikFd¥Png,.
(62)

Substituting q=n and q=n' and using Egs. (57) and
(58) then imply the dispersion relation (59), except for
the term discussed above, which requires including higher-
order contributions.!® It should be admitted that these q
vectors are not precise eigenvectors of the matrix occurring
in the first parenthetical term in (61), except if =0 or n
coincides with a principal direction. However, the contri-
bution from F is implicitly assumed to be small, so that
these eigenvectors are correct to first order. Standard per-
turbation analysis then implies that the dispersion relation
is correct to second order. We include the additional two
terms {see Eq. (59)] in the dispersion relation because the
fluid-loading, or F, term provides an attenuating mecha-
nism (through radiation loss) where there is otherwise
none, and the second provides a better approximation, as
we will see in the examples. However, we omit these terms
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from the transport and ray equations, as their absence sim-
plifies these considerably. The former omission is analo-
gous to our previously dropping the F term in Eq. (23),
while the latter is justified by the expectation that the fluid
loading and anisotropy does not appreciably alter the ray
paths, or that the dispersion is appreciable. Conditions un-
der which these assumptions are invalid have been dis-
cussed by Norris and Rebinsky.!* The dispersive and an-
isotropic terms could be included, but at the expense of all
the attendant complications associated with these phenom-
ena. Therefore, we emphasize that the ray theory consid-
ered here is isotropic and nondispersive.

3. The transport equation

Contraction of the remaining terms in Eq. (61) with
V, followed by some simplification gives the forced trans-
port equation

Ve{(C/2) [(1—)KEV2 + (14v) K2V, ]}
=iCe™VdEV . (63)

Following the arguments given in the 2-D analysis, this
equation can be simplified by first assuming that the outer
field satisfies V,w'® ~ik,w®. The right member of (63)
then simplifies considerably using Eqs. (58) and (60).
Further reduction results from approximating k as k = /¢
in the right member, where c=c,0rc¢, while the left mem-
ber simplifies by again using Eq. (60). Also, noting that
C= phc,z, and C(1 —v)/2=phcf, Eq. (63) reduces to

wd V

d 212 22A 4 — _ (0),— i

cds(pth)+phc VZA¢ (DphCROw e "%
(64)

Before proceeding any further we need to define and eval-
uate the term Ag.

Referring to Norris,'® the ray equation for membrane
waves or the evolution equation for the vector n=n(s),
where n®=d6°%/ds, is

dn® ¢

T Byl BF

s +Fﬁ,,n n'+n °n c 0. (65)
This reduces to the equation for geodesics on S if ¢ is
constant. The paraxial approximation to the phase along a
ray on a curved surface is

1 1dd |

Z il S |
o VeV =g g s

Ci
A 3 (nang +ni ng)

c
—n* = . (66)

Here A(s) is the ray tube area parameter along the ray, and
its evolution equation is'

d1dA 1 1
( +=n'n' ﬂvavﬁc)A=o. (67)

c—— —
dsc ds + RIRII 4

We note that the two terms in the parentheses induce non-

linear ray spreading, in the sense that rays diverge linearly

with distance in uniform, Euclidean space (see Ref. 15 for
a complete discussion ). Taking the trace of Eq. (66) gives
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Ap=(w/A)d(A/c)/ds, which allows us to rewrite Eq.
(64), after some simplification, as a linear differential
equation for the amplitude,

d 1 @
— (V\phea) = —= \[phc4 2o (68)
ds 2 R,

This is the desired coupling equation; but it cannot be
solved in ignorance of A(s), for which we need to prescribe
initial conditions for A(0) and its derivative 4’ (0).

4. The phase matching

Equation (68) provides us with an equation for the
evaluation of the ray amplitude V(s). Before integrating it
we must address two related issues: (i) the phase ¢, and
(ii) the initial conditions for 4(s). The general form of ¢
follows from Egs. (56) and (66) and simplifies in regions
of constant ¢ to

P dA 6
66 =K(s+ 51575 ) (69)

Thus, the paraxial phase is a function of s alone. Referring
to Eq. (49) we see that ¢"‘°, and, hence, the phase of the
right member in Eq. (68), can depend upon both s and the
transverse coordinate r. However, by hypothesis V is a
function of s only, and therefore its ODE should not de-
pend upon r.

This difficulty of matching the incident phase locally
to the phase of a Gaussian beam, or curved wave front,
does not arise in all situations. For instance, when a plane
wave strikes a spherical shell the principal directions for
the incident phase function coincide with the ray and
transverse directions. In general, we must deal with the
possibility of terms involving sr in Eq. (49), which would
arise, for instance, on an ellipsoidal surface. The occur-
rence of these phase terms means that the incident phase,
although not locally in the form of a curved wave front on
the surface, is eventually “beaten” into such a form. We
circumvent this issue by replacing the phase of the right
member of Eq. (68) with one that depends only upon s.
Specifically, we take

w(me—"‘ﬁzw(m(xo)exp(ik cot 6o \f) (70)

At the same time, the initial conditions for 4 are taken as

A0)=1, i(f)(0)=°°t % Ry (71)
ds\c ¢ RiRy

As justification for Eqs. (70) and (71) we offer the follow-
ing arguments. Suppose we try to simply replace the phase
of the incident wave with one of the form

L o s r
3 cot O(RA+RB)
for some R, and Rp. Then, in order that this new field
produce the correct “beating’ along the ray axis, r=0, we
must take R A=R” , from Eq. (49). We next obtain a con-

dition for R g by requiring that the determinant of the sec-
ond derivatives of the new phase be the same as the orig-

e k| s+ , (72)
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inal, i.e., R,Rp=R;Ry. This implies R s=RiRy/R ,
which is equivalent to the initial conditions (71). We note
that the initial condition for 4(0) is still arbitrary and is
chosen as A(0) =1 for simplicity. The initial condition for
dA/ds then follows from (69) and the value of Rz. An
alternative and more rigorous justification for Eqs. (70)
and (71) is given in Appendix B, which compares the final
form of ¥(s) that results from these equations with the
amplitude determined using the shell Green’s function.

5. The coupling equation

Having found the initial conditions for the ray tube
area, we can now obtain the coupling equation. Substitut-
ing (70) into (68) and then integrating subject to the ini-
tial condition that ¥ (— « ) =0 give

Vis)=

— w9 (xg) \/phc _ cot By 5”2
f p| ik - |ds’.
2 \phcA(s) Ry 2

(73)

This is the coupling equation. The ray tube area A(s) is
determined separately by integrating Eq. (67) subject to
the initial conditions (71).

The coupled wave amplitude (73) may be written in
terms of the incident pressure amplitude P, instead of the
displacement amplitude w'®(x,). The relationship be-
tween these quantities is analogous to that for the 2-D
theory, from Eqgs. (15) and (25), and is easily shown to be

w® (x0) ={[14+ 2 (wg) 1 /iwZ,,} P,. (74)

We have kept the ray tube area and other parameters
within the integral in Eq. (73) to include the possibility
that these all vary along the ray. However, such variation
can be neglected in the limit of very high frequency, in
which case we can ignore the dependence of the preexpo-
nential term on s. The coupled wave amplitude follows by
letting s— 0. Using (74) we find

—PO (2mkR) tan 60)'% ( pheA(0)\'?
(i)

iwkR, Z.+Z, phcA(s)
(75)

This is the 3-D version of the 2-D result (30), which can
be seen to follow from (75).

One could improve on this high-frequency limit by
taking into account the initial spreading of the rays. For
example, consider the approximation A(s)=A4(0)
+5A4’(0). This linear rate of spreading is exact on surfaces
of zero Gaussian curvature, although the initial spreading
rate, A’ (0), which is given by (71), is identically zero on
such surfaces. The curvature 1/R 4 is not zero on spherical
surfaces, but in this particular case the equation for 4(s) is
harmonic and the linear approximation to 4(s) is just that,
an approximation. Suppose for simplicity that the shell
properties are uniform, and we assume further that R, is
constant. Then, using the linear approximation for A(s),
the general integral (73) reduces to
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—w®(x,)

V)= 2R Ta5)

z cot 00 cot 60
f exp )dz (76)

This could be further simplified using parabolic cylinder
functions, but we will not pursue this further here. The
lower limit in the integral is in quotation marks to reflect
the fact that it does not include the fictitious focus of the
linearized A4 at s=— R tan 6,, although we can set the
limit as — « with no loss in accuracy. The coupling inte-
gral in Eq. (76) reflects the fact that the surface distur-
bance has a nonzero wave-front curvature that changes in
the “beating” region. However, in the limit of very high
frequency this region shrinks and any spreading on the
surface is insignificant, in which case (75) is once again
recovered.

E. Coupling from the shell to the fluid

The analysis is similar to that for the 2-D case. We
consider the launching of membrane wave from a point x;
on the surface. The local form of the variables { p,w,v”*} on
the surface follow from Eq. (55), which compares with the
2-D version (31). Applying Green’s theorem we obtain the
following representation for the radiation:

p(x')=iw f Z(s)F(s) V(S)ei¢(s,r)
S
G
X (ﬁ—zkf cos BSG)dS, (77)

where the 3-D free-space Green’s function is
G(x,x’)=—exp(ikf|x—x'|)/41r|x—x’|. Note that the
integral in (77) is over the surface, although the ray ap-
proximation to the membrane wave is parameterized by
the ray coordinates s and ». Next assume that the field
point x’ lies in the direction such that x’ —x, is coplanar
with the ray direction n and the surface normal a, at x; and
makes the angle 8, with the surface normal. Thus, the field
point is exactly in the “launching direction.” Near the
launch point we have, from (46),

[x—x'| =R’ —ssin 6+ (1/2R’) (P +5* cos’ 6;)

P 2sr
)+--- (78)

1 a s

+5 cos O(H-}-H—FR—T
We assume that the phase of the membrane wave has the
paraxial approximation

d=k[s+3cot 6,(P/Rp)], (79)

where R, defines the local curvature of the membrane
wave front on S. Combining Egs. (77)-(79) and approx-
imating the preexponential functions by their values at the
launch point yield
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p(x’') =wk 2 cos 8y ZFVG(x,,x')

Xf s rexpli £ COS ol(ﬂ-k R )
1 1 secé, 2 2sr 20
+(R_1—+R—D+ R ) +R_T . (80)

The integral can be performed in general, but we only
consider the case for which the field point is in the far field
(R’ - ), so that the result simplifies to

, c 2,7, 1
Pr= s Voo g

1 ~172
+—) G(xy,x’), (81)

R Rp

where F has been eliminated using (57).

F. Summary of the coupling and launching

A plane wave excites a longitudinal or shear mem-
brane wave of the form given in Eq. (55). The phase ¢(s)
is determined from Eqs. (67), (69), and (71), where s=0
corresponds to the coupling point at which the Snell con-
dition of Eq. (48) is satisfied. The ray path on the shell
surface is found from the modified geodesic equation (65)
(rays are geodesics iff ¢ is constant). Finally, the ray am-
plitude, ¥ (s), is determined by quadrature from Eq. (73).
The explicit, high frequency limit of this integral for large
5, 1.e., at points far from the coupling point, is given by Eq.
(75), where P, is the incident pressure at the coupling
point. The general formula (73) describes the growth of
V(s) from nothing to its ultimate value, (75).

The launching or decoupling mechanism is summa-
rized in Eq. (81). Here, G is the 3-D Green’s function,
V(xp) is the amplitude of the launching membrane wave at
the launch site xy, and R is its surface wave-front curva-
ture. Both the coupling and the decoupling depend upon
the impedances Z,, and Z of Eq. (7). They also depend
upon the local radius of curvature in the ray direction, R“
of Eq. (47a), and on the “effective’ radius of curvature for
the membrane wave, R, defined in Eq. (58).

These elements can be combined to determine the re-
sponse in the fluid caused by a membrane wave that travels
over a finite length on the surface, created at one point and
launched at another. The wave-front curvature R, at the
latter point then depends in a deterministic way upon the
initial conditions at the coupling point. Assuming for sim-
plicity that the speed is locally constant at the point of
detachment, it follows from Eq. (79) that

1/R p=tan 8y[ A’ (s)/A(s) ], (82)

where A(s) and 4’(s) come from Eq. (67) subject to the
initial conditions (71) at the coupling point. We can then
find an expression for the radiated pressure in terms of the
parameters at the coupling point, from Eqs. (75) and (81).
Let x; and x, designate the coupling and launch points,
respectively, and consider the incident pressure to originate
from a point source at x’, with the observation point at x,
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both points in the fluid and in the far field. Then we have
—in/4

e
(x) =42
p(x 11\/77;;—

A(s)cos 8, A’'(s)sin 90) -2

X E\Ey Ry ( +
1Ea VR ,\ RiRy Ry

2

XG(x',xl)G(xz,x)exp(ifskds), (83)
0

where G is the 3-D free-space Green’s function and

E= Z phc/(Z,,+Z,)R,. (84)

It is not obvious at all that the expression (83) is reciprocal
under the interchange of source and receiver, as was
clearly the case for the analogous 2-D expression, Eq.
(37). However, under the interchange the initial condi-
tions for A are altered, and now depend upon surface pa-
rameters at X,, rather than x;. The ODE for A is the same
as before, but the integration direction is reversed. Armed
with these facts, one can then use certain properties of the
solutions of the ODE" to relate the reciprocal versions of
expression (83) and show that it does indeed satisfy reci-
procity. The analysis is lengthy, but similar to that of
Appendix B.

lii. APPLICATIONS

In this section we test the general theory against exact
computations for the canonical shells: the infinite cylinder
and the sphere. The excitation for both is by plane wave
incidence, and therefore the cylinder really behaves in a
2-D manner (the z dependence is algebraic). However, we
include it here because the coupling phenomenon is explic-
itly three dimensional, and involves all of the parameters
discussed in the previous section. In particular, both lon-
gitudinal and shear waves are possible. Both the cylinder
and sphere present degeneracies in the sense that infinite
sets of rays need to be taken into account. In the former
case the infinite set of helical rays could be treated individ-
ually and summed, but we prefer to treat them in a pseudo-
2-D manner for simplicity. In this way the analysis is sim-
ilar to, and borrows much from, that of Sec. I E. The
scattered field for the sphere has degeneracies in the back-
and forward-scattering directions, associated with a ring of
coupling points. We consider this degeneracy separately
from the more generic case where the ray theory involves
only two discrete points—a coupling and a launching
point. Among the various canonical tests considered here,
the bistatic scattering for the spherical shell is arguably the
most general test of the full 3-D ray theory developed in
the previous section. It involves all the basic ingredients of
the theory, including a nontrivial ray-tube area equation
[see Eq. (67)], whereas the cylinder is essentially 2-D with
A=const.

A. The cylindrical shell: 3-D
Consider a plane wave incident at angle & from broad-

side on an infinitely long circular cylinder (see Fig. 5).
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Coupling Line

Incident Wave

FIG. 5. Coordinate systems used to describe the response of an incident
plane wave at angle 8 with respect to the axis of an infinite cylinder, the
a,=e, direction. The ray direction n and helical angle 8;, are shown. The
coupling line given by ), is also illustrated.

Introduce a right-handed orthonormal triad {ey,e;,e3}
such that the incident direction is n™®=-—cos e,
+sin 8 e, and e, is the axial or z direction (see Fig. 5). The
direction of the surface ray, which may be either longitu-
dinal or transverse, follows from Eq. (48). The coupling
line is an infinite straight line parallel to the cylinder axis,
defined by the angle 1, for which

cos Y= 1(cos Gy)/(cos ), (85)

where @, is the critical angle, and hence coupling occurs
only if 0<0<6,. Consequently, 0<f,<8,, with the upper
limit being achieved at broadside incidence (8=0),
whereas 1J,=0 if the incident wave is critical with respect
to the axis (8=6@,). The ray direction and ray normal on §
then follow from (48) as m=cos Oy e,+sin Oye, and

n' =—sin 8 e,+cos Oy e,, where 8y, given by either of

sin 4= (sin 8)/(sin §;) or
(86)
cos = (cos 8 sin 93)/(sin G;),

defines the helical angle of the ray path with respect to the
circumferential direction, and e,= —sin ¢}, e, +cos ) e;.
We note that the length of one cycle of the helical ray path
is 2ma sec By.

The principal directions at the coupling point are
e;=ey and ey=e,, with principal curvatures 1/Rj=1/a
and 1/R;;=0. The ray-based curvatures of Eqs. (47) are
given by

a a a

sin 28y
—_—= 2 —=si 2 —_—=— .
R, =cos” Oy, R, sin” Gy, R, >

(87)

The effective curvatures for longitudinal and transverse
waves, defined in (58), may be computed from these ex-
pressions. The transverse effective curvature satisfies
1/| Ry| <1/a with equality when n bisects the directions of
principal curvature. This occurs when Oy=7/4, which im-
plies =sin~!(c +/cv2). Figure 6 shows both effective cur-
vatures for steel and water (see Sec. I A for the parame-
ters). The longitudinal and transverse critical angles are
15.82° and 27.21°, respectively, and the maximum for the
transverse curvature occurs at 9=18.87°

The far-field scattering amplitude using the ray de-
scription can be determined for oblique incidence in much
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FIG. 6. Effective curvatures for a steel circular cylindrical shell sub-
merged in water.

the same manner as was done for normal incidence in Sec.
I. The z dependence, exp(ik,z), may be removed from the
calculation resulting in one that is essentially 2-D with &,
in (40) being replaced by k, of Eq. (92) below (see Ap-
pendix A for definitions of related parameters). The same
procedure is then followed, and the specularly reflected
wave field becomes

PO =P (¥)[1+27/(a cos )]~/

Xexplik (r —acos )], (88)

where 7', Z,, and # are given by Eqgs. (42), (7), and
(15), respectively, and W=cos™'(cos O cos /) with 2y
=1 —¢ is the scattered angle (see Fig. 5).

Next, the leaky membrane waves are described along
the surface .S by Eqgs. (55). The pressure in the fluid due to
the leakage of the membrane waves traveling on the shell’s
surface can be determined in much the same manner as
that done for the 2-D case. After removing the z compo-
nent, the relevant wave number entering the Green’s func-
tion is k,, and we use G to indicate this modification. Then
following the same solution procedure outlined for Egs.
(32)—(36), a similar result is obtained for the radiated
pressure due to the leaky membrane wave,

cot b, 27,7, !Zm'kfa
kfRO Zm+Z‘ V [Ze ] 90’
(89)
where Eq. (85) has been used to remove the dependence
upon ¥, in favor of 6,. Recall that R, is the radius of
curvature for longitudinal or transverse waves (58). Also,
V(s) [the analog of Fin Eq. (36)] is the launch coefficient
of a single ray for the incident plane wave, and follows

from (75) and (87) as

sec Oy P, IZm‘k a
—iwk Ry Z,,+Z; Vcos 6y
The coupling from the shell to the fluid can be handled in

a manner similar to the 2-D analysis [Eqgs. (37)-(39)] with
the final result, analogous to Eq. (39), that

Proem(X") =V(5)G(0X")iww

V(s)=

(90)
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ﬁmem(x)

Zmzs PO

i _(a )’ G ik gL
~k/a Sin 00 (RO) (Zm+Zs)2 cos GH (XZ’x)e .

(91)

The azimuthal wave number k4 and the radial wave num-
ber are determined from

k=K -k, ki=K,—k, (92)

with k2 given by the dispersion relation Eq. (59) and
k,=kysin 0. The ray length L in this calculation is the
length of the projection of the helical ray path onto a circle
of section, or equivalently, onto the principal curvature
direction ny on the cylinder. The radiated response gener-
ated by the membrane waves can be evaluated in the same
manner as done previously for the 2-D problem. Because
the response is essentially 2-D, the arclength L traversed
by each wave is once again given by the 2-D results of Sec.
I but with 6, replaced by 1y, [see Eq. (44)]. Another way of
looking at this is in terms of the phase traveled along a ray
from launch to exit, kL sec 8, which contains a z com-
ponent given as k,L tan 8. Subtracting the z component
of the phase is similar to calculating the distance traveled
along the circumferential, ny, direction on the cylinder and
then projecting it into the ray direction. One must take
care to retain the complex part of the critical angles in this
procedure so that the attenuation is maintained in the
phase terms of the membrane scattered wave field.

Having found the radiated response of a single ray of a
single species (91), we can now write the total contribution
of the leaky membrane waves in a form similar to Eq. (44).
Doing so gives, for the membrane wave field,

. ¥ v 2,77
Prnem=—Fo LT kaa (Z,,,+Z§')2

Klzz sec 0(11{ 2k —acos ¥p)

X ] ;
1—etkia  JBmiky

X (e2KgAlTHWG— ) +6—U1 4 2kgalm—d—43))
(93)

where

Kk =cos’? 05+vsin 05, «r=sin 260}, (94)

and the wave numbers k, and kj,, the critical angle ¢, and
the helical angle 6% are determined for each wave type
using Egs. (59), (92), (85), and (86), respectively. The
far-field scattering amplitude is determined by evaluating
Eq. (40) using Eqgs. (88) and (93) along with Eq. (42) to
obtain
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F = \Jcos yB (W)e 2kacsv_ ¥ H(65—6)

a=LT
dr Z,Z°  Klsec 6%

Xkt (Zyt Z2 Jinkya

, ekaalm—24g)
X e—r2k,a cos ¢
1— etlfrkzxa

cos[kga(m—2¢)], ¥>4y,
cos(2kGap)e™ s, Y<yf,

where F has once again been normalized with respect to
the incident wave-field amplitude and a phase shift corre-
sponding to the diameter of the cylinder, and H denotes
the Heaviside function. The membrane resonances are
again evident, occurring when kg is close to a whole num-
ber in value. Also, the expressions (93) and (95) are
clearly discontinuous at =1, and the remarks for the
2-D example of Sec. 1 E obviously apply here also.

Let us discuss the numerical results. As a check on the
accuracy of the asymptotic dispersion relation of Eq. (59),
we compared it to that given by the exact solution for a
circular cylindrical shell (Appendix A). For a given fre-
quency and angle of incidence 6, the surface wave number
k can be calculated from (ka)*=m*+ (kza)z, where m is
the complex zero of the denominator in Eq. (A5a). Using
a two-term Debye expansion for the cylinder functions of
complex order, it was found that the approximation given
by Eq. (59) is in very good agreement with the exact sur-
face wave number. For example, at the relatively low value
of k ;a=10 the largest relative errors in the imaginary parts
of the longitudinal and shear wave numbers were 3% and
11%, respectively, for all values of 8 below critical. These
numbers decreased to 13% and 3% at k ra=20.

The in-surface displacement on the shell depends only
upon the coupling mechanism and is independent of the
launching. Therefore, as a first check on the accuracy of
the coupling, from Eq. (75), we show in Fig. 7 the com-
parison with the exact theory from Appendix A [Egs.
(AS5)]. We note that the ray computations in Fig. 7 involve
both longitudinal and shear rays simultaneously. The ray
theory is obviously invalid as ka0, but is quite reason-
able for k ;@> 10. In general, in all the ray results the agree-
ment improves as ka increases. The combined coupling
and launching mechanisms are illustrated in the compari-
sons of the form function in Figs. 8 and 9. We note that the
simpler structure in Fig. 8(c) is due to the absence of
longitudinal waves. The other figures exhibit the combined
influence of both membrane wave types. The nonuniform
nature of the ray calculations is evident in Fig. 9(a) at the
longitudinal critical angle 15.82°. This could be remedied
using transition (erfc) functions, as discussed in Sec. I C.

(95)

B. The spherical shell

We now consider a plane wave of unit amplitude inci-
dent along the polar axis of a spherical shell, producing a
scattered wave field axisymmetric with respect to the polar
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FIG. 7. Comparison of the magnitude of the in-surface displacement at
two different positions on the shell, for 6=10°, and (a) ¢=30°, (b)
$=90".

axis. Two distinct situations arise in calculating that part of
the field generated by the membrane waves, depending
whether the receiver is on the polar axis or off it. In the
former case a ring of infinitely many membrane rays radi-
ate from the surface of the sphere toward the observer.
But, as the observation point is moved off the polar axis,
only two rays contribute to the total wave field and these
are shed from the great circle in the plane spanned by the
incident and scattering directions. The two situations are
obviously different in terms of rays, but could be viewed as
limiting cases of a single uniform theory.! However, for
the sake of simplicity and brevity, we treat the two cases
separately. In either case, we note that 1/Ry of (47¢c) and
hence 1/R, of (58) both vanish identically everywhere on
a sphere, so that there is no coupling to shear waves.

1. Backscatter: receiver on axis

Here we are concerned with determining the backscat-
ter amplitude for the receiver along the polar axis. This
case is essentially 2-D because of the axial symmetry. The
response in the surrounding fluid caused by the membrane
waves can be represented as

: a aG
pmem(XI)=2'n'a2f (Ga—i—p a)sinOdG, (96)
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FIG. 8. Comparison of exact and ray-based form functions for a circular
cylindrical shell with oblique incidence. (a) 6=10°, y=0". (b) 8=10",
Y=10. (c) =20, $=0".

where p is the surface pressure caused by the membrane
wave (55), and G is the 3-D free-space Green’s function.
We note that the surface element is reduced to a single
parameter by dS'=2x sin 8 d6, and that the integral (96)
is over any semicircular arc passing through both poles
(6=0,7) (see Fig. 10). The task of evaluating (96) is now
formally identical to the 2-D integral considered in Eq.
(32). In particular, we assume that the major contribution
arises from the vicinity of the ring 8 =0, on the sphere. The
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FIG. 9. Comparison of exact and ray-based form functions as the oblique
angle of incidence is varied. (a) k/a=10. (b) k,a=30. (c) k,a=50.
Note that the ray response is discontinuous at 8%, the critical angle for
longitudinal waves.

phase of the Green’s function can be approximated accord-
ingly. Omitting the details, which are the same as for Eqgs.
(32)—(34), we find that the backscatter is

Prmem(X') =40k @Z FV(x,)co8 0yG(x;,x")
&
X f exp(ikfcos G -2—a)sin 0do, 97)

where s=a(0—8,), x, denotes the launch point (ring),
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FIG. 10. The spherical shell, coordinate system, source direction, and
observation point locations.

and V is the ray amplitude there. We note that

2
f sin(¢+00)exp(i¢7 k qa cos 60)d¢

2mi
— - _ —1
=sin 90"k cos B exp[ —i(2kacos 6;) "], (98)

and the final exponential term may be neglected as being
asymptotically negligible. Then, using Eq. (57) for the am-
plitude factor F and Eq. (90) for the ray amplitude
(launch coefficient) ¥, with R“ =R, =a and
Ry=a/(14v) in these expressions, Eqgs. (97) and (98)
reduce to

- P Zst 51
Pmem(X) = —B7(14+v)? k—jm G(xy,x)e™L,
(99)

Here, the possible distance traveled along each ray is
L=2a(mw—8,) +2mam, m=0,1,2,... . In addition, a phase
shift of — /2 must be included for each time the surface
membrane wave passes through either of the two polar
focal points on the sphere. These phase shifts are not in-
cluded in (99).

The total response along the polar axis (axis of sym-
metry) can then be written in form similar to that for the
2-D cylinder (44). Doing so here gives

2r 2,2
— N2 $
pmem_PO(l'*") kf (Zm+Zs)2 R'

eik/{R’—acos 6g)

- 7 ka
xeaka(fr ) 2 elm(fr+27r )’

m=0

(100)

where the — /2 phase factors are due to the membrane
wave passing through a focal point once on the first trip
around the sphere and twice for every subsequent trip.
Also, the incident wave-field amplitude has been phase
shifted to the center of the sphere by the amount
ksa cos ;. Note that R’ =R —a cos 6, where R is the dis-
tance along the polar axis. The far-field backscattering am-
plitude may be calculated using a relation similar to Eq.
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(40) but formulated for spherical wave fields as

F = lim [(2R/a)e~*R(p—p™)],

R-x

(101)

where R is measured from the center of the sphere to the
far field. One then obtains

47  Z,Z
F =R 0¥+ (14—
(0) +(1+v) ka (Z,+2Z.)
el2ka(1r—00)
Xe—nkjacosﬂo

13 eoa » (102)

where the surface wave number Xk is calculated using Eq.
(59).

2. Bistatic response: recelver off axis

As usual, the total scattering is split into a specular
part and a contribution from the longitudinal shell waves.
The specularly reflected wave field for plane wave inci-

dence may be approximated in the far field as??8

psc(O):E)c(a/ZRl)eik[(R'—aoos0), (103)
where P is given by Eq. (15). In this instance the ray-tube
area [A(R’)/A4(0)]"?is approximated by 2R’/a. Note that
R’~R—acos 6, where R is the distance in the great circle
plane. In order to determine the membrane wave effects,
consider the longitudinal ray which begins at s=0, where
s=(0—6y)a. The ray tube area equations [(67) and (71)]
are easily solved in this case to give

A(s)=(sin 8)/(sin G;). (104)

The wave-front curvature becomes, from Eqs. (69) and
(79),

1/R p(s5) = (1/a)tan 6, cot 6. (105)

Hence, both the ray tube area and Rp vanish at the poles
(0=0,7) as expected. The scattered field due to a single
ray, which couples onto the sphere at 8=68, and is
launched at 8,, now follows from Eqs. (83) and (84) as

A7 2 Z,2Z,
k \ka (Z,+2Z)?

sin 90 ika(
}— 8,—80)
X sin(6,+0) e G(xy,X).

Note that this becomes singular for 8,=r—6, correspond-
ing to the south polar direction for the observer (incidence
is from the north polar direction).

We can now write out the total bistatic response in
terms of the angle of incidence of the specular ray, 6. The
launch angle 6, may be expressed in terms of @ and the
coupling angle 6;. Then combining the clockwise and
counterclockwise membrane rays, and using Eq. (106), the
total response of the membrane waves becomes

pmem(x) zPo( 1 +V)2

(106)
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FIG. 11. Comparison of exact and ray-based form functions for back-
scatter from a spherical shell. In this instance, the leaky membrane waves
form a ring source on the sphere.

_ [2m z,2

=—Py(1+4v)? -
Pmem=—PFo \ka sin 26 (Z,,+ Z,)?

eik/R’ e—ﬂkjaoos(io
xkfR' 1+el§1rka
 (e2kalmH(B—0)-+0—6o p—inH(6y—0) __ ji2kalm~0—60)y.
(107)

Again, H denotes the Heaviside function, and the phase
shifts —7/2 for each passage through a pole (north or
south) have been included. Finally, the form function for
bistatic scattering is calculated using Eqgs. (101), (107),
and (103), giving

F =R (0)e~ 2ot
(1+v)2[ 8i Z,Z, e heonsth
" ka Vkasin20(Z,+Z)? 147
X (eaka[frll(ao—s)+9—00]e—i1rH(90—0) _ie12ka(1r—0—00))’
(108)

where the surface wave number k again follows from Eq.
(59).

3. Numerical results

The backscatter comparison with the exact theory
from Appendix C is shown in Fig. 11, and an example of
bistatic scattering is given in Fig. 12. The asymptotic the-
ory appears to predict the resonance amplitudes well. The
discrepancies in the background response between reso-
nances is again attributable to the simplicity of model used
for the background field. The deviations of the positions of
the resonances in Fig. 11 are more interesting and illustrate
how the asymptotic dispersion relation of Eq. (59) fails as
ka-0. If the term (1—v)/RRy; is omitted from the dis-
persion relation, we find that the disagreement between the
exact and approximate resonance dips is larger than shown
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FIG. 12. The exact and ray-based form functions for bistatic response
from a spherical shell. Here only two leaky membrane waves contribute
and they lie on a great circle in the plane spanned by the incident and
scattered directions.

in Fig. 11. However, even though the dispersion may be
incorrect, the coupling is still very accurate.

IV. CONCLUSION

Our main results are the diffraction, or coupling, co-
efficients for membrane waves. The general procedure for
applying these coefficients to a practical 3-D scattering
configuration is summarized in Sec. I1 F. The coupling co-
efficients, combined with ray equations for the membrane
waves on the shell, provide the necessary ingredients for
developing a ray-theoretic description of acoustic scatter-
ing from fluid-loaded shells. Of course, the full strength of
ray theory is its applicability to arbitrarily curved, smooth
shells. The comparison tests in Sec. III for the separable
geometries, the cylinder and sphere, indicate that the ray
methods developed here would be suitable for other
smooth shell geometries. The present results also show
how the midfrequency response for smooth shells can be
separated into a “background” response, plus the mem-
brane wave field. The former depends on the shell inertia
and the latter on the shell membrane stiffnesses, but not the
bending stiffness. In fact, the approximate results reported
here are completely independent of the flexural properties
of the shell.

0—g-1(1-n/2)m* [(1+v)/21mE
[(14v)/2]mé& QZ_[(I_V)/2]§2_m2
vE —m

QZ_ 1 _BZ(§2+m2)2
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APPENDIX A: THE CYLINDRICAL SHELL

Consider an obliquely incident plane wave of unit am-
plitude striking a circular cylinder at angle 6 from
broadside? (see Fig. 5). The incident and scattered acous-
tic pressures are

(P p%) = 20 (A, (k1) P H (K r))c0s m,
" (A1)

where J,, and H,, are the mth-order Bessel function and
Hankel function of the first kind, respectively, and 4,=1,
A,,=2i", m>1. The axial and radial wave numbers are
k,=k;sin @ and k,=kscos @ [see Eq. (92)]. The con-
stants P,, are determined from the boundary conditions for
a thin circular cylindrical shell*:

1—v 14v v
Upt S T Uget 5 "Vt Wot ku=0, (A2a)
1+v 1—v 1 1 2
g Yat 5 Vatalset w4+ kp=0, (A2b)

v 1 1 1
Ut alet o w+ﬁ2(a2wm+2w_a¢¢+? w.MM)

—lw= —% : (A2c)
plus the continuity equation [Eq. (6)] evaluated on r=a.
In the above, k ¢ s the fluid wave number, kp=co/cp is the
plate wave number, v is Poisson’s ratio, C= phcg, the ra-
dius is @, and B*=H*/124%

The above partial differential equations can be reduced
to algebraic ones by assuming that the displacements have
the form

u w [Uncosmg,
vl =e*z Y {V,sinmd, (A3)
w m=0 | W,, cos me.

After substitution of Eqs. (A1) and (A3) into Eqs. (A2),
one obtains the matrix system

vE U, 0
—m Va1=1{0
iw,, iG,,

, (A4)

where 2=k, E=k.a, and G =a*[A4,J ,(ka)+P,H,(ka)]/C. The dispersion relation for the cylindrical shell is given
by the vanishing of the determinant in Eq. (A4). To determine the coefficient P,,, first solve for U, and V,, in terms of
W,.. Then, use the w equation of Eq. (A2c) and the continuity equation [Eq. (6)] to solve for P,,. Doing so yields

k@B, (6, (k@) =2 (ka)
™ kaE.(&)H,,(ka)—nQ’H,,(ka) """
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2 £ [(1—72]m+v{(Q2—[(1—v)/2182—m?}

Un=1 122 D (©)

kaE,(£)H,,(k.a) —n0*H,,(ka) m

2im 90 v[(1—v)2)E24+ QP —E—[(1—v)/2]m?

Vo= B DD

where the prime indicates differentiation with respect to
the argument. Here, 7= p qa/ph is the fluid loading param-
eter, and

D,(&)=[Q*— (m*+EHH{Q* - [(1-v)/2]

X (m*+£%)}, (Aé6a)

En(£)=0"—1-F(m*+£) {2 (m? +¢")
—[(1=v)/72)(m*+2m?E?

+v2E4 Y/ D (). (A6b)

APPENDIX B: PHASE-MATCHING CONDITIONS

According to the present theory membrane waves are
excited on the shell by the in-phase beating of the incident
field (actually, the background field) with the growing
membrane waves. The same picture emerges from a
Green’s theorem representation of the membrane (in-
surface displacements) waves, using the Green’s function
for the fluid-loaded shell. This can be defined for our pur-
poses as the Green’s function for the in-surface shell equa-
tions, Eq. (53a), without the coupling to w, the latter effect
being viewed as a forcing term for the generation of the
membrane waves. The difficulty in this approach is that the
Green’s function is itself difficult to evaluate; however, we
may approximate it using ray theory, as follows. First, the
Green’s function is composed of both types of membrane
waves, each of which is defined by an amplitude and a
phase. The amplitude functions must decay with distance
from the source (along a ray, of course) like 1/ \/AG(s),
where the initial conditions for the ray tube area 4 are

As5(0)=0, A440)=1 (B1)
(in this appendix we take c=const for simplicity). The
paraxial approximation to the phase function is of the same
form as Eq. (69) with the replacement 4 —A;.

Now consider the membrane wave field at the point x
on S caused by coupling in the vicinity of the point x, fo
one particular wave type, longitudinal or shear. Let sy be
the ray length between the two points, and redefine the
origin of s at x,), rather than at x. Define B(s) =A5(s5—5).
The field at x can then be expressed as an integral of the
forcing function, with phase ¢ given by Eq. (49) (with
M =0), multiplied by the membrane Green’s function. The
phase terms, and the dependence upon the ray distance s,
are contained in the integral
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kaE,(E)H, (ka) —n0*H,(ka)

(A5b)
A, (ASc)
M
dsdr ’k 0 s
-[ VBG) P2 O(Ru R TRy
B'(s)
—rztaneom) , (B2)

where the final ferm in the phase is due to the Green’s
function, and uses the identity B’ = —Ag;. The integral
may then be evaluated by approximating B and its deriv-
ative by their values at s=0, yielding a quantity propor-
tional to

B(O)cot 8, B’(0)\~'/
( - ) . (B3)
RiRy Ry
This compares with the quantity
A(So))_l/z
(B4)
( Ry

obtained from the analysis leading up to and including Eq.
(75). The distinction between these alternative and appar-
ently different results is that (B4) depends upon A4(sy),
which has the initial conditions (71), whereas
B(0)=Ag;(s) in (B3) satisfies the initial conditions of
(B1). The connecting link is the fact that both 4 and B
solve the same evolution equation, Eq. (67). Also, the re-
maining parameters in (B3) and (B4) are all defined at the
coupling point s=0.

The equivalence follows using the fact that the
Wronskian formed from any two solutions of the ray tube
evolution equation is a ray constant.’> Thus,
A(s)B'(s)—A'(s) B(s) is independent of s. Equating the
Wronskian at s=0 and s=s; and using the end conditions
(71) and (B1) give the desired result that (B3) and (B4)
are indeed the same. More generally, if one leaves the ini-
tial condition 4’(0) as a free parameter, and assumes the
general form (72), with R, and R p also free, then the same
arguments, and the independence of B(0) and B’(0), im-
ply that R,, Rz, and A’(0) must be assigned the values
stated, i.e., RA=R" N RB=RIRII/R|| ’ and A’(O)
=cot 6y Ry /RRy; . Hence, the phase matching conditions
as given are unique and unambiguous.

APPENDIX C: THE SPHERICAL SHELL

Consider an incident plane wave of unit amplitude
propagating in the direction =0 in spherical polar coor-
dinates. The incident and the scattered pressures can be
expanded as

pe - Apjm(ksr),
- 1
<= 2, P O oy i), (ch)
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where j,, and h,,=h{}) are the mth-order spherical Bessel
and Hankel functions, P,, are the Legendre polynomials,
A,=2m+1)i", and
kaE,j,(ka)—n02j, (ka)
D,=— S "":" it 2’"‘ 2 A,. (C2)
The fluid-loading parameter 7 is defined in Appendix A
and

2o , (Qn+1-v)
Em=92—329m(9m+1—V)—(1+V)"W
=2(1+v),

where the membrane modal
Q =m(m+1)—14+v, m=12,3,....

(C3)
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