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Borehole flexural modes in anisotropic formations

Bikash K. Sinha*, Andrew N. Norris‡, and Shu-Kong Chang*

ABSTRACT

A perturbation method of solution is an efficient way
of analyzing elastic wave propagation along a borehole
in anisotropic formations. The perturbation model
allows us to calculate changes in the modal dispersion
curves caused by the differences in elastic constants
between the anisotropic formation of interest and a
reference, or unperturbed, isotropic formation. The
equivalent isotropic constants in the reference forma-
tion are obtained from the appropriate compressional-
and shear-wave velocities for the selected propagation
and polarization directions of the flexural mode. This
choice of the unperturbed solution means that the
required perturbation is minimal, resulting in en-
hanced accuracy of the perturbed solution. Computa-
tional results are presented for the dispersion curves of
borehole flexural waves in a transversely isotropic (TI)

formation as a function of borehole deviation from the
TI symmetry axis. In addition, radial distributions of
displacement and stress fields associated with the
flexural wave are obtained as a function of frequency.
These provide qualitative information on the radial
depth of investigation with flexural wave logging. The
flexural wave excitation function is a measure of the
energy that a source converts to flexural motion. We
deduce an expression for the flexural wave excitation
and show that its bandlimited characteristic is influ-
enced by both the borehole diameter and formation
parameters. From the dispersion curves and excitation
functions, we can compute the flexural waveforms
caused by a dipole source with arbitrary orientation in
the borehole. In the numerical computations, we have
used the unperturbed mode shapes for an equivalent
isotropic medium together with the perturbed disper-
sion relations caused by the formation anisotropy.

INTRODUCTION anisotropy (0 to 10 percent) and the associated shear-wave
birefringence at seismic frequencies may be significantly

Various sources of anisotropy are encountered in geo-
physical prospecting. Some homogeneous rocks, such as
Bakken shale and Austin chalk, may be intrinsically aniso-
tropic over logging depths of interest (Thomsen, 1986).
Anisotropy induced by formation lithology may also be
encountered, arising from effects such as horizontally lay-
ered or dipping beds, provided that the smallest wavelength
is much larger than the individual layer thicknesses (Backus,
1962; Berryman, 1979). Aligned fractures also give rise to
anisotropy resembling that of a transversely isotropic me-
dium.

In the past several decades, many observations of the
seismic velocity anisotropy in exploration geophysics have
been reported (Gassman, 1964; Levin, 1979; Crampin, 1985;
Winterstein, 1986; Garmany, 1988; Kerner et al., 1989).
While the P-wave anisotropy is usually small (0 to 10 percent)

large and have been the focus of several recent papers
(Leary et al., 1987; Lo et al., 1986; Ben-Menahem and Sena,
1990; Esmersoy, 1990). One reason for continued interest in
the evaluation of anisotropy by shear-wave splitting is its
potential application in the detection of aligned fractures,
cracks, and other inclusions (Crampin, 1985; Winterstein,
1987; Esmersoy, 1990).

An acoustic source in a fluid-filled borehole generates
head waves as well as borehole modes (Tsang and Rader,
1979; Kurkjian, 1985). The head waves are caused by
coupling to plane waves in the formation that propagate
along the borehole axis. Generally, there are three head
waves for a borehole in an anisotropic formation. They
correspond to the qP-, SH-, and qSV -waves in the forma-
tion. Kurkjian and Chang (1983) studied geometric decays of
the head waves along the propagation direction excited by a

and may often be obscured by heterogeneity, the S-wavedipole source and found them to be functions of frequency.
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However, most of the acoustic energy propagating along the
borehole is contained in the various borehole modes that are
excited by the source for given borehole and formation
parameters. Among the lowest-order axisymmetric and flex-
ural families of borehole modes, the Stoneley mode is
generated by a monopole source whereas the flexural mode
is generated by a dipole source (Kurkjian and Chang, 1986).
Changes in the lowest-order flexural mode dispersion curves
as a function of radial polarization direction provide a
convenient means for measuring azimuthal formation anisot-
ropy. In addition, since there are no refracted shear head
waves that can be detected by receivers placed in the
fluid-filled borehole, flexural wave logging is the preferred
technique for the estimation of shear slowness in a slow
formation (where the shear wave velocity is less than the
borehole-fluid compressional velocity). An attractive feature
of borehole flexural waves is that its low-frequency velocity
always asymptotes to the formation shear-wave speed.

Nevertheless, only a limited amount of work has been
reported to date on flexural wave logging of anisotropic
formations. Much of the earlier work dealt with transversely
isotropic (TI) formations with the axis of symmetry parallel
to the borehole axis (White and Tongtaow, 1981; Tongtaow,
1982; Chan and Tsang, 1983; Schmitt, 1989). Subsequently,
Leveille and Serriff (1989) analyzed tube waves in the
low-frequency limit and obtained a borehole displacement
solution caused by a horizontal point force in the case of a TI
formation whose symmetry axis was normal to the borehole
axis. Nicoletis et al. (1990) analyzed the tube wave phenom-
enon in the low-frequency limit for the same kind of forma-
tion anisotropy.

Recently, Ellefsen et al. (1991) presented a study of
flexural wave dispersion curves in weakly anisotropic for-
mations from a perturbation model that was derived from
Hamilton’s principle. Computational results were provided
for a borehole either parallel or normal to the TI symmetry
axis of fast formations (where the shear-wave velocity is
larger than the borehole-fluid compressional velocity). They
also considered a borehole aligned with an axis of an
orthorhombic solid, for which the starting solution for the
perturbation scheme is for an isotropic formation whose
shear velocity is an average of the two shear velocities along
the selected propagation direction. Note that in anisotropic
solids, the two shear velocities corresponding to the qSV-
and SH-polarized waves propagating along a given direction
are usually different.

Additional numerical results for anisotropic formations
were recently presented by Leslie and Randall (1992), who
developed a finite-difference method for the computation of
time-waveforms at an array of receivers because of a mono-
pole or dipole source pulse in a fluid-filled borehole. These
waveforms can be processed by a variation of Prony’s
algorithm (Lang et al., 1987) to yield either the Stoneley or
flexural wave dispersion curves. Although this numerical
procedure can handle any type of anisotropy, the accuracy
and large computing time compared to those of analytical
models may limit its usefulness in some cases.

Analytical modeling of wave propagation in cylindrical
coordinates with the anisotropy of the medium expressed in
a Cartesian reference frame provides unique challenges in
writing the solution in a separable form. These challenges

stem from the directional dependence of the elastic con-
stants in an anisotropic medium when represented in cylin-
drical coordinates. The resulting differential equations of
motion with variable coefficients do not offer straightforward
solutions in a closed form.

In this paper, we present a perturbation solution method
for elastic wave propagation along a borehole in an aniso-
tropic formation. This perturbation technique readily treats
spatial changes in both the elastic constants and mass
density of the elastic medium and yields the corresponding
changes in the frequency-wavenumber dispersion curves.
Instead of working with any kind of “average” material
constants, we find that the best choice of equivalent isotro-
pic parameters for the unperturbed state are those derived
from the appropriate compressional- and shear-wave veloc-
ities for the selected propagation and polarization directions.
The propagation direction is the borehole axial direction,
and the polarization depends upon the polarization direction
of the flexural mode. This choice of equivalent isotropic
parameters results in a relatively small correction to the
dispersion and ensures high accuracy of the predicted dis-
persion curve.

Computational results are obtained for the dispersion
curves for the qSV- and SH-polarized flexural waves along
several orientations of a borehole in Bakken shale (a fast TI
formation) and Austin chalk (a slow TI medium). Computa-
tional results are also provided for the radial distribution of
modal amplitudes as a function of frequency in the Austin
chalk (a slow TI formation). Of particular importance in
flexural wave logging is the radial depth of investigation at a
given frequency. To this end, we discuss the radial distribu-
tion of modal amplitudes as a function of frequency for
qSV-polarized flexural waves along a borehole in Austin
chalk when the borehole axis makes an angle of 45 degrees
with the TI symmetry axis. In addition, we define an
excitation amplitude function for the flexural modes and
illustrate its frequency dependence along with synthetic
waveforms at an array of receivers that result from a dipole
source oriented along the qSV- and SH-displacement direc-
tions on the borehole axis. Since the dipole source may not
always be oriented along a canonical direction of either the

 V- or SH-displacement direction, we present synthetic
waveforms that result from a dipole source directed along an
azimuthal angle of 30 degrees from the qSV-displacement
direction in a borehole normal to the TI symmetry axis.
These synthetic waveforms may be significantly different
from the cases when the source is directed along either the
qSV- or SH-displacement directions. This difference is a
result of the flexural wave splitting into the qSV- and
SH-polarized flexural waves propagating at different veloc-
ities because of the formation anisotropy. Flexural wave
splitting over an intermediate frequency band may also
occur because of the borehole ellipticity in an isotropic
formation (Randall, 1991; Liu and Randall, 1991). However,
borehole ellipticity-induced azimuthal anisotropy in flexural
wave dispersion curves becomes negligibly small at both low
and high frequencies. On the other hand, formation induced
azimuthal anisotropy in flexural wave dispersion curves is,
generally, the largest at low frequencies.
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ELASTIC WAVES IN A BOREHOLE

The propagation of plane elastic waves in anisotropic
solids is governed by the equations of motion, which take the
following form in the absence of any body force density:

represents the mth eigenfunction of the operator  The
complex-valued eigenfunction  satisfies the equation

 +  = 0, (7)

and is assumed to be of the form

    , (1)

where  and  are the elastic constants and mass density
of the solid, respectively. In the following, we have used the
Cartesian tensor notation and the convention that a comma
followed by an indexj denotes differentiation with respect to

 The summation convention for repeated tensor indices
and the dot notation for differentiation with respect to time
are also implied. A plane-wave solution to equation (1) may
be written

   =   (8)

The modal frequency is therefore a function of the vertical
wavenumber, i.e., the modal dispersion relationship may be
expressed as

   (2)

where  are the direction cosines of the wave vector with
respect to the Cartesian axes   and V are the wave-
number and phase velocity, respectively. Substitution of
equation (2) into equation (1) yields (Auld, 1973)

   

where the acoustical tensor is
Substituting from equation (6) into equation (5) and with the
aid of equations (8) and  we obtain

Q  

The three plane-wave velocities along a given propagation

   +    k)

direction are obtained from the three eigenvalues of
equation (4). The associated eigenvectors corresponding to
each of these three eigenvalues define the wave polarization
vectors. These plane-wave velocities are thus calculated
along the borehole axis to determine the equivalent isotropic
constants for the solution of the background medium in the
perturbation model.

     

Taking the inner product of equation (12) with   ,  k)
and using the orthogonality conditions, we obtain uncoupled
equations for the modal amplitude functions, which have the
form

Next, we describe a procedure for obtaining synthetic
flexural waveforms resulting from a dipole source in aniso-
tropic formations. To this end, we first consider transient
solutions of the borehole modes with an impulsive source
located in the liquid-filled cylindrical borehole. The forced
equations of motion describing such transient solutions may
be written as

      =    

where  is a linear operator, and F is a forcing function. A
partial solution (see discussion below) to equation (5) may be
expressed in terms of a summation over the eigenfunctions
of the operator  The borehole and formation are assumed
to be independent of the axial coordinate, implying that it is
convenient to use eigenfunctions in the form of vertical
transforms. Accordingly, we generalize the preceding anal-
ysis to include the associated complex-valued eigenfunc-
tions. The modal sum becomes

The solution to equation (13) follows from a standard
procedure based on Laplace transform technique and can be
expressed in terms of a convolution integral (Sneddon,
195 1). Assuming that the forcing is zero for t  0, we have

where  k) are the modal weighting functions to be where H(t) is the Heaviside function. For simplicity, we
determined for a given forcing function, and the index m consider a point force on the borehole axis,
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Here,  is the point force vector, with units of force.
Substituting for the weighting function  (t,  into
equation  the time-domain solution for the particle dis-
placement caused by the impulsive force on the borehole
axis at t = 0, may be expressed as

Equation (18) represents a time-domain solution in terms of
a wavenumber integral. The procedure for obtaining a solu-
tion for borehole modes in the frequency-domain in terms of
their dispersion characteristics is explained in Appendices
A, B, and C. Once the wavenumber-frequency relationship
is known via the dispersion curve, we can transform
equation (18) into a more illuminating frequency integral that
clearly shows the convolution of the flexural mode spectrum

 (0,  (w)) and source spectrum  The resulting
expression takes the form

where =   is the inverse of equation (9), and the
modal group velocity   is

 = (20)

The function  in equation (19) is the transform of the
forcing function, defined as

Appendix D contains a derivation of the source spectrum
 for a dipole source placed on the axis of a fluid-filled

borehole.
The preceding analysis is exact for a system that can be

described completely by a discrete spectrum of modes. If the

formation were of finite radius, rather than infinite, then the
modes of the borehole plus formation would indeed be
discrete. However, the infinite radial extent of the formation
means that there are continuous spectrum contributions. In
the isotropic case these correspond to the branch line
integrals for the P- and S-waves, and manifest themselves
physically as head waves. Similar head wave effects can be
expected in the anisotropic formation, and these must be
added to the modal expansion to provide the complete
solution. However, unlike the borehole modes, the head
waves decay with distance along the borehole (Kurkjian and
Chang, 1983), and may be safely ignored at relatively large
source-receiver separations. In the numerical results re-
ported here, we have not included any head wave effects,
but just used the modal expansion in equation (19).

In applying equation (19) to anisotropic formations, it is
necessary to know both the dispersion relations and the
mode shapes for each term in the series. However, for small
anisotropy the dispersion relation can be approximated well
by the perturbation theory described in Appendices A and B.
The mode shapes may be determined by a similar type of
asymptotic analysis. However, it can be easily shown that
the change in the mode shape is of order 
of less significance than the change in the

2

d
and is therefore
ispersion curve.

In the numerical computations we have used the unper-
turbed mode shapes combined with the perturbed dispersion
relations.

Referring to equation (19), the modal amplitude of the
radial component of the particle acceleration on the borehole
axis may be defined as

  =
 l  

 
(22)

where  is a unit vector along the radial direction associated
with the direction of the dipole that excites the flexural wave
(see Appendix D). This quantity measures the coupling of a
dipole to mode m, and its frequency dependence is of some
significance. We note that the normalization parameter 
can be obtained in closed form from Appendix C.

Since we are interested in obtaining synthetic waveforms
exclusively caused by either the qSV- or SH-polarized
flexural modes, only one term in equations (18) or (19)
contains the flexural wave solution, and the summation over
the index m is not needed. The polarization direction for the
flexural mode (m = 1) is along the   0 direction, where

 is the azimuthal angle in the plane perpendicular to the
borehole. The frequency dependence of  indicates the
excitation potential of the mth mode as a function of
frequency of the dipole source. The dipole source spectrum

 employed in this study is given by the second-
derivative of the Blackman-Harris window and is described
in Kurkjian and Chang (1986).

It is assumed for the remainder of the paper that the
formation is transversely isotropic with its axis of symmetry
aligned in an arbitrary direction relative to the borehole, as
shown in Figure 1. Given the borehole axis as the propaga-
tion direction, there are two canonical (or principal) direc-
tions in the plane normal to it that correspond to the SH- and
qSV-wave polarizations in the formation. Specifically, when
the TI symmetry (x3) axis is normal to the borehole (x2)
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axis, the SH- and qSV-wave polarizations are oriented along
the  and  directions, respectively. Assuming that the
dipole transmitter is oriented at an azimuthal angle  from
the symmetry axis, the radial component of the flexural
waveforms  and  at the inline and crossline
receivers, respectively, are given by

and

     +   (23)

   (“SH    (24)

where  and  are, respectively, given by equation (19)
with all the quantities referred to the appropriate solutions
for the SH- or SV-polarized flexural waves at a given
frequency  It is clear from these results that there will not
be any flexural arrivals at the crossline receivers when
the dipole transmitter orientation  is either 0 degree or
90 degrees.

COMPUTATIONAL RESULTS

A schematic of a borehole of radius a inclined at an angle
 with respect to the TI symmetry axis is shown in Figure 1.

Since the measurements are performed along the borehole
axis, the TI elastic constants of the formation are initially
expressed with respect to the unprimed x1, x2, and x3 axes,

FIG. 1. Schematic diagram of a fluid-filled borehole. The
borehole axis makes an angle  with the TI symmetry axis.

where  is coincident with the TI symmetry axis. These
constants are then transformed into rotated constants re-
ferred to the primed  ,  and   z axes for the case
when the borehole axis makes an angle  with the TI
symmetry axis (Auld, 1973). The resulting elastic constants
referred to the rotated axes exhibiting monoclinic symmetry.
However, it is worth noting that those elastic constants, C14,

  and which couple the normal stresses and
shear strains, do not have any influence on the flexural wave
dispersion curves since all the perturbation integrals associ-
ated with them vanish (see Appendix B). Note that in this
example the elastic constants possess monoclinic symmetry,
with  = as the binary axis. That is, the material
constants exhibit 180 degrees rotational symmetry about the

 axis. Nevertheless, the same elastic constants do produce
coupling between the flexural and axisymmetric Stoneley
waves along the borehole.

To illustrate the application of the perturbation model to
predict the flexural wave propagation characteristics in a
liquid-filled borehole in an anisotropic formation, we present
results for the qSV- and SH-polarized flexural wave disper-
sion curves for various inclinations with respect to the TI
symmetry axis for two types of formations: (I) Bakken
shale, a fast TI formation and (2) Austin chalk, a slow TI
formation. A fast formation implies that both the qSV- and
SH-wave velocities are higher than the compressional-wave
velocity in the borehole fluid; whereas in a slow formation,
both shear-wave velocities are lower than the borehole fluid
velocity.

When referred to the Cartesian axes  , x2, x3), with x3

as the TI symmetry axis, the mass density and elastic moduli
for Bakken shale (Vernik and Nur, 1991) and Austin chalk
(White, 1983) are shown in Table I. The borehole liquid is
assumed to have a compressional speed of 1500 m/s and
mass density of 1000 kg/m3. All computational results are for
a borehole of radius IO.16 cm (4 inches).

Figures 2a and 2b, respectively, show qP-, and qSV- and
SH-wave velocities in Bakken shale as a function of propa-
gation direction from the TI symmetry axis. The corre-
sponding wave velocities in Austin chalk are displayed in
Figures 3a and 3b, respectively. Note the significant differ-
ence in the variation of qSV-wave velocity with the propa-
gation direction in these two cases. These velocities play an
extremely important role in obtaining the dispersion curves
for the borehole surrounded by an anisotropic formation.
For given propagation and polarization directions, they
provide parameters for an equivalent isotropic medium
corresponding to either qP- and qSV-velocities or qP- and
SH-velocities. As part of an illustration, consider the prop-
agation of flexural waves along the borehole axis that make
an angle  = 26 degrees with the TI symmetry axis for the

Table 1. Model parameters.
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Bakken shale formation. We can obtain exact plane-wave
velocities from equations (3) and (4). These velocities are
also plotted in Figures 2a and 2b. For  = 26 degrees, the
plane-wave velocities in Bakken shale are:  = 3568.5
m/s;  = 2263.22; and = 2289.89. The equivalent
isotropic moduli,  and  for the SH-polarized flexural
waves along the  axis are given by  = 
and  =   and that for the qSV-polarized
flexural waves are obtained from  =  and 
=   where the subscripts “SH” and
  V’  denote the equivalent isotropic moduli for the 
and  V-polarized flexural waves, respectively. These
equivalent isotropic parameters serve to define the flexural
wave solutions in the reference or unperturbed state. Any
contribution to the flexural wave dispersion curve because of
the differences in the elastic moduli of the anisotropic
formation and the aforementioned equivalent isotropic mod-
uli is accounted for in the perturbation model discussed
earlier. However, perturbative corrections to the flexural
wave dispersion curves are rather small for the two exam-
ples considered in this paper when the equivalent isotropic
moduli are obtained from the appropriate plane-wave veloc-
ities for propagation along the borehole axis.

Figures 4a and 4b illustrate the SH- and @V-polarized
flexural wave dispersion curves, respectively, for four dif-
ferent inclinations of the borehole with respect to the TI
symmetry axis for Bakken shale (a fast TI formation). Both
the SH- and @V-polarized flexural wave dispersion curves
tend toward the Stoneley-wave velocity at frequencies

higher than 10 kHz for the planar interface between the
borehole liquid and anisotropic formation. Since the Stone-
ley-wave velocity in a fast formation is essentially close to
the compressional speed in the liquid, curves for the differ-
ent borehole inclinations coalesce more tightly than at lower
frequencies. The corresponding curves for Austin chalk (a
slow TI formation) are shown in Figures 5a and 5b, respec-
tively, for the SH- and @V-polarized flexural waves. Un-
like fast formations, both SH- and @V-polarized flexural
waves in these plots exhibit a rather uniform spread at higher
as well as lower frequencies. Of course, the low-frequency
asymptotes of all these flexural wave dispersion curves are
the corresponding shear speed in the formation; whereas the
high-frequency asymptotes turn out to be the Stoneley-wave
velocity appropriate for the propagation and polarization
directions. Both the low- and high-frequency asymptotes of
the flexural wave dispersion curves contain information
about the anisotropic constants of the surrounding formation
and are independent of the borehole geometry. Comparison
of the perturbation model predictions of dispersion curves
with those of the finite-difference results (Leslie and Randall,
1992) for Austin chalk over a band-limited window of the
source pulse shows agreement in the range of 2 to 5 percent.
This agreement is good in view of the coarse grid size in the
finite-difference model and band-limited source pulse em-
ployed in the calculations together with possible limitations
of the perturbation model in treating formations with mod-
erately large anisotropy, such as that of Austin chalk.
Although we have not included results for Cotton valley
shale in this paper, a similar comparison between the per-
turbation model and finite-difference results(Leslie and

FIG. 2. (a) The qP -wave velocity in Bakken shale as a
function of propagation direction from the TI symmetry axis.
(b) The qSV- and SH-wave velocities in Bakken shale as a
function of propagation direction from the TI symmetry axis.

FIG. 3. (a) The same as in Figure 2a, but in Austin chalk. (b)
The same as in Figure 2b, but in Austin chalk.
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FIG. 4. (a) Phase velocity dispersion curves for S&polarized
flexural waves along boreholes in Bakken shale with differ-
ent inclinations  with respect to the TI symmetry axis. (b)
Phase velocity dispersion curves for  V-polarized flexural
waves along boreholes in Bakken shale with different incli-
nations  with respect to the TI symmetry axis.

FIG. 5. (a) The same as in Figure 4a, but in Austin chalk. (b)
The same as in Figure 4b, but in Austin chalk.

Randall, 1992) shows better agreement than that for Austin
chalk.

Radial distribution of modal amplitudes is indicative of the
radial depth of investigation with flexural logging at a given
frequency. To demonstrate the significant frequency depen-
dence of the modal amplitude distribution, we present the
normalized radial coefficient for the displacement and nor-
mal stress components at frequencies of 1.22, 2.24, 3.34,
6.32, and 12.3 kHz. The first four frequencies are denoted by

 ,  ,   respectively, in Figure 5b for the borehole
inclined at an angle of 45 degrees to the symmetry axis. The
fifth frequency of 12.3 kHz is outside the range of Figure 5b.
These results are for @V-polarized flexural waves in a soft
formation represented by Austin chalk. The radial displace-
ment and stress components are defined in Appendix B.
Only the radial coefficients of the displacement and normal
stresses have been plotted in Figures 6 through 10, and the
quantities   and are normalized to unity at the borehole
surface given by  = 1.

Figures 6a and 6b, respectively, illustrate the particle
displacement components  ,  , and  and the three
normal stress components in the borehole liquid, which
extend to  = 1 and in the adjoining formation, in the
region   1 for the flexural mode at 1.22 kHz. To
illustrate the stronger confinement to the borehole surface
with increasing frequency of the flexural mode, we present

FIG. 6. (a) Radial distribution of displacement component
coefficients for  flexural waves along a bore-
hole inclined at an angle of 45 degrees with respect to the TI
symmetry axis of Austin chalk. The borehole surface is at
rla = 1, and the harmonic frequency is 1.22 kHz. (b) Radial
distribution of normal stress component coefficients for the
flexural wave. The notation is the same as in Figure 6a.
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FIG. 7. (a) The same as in Figure 6a, but for the frequency of
2.34 kHz. (b) The same as in Figure 6b, but for the frequency
of 2.34 kHz.

FIG. 8. (a) The same as in Figure 6a, but for the frequency ofFIG. 9. (a) The same as in Figure 6a, but for the frequency or
3.34 kHz. (b) The same as in Figure 6b, but for the frequency 6.32 kHz. (b) The same as in Figure 6b, but for the frequency
of 3.34 kHz. of 6.32 kHz.

these plots in Figures 7a and 7b, 8a and 8b, 9a and 9b, and
10a and 10b for frequencies at 2.34,3.34,6.32, and 12.3 kHz,
respectively. What is noteworthy in these plots is how
rapidly the modal amplitudes decay away from the borehole
surface with increasing frequency. This radial decay of the
modal amplitudes has important implications in its potential
interaction with radial inhomogeneities. In addition, it is
obvious from Figures 10a and 10b that the flexural wave has
almost transformed into a planar Stoneley mode at the
interface between the borehole fluid and the formation at
around 12 kHz.

Next, we discuss the flexural wave dispersion curves and
synthetic waveforms caused by a dipole source oriented
along the qSV- and SH-displacement directions in a bore-
hole normal to the TI symmetry axis of Austin chalk.
Figures lla and llb, respectively, show the normalized
phase and group velocities of qSV- and S&polarized flex-
ural waves as a function of frequency. Note that these two
sets of curves appear to be very similar, but the normaliza-
tion factor in each case is the appropriate qSV- or SH-wave
velocity. Figure 1 lc illustrates the excitation amplitude

  0) of equation (37) for the radial component of
particle acceleration on the borehole axis associated with the
SH- (solid line) and qSV- (dotted line) polarized flexural
waves as a function of frequency. These curves may be
viewed as the modal frequency spectrum, which indicates
the excitation potential of the flexural mode as a function of
frequency for a given borehole diameter, formation param-
eters and flexural polarization direction. These results are
normalized with respect to the largest amplitude of the
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 SH polarized flexural wave at about 4 kHz. Note that the
SH-polarized flexural wave with higher phase velocity than
that of the SV-polarized flexural wave exhibits a higher
excitation level. The overall behavior of the excitation
function is similar to that observed in the isotropic case.

The time waveforms for the radial acceleration component
for a dipole source directed along the SH- and SV-polariza-
tion directions are shown in Figures 12a and 12b, respec-
tively. The source spectrum is given by the second-deriva-
tive of the Blackman-Harris window (Kurkjian and Chang,
1986) and is centered at 2.5 kHz. These waveform traces
have been computed at eight source-receiver offsets of z =
243.84 cm (8 ft), 259.08 (8.5), 274.32 (9), 289.56 (9.5), 304.8
(10), 320.04 (10.5), 335.28 (11), and 350.52 (11.5). Note that
the waveform amplitudes are somewhat larger for the SH-
polarized flexural wave than for the SV-polarized flexural
wave for the same source amplitude. This difference in
amplitude is a result of the difference in the modal spectra for
the two flexural waves as shown in Figure 1 lc. In fact, the
time waveform for the SH-polarized flexural wave is signif-
icantly larger than that of the SV-polarized flexural wave for
a source pulse centered around 4 kHz.

Figure 13 shows a schematic diagram of orientation of a
dipole source and inline (X-X) or crossline (X-Y) receivers in
a borehole. Figures 14a and 14b, respectively, show the
inline and crossline dipole receiver waveforms caused by a
dipole source in a borehole normal to the TI symmetry axis

FIG. 10. (a) The same as in Figure 6a, but for the frequency
of 12.3 kHz. (b) The same as in Figure 6b, but for the
frequency of 12.3 kHz.

of Austin chalk and oriented at an azimuthal angle of
30 degrees from the SV-displacement direction (which coin-
cides with the TI symmetry axis). Figure 14c shows the
inline dipole receiver waveforms for a dipole that is perpen-
dicular to the orientation of Figure 14a. The source spectrum
and the source-receiver offsets are the same as those in
Figures 12a and 12b. Each of these three sets of waveforms
have been synthesized from the same two dispersion curves
associated with the SH- and qSV-polarized flexural waves
and an assumed source spectrum. The differences in the
waveforms are a result of the vector decomposition of the
flexural wave along the two canonical directions and the
resulting interference between the SH- and qSV-polarized
waves.

FIG. 11. (a) Normalized phase and group velocities for the
SH-polarized flexural wave. Propagation direction is normal
to the TI symmetry axis. (b) The same as in Figure 1 la, but
for the qSV-polarized flexural wave. (c) Frequency depen-
dence of excitation function (radial component of particle
acceleration on the borehole axis) for SH- and qS V-polar-
ized flexural waves.
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FIG. 12. (a) Synthetic waveforms caused by a dipole source
directed along the SH wave polarization direction. Propaga-
tion direction is normal to the TI symmetry axis. (b) The
same as in Figure 12a, but for the SV-polarized flexural wave.

FIG. 13. Schematic diagram of orientations of a dipole source
and inline or crossline receivers in a borehole.

CONCLUSIONS

We have demonstrated that proper selection of equivalent
isotropic parameters for given propagation and polarization
directions can greatly simplify modeling of borehole flexural
waves in anisotropic formations. These equivalent parame-
ters for the  SH -polarized flexural waves are obtained from
the exact qP- and SH- wave velocities; whereas those for the
@V-polarized flexural waves are derived from the exact qP-
and qSV -wave velocities for propagation along the borehole
axis. With this choice of isotropic parameters for the unper-
turbed solution, we have observed that the perturbative
correction to the flexural wave dispersion curve is negligible
for fast and slow formations considered in this study. A
small perturbative correction not only ensures a greater
accuracy in the prediction of the dispersion curves in the
presence of anisotropic formations, but also implies that the
anisotropic formation can be adequately represented in
terms of two equivalent isotropic formations for the purpose
of modeling the SH- and qSV -polarized borehole flexural
waves. This conclusion is further supported by the observa-

FIG. 14. (a) Inline dipole receiver waveforms caused by a
dipole source directed along an azimuthal angle of 30 degrees
from the TI symmetry axis. Propagation direction is normal
to the symmetry axis. (b) The same as in Figure 14a, but for
the crossline dipole receiver waveforms. (c) The same as in
Figure 14a, but for the dipole source and receivers perpen-
dicular to that of Figure 14a.



tion that the sagittal plane in a TI medium is also a plane of
mirror symmetry. As a result, the qP- and #V-displace-
ment components are intercoupled but independent of the
SH-displacement component.
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APPENDIX A
PERTURBATION MODEL

Different ways of deriving perturbation models for elasto-
dynamic problems have been reported (Auld, 1973; Tiersten
and Sinha, 1979; Ellefsen et al., 1991). Here we present a
simple derivation of a perturbation model specifically
adapted for the waves propagating along a borehole. Before
considering the specific problem of the borehole, we sum-
marize some general results for an arbitrary volume  of
anisotropic elastic material bounded by the surface 

We assume that the reference unperturbed state of the
general medium is governed by the equations of motion

  +   in 

where  denotes a harmonic solution at  and  is the
mass density in the unperturbed state. A superscript 0 refers
all quantities to the unperturbed state. The unperturbed
elasticity tensor is

and  and  are the Lame constants of the equivalent
isotropic medium. Theself-adjoint boundary conditions on

the bounding surface  are such that either the traction
  or the displacement  vanishes on  The

corresponding equations of motion in the perturbed state are

     , in 

and the associated boundary conditions on  are such that
either or  vanishes. The elastic constants 
and mass density  respectively, in the perturbed state are
assumed to take the form

and

 =  + (A-5)

Here  is a small positive number,   1, which is intro-
duced to simplify the asymptotic analysis. Its actual value is
immaterial, but its order of magnitude is characterized by the
relative difference between the perturbed and unperturbed
parameters. Generally speaking, the small perturbation pa-
rameter  defined by the relative difference between the
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perturbed elastic constants  and unperturbed elastic
constants should be less than 0.1. However, the small
perturbation parameter in this context depends on the choice
of the unperturbed elastic constants, and it differs from weak
material anisotropy as defined by Thomsen (1986). While the
small perturbation parameter may be made progressively
smaller by selecting the unperturbed elastic constants closer
to the perturbed constants, weak material anisotropy param-
eters are fixed for a given material. A solution to the
equation of motion (A-3) with the self-adjoint boundary
conditions in the perturbed state may be expressed as

Taking the inner product of equation (A-3) with  integrat-
ing over the volume  using the perturbational expressions
in equations (A-4) to (A-7), and keeping terms up to   order
of approximation, we obtain

where  denotes complex conjugate.
The first two terms in the integrand of the right-hand side

vanish according to equation (A-l). The last three terms
simplify as shown below

     

 (A-9)

In deriving equation (A-9), we have used equation (A-l) in
the first equality, and the divergence theorem along with the
unperturbed traction free boundary conditions on the bound-
ing surface  in the last equality. The remaining terms in
equation (A-8) along with equation (A-9) then take the form

  ,

+     

Integrating the first term by parts, then applying the diver-
gence theorem and boundary conditions on the bounding
surface  in the perturbed state, we obtain

For a circular borehole of radius a, which is invariant along
the axial z-direction, we can write the displacement field in
the following separable form

     (A-12)

Equation (A-l 1) can now be written explicitly in the
cylindrical coordinates for waves propagating along the
borehole, and noting the periodicity of the solution along the
axial direction,

where  is the displacement in the borehole liquid of mass
density  The perturbed material parameters in equation
(A-l 1) or” equation (A-13) may have arbitrary dependence
upon both  and  as long as the perturbation is small. The
procedure for applying equation (A-13) to borehole modes in
anisotropic formations     = 0) is discussed in
detail in Appendix B. For each value of the axial wavenum-
ber  (see Appendix B and below) the unperturbed mode 
is first obtained. Then the integrals in equation (A-13) are
performed to give the frequency perturbation  These are
added to the eigenfrequency  for various values of  to
obtain the final dispersion curves for the anisotropic case.

The phase slowness dispersion curves may also be readily
obtained by expressing the slowness perturbation in terms of
the frequency perturbation at a given wavenumber. Let the
unperturbed modal phase slowness be  and the actual
phase slowness be S = +  at a given wavenumber 
Then

k        (A-14)

which yields the following relationship between the slowness
and frequency perturbations at a given wavenumber

 =   
(A-15)

where terms of order higher than  are neglected.
The analysis in Appendices B and C is for modes of

arbitrary azimuthal order   0 although our interest here is
is primarily for the flexural mode n = 1. Appendix B
discusses the modes and provides an outline of the eval-
uation of the perturbation integrals in the numerator
of equation (A-13). In particular, closed form expres-
isions are given for the  integration of the flexural
wave solution in cylindrical coordinates. Closed form
expressions for the integrals in the denominator are given
in Appendix C.
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THE PERTURBATION INTEGRAL IN CYLINDRICAL COORDINATES

Since the unperturbed solution in the axisymmetric case is
known in terms of cylindrical functions, it is expedient to
carry out the volume integrals appearing in the perturbation
result in equation (A-13) in cylindrical coordinates. To this
end, we first note that

Equation (B-6) represents the elastic moduli  in polar
coordinates.

Since the  dependence of both  and  are now
known, we can carry out the  integration analytically. The
surface integral in the   plane can now be expressed as

where the strain tensor     +  and the equality
is justified because of the symmetry of the second-order
elastic constants The integration in equation (B-l) is
conveniently performed in cylindrical coordinates  and 
The r-integral cannot, in general, be simplified. However,
the $-integral may be explicitly performed, which we now
demonstrate.

We first transform the strain into cylindrical coordinates.
It may be shown that the six strain components for a
borehole wave of nth order in the circumferential parameter

 can be expressed in separable form,

where 
borehole

 =  

the rotation of theradial direction about
s; the six vectors eand E are, respectively

the

  (B-4)

where the superscript  denotes transpose, and

The representation of the moduli in cylindrical coordinates
can be achieved by rotating the coordinate system with 4.
Thus, when 4 = 0, the components in the cylindrical and
Cartesian coordinate systems coincide with  4 and 
directions being parallel to the axes  ,  and  of Figure
1, respectively. The original elements of C(6  6) in this
system are assumed to be of arbitrary anisotropic form, i.e.,
as many as 21 independent elements. These transform with 4
into the following form in the rotated frame,

where  denotes complex conjugate, and it is assumed that
the complex form of solution is employed. The constant
matrix  is defined by



1050 Sinha et al.

is consistent with the outgoing waves for the assumed time
dependence of e The radial wavenumbers  and  are
given by

where  and  are the  and  (or  wave
velocities along the borehole axis for the SV- (or SH-)
polarized flexural waves. The associated flexural wave solu-
tion in the borehole fluid may be written as

where the superscript 
fluid, and  is given by

refers the quantity to the borehole

We note that the matrix  is generally monoclinic with
respect to the z-direction and independent of the “non-
monoclinic” elements of  i.e., the same elements that and  is the compressional-wave velocity in the borehole

fluid.
The radial displacement coefficients for  ,  , and  in

the formation and borehole fluid are given by the quantities
in square brackets of equations (B-27 to B-29) and equations
(B-32 to B-34), respectively. The associated radial stress
coefficients for   and  are similarly defined by
collecting the radial functional dependence of these stress
components.

The amplitude coefficients        are ob-
tained from the four continuity conditions at the borehole
surface  = a. The four continuity conditions at  = a are

occur in equation (B-23). In addition,  does not depend
upon the moduli    and  but only on the
nine “orthorhombic” elements of 

We close this Appendix with a discussion of the elements
of the r-dependent six components of vector  of equation
(B-4). The strains in equation (B-4) are obtained from the
complex representation of the flexural wave solution, which
may be written in the form

     
 

    
  

  

   

 

 
    

Equations (B-36 to B-39) constitute a system of four linear
homogeneous algebraic equations in the wave amplitudes 

    and  which yields nontrivial solutions when the
determinant of the coefficients of the wave amplitudes van-
ishes. The solution, and the corresponding relationship be-
tween    is obtained numerically for a given modal
propagation.

(B-28)

      

where n = 1 for the flexural wave solution, H,(x) repre-
sents Hankel function of the first kind and of order n, which
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In this Appendix we give a closed form expression for the
integral that occurs in the denominator of equation (A-13)
and also in the definition of M  in equation (14). The integral
may be separated into separate integrals in the fluid and
solid. The former follows simply from the definition of  in
Appendix A as

where  1 + The remaining integral is more
complicated, but can be simplified using the following iden-
tity for the elastic displacement field in an isotropic solid

(C-2)

where 4 is a compressional potential, and H a vector shear
potential. Assuming time harmonic motion, each of these
potentials satisfies a corresponding Helmholtz equation. Let
V be an arbitrary volume with surface S and outward normal
n. Then it can be shown that

APPENDIX D
THE DIPOLE SOURCE SPECTRUM

The equations of motion in the borehole fluid may be given

 +  =

where the subscript or superscript    refers the quantity to
the fluid,  is the forcing function density,  =  is
the bulk modulus of the fluid, and  =  The forcing
function  for a monopole and dipole sources are,
respectively, given by Kurkjian and Chang (1986)

 =

for a monopole source, (D-2)

and

 =

for a dipole source, (D-3)

where  is a unit vector directed along the dipole direction
oriented at an angle  from the reference x2-axis in the
borehole cross-sectional plane, and the constant  (not to be
confused with the Dirac delta function) is the multipole
separation parameter in meters.

To evaluate  the forcing term in equation 
we note that the modal displacement field  in the
borehole fluid is equal to the fluid displacement field 
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which may be expressed in terms of a displacement potential
 given by

and J,(x) denote the Bessel function of the first kind of
order m. Substitution of equations (D-3) and (D-4) into
the expression within the square-bracket of equation (19),
yields

where  represents the dipole orientation from the reference
axis,  denotes complex conjugate, and  and 
represent the strength and frequency spectrum of the dipole
transmitter.


