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The interaction of an acoustic field with a smooth thin shell in a fluid is described by the 
superposition of a background field plus membrane waves on the shell. The former is defined by 
a local impedance condition, which accounts for the inertia of the shell, but takes no account of 
the in-surface, membrane effects. The shell's flexural stiffness tums out to be of secondary 
importance. The bulk of the paper deals with the coupling mechanism between the acoustic field 
and the supersonic membrane waves, both longitudinal and shear. The coupling is mediated by 
the shell curvature, and vanishes when the curvature vanishes. Ray methods are used to express 
the membrane waves by curved wave fronts with amplitudes subject to a transport equation over 
the curved shell surface. The coupling, and decoupling or launching, then reduces to solving an 
ordinary differential equation for the unknown ray amplitude. In essence, the transport equation 
is forced, or "beaten" by the locally phase-matched background field. Explicit expressions are 
obtained for the coupling and detachment coefficients on arbitrarily curved regions. These are 
combined, using ray theory for the propagation over the shell, to give the scattered field due to 
rays traveling over the shell. The general results are explicitly tested on the cylinder and sphere, 
for which the ensemble of surface rays can be summed into a resonance form, and numerical 
comparisons are made with the exact results for these canonical geometries. 

PACS numbers: 43.20.Rk, 43.20.Fn, 43.30.Gv, 43.40.Rj 

INTRODUCTION 

Our purpose here is to present a theory that quantita- 
tively describes the coupling mechanism whereby mem- 
brane waves are excited on and shed from elastic shells 

under heavy fluid loading. The central idea is that the su- 
personic, leaky membrane waves can be represented by ray 
methods as they travel over the shell, and their excitation 
occurs when the transport equation for the rays is forced 
by the incident field. In fact, as we will see, the forcing is 
through an intermediate, or background field, which ac- 
counts for the nonmembrane shell effects. The idea of a 

background field has been discussed recently in several 
articles, •-• including a paper by one of the present 
anthorsfi In the latter work the additional field due to the 
membrane effects was represented by the global dry mem- 
brane modes of the structure. However, the present ap- 
proach differs in that all membrane effects are explicitly 
local. Modes may be formed by combining rays, and ex- 
amples of this will be presented for the canonical shapes, 
but our present emphasis is unambiguously on local, ray- 
type representations that are valid for arbitrary local sur- 
face geometry. 

The motivation behind this work is the well-accepted 
notion that acoustic scattering from fluid-loaded elastic 
shells at high frequencies is most naturally viewed as a ray 
phenomenon. TM In fact, most of our intuitive understand- 
ing of experimental data on acoustic scattering from com- 
plex structures is based upon ray concepts. 12 The present 
treatment of the membrane waves relies on recent work on 

ray equations for wave propagation over thin shells by 
Pierce, •3 Norris and Rebinsky, 14 and Norris; • see also 

Refs. 16-19. At the same time we approximate the "back- 
ground" field by a local impedance cxmdition, 2'6 which re- 
sults in a simple closed-form approximation for the spec- 
ular field. We note that the ray point of view contrasts with 
the usual mathematical description of scattering in terms 
of a superposition of modes, although such an approach is 
perfectly natural in dealing with the separable targets---the 
cylinder and the sphere. A good review and an exhaustive 
list of references for scattering from the separable shells is 
provided by Gaunaurd and Werby. 2ø The modal represen- 
tation for these canonical shapes can be developed into a 
form that clearly displays the rays bouncing off the shell 
and traveling over its surface? However, such global-to- 
local analytical techniques (Poisson summation, Watson 
transform) are apparently limited to these two particular 
shapes. 

The reader should keep in mind that the present anal- 
ysis incorporates several simultaneous approximations-- 
both physical and mathematical. The physical approxima- 
tions may be grouped under the rubric of ray methods, 
with specific applications to non-Euclidean two- 
dimensional (2-D) spaces, i.e., curved surfaces. The asso- 
ciated mathematical "approximation" is to reduce the par- 
tial differential equations of the coupled fluid-structure 
system to ordinary differential equations (ODEs) along 
rays. The coupling mechanism then reduces to solving an 
inhomogeneous ODE for the ray amplitude on the shell (in 
fact, the ODE can be solved by explicit quadrature). The 
general framework is simplified by the use of "thin shell" 
theories that are physically valid only when the wave- 
lengths of interest are much longer that the thickness h. At 
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the same time, we employ ideas from geometrical optics, 
requiring that the wavelengths be short in comparison with 
a typical radius of curvature, R. Both approximations may 
be justified from asymptotic arguments, but the asymptot- 
its are in a sense conflicting. Unless we take the limit of 
h/R-. O, it would be necessary to scale this ratio with the 
wavelength. One could proceed in this manner, but the 
complications would quickly hide the physical arguments. 
In summary, the methods proposed are primarily physical, 
and would be difficult to justify on purely formal, mathe- 
matical grounds. Some comments on these issues will be 
made later, but we emphasize that our philosophy here is 
to arrive at the simplest ray-theoretic description possible. 
Such issues as penumbral transitions, 2t better shell 
theories, 2'22 interactions with discrete surfave discontinui- 
ties, etc., could be included in the theory. However, these 
subjects are beyond the purview of this paper and will be 
discussed elsewhere. 

The outline of the paper is as follows. We first deal 
with the 2-D ease, as it illustrates the major features in the 
simplest manner. Section I describes the coupling and ra- 
diation mechanisms for membrane (longitudinal in 2-D) 
waves on arbitrarily curved 2-D shells. A formal asymp- 
totic sealing is defined that illustrates the length scales of 
the coupling mechanism. The general theory is illustrated 
by application to the canonical ease of a circular shall, for 
which comparison with an exact solution is possible. The 
fully three-dimensional ease is discussed in Sec. II. The 
general theory treats an arbitrarily curved, smooth thin 
shell, and includes the possibility that the material proper- 
ties (thickness, stiffness, etc.) are also smoothly varying. 
The physical principles are the same for the coupling and 
radiation as in two dimensions, but the added geometrical 
complexity of arbitrarily curved shells in three dimensions 
requires more algebra. Several new convepts are intro- 
duved, including the notion of a coupling cume along 
which membrane wave fronts are excited. Both longitudi- 
nal and shear waves are possible and must be considered 
simultaneously. We treat both wave types in parallel by 
introducing an effective curvature that determines the 
amount of coupling. For instance, the effective curvature 
for shear waves is proportional to the difference in princi- 
pal curvatures of the surfave, and henve vanishes on a 
spherical region. The main results of the 3-D analysis are 
summarized at the end of See. II. Several applications of 
the general theory are given in See. III, where numerical 
results are presented for the scattered fields predicted for 
the separable shapes, and comparisons are made with the 
exact solutions. Finally, we note that time harmonic mo- 
tion is considered throughout, with the term e -i•'t under- 
stood but suppressed. 

I. TWO-DIMENSIONAL COUPLING 

A. The asymptotic scaling and shell equations 

An understanding of the local scattering phenomena is 
required to determine the coupling of an incident signal to 
the membrane waves on an arbitrary shell. We assume that 
the main excitation occurs at points on the structure at 

FIG. 1. The local coordinate system on the shell near the coupling point 

which the incident wave is near the critical angle for the 
supersonic membrane wave. At such angles, the traditional 
geometric optics treatment of acoustic ray theory is inac- 
curate because of rapidly varying nonspecular behavior. 23 
This is corrected by considering an inner or local problem 
in the neighborhood of these "coupling points" where the 
quickly varying signal is accounted for by a multiple scales 
analysis. The latter approach is motivated by a recent ar- 
ticle by Tew and Ockendon 23 on the use of multiple scales 
to describe scattering from an impedance surface near the 
critical angle. 

The supersonic, leaky membrane wave in the shell is 
assumed to have complex-valued surfave wave number 
k=kfsin Os, where kf=a•/cf is the fluid acoustic wave 
number, and the angle 05 is complex, but only slightly so. 
Define the real angle 00 by 

sin0s=sin00+i6, 8>0, (1) 

where 8• 1. The fact that 8 is small means that the surface 
wave is only weakly radiating, or leaky. Now consider a 
plane wave incident at angle (pc with the local normal to 
the shell. The incident wave reflects in a normal or "spec- 
ular" manner when 0•:00 but if 0inøw00 then coupling 
occurs and a membrane wave is excited. We assume, for 
simplicity, a 2-D situation, such that the shell has a locally 
parabolic shape at the point of incidence, given as 
z+xQ2Ro=O, where R0 is the radius of curvature at that 
point (see Fig. 1). Define a small parameter 

e= 1/kfR o, (2) 

such that kfRo•l by assumption. The local analysis is 
valid for incident waves near the critical angle, which oc- 
curs if 0i"e--0s=O(e •/2) or, specifically, 

sin 0i"•=sin Os+ CA, (3) 
where A = O( 1 ). Also, let the coupling point coincide with 
the origin, and consider positions x such that 
kf4ex=O(1). Now define the slow scale through the di- 
mensionless position vector: 

x= ksx. 
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We will be concerned with the "inner region" where 
X=O(1). 

Scaling the frequency is a rather delicate issue for thin 
shells, on account of the multitude of characteristic fre- 
quencies at our disposal: specifically, the ring, null, coinci- 
dence, and Poisson frequencies. For a shell of radius R 0 
and thickness h 4R o, the ring frequency is a low-frequency 
parameter associated with the fundamental membrane 
mode, and occurs at k f= cp/cfR o, where cp is the longitu- 
dinal plate wave speed. The null frequency, 24 at 
kf= p//ph, where pf and p are the fluid and solid densi- 
ties, provides a rough separation between the low- 
frequency, heavy-fluid-loading regime in which the shell 
acts more like a pressure release surface, and higher fre- 
quencies where fluid loading is weak and the surface is 
more like a rigid target. 2'6 The coincidence frequency de- 
fines the transition of the flexural wave on a fiat plate from 
subsonic to supersonic, and is given by kf 
= (cœ/cp) l•/h. The Poisson frequency, introduced by 
Kaplunov et aL, • is, like the ring frequency, a membrane 
frequency that depends upon the shell curvature. However, 
it is a high-frequency local (as opposed to global) param- 
eter that defines the frequency where the exterior pressure 
effects the membrane shell equations directly. This results 
in a membrane forcing proportional to the in-surface gra- 
dient of the pressure and proportional to the Poisson's 
ratio. 2a• Such effects are ignored in most shell theories, 
including those used here, which are based directly upon 
the work of Green and Zerna 25 and coincide with other 
shell theories commonly used, e.g., Ref. 19. Kaplunov 
et al. 2 have shown that for a sphere of radius R0 the Pois- 
son frequency occurs at k œ = ( c•/c f ) • ( 1 - v• ) /vhRo (the 
value kf=xo/Ro in the notation of Rcf. 2), where v is the 
Poisson's ratio of the plate. Note that the Poisson fre- 
quency becomes infinite as the Poisson effect vanishes 
(v-.O). It helps to consider a specific example. All of the 
calculations in this paper are for steel shells in water, with 
Ro/h=90, cœ=1482, Cp=5435, pf=1000, p=7800, and 
*,=0.289, all in inks units. The value of the dimensionless 

frequency kfR o at the ring, null, Poisson, and coincidence 
frequencies is then 3.67, 11.6, 62.0, and 85.0, respectively. 

In this paper we are concerned with the membrane 
coupling effect in the midfrequency range, which is defined 
as the range of frequencies between the ring and Poisson 
frequencies. At the same time, we assume that the coinci- 
dence frequency lies outside this range (above it}, hence 
allowing us to ignore bending effects in the shell equations 
and thus simplifying the analysis. The midfrequency range 
specifically includes the null frequency, so that fluid- 
loading effects are critical. In practice, this means that the 
"background" response is neither that of a rigid or a soft 
surface, but is truly intermediate. 2 We assume that the 
midfrequency range is large in the sense that we may use 
the geometrical optics limit kfRo• I, but at the same time 
we have the additional constraint of thin shell theory, i.e., 
that h/Ro•g 1. These conditions are met for the example of 
the steel shell in water with Ro/h = 90 if we consider the 
midfrequency range to be defined roughly as 5 < kœR o < 60. 
At the lower end of the range the geometrical optics as- 

sumptions break down, while at the high end we encounter 
discrepancies arising from the simplicity of the shell theory 
used here. One could probably push. the upper limit of 
applicability to higher values through the use of more so- 
phisticated shell theories? 

Let s be the arclength on the shell near the point of 
interest, and v(s) and w(s} be the in-surface and normal 
components, respectively. The shell is approximated lo- 
cally as a parabolic surface described by the equations of 
motion for a thin cylindrical shell with equivalent radius of 
curvature. The final approximated local form of the equa- 
tions of motion are 

d•v 2 1 dw 
dsa + k•v + •o •ss =O, (5a) 

1 dv •w= -p Rods C ' (5b) 
where kp= affCp, Cp is the longitudinal plate velocity, and C 
is the extensional stiffness. See Appendix A for further 
details. The local equations (5) follow from the 3-D equa- 
tions for a cylindrical thin shell [Eqs. (A2)] by neglecting 
bending effects (fi-•0) and the term w/a • in the w equa- 
tion (A2c). 

In addition, the continuity condition for time- 
harmonic motion is 

• _•P 
(6) 

where pf is the fluid density and n is the normal to the 
surface S. At this stage we introduce some impedances that 
enter into many of the subsequent formulas: 

Zm=-ioph, Zs=pFfsee Os, Z/(0) =pF/sec 0. 
(7) 

Thus, Z. is the masslike impedance of the shell, Z• is the 
local impedance for a membrane surface wave, and Zf(•b) 
is the impedance that will enter into geometrical optics 
approximations for specularly reflection. We note that 
zs=zs( OO =Zs( Oo). 

B. The background wave field 

We first determine the outer or background solution, 
which consists of inertial effects on the shell and produces 
the specular reflection into the fluid for angles of incidence 
away from the critical, i.e., t•"%7t:Os. It is also the driving 
mechanism for the inner or local problem, when 0ia• O s in 
the sense of Eq. (3). We are mainly interested in the mid- 
frequency regime defined above, and therefore flexural ef- 
fects are ignored; in fact, we have explicitly expunged them 
from the shell equations (5). Consider the ansatz 

p =p(O) + ep(•) +..., (8a) 

w=w(ø) +ew(n + '" , (8b) 

v = eo (ø> + tar { • • +---. (8c) 

Note that the o displacement is scaled to be smaller than 
the pressure and the normal displacement. Upon substitu- 
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tion into Eq. (5b), one obtains the leading-order approxi- 
mations for the to equation as 

ioZ,w(O) =p(O), (9) 

where Zm is defined in (7). Combined with the leading- 
order contribution to the continuity equation (6), Eq. (9) 
results in a local impedance boundary condition on the 
surface S, 

3p {ø) k. op•. 
•nn +--•m J ptø)=0' (10) 

This local impedance condition has been previously de- 
rived and discussed by Norris and Vasudevan 6 and by Ka- 
plunov, Noire, and Veksler. 2 Equation (10), together with 
the Helmholm equation, 

v,p(o + =o, ( 11 ) 
defines the background field or outer solution p(O) in the 
surrounding volume V. This is the response with no cou- 
pling to the longitudinal membrane wave. 

The background pressure p(O) is composed of the sum 
of the incident and scattered wave fields, prO)=p•½+p•(0). 
We assume an incident wave field in the fluid in the form of 

a curved wave front or a Gaussian beam, which has local 
paraxial form 26 

pi•C(x)=Poexp{ik/[ni•C.x+«Mo(mm.x)2]}, (12) 
where P0 is the amplitude, M o is the wave-front curv- 
ature (which could be complex valued), and 
ninC=sin0meal--Cos0inca3 and mine-•a2An inc are unit 
vectors. Here, {a I ,a•,a3} form a right-handed orthonormal 
triad (see Fig. 1 for a description of the local coordinates). 
The background scattered field pSC(0) in the surrounding 
fluid may be written in a geometrical optics form similar to 
the incident wave field (12), i.e., as a curved wave front or 
Gaussian beam [assuming the incident curvature satisfies 
MoRo=O(1)]: 

P•(ø)( x)=/•oo exp{ikf[n•'x+«M•oo (m='x)•]}, (13) 
where nS•-----sin 0 inc al +cos 0 •½ a3 and maC=a2 A n s•. Equa- 
tion (13) is local in the sense that the amplitude and cur- 
vature are independent of position. This is all that is re- 
quired for our purposes, but we note that one could use 
geometrical optics 26 tO analytically continue pSe{0) to the 
far field. The reflected amplitude and wave-front curvature 
are given by 

/•o =• (0i•C)Po, M•o=Mo+2/(RocosO•), (14) 
where 

.•( 0) = [Zm--Zl'( O) ]/[Zm+ Zf( O) 1. (15) 
In summary, the background wave field p(m is de- 

scribed by the incident pressure of Eq. (12), plus the scat- 
tered pressure of Eqs. (13)-(15). The displacement w 
can be determined using Eq. (9). The specular approxima- 
tion of Eqs. (14) and (15) is consistent with the more 
general equations of Kachalov, 2• who derived specular and 
penumbral approximations using a more general local shell 

impedance function that includes bending effects. We pre- 
fer to keep the background field as simple as possible, par- 
fially to explore the extent to which flexural effects are 
significant. As we will see, very good approximations can 
be attained with this simple background response. 

C. Generation of the membrane wave 

We now consider the inner solution that describes the 

behavior of the shell when the incident field couples to the 
longitudinal membrane wave. As the membrane wave trav- 
els supersonically along the shell energy is constantly 
leaked back into the surrounding fluid, interfering with the 
reflected wave field generated by the outer solution dis- 
cussed above. The total wave field produced in the sur- 
rounding fluid, with both background and membrane wave 
components, changes significantly in magnitude and phase 
with position when the angle of incidence •inc is near the 
critical angle 0 s. 

A different approximation is required to include cou- 
pling to the longitudinal wave. The leading-order solution 
is represented as a sum of the background solution plus an 
additional component generated by the longitudinal wave. 
This additional component will be referred to as the inner 
solution. We assume, for simplicity, that the shell material 
properties are uniform for X=O(I), and start with the 
ansatz 

p =p(0• _ ia•Z•F• (X)ei• m' ' +'", 

w= to(o) +Fri>(X)e/t•+..., 

(16a) 

(16b) 

(16:) 

where the inner solution consists of an unknown amplRude 
function ß dependent upon the slow variable X multiplied 
by a phase that varies according to the fast variable x. Note 
that •(X) has an argument that can be both in the fluid 
and on the surface, although it is understood that the shell 
displacements are only defined on $. The impedance Z, of 
(7) appears in Eq. (16a) by virtue of the fact that this is 
the impedance appropriate to the membrane wave, and the 
vector m----sin 0• a• +cos 0•a 3. At this stage we do not scale 
ß with e, although it will transpire that q•=O(•). 

The coefficient F may be found by substituting the 
above response into the w equation (5b). Note that in the 
local region the arclength s is reasonably approximated by 
x and that the normal derivative is the z component to 
leading order. Using the fact that the background solution 
satisfies Eq. (9), an algebraic equation is obtained to lead- 
ing order for the coefficient F, giving 

ZO l' (17) 

This approximation uses the fact that sin O•cœ/ct,, and 
the definition [see Eq. (2)] e•= 1/kRo• csc 0 o. The pres- 
sure solution given by F. Xl. (16a) must also satisfy the 
Helmholtz equation, which governs the response in the 
surrounding fluid. Upon substitution of Eq. (16a), one 
obtains 
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V2p q-/•.rp = -- 2od•/•{•ZsFei•' Xm ß Vx• + O(e ) 

•erefore, to O(•e), 

m. •x•(X) =0, (19) 

which m•ns that ß must • a function only of the com- 
ponent (a•Am).X. Noting that (a•Am).X=Xcos0•, 
we write the genial solution as 

ß (X) =•(s• 0,(a• A m) -X)=•(X). (20) 

•e •plitude function $ is dete•in• from the con- 
dition that there is no forcing of the longitudinal wave on 
the suff• S. Thus, with the fo• of the F known, sub- 
stitute the inner res•n• given by •s. (16) into the v 
•uation (Sa), yielding 

d•(X) 
( + + . . . 

1 dw (ø• F F d•(X) 0 = . 
•e terns •ear in ß vanish •u• of the dis•mion 
relation satisfi• by the suffa• wave number; or alterna- 
tively, k is aleretained by the vanishing of its coefficient. 
Setting the latter to •ro and using (17) to approximate F 
yield the dis•rsion relation 

(22) 
•e •nd te• on the fi•t-hand side is asymptoti•lly 
smaller than the •t, but it intr•u•s the o•cial complex 
pa• to k, •iat• with the radiation loss into •e fluid. 

The rem•ning te•s in •. (21) imply 

(F)d•(X) d• 1+2i• 2ik dX ---- •- dx , on S. 
(23) 

•e te• in parenth• may • replac• by unity without 
any signScant e•or be•e F/2ikR o is of O(•), from •. 
(17). • outer •lution for w •ø• is requN• to deterinc 
the amplitude function of th• inner •lution, •. In gener• 
circumstance, w •ø• is combed of contributions from the 
dffect •cident wave plus, possibly, flex•al wav• that 
have travel• to the •Nt of interest from some disre= 
sour• on the shell. Such wav• could • common on com- 

plex st•ctures where discontinuiti• act • sources and the 
flexural wavm could, in th•, infiuen• •Nts far away 
on the s•cture •ause they propagate subsonically and 
therefore suffer no radiation loss. However, for our pur- 
•ses we can •fely ignore any flexural wave contributions 
to the w •ø•, sin• they •e out of ph•e with the membrane 
wave and their pr•n• in the right mem•r of •. (23) 
would have an insignificant eff•t in exciting the membrane 
wave. By •e same r•soning, we may safely r•lace w •ø• 
by •e p• of •e nodal displaymerit that N excited di- 
r•fly, or lo•11y, by the incident a•ustic wave. •e phase 
is then approximately matched, so that to a g• approx- 

imation dw(ø}/dx=ikw (m, and Eq. (23) then reduces to 

d•(X) • w(ø)e -i• (24) 
dX 2 

The outer contribution to w •ø) follows from Eq. (9), 
using the background pressure fields of Eqs. (12) and 
(13), 

w'ø' = ( Pø + t• ) exp( ikx )exp [ i( AX + • ,•lo,Y2 ) ] , icoZm 

on $, (25) 

where 

o=cos 0,+r0 cos 2 0,. (26) 
After substitution of Eq. (25) into Eq. (24), using Eq. 
(15), the inner solution amplitude function is found to be 

-ico z.,+z, 

X f •'70--•[x+'x/'0ø) e isa dS, (27) 
where the lower limit of integration is chosen to satisfy the 
radiation condition. •3 The integral in Eq. (27) has the 
form of a complex error function, which can be written in 
terms of Fresnel integrals. However, the behavior of the 
integral can be best surmised by examining what happens 
as the upper limit of integration tends to + co (X-. + •o ), 
for which the integral becomes 

X/-• i•/4 exp[ (i/2)A•o(Xq-n/J•o)Z] 
e H(X)+ i•23•io(X+A/A71o ) +..., 

(28) 

where H is the Heaviside step function. The first term of 
Eq. (28) denotes the supersonic membrane wave traveling 
along the surface of the shell in the local region, and the 
other term describes the modifications to the (outer) spec- 
ular field. For intermediate values of X the integral pro- 
vides a smooth, although oscillatory, transition region in 
which the membrane wave is created? 

The leading term of Eq. (28) provides the coupling 
coefficient or the initial amplitude of the generated surface 
membrane wave. Thus, the amplitude of the longitudinal 
wave traveling along the shell's surface is •--½bsu•f, where 

Cl)st,rr_• Pc 12•ie_iA2/20o ' (29) 
Referring to the ansatz (8), we see that the in-surface 
displacement is O(4e), in contrast to O(e) for the outer 
solution. Thus the "beating" of the acoustic wave, com- 
bined with the shell curvature, results in an enhanced tan- 
gential displacement, which in turn launches a membrane 
wave. The simplest case is that of an incident plane wave, 
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for which M0=0. The exponential term in Eq. (29) intro- 
duces a decay unless the angle of incidence is 0= 00. As- 
suming that 0= 0o, the surface wave amplitude for a plane 
wave reduces to 

Po 2,ri Zm+-----2s 0o' (30) 

Note that the amplitude is O(4e), as compared to the 
smaller O(e) of Eq. (8c) for the background in-surface 
response. The in-phase beating of the membrane wave 
therefore induces a coherent response of magnitude 
O(e -•/2) relative to the background, and dominates the 
in-surface response. 

D. Coupling from the shell to the fluid 

The coefficient describing the amount of coupling to 
the membrane wave was calculated in the previous subsec- 
tion, and provides the initial condition for the generated 
surface wave. As the membrane wave travels along the 
shell its energy is shed into the surrounding fluid through 
radiation leakage. The resulting attenuation is described by 
the imaginary part of the membrane wave number k. In 
order to determine the response in the surrounding fluid, in 
particular the energy that "leaks" to the far field, the 
Helmholtz equation must be satisfied with the pressure 
along the surface appropriate to a membrane wave. Ac- 
cordingly, we start with the following surface fields, which 
are based upon the inner solution of Eqs. (16): 

{p,w,o)----{--io•Z•F,F,l}Vo ei•, on S, (31) 

where V 0 is an arbitrary amplitude with dimension of 
length. The field in the surrounding fluid may be deter- 
mined by applying Green's theorem, 

p(x') fs (G ap = (32) 

where G is the 2-D free-space Green's function, 
G(x,x')=(-i/4)I•on(k/Ix-x'l ), and the normal in 
(32) is exterior to the empty shell. Using the boundary 
values of (31), Eq. (32) becomes 

P(X')=køZsFVo Js e [•-nn--ikfcøsOsG) ds' (33) 

Consider the configuration shown in Fig. 2, with 
x'•.R' sin O at+R' cos 0a 3. We assume that the domi- 
nant contribution to the radiated field originates from 
points on the surface S for which x lies in the neighbor- 
hood of the origin. Then, 

Ix-x' I •R'--x sin 0+ (cos O/Ro+cOs • O/R')x2/2, 

while Eq. (33) and the large argument approximation for 
G imply 

FIG. 2. The configuration and location of the coordinate system for the 
launching of a wave from a point ß on the surface to some position •' in 
the far field. 

p(x') •okfZsFVo(COS 0+cos Os) G(O,x') f dx 

Xexp[ikf[ (sin Os--sin O)x 
/cos 0 cos • 0\ ,34) 

The integral can be evaluated by the method of stationary 
phase and has an exponential term of the form 

exp[--•kœ(sin Os--sin 0)2[ cos O cos20 
(35) 

which is exponentially small unless 0= 00, where 00 is de- 
fined in (1). Hence, the main contribution to the radiated 
wave field from the region near x=0 lies in the direction 
0=00, and follows from (34). This simplifies in the far 
field (R'• R o) to 

• / 1 1\-1, 2• 
P(x')=G(O'x')2kocotOo;eVo[•+Z} •COS 00' 

(36) 

The approximation sin Oomcl/ct, has been used here. Note 
the similarity of this expression to that for the launch co- 
efficient in Eq. (30). 

Combining Eqs. (30) and (36) allows us to compute 
the contribuOon to the scattering from membrane waves 
for arbitrary incidence. For example, suppose the incident 
field originates from a point source at x', couples to the 
membrane wave at x• on 27, and radiates from x•, also on 
$, to the field point x. For simplicity, we assume that both 
the source and receiver are in the far field (their distance 
greatly exceeds the radii of curvature). Along the surface 
between the coupling points, the amplitude of the mem- 
brane wave goes as 1/f•(s), if the shell parameters 
vary smoothly between s=s• and s=s• at x• and x•. •5 Oth- 
erwise it remains constant, although there is some inevita- 
ble decay resulting from the fact that k has a small positive 
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FIG. 3. Circular cylindrical shell with coordinate system, source direc- 
tion, and observation point locations. 

imaginary part. Combining all these results, we find that 
the radiated response due to the membrane wave is 

p(x).•G(x',xl)G(x2,x)DiD2exp(ifiTkds ), (37) 
where the "diffraction" coefficients are defined by 

(4trpcpZ0 •/2 •R• O=i ZrnqLZ $ . (38) 
Note the phase term due to the launch and scattering, in 
addition to the phase from the propagation over the shell. 
Also, the result (37) is clearly the same under the inter- 
change of the source and receiver points, as required by 
reciprocity. Suppose, for simplicity, that the shell is uni- 
form between the launch and radiating points, with ar- 
clength of L separating them. If the incident plane wave is 
of amplitude P0 at the launch point, then the scattered field 
is 

-- i4,rr Z•Z, 

p(x) • kR ø (Z,,+Z$} 2 PoG(x2,x)e aL. (39) 
We next use this simple result to test the theory on the 2-D 
circular shell. 

E. Example: The cylindrical shell 

We consider an incoming plane wave scattered by a 
circular cylinder of radius a. For this canonical geometry, 
Ro=a and the exact far-field scattering amplitude can be 
determined and compared with that obtained from the ray 
description. The far-field scattering amplitude is defined by 

•-= lira [ 2•e-iklr(p--l•nC) ], (40) 

where r is measured from the center of the cylinder to the 
far field (see Fig. 3). The coordinate system is now placed 
at the center of the cylinder as opposed to that used in the 
previous calculations where it was located on the surface of 
the shell at the location of each incident ray. 

Recall that the total response consists of an interaction 
between the specularly reflected wave field with that shed 
by the leaky membrane wave traveling along the cylinder's 
surface. The former follows from Eq. (13), yielding 

p•(0) =Po• (tp) [ 1 +2r'/(a cos tp) ] 

X exp [ikf(r' -a cos ½) ], (41) 
where 

r'= --a cos ½+ •/r2-a 2 sin ½, (42) 

and the impedance Zf(•b) is defined in F_x 1. (7). Next, the 
leaky membrane waves are described by F_x 1. (39) with the 
arclength between the launch and radiating points L to be 
determined. If the far-field scattering amplitude is calcu- 
lated on the clockwise (cw) side of the cylinder than the 
arclengths traveled by the membrane waves traveling coun- 
terclockwise and clockwise are 2a(rr--tp--00) and 
2a[•rH(Oo--tp)+tP--0o], respectively, where H is the 
Heaviside function. Each wave circumnavigates the cylin- 
der continuously giving an additional arclength of 2rra per 
cycle, and their contributions to the phase in Eq. (39) can 
be written as 

• _ik2rrara l '"=ø e = 1 e-----•2•, (43) 
where the complex-valued surface wave number k is deter- 
mined from Eq. (22). Then, the radiated response of the 
total contribution of the leaky membrane waves is 

4 •r ZmZ , dk f( r' -a cos o o) 1 
pmem=--Pø ka (Zrn-•'•s) d8rrikfr, 

x {d2t'aI'm(øo-O)+o--øol+ea•("-O-øo)}. (44) 

Now the far-field scattering amplitude given by Eq. 
(40) is evaluated using Eqs. (41), (42), and (44) to obtain 

if-= cof•s •(•)e-a/•ff cos •' 

•l' eikaOr- 2Oø) 4 rr Z,•Z s e_a•f•co s oo 
(z,.+z$) 1-d 

[cos[ka(•'--2•b) 1, •b>0o, 
X lcos(2ka•)d *•, ½<00, (45) 

where o• has been normalized with respect to the incident 
wave-field amplitude and a phase shift corresponding to 
the diameter of the cylinder. The term in curly braces in 
pm•m has been rearranged in the above to illustrate better 
the behavior at the resonances occurring when ka is almost 
equal to an integer. Note that the membrane wave expres- 
sion (44) and its contribution to (45) are both discontin- 
uous at •b= 00. This nonuniformity arises from the simple 
ray summation used. One could modify these expressions 
to account for the uniform transition that occurs as 
passes •0, associated with the smooth "turn-on" of a mem- 
brane wave. 

The far-field scattering amplitude predicted by the 
above asymptotic formulas is compared in Fig. 4 with the 
exact calculation for the thin shell equations of Appendix 
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FIG. 4. Comparison of exact and ray-based form functions for a circular cylindrical shell with broadside plane wave incidence. The different observation 
directions are (a) 0e, (b) 3Of, (c) 60', and (d) 90'. Note that the agreement improves with increasing ]•/a. As the observation angle increases, the ray 
theory overestimates because of the simple approximation used for the specular wave field. 

A. The parameters used in these and later calculations are 
for a steel shell in water (see Sec. I A). We note that the 
asymptotic theory accurately predicts the locations of the 
resonances for the midfrequency regime. For small values 
of kja, the inaccurate prediction of the asymptotic theory 
is not unexpected since it is based upon a high-frequency 
ansatz, although the qualitative agreement is still good. 
Also, as the scattering angle increases from 0 ø (the back- 
scatter direction), the discrepancy in the mean level pre- 
diction increases, which may be ascribed to the simple 
form chosen for the specularly reflected field. It is evident 
from Fig. 4 that some of the resonances disappear as the 
scattering angle increases from 0 •. In the second term of 
Eq. (45), the numerator may also be equal to zero for 
some of the resonances. After applying l'H6pital's rule, the 
behavior of this term can be described by sin(2n•b), where 
n is an integer value of ka. Therefore, the second term is 
zero for 2n•b/•r. For example, when the scattering angle is 
30 •, every sixth resonance disappears in the far-field scat- 
tering amplitude in comparison to that obtained for back- 
scatter. 

II. THREE-DIMENSIONAL THEORY 

There are two major areas of complication in going 
from two to three dimensions. First, the geometrical details 

are that much harder, and, of course, the shell dynamics 
are more sophisticated. Therefore, some geometrical con- 
cepts need to be introduced before considering the shell 
equations and the coupling mechanism. 

A. Local geometry at the coupling point 

We begin by describing the surface $ near the point Xo 
at which the incident pressure phase matches the mem- 
brane wave, whether longitudinal or transverse. Let n be 
the surface direction vector of the membrane ray produced 
"at" x 0. We will consider the most general case of a 
smooth but arbitrarily curved and inhomogeneous shell in 
the neighborhood of x0. The vector n subsequently follows 
a ray path n=n(s), where s is the ray arclength. The sur- 
face ray can be calculated by integration of the ray equa- 
tion, as discussed by Norris. I• Let r be the coordinate for 
curves orthogonal to the ray, in the direction n • =--a 3 An. 
The directions of principal curvature at x0 are denoted by 
a t and ati=a3 A a t, with principal radii of curvature R I and 
R n and principal coordinates 01 and 0 n. We also consider 
general curvilinear coordinates 0 • and 0 • on the shell, with 
corresponding direction vectors a•=x.a, a= 1,2, and nor- 
mal a3=a• Aaz/la • Aazl directed out of the shell. Greek 
sub- or superscripts assume the values 1 or 2, and the 
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suffix ,a denotes differentiation with respect to 0 a. The 
surface metric and curvature tensors are a,•g= aa'ao, and 
dat•=aa.a3,•, respectively. The local fo• of the surface 
near • may be written 

x = • • •a a-- •da•a 3 •'" 

I II 1 [ (0I) 2 (01I)2• 
:•+0 ai+O all-- • ' •+•/a3+'" • RI Rn ] 

I / 
=•+m+m l-•[•+•+•)a3+'", (46) 

where the first fern is general, the second is in terns of the 
principal coordinates, and the final is in terns of the ray 
coordinates, (01,•) • (s,r), with 

I n• nh 
Ri I -•+•, (47a) 
1 nh 

R• --•+•' (47b) 
1 [1 1• 

•=nlnil•--•}, (47c) 
where n• and n n are the components of n in the principal 
directions. Thus, Rii and R• are the norrnal radii of cur- 
vatures of the sudace for curves parallel and pe•endicular 
to n. 

B. The coupling point and the coupling curve 

We will need to match the incident phase to the sur- 
face wave on S. The paraxial approximation to the incident 
phase is qbinc=kf(n inc' x+«x 'm' x), where n ine is the in- 
cident central ray direction at x o. The incident wave-front 
curvature is defined by M, which could be complex valued, 
but is symmetric with M. nine----0. The Snell condition for 
the incident ray is 

nine=sin 0 o n-cos 0 o a 3. (48) 

The incident phase becomes, using (46) and (48), 

inc [ 1 / S • r • 2sr\ 

+•csc0o x.M.x , on S. (49) 
For simplicity, the remaining analysis is based on the as- 
sumption that the incident field is a plane wave, so that 
M=0. 

The incident wave also couples to the membrane wave 
at other points in the neighborhood of x o. In order to find 
these points and their locus, we note that the normal to S 
is locally approximated by a• = a3 + d•0•a,•, which can also 
be expressed in terms of the principal and ray coordinate 
systems. The coupling condition for a plane wave is basi- 
cally that n ine ' = --cos 00. Applying t]his in the neigh- .9 3 

borhood and using the condition that a• is a coupling 
point, and Eq. (48), we deduce that the nearby points 
must satisfy 

d,•t•n•O t• = O, (50) 
or, equivalently, 

s r n I 0i nll +•T=O or Rll •II -Jr- •II 01':=0' (51) 
in ray coordinates and principal coordinates, respectively. 
This equation defines the local tangent to the coupling 
curve. A global differential equation for the coupling curve 
could be easily constructed by analytically continuing 
(50); however, we will only examine the local tangent to 
the curve at x 0. If one of the principal curvatures vanishes, 
then it is clear that the coupling curve is locally parallel to 
that principal direction. An important example of this is 
when S is a developable surface, such as a cone or cylinder, 
which has zero Gaussian curvature at all points, 
1/RiR n =0. The coupling curves are always parallel to the 
directions of zero curvature on these surfaces. In general, 
the curvature of the coupling curve is given by 
1/Rc=dø•rnarnl•, where m is the unit tangent vector to the 
curve. A :simple calculation gives 

2 2 2 2 --1 
[ nl nil \ [ nl nn • 

The curvature 1/R c vanishes at points on the shell which 
have zero local Gaussian curvature. Hence, it vanishes at 
every point on a cone or a cylinder, or any developable 
surface. 

C. Thin shell equations and background field 

Before dealing with the coupling to membrane waves 
we first summarize the shell equations used. The full set of 
equations for an inhomogeneous, isotropic shell are TM 

C- 1•'[3 { C [ ( 1 - ¾ ) e ct[3'4- ve•a •t•] ) + •v • = O, a = 1,2, 
(53a) 

F+(1-v)d•g+vd•4-•w=--p/C, (53b) 
with 

F = (7- •V•Vt•{ (h2/12) C[ ( 1 - v) a•Xat•rVxVrw 
-[-aal•vAw] ), (54) 

where V• denotes the eovafiant derivative, and 
A=a•t•VoN g is the surface Laplacian. The displacement 
vector of a point originally on the middle surface is decom- 
posed into tangential and normal components as 
u= vaa•+ wa3, and the in-surface strains are 
e•t • = (aterYder + a•rV•r )/2 + d•tv. The parameter 
C=-Eh/( 1- v 2) is the extensional stiffness, where E is the 
Young's modulus, and v is the Poisson's ratio of the shell 
material. Also, the longitudinal plate wave speed is 
cv2=C/ph and for future reference, the transverse wave 
speed is ct = c•/( l--v)/2. These equations are supple- 
mented by the continuity condition (6) on S and the 
Helmholtz equation for the pressure :in the exterior fluid. 

The approximate 2-D equations (5) follow quite easily 
from Eqs.. (53) by dropping the term F involving the bend- 
ing stiffness. We will neglect this term also in the 3-D 
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analysis. This approximation is justified by a separate anal- 
ysis of membrane waves TM and by restricting the frequency 
to lie below the coincidence frequency. 6 We return to this 
point later, but note that it results in a simpler system at 
this stage, which is the natural generalization of the 2-D 
system (5). The ansatz for the background wave field is 
again given by (8) with the generalization v-, va. This im- 
plies that the in-surface displacements decouple, and we 
again obtain Eq. (9). Thus, the background field satisfies 
the relatively simple impedance boundary condition (10). 

D. Coupling to membrane waves 

The scaled position X and a slowly varying amplitude 
function •(X) were used in the 2-D analysis. In the 
present 3-D analysis we will work directly with x without 
recourse to a slow scale. This simplifies the equations, but 
it makes the distinctions between the fast and slow depen- 
dencies less obvious. We will se e that the equation that 
generalizes (24) is a forced transport equation for the am- 
plitude of the membrane wave. 

1. The membrane wave 

The ansatz for p, w, and the in-surface displacement is 
similar to the previous one [Eqs. ( 16)], but for the sake of 
simplicity we will only look at the fields on the surface. The 
pressure can be continued into the fluid quite easily. We 
assume 

W--to(O) = V(s)e i4 F(s), (55) 
p_p(o) ] [ _iwZs(s)F(s) ' 

where q is the normalized polarization vector of the mem- 
brane wave; q=n for longitudinal waves, and q=n I for 
transverse waves. Also, •b is the surface phase function, 
which defines the surface wave number k, 

ka•Vaqb=kn a. (56) 

Thus, n is the phase direction of the membrane wave. The 
amplitude factor F follows from Ref. 14 as 

i Z m i 

F-kR-• Z,,+Zs •2kRo [ 1 +• (0o)], (57) 
where now R 0 is an effective local radius of curvature at the 
launch point, given by 

1 [ 1/Rii +v/Rx, longitudinal, 
/•o-- [2/Rr, transverse. (58) 

The dispersion relation for the fluid loaded membrane 
waves is 

w 2 1--v Z,. 1 
k2•Tnt RiRi I Zrnq_ZsR•o, (59) 

where c=cp for longitudinal waves, and c=ct for trans- 
verse waves. The asymptotic results [ ( 57)- ( 59 ) ] follow by 
applying ray theory to the general shell equations and 
looking for solutions that are predominantly in-surface. 
The method is outlined below, and details are given by 
Norris and Rebinsky, TM who discuss all except the term 

(1--v)/RiR n. This term is of second order, because by 
assumption the wave number far exceeds the curvature in 
magnitude. It can be obtained by regrouping higher-order 
terms with the leading-order terms in the asymptotic for- 
malism of Norris and Rebinsky, TM and is discussed 
elsewhere? We retain the term here because it turns out to 
provide a better approximation to the dispersion relation at 
low frequencies for the spherical shell example discussed in 
Sec. III. 

The solution given by Eq. (55) evolves according to 
ray theory in the absence of the applied forcing from 
and w ©, in which case the phase •b can be described by the 
paraxial approximation. This requires tracing the ray on 
and solving the wave-front curvature along the ray path. 
The ray amplitude V(s) evolves according to the transport 
equation, which in turn depends upon the wavefront cur- 
vature. The ansatz (55) assumes a similar type of solution, 
except that the amplitude is now driven by the external 
forcing, but only over a finite region. Outside that region 
the unforced transport equation takes over. 

2. The eikonal equation 

Substituting (55) into the in-surface equilibrium equa- 
tions (53a) and defining the in-surface amplitude compo- 
nents 

I•= Vq a (60) 

give 

{•l •-- (k2/2) [ ( 1 + v)n•ntfl• + ( 1 -v) V a] 
+ ikF• FO} + iC- •V •( C{ [ (1 --v)/21 
X (kaVt•+ k•V •) +vkrVraat•})+ivk•Vt•FO 

+i[( 1 -- v)/2] 

+e-•4t•a•?tsw(ø) +'" =0, (61) 
where • = ( 1 --v)d• + vdrra •. The first term in parentheses 
determines the wave number k. Setting it to zero, contract- 
ing with qa, and dividing by V give 

(k2/2) [1 -vq- ( 1 -t-v)(nt•) 2 ] =k}+ikF•aan•qa. 
(62) 

Substituting q=n and q=n x and using Eqs. (57) and 
(58) then imply the dispersion relation (59), except for 
the term discussed above, which requires including higher- 
order contributions? It should be admitted that these q 
vectors are not precise eigenvectors of the matrix occurring 
in the first parenthetical term in (61), except if F=0 or n 
coincides with a principal direction. However, the contri- 
bution from F is implicitly assumed to be small, so that 
these eigenvectors are correct to first order. Standard per- 
turbation analysis then implies that the dispersion relation 
is correct to second order. We include the additional two 

terms [see Eq. (59)] in the dispersion relation because the 
fluid-loading, or F, term provides an attenuating mecha- 
nism (through radiation loss) where there is otherwise 
none, and the second provides a better approximation, as 
we will see in the examples. However, we omit these terms 
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from the transport and ray equations, as their absence sim- 
plifies these considerably. The former ornission is analo- 
gous to our previously dropping the F term in Eq. (23), 
while the latter is justified by the expectation that the fluid 
loading and anisotropy does not appreciably alter the ray 
paths, or that the dispersion is appreciable.. Conditions un- 
der which these assumptions are invalid have been dis- 
cussed by Norris and Rebinsky. TM The dispersive and an- 
isotropic terms could be included, but at the expense of all 
the attendant complications associated with these phenom- 
ena. Therefore, we emphasize that the ray theory consid- 
ered here is isotropic and nondispersive. 

3. The transport equation 

Contraction of the remaining terms in Eq. (61) with 
V• followed by some simplification gives the forced trans- 
port equation 

Vt•((C/2) [( 1 --v)k•V2+ ( 1 + v) ka V, IA•] ] ' 

= iCe-i4l•Vt•w ©. (63) 
Following the arguments given in the 2-D analysis, this 
equation can be simplified by first assuming that the outer 
field satisfies Vaw(ø)•ikaw ©. The right member of (63) 
then simplifies considerably using Eqs. (58) and (60). 
Further reduction results from approximating k as k 
in the right member, where c=c• or ct, while the left mem- 
ber simplifies by again using Eq. (60). Also, noting that 
C=phc• and C(1--v)/2=phct 2, Eq. (63) reduces to 

to d ( phc2 V• ) + phc2 V2Ad > = _ w phc ]• w( ø ) e- •. cds 

(64) 

Before proceeding any further we need to define and eval- 
uate the term A•. 

Referring to Norris, • the ray equation for membrane 
waves or the evolution equation for the vector n=n(s), 
where na=dOa/ds, is 

dn•+ F•rnt•nr + n• •n • t• c,t•=0. (65) ds c 

This reduces to the equation for geodesics on S if c is 
constant. The paraxial approximation to the phase along a 
ray on a curved surface is 

1 1 dA • '--n •'tc'x(n•n•+n• • ¾•'Vt• =•c • n• n o c- l- n o ) 

c-- f n•nt•. (66) 
Here`4 (s) is the ray tube area parameter along the ray, and 
its evolution equation is •5 

d 1 dA [ 1 1 •n •V•V•)A=O. (67) c • • •s + [R-•ii+ • n • 
We note that the two terms in the parentheses induce non- 
linear ray spreading, in the sense that rays diverge linearly 
with distance in uniform, Euclidean space (see Ref. 15 for 
a complete discussion). Taking the trace of Eq. (66) gives 

Ac)=(to/`4)d(A/c)/ds, which allows us to rewrite Eq. 
(64), after some simplification, as a linear differential 
equation for the amplitude, 

d 1 w © . 

• (V•phcA)= -5 •phcA R-•-e -'•. (68) 
This is the desired coupling equation; but it cannot be 
solved in ignorance ofA (s), for which we need to prescribe 
initial conditions for A(0) and its derivative A'(O). 

4. The phase matching 

Equation (68) provides us with an equation for the 
evaluation of the ray amplitude V(s). Before integrating it 
we must address two related issues: (i) the phase •b, and 
(ii) the initial conditions for `4(s). The general form of •b 
follows from Eqs. (56) and (66) and simplifies in regions 
of constant c to 

•(s)--=k s+•--• ds ' (69) 
Thus, the paraxial phase is a function of s alone. Referring 
to Eq. (4'9) we see that (•inc, and, hence, the phase of the 
right member in Eq. (68), can depend upon both s and the 
transverse coordinate r. However, by hypothesis V is a 
function of s only, and therefore its ODE should not de- 
pend upon r. 

This difficulty of matching the incident phase locally 
to the phase of a Gaussian beam, or curved wave front, 
does not arise in all situations. For instance, when a plane 
wave strikes a spherical shell the principal directions for 
the incident phase function coincide with the ray and 
transverse directions. In general, we must deal with the 
possibility of terms involving sr in Eq. (49), which would 
arise, for instance, on an ellipsoidal surface. The occur- 
rence of these phase terms means that the incident phase, 
although not locally in the form of a curved wave front on 
the surface, is eventually "beaten" into such a form. We 
circumvent this issue by replacing the phase of the right 
member of Eq. (68) with one that depends only upon s. 
Specifically, we take 

w(ø)e-i4• w © (x0)exp(ik cot 00 sa• •11 !•/' (70) 
At the same time, the initial conditions for ,4 are taken as 

,4(0)=1, • (0)= Rll (71) c RiRii ' 

As justification for Eqs. (70) and (71 ) we offer the follow- 
ing arguments. Suppose we try to simply replace the phase 
of the incident wave with one of the form 

for some R• and R•. Then, in order that this new field 
produce the correct "beating" along the ray axis, r=0, we 

must take: R•:Rii , from Eq. (49). We next obt•n a con- 
dition for R • by requiring that the deteminant of the sec- 
ond derivatives of the new phase be the same as the ofig- 
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inal, i.e., R,iRs=RiR n. This implies Rs=R•Rn/Rii, 
which is equivalent to the initial conditions (71). We note 
that the initial condition for ,4(0) is still arbitrary and is 
chosen as ,4 (0)= 1 for simplicity. The initial condition for 
d,4/ds then follows from (69) and the value of R s. An 
alternative and more rigorous justification for Eqs. (70) 
and (71) is given in Appendix B, which compares the final 
form of V(s) that results from these equations with the 
amplitude determined using the shell Green's function. 

5. The coupling equation 

Having found the initial conditions for the ray tube 
area, we can now obtain the coupling equation. Substitut- 
ing (70) into (68) and then integrating subject to the ini- 
tial condition that V( - oo ) = 0 give 

-w(ø)(x0) V(s)=2 • exp(ik cot 00s'2\ , Ro •ll • Jds. 
(73) 

This is the coupling equation. The ray tube area ,4 (s) is 
determined separately by integrating Eq. (67) subject to 
the initial conditions (71). 

The coupled wave amplitude (73) may be written in 
terms of the incident pressure amplitude Po instead of the 
displacement amplitude w(ø)(Xo). The relationship be- 
tween these quantities is analogous to that for the 2-D 
theory, from Eqs. (15) and (25), and is easily shown to be 

w © (x0) = { [ 1 -t-• (%) ]/koZm}Po. (74) 

We have kept the ray tube area and other parameters 
within the integral in Eq. (73) to include the possibility 
that these all vary along the ray. However, such variation 
can be neglected in the limit of very high frequency, in 
which case we can ignore the dependence of the preexpo- 
nential term on s. The coupled wave amplitude follows by 
letting s-• •. Using (74) we find 

-Po (t2•rkRll tan 00) 1/2 (phc,4(O)) 1/2 V ( s ) -'* ia•-•o Z,n + Z s [ ph-•-•-• 
(75) 

This is the 3-D version of the 2-D result (30), which can 
be seen to follow from (75). 

One could improve on this high-frequency limit by 
taking into account the initial spreading of the rays. For 
example, consider the approximation ,4 (s) •,4 (0) 
+s,4'(0). This linear rate of spreading is exact on surfaces 
of zero Gaussian curvature, although the initial spreading 
rate, ,4'(0), which is given by (71), is identically zero on 
such surfaces. The curvature 1/R A is not zero on spherical 
surfaces, but in this particular case the equation for ,4 (s) is 
harmonic and the linear approximation to ,4 (s) is just that, 
an approximation. Suppose for simplicity that the shell 
properties are uniform, and we assume further that R 0 is 
constant. Then, using the linear approximation for A(s), 
the general integral (73) reduces to 

-w(ø)(Xo) 
V(s) = 

2Ro • 

xf•,,•,,I. zcotOo / cot0oZ•\ l+•exp[ik •ll •)dz. (76) 
This could be further simplified using parabolic cylinder 
functions, but we will not pursue this further here. The 
lower limit in the integral is in quotation marks to reflect 
the fact that it does not include the fictitious focus of the 

linearized A at s=--RA tan 0o, although we can set the 
limit as - m with no loss in accuracy. The coupling inte- 
gral in Eq. (76) reflects the fact that the surface distur- 
bance has a nonzero wave-front curvature that changes in 
the "beating" region. However, in the limit of very high 
frequency this region shrinks and any spreading on the 
surface is insignificant, in which case (75) is once again 
recovered. 

E. Coupling from the shell to the fluid 

The analysis is similar to that for the 2-D case. We 
consider the launching of membrane wave from a point x o 
on the surface. The local form of the variables {p,w,v a} on 
the surface follow from Eq. (55), which compares with the 
2-D version (31 ). Applying Green's theorem we obtain the 
following representation for the radiation: 

p(x') =iro f s Zs(s)F(s) V($)e i•(s'r) 
(77) 

where the 3-D free-space Green's function is 
G(x,x')---exp(ikflx-x'l)/4•rlx-x'l. Note that the 
integral in (77) is over the surface, although the ray ap- 
proximation to the membrane wave is parameterized by 
the ray coordinates s and r. Next assume that the field 
point x' lies in the direction such that x'-x 0 is coplanar 
with the ray direction n and the surface normal a 3 at x o and 
makes the angle 00 with the surface normal. Thus, the field 
point is exactly in the "launching direction." Near the 
launch point we have, from (46), 

[x--x' I =R' --s sin 0o+ (1/2R') (ta+s • cos 2 00) 
1 / s a r a 2sr\ 

+• cos 00[•-ii +•y-x +•) + ß -.. (78) 
We assume that the phase of the membrane wave has the 
paraxial approximation 

•=k[s+« cot Oo(ra/Ro)], (79) 

where R o defines the local curvature of the membrane 
wave front on S. Combining Eqs. (77)-(79) and approx- 
imating the preexponential functions by their values at the 
launch point yield 
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p(x') =c0k/2 cos 0o ZFVG(Xo,X') 

xfdsdrexp[k/cosOo[[1 cos 00\ 
! 1 I sec 00\ 2sr] ! 

The •te• can • •ffo• in genera, but we only 
•nsider the c•e for which the field •int is in the far field 
(R'• • ), • that the r•ult simplifies to 

c Z•s ( 1 RoZ+Z 

where F h• b•n eliminated using (57). 

F. Summary of the coupling and launching 

A plane wave excites a longitudinal or shear mem- 
brane wave of the form given in Eq. (55). The phase •b(s) 
is determined from Eqs. (67), (69), and (71), where s=0 
corresponds to the coupling point at which the Snell con- 
dition of Eq. {48) is satisfied. The ray path on the shell 
surface is found from the modified geodesic equation (65) 
(rays arc geodesics iff c is constant). Finally, the ray am- 
plitude, V(s), is determined by quadrature from Eq. (73). 
The explicit, high frequency limit of this integral for large 
s, i.e., at points far from the coupling point, is given by Eq. 
(75), where P0 is the incident pressure at the coupling 
point. The general formula (73) describes the growth of 
V(s) from nothing to its ultimate value, (75). 

The launching or decoupling mechanism is summa- 
rized in Eq. (81). Here, G is the 3-D Green's function, 
Y(x o) is the amplitude of the launching membrane wave at 
the launch site x 0, and R D is its surface wave-front curva- 
ture. Both the coupling and the decoupling depend upon 
the impedances Z,n and Z s of Ex I. (7). They also depend 
upon the local radius of curvature in the ray direction, Rll 
of Eq. (47a), and on the "effective" radius of curvature for 
the membrane wave, R 0 defined in Eq. (58). 

These elements can be combined to determine the re- 

sponse in the fluid caused by a membrane wave that travels 
over a finite length on the surface, created at one point and 
launched at another. The wave-front curvature R z• at the 
latter point then depends in a deterministic way upon the 
initial conditions at the coupling point. A•uming for sim- 
plicity that the speed is locally constant at the point of 
detachment, it follows from Eq. (79) that 

1/Rz•= tan Oo[A' (s)/A (s) ], (82) 

where A(s) and A'(s) come from Eq. (67) subject to the 
initial conditions (71) at the coupling point. We can then 
find an expression for the radiated pressure in lerms of the 
parameters at the coupling point, from Eqs. (75) and (81). 
Let x• and x 2 designate the coupling and launch points, 
respectively, and consider the incident pressure to originate 
from a point source at x', with the observation point at x, 

both points in the fluid and in the far field. Then we have 

e-i•r/4 

x•,•=•l,/•(s>co•eo A'(s)sin 0o) -'/2 
x G(x',Xl)G(x•,x)exp(i f• k ds), (83) 

where G is •e 3-D fr•-space Gr•n's function and 

ohc/(Z.+ Z3no. (84) 
It is not obvious at •1 •at the expr•sion (83) is r•ipr•al 
under •e interchange of source and r•iver, as was 
cl•ly the c• for the a•iogous 2-D expr•sion, •. 
(37). However, under the intochange the initial condi- 
tions for • •e alterS, and now dep•d u•n surface pa- 
r•eters at x•, rather than x]. •e ODE for • is the same 
• •fore, but the integration dir•tion is reversed. A•ed 
with the• fac•, one can then use ce•n prope• of the 
solutions of the ODE 15 to re•te the r•iprocal vetoions of 
expr•sion (83) and show that it d• ind•d satisfy r•i- 
pr•ity. •e analysis is lengthy, but similar to that of 
Ap•ndix B. 

III. APPLICATIONS 

In this section we test the general theory against exact 
computations for the canonical shells: the infinite cylinder 
and the sphere. The excitation for both is by plane wave 
incidence, and therefore the cylinder really behaves in a 
2-D manner (the z dependence is algebraic). However, we 
include it here because the coupling phenomenon is explic- 
itly three dimensional, and involves 'all of the parameters 
discussed in the previous section. In particular, both lon- 
gitudinal and shear waves are possible. Both the cylinder 
and sphere present degeneracies in the sense that infinite 
sets of rays need to be taken into account. In the former 
case the infinite set of helical rays could be treated individ- 
ually and summed, but we prefer to treat them in a pseudo- 
2-D manner for simplicity. In this way the analysis is sim- 
ilar to, and borrows much from, that of Sec. I E. The 
scattered field for the sphere has degeneracies in the back- 
and forward-scattering directions, associated with a ring of 
coupling points. We consider this degeneracy separately 
from the more generic case where the ray theory involves 
only two discrete points•a coupling and a launching 
point. Among the various canonical tests considered here, 
the bistatie scattering for the spherical shell is arguably the 
most general test of the full 3-D ray theory developed in 
the previous section. It involves all the basic ingredients of 
the theory, including a nontrivial ray-tube area equation 
[see Eq. {67)], whereas the cylinder is essentially 2-D with 
A = const. 

A. The cylindrical shell: 3-D 

Consider a plane wave incident at angle 0 from broad- 
side on an infinitely long circular cylinder (see Fig. 5). 
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•ng Line 
_Incident Wave 

FIG. 5. Coordinate systems used to describe the response of an incident 
plane wave at angle 0 with respect to the axis of an infinite cylinder, the 
•=e 2 direction. The ray direction n and helical angle 0•are shown. The 
coupling line given by ½o is also illustrated. 

Introduce a right-handed orthonormal triad 
such that the incident direction is n•e=--cos0e• 
+sin 0 ee and e2 is the axial or z direction (see Fig. 5). The 
direction of the surface ray, which may be either longitu- 
dinal or transverse, follows from Eq. (48). The coupling 
line is an infinite straight line parallel to the cylinder axis, 
defined by the angle •o for which 

cos ½o= (cos 00)/(cos 0), (85) 

where 0o is the critical angle, and hence coupling occurs 
only if 0•0<00. Consequently, 0•Po<00, with the upper 
limit being achieved at broadside incidence (0----0), 
whereas •Po=0 if the incident wave is critical with respect 
to the axis (0=00). The ray direction and ray normal on S 
then follow from (48) as n=cos0He•+sin0ne2 and 
n x = --sin 0n%+cos 0he2, where On, given by either of 

sin 0n= (sin 0)/(sin 00) or 
(86) 

cos 0n--- (cos 0 sin ½o)/(sin 00), 

defines the helical angle of the ray path with respect to the 
circumferential direction, and %= --sin •o e• +cos 
We note that the length of one cycle of the helical ray path 
is 2rra sea: On. 

The principal directions at the coupling point axe 
ex=e• and en=ea, with principal curvatures 1/Rl= 1/a 
and 1/Rn----0. The ray-based curvatures of Eqs. (47) are 
given by 

a a 2 a sin 20n 
=cos 20n, •-• =sin On, Rr---- 2 Rll (87) 

The effective curvatures for longitudinal and transverse 
waves, deftned in (58), may be computed from these ex- 
pressions. The transverse effective curvature satisfies 
1/IRe[ •; l/a with equality when n bisects the directions of 
principal curvature. This occurs when On-----rr/4, which im- 
plies O=sin-•(cf/ctv7). Figure 6 shows both effective cur- 
vatures for steel and water (see Sec. I A for the parame- 
ters). The longitudinal and transverse critical angles are 
15.82 ø and 27.21 ø, respectively, and the maximum for the 
transverse curvature occurs at 0= 18.87 ø. 

The far-field scattering amplitude using the ray de- 
scription can be determined for oblique incidence in much 

1.0 

0.0 6 10 20 30 

o 

FIG. 6. Effective curvatures for a steel circular cylindrical shdl sub- 
merged in water. 

the same manner as was done for normal incidence in Sec. 

I. The z dependence, exp(ik•z), may be removed from the 
calculation resulting in one that is essentially 2-D with 
in (40) being replaced by k r of Eq. (92) below (see Ap- 
pendix A for definitions of related parameters). The same 
procedure is then followed, and the speculafiy reflected 
wave field becomes 

p•(Ol__Po• (•) [ 1 + 2r'/(a cos tp) ] - •/2 

Xexp[ik,(r' --a cos •p) ], (88) 

where r', Zf, and • are given by Eqs. (42), (7), and 
(15), respectively, and •=cos-•(cos 0cos •b) with 
=rr--qb is the scattered angle (see Fig. 5). 

Next, the leaky membrane waves are described along 
the surface S by Eqs. (55). The pressure in the fluid due to 
the leakage of the membrane waves traveling on the shell's 
surface can be determined in much the same manner as 

that done for the 2-D case. After removing the z compo- 
nent, the relevant wave• number entering the Grecn's func- 
tion is k,, and we use G to indicate this modification. Then 
following the same solution procedure outlined for Eqs. 
(32)-(36), a similar result is obtained for the radiated 
pressure due to the leaky membrane wave, 

cot 00 2Z•Z• 2•-•a 
fmem(X') •'• •r($)6(0'X')/(-'0 kfR-• Zm--I-• s • •SS •O' 

(89) 

where Eq. (85) has been used to remove the dependence 
upon ½0 in favor of 0 o. Recall that R 0 is the radius of 
curvature for longitudinal or transverse waves (58). Also, 
V(s) [the analog of Vo in Eq. (36)] is the launch coefficient 
of a single ray for the incident plane wave, and follows 
from (75) and (87) as 

sec On Po ß 2•-ja (90) V(s) ='_kokfR ø Zrnq-Zs • cos 00' 
The coupling from the shell to the fluid can be handled in 
a manner similar to the 2-D analysis [Eqs. (37)-(39)] with 
the final result, analogous to Eq. (39), that 
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•mem(x) 

--i4rr (a) 2 ZmZs Po• •(x2,x)ei%,œ ' -k• sin 00 •oo (Zm+Zs) 2 cos o•v 
(91) 

The azimuthal wave number k•s and the radial wave num- 
ber are determined from 

•s=kZ-•, •=/•f-•, (92) 

with k 2 given by the dispersion relation Eq. (59) and 
kz=kœ sin 0. The ray length L in this c:dculation is the 
length of the projection of the helical ray path onto a circle 
of section, or equivalently, onto the principal curvature 
direction nx on the cylinder. The radiated response gener- 
ated by the membrane waves can be evaluated in the same 
manner as done previously for the 2-D problem. Because 
the response is essentially 2-D, the arclength L traversed 
by each wave is once again given by the 2-D results of Sec. 
I but with 00 replaced by ½0 [see Eq. (44)]. Another way of 
looking at this is in terms of the phase traveled along a ray 
from launch to exit, kL sec OH, which contains a z com- 
ponent given as kzL tan 0•v. Subtracting the z component 
of the phase is similar to calculating the distance traveled 
along the circumferential, nx, direction on the cylinder and 
then projecting it into the ray direction, One must take 
care to retain the complex part of the critical angles in this 
procedure so that the attenuation is maintained in the 
phase terms of the membrane scattered wave field. 

Having found the radiated response of'a single ray of a 
single species (91 ), we can now write the total contribution 
of the leaky membrane waves in a form similar to F.q. (44). 
Doing so gives, for the membrane wave field, 

]•mcm = --Po • •ofl (Zmq-Z•s) 2 a= L,T 

• sec •H eikr(r'--acøs %) 
1 --ea"'k•* a •8*rikr r' 

X (ea• a[*•v(e•- •) +•-•1 +ea• ?(•-'•-•) ), 
(93) 

where 

KL=COS 2 0/•q- ¾ sin 2 0H L, gr=sin 201;, (94) 

and the wave numbers k a and k•s, the critical angle ½•, and 
the helical angle •H are determined for each wave type 
using Eqs. (59), (92), (85), and (86), respectively. The 
far-field scattering amplitude is determined by evaluating 
Eq. (40) using Eqs. (88) and (93) along with Eq. (42) to 
obtain 

a:= L,T 

4,r 4 sec 
xt,, 

X e -an• cos ½• 
1 -ea•&•? 

252 ], > 
X [cos(2k•)ei•&•? ' 0<0•, (95) 

where • has once again been nomalized with respect to 
the incident wave-field amplitude and a phase shift corre- 
sponding to the diameter of the cylinder, and H denotes 
the Heaviside function. The membrane resonances are 

again evident, occurring when kg• is close to a whole num- 
ber in value. Also, the expressions (93) and (95) are 
clearly discontinuous at ½=½0, and the remarks for the 
2-D example of Sec. I E obviously apply here also. 

Let us discuss the numerical results. As a check on the 

accuracy of the asymptotic dispersion relation of Eq. (59), 
we compared it to that given by the exact solution for a 
circular cylindrical shell (Appendix .A). For a given fre- 
quency and angle of incidence 0, the surface wave number 
k can be calculated from (ka)2=m2+ (kff) 2, where m is 
the complex zero of the denominator in Eq. (A5a). Using 
a two-term Debye expansion for the cylinder functions of 
complex order, it was found that the approximation given 
by •. (59) is in very good agreement with the exact sur- 
face wave number. For example, at the relatively low value 
of kfl = 10 the largest relative errors in the imaginary parts 
of the longitudinal and shear wave numbers were 3% and 
11%, respectively, for all values of 0 below critical. These 
numbers decreased to 1•% and 3% at k•=20. 

The in-surface displacement on the shell depends only 
upon the coupling mechanism and is independent of the 
launching. Therefore, as a first check on the accuracy of 
the coupling, from •. (75), we show in Fig. 7 the com- 
parison with the exact theo• from Appendix A [Eqs. 
(AS)]. We note that the ray computations in Fig. 7 involve 
both longitudinal and shear rays simultaneously. The ray 
theory is obviously invalid as k•O:, but is quite reason- 
able for k• > 10. In general, in all the ray results the agree- 
ment improves as k• increases. The combined coupling 
and launching mechanisms are illustrated in the compari- 
sons of the fore function in Figs. 8 and 9. We note that the 
simpler structure in Fig. 8(c) is due to the absence of 
1on•tudinal waves. The other figures exhibit the combined 
influence of both membrane wave types. The nonunifom 
nature of the ray calculations is evident in Fig. 9(a) at the 
longitudinal critical angle 15.82 ø. This could be remedied 
using transition (cftc) functions, as discussed in Sec. I C. 

B. The spherical shell 

We now consider a plane wave of unit amplitude inci- 
dent along the polar axis of a spherical shell, producing a 
scattered wave field axisymmetric with respect to the polar 
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FIG. 7. Comparison of the magnitude of the in-surface displacement at 
two different positions on the shell, for 0=10', and (a} •=30 ø, (b) 
•=90 ø. 

axis. Two distinct situations arise in calculating that part of 
the field generated by the membrane waves, depending 
whether the receiver is on the polar axis or off it. In the 
former case a ring of infinitely many membrane rays radi- 
ate from the surface of the sphere toward the observer. 
But, as the observation point is moved off the polar axis, 
only two rays contribute to the total wave field and these 
are shed from the great circle in the plane spanned by the 
incident and scattering directions. The two situations are 
obviously different in terms of rays, but could be viewed as 
limiting cases of a single uniform theory. •ø However, for 
the sake of simplicity and brevity, we treat the two cases 
separately. In either case, we note that 1/R r of (47c) and 
hence 1/R o of (58) both vanish identically everywhere on 
a sphere, so that there is no coupling to shear waves. 
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FIG. 8. Comparison of exact and ray-based form functions for a circular 
cylindrical shell with oblique incidence. (a) 0= 10 ø, •b=0 ø. (b) 0= 10 ø, 
•=10 •. (c) 0=20 •, 0=0 •. 

1. Backscatter: receiver on axis 

Here we are concerned with determining the backscat- 
ter amplitude for the receiver along the polar axis. This 
case is essentially 2-D because of the axial symmetry. The 
response in the surrounding fluid caused by the membrane 
waves can be represented as 

Pmem(X')=2rra2 f (G •p c•GnG)sinOdO, (96) 

where p is the surface pressure caused by the membrane 
wave (55), and G is the 3-D free-space Green's function. 
We note that the surface element is reduced to a single 
parameter by dS=2•' sin 0 dO, and that the integral (96) 
is over any semicircular arc passing through both poles 
(0=0,•r) (see Fig. 10). The task of evaluating (96) is now 
formally identical to the 2-D integral considered in Eq. 
(32). In particular, we assume that the major contribution 
arises from the vicinity of the ring 0 = 00 on the sphere. The 
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FIG. 9. Comparison of exact and my-based form functions as the oblique 
angle of incidence is varied. (a) kja=10. (b) k/a=30. (c) kla=50. 
Note that the ray response is discontinuous at •t., the critical angle for 
longitudinal waves. 

phase of the Green's function can be approximated accord- 
ingly. Omitting the details, which are the same as for Eqs. 
(32)-(34), we find that the backscatter is 

Pmem(X' ) .•4rrok/a2Z•FY(x2)cos 00O(x2,x') 

0o 2•)sin x f exp(/k/cos oao, (97) 
where s=a{O--Oo), x• denotes the launch point (ring), 

FIG. 10. The spherical shell, coordinate system, source direction, and 
observation point locations. 

and I / ls the ray amplitude there. W• note that 

• sin(q•+t9o)exp(i_•_klaCosOo)d•b 
• 2•ri 

=sin OO•k•a cos 0o exp[ --i(2kja cos 00) -l], (98) 
and the final exponential term may be neglected as being 
asymptotically negligible. Then, using Eq. {57) for the am- 
plitude factor F and Eq. (90) for the ray amplitude 
(launch coefficient) V, with Rll =R• =a and 
Ro=a/(l+v) in these expressions, I:XlS. (97) and (98) 
reduce to 

ZmZs 

proem(X) = --i8•t'• ( 1 +v) • • (Zm+Zs)2 G(x2,x)e ikL. 
(99) 

Here, the possible distance traveled along each ray is 
L=2a(rr--00) +2tram, rn=0,1,2 ..... In addition, a phase 
shift of --rr/2 must be included for each time the surface 

membrane wave passes through either of the two polar 
focal points on the sphere. These phase shifts are not in- 
eluded in (99). 

The total response along the polar axis (axis of sym- 
metry) can then be written in form similar to that for the 
2-D cylinder (44). Doing so here gives 

2•r ZmZs eik•n '-• oo) 
P•½• =Po( 1 +v) • (z+zo 

Xea•a(z-øo ) • e i'n(•+2zt•}, (100) 
rn=0 

where the --r r/2 phase factors are due to the membrane 
wave passing through a focal point mtee on the first trip 
around the sphere and twice for every subsequent trip. 
Also, the incident wave-field amplitude has been phase 
shifted to the center of the sphere by the amount 
kja cos 0o. Note that R'mR--a cos 0 o, where R is the dis- 
tance along the polar axis. The far-field backscattering am- 
plitude may be calculated using a relation similar to Eq. 
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(40) but formulated for spherical wave fields as 

•-= lim [ (2R/a)e-ik[n(p--l•inc) ], (101) 

where R is measured from the center of the sphere to the 
far field. One then obtains 

4•r Z,r, Zs 

•=•(0)eakf*+ (1 +v)2 k•a (Zm+Z,) 2 
ea•a(•r-Oo) 

Xe-akf atøsøø l +en•r • , (102) 
where the surface wave number k is calculated using Eq. 
(59). 

2.0 
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2. Bistatic response: receiver off axis 

As usual, the total scattering is split into a specular 
part and a contribution from the longitudinal shell waves. 
The specularly reflected wave field for plane wave inci- 
dence may be approximated in the far field as 27'28 

pSe(o) • t• ø ( a/2R, ) ein[ (a'-a cos (103) 

where P•0 is given by Eq. (15). In this instance the my-tube 
area [.4 (R')/A (0)] •/• is approximated by 2R'/a. Note that 
R' mR--a cos 0, where R is the distance in the great circle 
plane. In order to determine the membrane wave effects, 
consider the longitudinal ray which begins at s=0, where 
s= (O--0o)a. The ray tube area equations [(67) and (71)] 
are easily solved in this case to give 

A(s) = (sin O)/(sin 0o). (104) 

The wave-front curvature becomes, from Eqs. (69) and 
(79), 

I/RD(s) = ( 1/a)tan 0o cot 0. (105) 

Hence, both the ray tube area and R D vanish at the poles 
(0=0,rr) as expected. The scattered field due to a single 
ray, which couples onto the sphere at 0=00 and is 
launched at 02, now follows from Eqs. (83) and (84) as 

Proem(x) •Po( 1 +v) -•- ¾kja (Zm_.[_Zs) 2 

X •sin(02+00) e/•½ø•-øø)G(x2'x)' (106) 
Note that this becomes singular for 02= rr--00 correspond- 
ing to the south polar direction for the observer (incidence 
is from the north polar direction). 

We can now write out the total bistatic response in 
terms of the angle of incidence of the specular ray, 0. The 
launch angle 02 may be expressed in terms of 0 and the 
coupling angle 0o. Then combining the clockwise and 
counterclockwise membrane rays, and using Eq. (106), the 
total response of the membrane waves becomes 

FIG. 11. Comparison of exact and ray-based form functions for back- 
scatter from a spherical shell. In this instance, the leaky membrane waves 
form a ring source on the sphere. 

Pmem= __Po(l _[_v)21• 2rri ZmZ, a sin 20 (Zm+Zs) 2 

ei• /n ' e- at• f• cos Oo 
X 

k fR' 1 q-e t2*rka 

X (ea•["s(øø-ø)+ø-øøle-•=s(øø-ø)--iea•a{•'-ø-øø)). 
(107) 

Ag•n, H d•ot• the Hea•side function, and the ph• 
sh•ts --•/2 for •h pm•ge through a •le (noah or 
muth) have •n include. Finely, the fore function for 
bis•tic •ttedng is c•culated using •s. (101), (107), 
•d (103), •ving 

•=•(O)e-a• •ø 

(1 +v)2,/ 8•i Z• e-'2• • 
k• ]ka sin 20 (Z•+Zs) 2 l+d 

X (•[•H(øø-ø)+ø-%le-i=H(&-ø)--iea•(•-ø-•)), 
(108) 

wh•e the su•ace wave number k aga• follows from 
(59). 

3. Numerical results 

The backscatter comparison with the exact theory 
from Appendix C is shown in Fig. 11, and an example of 
bistatic scattering is given in Fig. 12. The asymptotic the- 
ory appears to predict the resonance amplitudes well. The 
discrepancies in the background response between reso- 
nances is again attributable to the simplicity of model used 
for the background field. The deviations of the positions of 
the resonances in Fig. 11 are more interesting and illustrate 
how the asymptotic dispersion relation of Eq. (59) fails as 
k/a--,0. If the term (1--v)/R[R n is omitted from the dis- 
persion relation, we find that the disagreement between the 
exact and approximate resonance dips is larger than shown 
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FIG. 12, The exact and ray-ba•d form functions for biotatic response 
from a spherical shell. Here only two leaky membrane waves contribute 
and they lie on a great circle in the plane spanned by the incident and 
scattered directions. 

in Fig. l 1. However, even though the dispersion may be 
incorrect, the coupling is still very accurate. 

IV. CONCLUSION 

Our main results are the diffraction, or coupling, co- 
efficients for membrane waves. The general procedure for 
applying these coefficients to a practical 3-D scattering 
configuration is summarized in Sec. II F. The coupling co- 
elficicnts, combined with ray equations for the membrane 
waves on the shell, provide the necessary ingredients for 
developing a ray-theoretic description of acoustic scatter- 
ing from fluid-loaded shells. Of course, the full strength of 
ray theory is its applicability to arbitrarily curved, smooth 
shells. The comparison tests in Sec. III for the separable 
geometries, the cylinder and sphere, indicate that the ray 
methods developed here would be suitable for other 
smooth shell geometries. The present results also show 
how the midfrequency response for smooth shells can be 
separated into a "background" response, plus the mem- 
brane wave field. The former depends on the shell inertia 
and the latter on the shell membrane stiffnesses, but not the 
bending stiffness. In fact, the approximate results reported 
here are completely independent of the flexural properties 
of the shell. 
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APPENDIX A: THE CYLINDRICAL SHELL 

Consider an obliquely incident plane wave of unit am- 
plitude striking a circular cylinder at angle 0 from 
broadside 29 (see Fig. 5). The incident and scattered acous- 
tic pressures are 

(piaC,pSC)=eik•z • (AmJm(krr),PmHm(krr))cosm.•, 
(A1) 

where J,• and H,• are the ruth-order Bessel function and 
Hankel function of the first kind, respectively, and Ao-- 1, 
Am=2i m, m>l. The axial and radial wave numbers are 
kz--kfsinO and kr=kfcosO [see Eq. (92)]. The con- 
stants Pm are determined from the boundary conditions for 
a thin circular cylindrical shell3ø: 

l--v l+v v 

u,zz+-•F a u,•+ •-•a v,z•+ • w;+•u=O, (A2a) 
l+v l--v I 1 

v 1 1 
--•w=---•, (A2c) 

plus the continuity equation [Eq. (6)] evaluated on r=a. 
In the above, k/is the fluid wave number, k•= •o/c• is the 
plate wave number, v is Poisson's ratio, C= pheW, the ra- 
dius is a, and l•l•=h2/12a 2. 

The above partial differential equations can be reduced 
to algebraic ones by assuming that the displacements have 
the form 

=e ik•z I'rn sin m•, (A3) 
0 kVmcoSm• ' 

After substitution of Eqs. (A1) and (A3} into Eqs. (A2), 
one obtains the matrix system 

'•12--•2-- [ (1--v)/2]m• [(1 +v)/2]m• 
[(1 +v)/2]m• l12--[(1--v)/2]•2--m 2 (A4) 

where fl=k,•a, •=k•a, and Gm=a2[AmJm(kr a) +P, n,,(k,a)]/C. The dispersion relation for the cylindrical shell is given 
by the vanishing of the determinant in Eq. (A4). To determine the coefficient Prn, first solve for Ur• and I' m in terms of 
Wm. Then, use the w equation of Eq. (A2c) and the continuity equation [Eq. (6)] to solve for Prn. Doing so yields 

f•_ 1 _/•2(•q_m•)2 ] [ iI, ff,• iG m 

P"= (A5a) 
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2 nfI 2 

2i m )112 2 

[ ( 1 --v)/2]m2+v{l• 2-- [ ( 1 --v)/2]•2--m 2} . 

V[ ( l -- V)/2] •2-1-1•2-- • 2-- [ ( l --¾)/2] m 2 

(ASb) 

(A5c) 

where the prime indicates differentiation with respect to 
the argument. Here, •/= pfa/ph is the fluid loading param- 
eter, and 

Dr• (g) = [D. •-- (m•+• 2) ]{D. 2-- [ ( 1 -v)/2l 

X (m2+•2)}, (A6a) 

Era(S ) =•0. 2-- l --fi2( m2 + •2)2--{ •2( m2-{- •2•2) 

- [ ( 1 -v)/2] (m(+ 2m2• 2 

+ v•)}/D,,(•'). (A6b} 

APPENDIX B: PHASE-MATCHING CONDITIONS 

According to the present theory membrane waves are 
excited on the shell by the h-phase beating of the incident 
field (actually, the background field) with the growing 
membrane waves. The same picture emerges from a 
Green's theorem representation of the membrane (in- 
surface displacements) waves, using the Green's function 
for the fluid-loaded shell. This can be defined for our pur- 
poses as the Green's function for the in-surface shell equa- 
tions, Eq. (53a), without the coupling to w, the latter effect 
being viewed as a forcing term for the generation of the 
membrane waves. The difficulty in this approach is that the 
Grecn's function is itself difficult to evaluate; however, we 
may approximate it using ray theory, as follows. First, the 
Grecn's function is composed of both types of membrane 
waves, each of which is defined by an amplitude and a 
phase. The amplitude functions must decay with distance 
from the source (along a ray, of course) like I/•(s), 
where the initial conditions for the ray tube area A• are 

`4•(0) =0, `4•(0) = 1 (BI) 

(in this appendix we take c=const for simplicity). The 
paraxial approximation to the phase function is of the same 
form as Eq. (69) with the replacement ,4--,.4•. 

Now consider the membrane wave field at the point x 
on S caused by coupling in the vicinity of the point x o to 
one particular wave type, longitudinal or shear. Let s o be 
the ray length between the two points, and redefine the 
origin ofs at x 0, rather than at x. Define B(s) =AG(so--s). 
The field at x can then be expressed as an integral of the 
forcing function, with phase •b i"c given by Eq. (49) (with 
M=0), multiplied by the membrane Orecn's function. The 
phase terms, and the dependence upon the ray distance s o , 
are contained in the integral 

• dsdr i /s • ? •sr • exp[• k cøt 00•-•-ii +•-t +•T 
--? tan 0o B(s) ] ] (B2) 

where the final term in the phase is due to the Grecn's 
function, and uses the identity B' = --`4•. The inte• 
may then • evaluated by approximating B and its deriv- 
ative by their v•u• at s=0, •elding a qu•fity propor- 
tion• to 

(o)mt oo 
e, ] 

•is •mp• with the qu•tity 

obta• from the analysis leading up to •d •clud•g •. 
(75). The •s•ction between thee alternative and appar- 
ently d•erent r•ts is that (•} de•nds upon •(so), 
w•ch h• the •ifi• •nditions (71), whereas 
B(0)=•6(s 0} in (B3} satisfi• the initi• conditions of 
(BI). •e connoting link is the fact that •th • and B 
solve the same evolution eq•tion, •. (67}. Also, the re- 
main•g par•ete• in (B3} and (•) are all de• at the 
coupling po•t s=0. 

•e •uivalence follows using the fact that the 
Wrons• fo• from •y two solutions of the ray tu• 
evolu•on •uation is a ray consmnt.• 5 •us, 
A(s}B'(s}--•'(s)B(s) is independent ors. •uating the 
Wronskian at s=0 and s=s o and using the end conditions 
(71} and (BI) give the desir• r•ult that (B3} and (B4) 
are inde• the same. More generally, if one l•ves the •i- 
ti• •ndition A'(0} as a • par•eter, •d •sum• the 
general fo• (72}, with R• and R s also fr•, then the same 
•gumen•, •d the indep•den• of B(0) •d B'(0), •- 
ply that R•, Rz, •d A'(0} must be assi• the v•ues 
smt•, i.e., R•Ri) , Rs=RtRi•/Rii , •d •'(0) 
=•t 0 o Rll /R•R n . Hence, the pha• matching conditions 
as given are unique and unambiguous. 

APPENDIX C: THE SPHERICAL SHELL 

Consider an incident plane wave of unit amplitude 
propagating in the direction 0=0 in spherical polar coor- 
dinates. The incident and the scattered pressures can be 
expanded as 

ao 

psc ] ---- m=0 [•'tnrSrn•n'f tl' 
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where Jrn and hm=h(m 1) are the mth-order spherical Bessel 
and Hankel functions, Pm are the Legendre polynomials, 
Am= (2m+ 1)fn, and 

Drn---- kfaEmh•(kfa)_•l•2hrn(kfa ) Am. (C2) 
The fluid-loading parameter •/ is defined in Appendix A 
and 

2 2 2 2 Em----l• --1• •m(•,n-I- 1 --v) -- ( 1 

--2(1-t-v), 

where the membrane modal 

•=m(m+l)- l+v, m= 1,2,3 ..... 

(C3) 
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