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Borehole flexural modes in anisotropic formations

Bikash K. Sinha*, Andrew N. Norris*, and Shu-Kong Chang*

ABSTRACT

A perturbation method of solution is an efficient way
of analyzing elastic wave propagation along a borehole
in anisotropic formations. The perturbation model
allows us to calculate changes in the modal dispersion
curves caused by the differences in elastic constants
between the anisotropic formation of interest and a
reference, or unperturbed, isotropic formation. The
equivalent isotropic constants in the reference forma-
tion are obtained from the appropriate compressional-
and shear-wave velocities for the selected propagation
and polarization directions of the flexural mode. This
choice of the unperturbed solution means that the
required perturbation is minimal, resulting in en-
hanced accuracy of the perturbed solution. Computa-
tional results are presented for the dispersion curves of

formation as a function of borehole deviation from the
TI symmetry axis. In addition, radial distributions o
displacement and stress fields associated with the
flexural wave are obtained as a function of frequency.
These provide qualitative information on the radial
depth of investigation with flexural wave logging. The
flexural wave excitation function is a measure of the
energy that a source converts to flexural motion. We
deduce an expression for the flexural wave excitatipn
and show that its bandlimited characteristic is influ-
enced by both the borehole diameter and formatipn
parameters. From the dispersion curves and excitation
functions, we can compute the flexural waveforms
caused by a dipole source with arbitrary orientation |in
the borehole. In the numerical computations, we have
used the unperturbed mode shapes for an equivalent
isotropic medium together with the perturbed disper-

borehole flexural waves in a transversely isotropic (TI)

sion relations caused by the formation anisotropy.

INTRODUCTION anisotropy (0 to 10 percent) and the associated shear-wave

birefringence at seismic frequencies may be significantly

Various sources of anisotropy are encountered in geo-large and have been the focus of several recent papers
physical prospecting. Some homogeneous rocks, such adLeary etal., 1987; Lo et al., 1986; Ben-Menahem and Sena,
Bakken shale and Austin chalk, may be intrinsically aniso- 1990; Esmersoy, 1990). One reason for continued interest in
tropic over logging depths of interest (Thomsen, 1986). the evaluation of anisotropy by shear-wave splitting is its
Anisotropy induced by formation lithology may also be Potential application in the detection of aligned fractures,
encountered, arising from effects such as horizontally lay- cracks, and other inclusions (Crampin, 1985; Winterstein,
ered or dipping beds, provided that the smallest wavelength1987; Esmersoy, 1990). o
is much larger than the individual layer thicknesses (Backus, An acoustic source in a fluid-filled borehole generates
1962; Berryman, 1979). Aligned fractures also give rise to head waves as well as borehole modes (Tsang and Rader,
anisotropy resembling that of a transversely isotropic me- 1979; Kurkjian, 1985). The head waves are caused by
dium. coupling to plane waves in the formation that propagate

In the past several decades, many observations of thealong the borehole axis. Generally, there are three head
seismic velocity anisotropy in exploration geophysics have waves for a borehole in an anisotropic formation. They
been reported (Gassman, 1964; Levin, 1979; Crampin, 1985,correspond to the qP-, SH-, ag&V-waves in the forma-
Winterstein, 1986; Garmany, 1988; Kerner et al., 1989). tion. Kurkjian and Chang (1983) studied geometric decays of
While the P-wave anisotropy is usually small (0 to 10 percent) the head waves along the propagation direction excited by a
and may often be obscured by heterogeneity, the S-wavedipole source and found them to be functions of frequency.
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However, most of the acoustic energy propagating along thestem from the directional dependence of the elastic con-
borehole is contained in the various borehole modes that arestants in an anisotropic medium when represented in cylin-
excited by the source for given borehole and formation drical coordinates. The resulting differential equations of
parameters. Among the lowest-order axisymmetric and flex- motion with variable coefficients do not offer straightforward
ural families of borehole modes, the Stoneley mode is solutions in a closed form.

generated by a monopole source whereas the flexural mode |n this paper, we present a perturbation solution method
is generated by a dipole source (Kurkjian and Chang, 1986).for elastic wave propagation along a borehole in an aniso-
Changes in the lowest-order flexural mode dispersion curvesyqpic formation. This perturbation technique readily treats
as a function of radial polarization direction provide a spatial changes in both the elastic constants and mass
convenient means for measuring azimuthal formation anisot- ensity of the elastic medium and yields the corresponding

ropy. In addition, since there are no re_zfracted shear. hea hanges in the frequency-wavenumber dispersion curves.
waves that can be detected by receivers placed in thelnstead of working with any kind of “average’ material

Ileuéﬂr]::gide k;g:etf;]oele,eéltierﬁl;:%nwg;/ esé%%?l?o:;ntgses pi:]efgrgalgwconstants, we find that the best choice of equivalent isotro-

formation (where the shear wave velocity is less than the pic parameters er the unpertu.rbed state are those derived
borehole-fluid compressional velocity). An attractive feature fr.om the appropriate compres;uonal- and s;hegr-waye \{eloc-
of borehole flexural waves is that its low-frequency velocity [i€s for the selected propagation and polarization directions.
always asymptotes to the formation shear-wave speed. The propagat.|on- direction is the borehole gx@ dlrgctlo.n,
Nevertheless, only a limited amount of work has been and the polarization depends upon the polarization direction
reported to date on flexural wave |Ogg|ng of anisotropic of the flexural mode. This choice of eqUiValent iSOtI’OpiC
formations. Much of the earlier work dealt with transversely parameters results in a relatively small correction to the
isotropic (TI) formations with the axis of symmetry parallel dispersion and ensures high accuracy of the predicted dis-
to the borehole axis (White and Tongtaow, 1981; Tongtaow, persion curve.
1982; Chan and Tsang, 1983; Schmitt, 1989). Subsequently, Computational results are obtained for the dispersion
Leveille and Serriff (1989) analyzed tube waves in the curves for theqSV-and SH-polarized flexural waves along
low-frequency limit and obtained a borehole displacement several orientations of a borehole in Bakken shale (a fast Tl
solution caused by a horizontal point force in the case of a Tlformation) and Austin chalk (a slow TI medium). Computa-
formation whose symmetry axis was normal to the boreholetional results are also provided for the radial distribution of
axis. Nicoletis et al. (1990) analyzed the tube wave phenom-modal amplitudes as a function of frequency in the Austin
enon in the low-frequency limit for the same kind of forma- chalk (a slow TI formation). Of particular importance in

tion anisotropy. flexural wave logging is the radial depth of investigation at a

Recently, Ellefsen et al. (1991) presented a study of giyen frequency. To this end, we discuss the radial distribu-
flexural wave dispersion curves in weakly anisotropic for- ;oo of modal amplitudes as a function of frequency for

mations from a perturbation model that was derived from gSV-polarized flexural waves along a borehole in Austin
Hamilton’s prlnc!ple. Computational results were provided chalk when the borehole axis makes an angle of 45 degrees
for a borehole either parallel or normal to the Tl symmetry | w0 1 symmetry axis. In addition, we define an

axis of fast formations (Where the shgar-wave v_elocny 'S excitation amplitude function for the flexural modes and
larger than the borehole-fluid compressional velocity). They

. . : : illustrate its frequency dependence along with synthetic
also considered a borehole aligned with an axis of an f t f ; that it f dinol
orthorhombic solid, for which the starting solution for the wavelorms at an array ot receivers that result from a dipole
perturbation scheme is for an isotropic formation whose SOUYr¢€ oriented along tigSV-and SH-displacement direc-
shear velocity is an average of the two shear velocities alongtlons on the porehole axis. Since t.he d'POIE. source may not
the selected propagation direction. Note that in anisotropic always be oriented along a canonical direction of either the

solids, the two shear velocities corresponding togBy- 95 V- or SH-displacement direction, we present synthetic
and SH-polarized waves propagating along a given directioanveforms that result from a dipole source dlrectgd along an
are usually different. azimuthal angle of 30 degrees from the qSV-displacement

Additional numerical results for anisotropic formations direction in a borehole normal to the TI symmetry axis.
were recently presented by Leslie and Randall (1992), whoThese synthetic waveforms may be_ significantly d!fferent
developed a finite-difference method for the computation of from the cases when the source is directed along either the
time-waveforms at an array of receivers because of a monofSV- or SH-displacement directions. This difference is a
pole or dipole source pulse in a fluid-filled borehole. These result of the flexural wave splitting into thgSV- and
waveforms can be processed by a variation of Prony’s SH-polarized flexural waves propagating at different veloc-
algorithm (Lang et al., 1987) to yield either the Stoneley or ities because of the formation anisotropy. Flexural wave
flexural wave dispersion curves. Although this numerical splitting over an intermediate frequency band may also
procedure can handle any type of anisotropy, the accuracyoccur because of the borehole ellipticity in an isotropic
and large computing time compared to those of analytical formation (Randall, 1991; Liu and Randall, 1991). However,
models may limit its usefulness in some cases. borehole ellipticity-induced azimuthal anisotropy in flexural

Analytical modeling of wave propagation in cylindrical wave dispersion curves becomes negligibly small at both low
coordinates with the anisotropy of the medium expressed inand high frequencies. On the other hand, formation induced
a Cartesian reference frame provides unique challenges irazimuthal anisotropy in flexural wave dispersion curves is,
writing the solution in a separable form. These challengesgenerally, the largest at low frequencies.
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ELASTIC WAVES IN A BOREHOLE represents the mth eigenfunction of the oper&aiThe

) . ] ) ~ complex-valued eigenfunction™ satisfies the equation
The propagation of plane elastic waves in anisotropic

solids is governed by the equations of motion, which take the Pu™ + pwpu™ = 0, )
following form in the absence of any body force density:

and is assumed to be of the form
um(r’ d)’ 2, k) = Um(r, d), k)eikz. (8)

The modal frequency is therefore a function of the vertical
wavenumber, i.e., the modal dispersion relationship may be
aexpressed as

Cijke Uk ic = pitj, 1)

whereC ;;, andp are the elastic constants and mass density
of the solid, respectively. In the following, we have used the
Cartesian tensor notation and the convention that a comm
followed by an indexj denotes differentiation with respect to
xj. The summation convention for repeated tensor indices Wy = (k). 9)
and the dot notation for differentiation with respect to time ) ]

are also implied. A plane-wave solution to equation (1) may Next, we define Fourier transform pairs as

be written

u; = Ajeinixi = Vi) @) F(r, &, 1, k) =f F(r, &, z, e % dz,  (10)
wheren; are the direction cosines of the wave vector with 4
respect to the Cartesian axt;; k, andV are the wave-
number and phase velocity, respectively. Substitution of

1 ® .
equation (2) into equation (1) yields (Auld, 1973) F(r, ¢, 2z, )= - Re J F(r, &, 1, k™ dk.  (11)
0
0= dapVHA =0, 3 o . . . .
(@i = 2P V)4, @ Substituting from equation (6) into equation (5) and with the
where the acoustical tensor is aid of equations (8) an(9), we obtain
Qjk = Cijrenine. (4) > plam(t, k) + 0han(t, HIU™r, &, K)

The three plane-wave velocities along a given propagation "
direction are obtained from the three eigenvalues of 1.
equation (4). The associated eigenvectors corresponding to =—F(@r, b, t, k). (12)
each of these three eigenvalues define the wave polarization m

vectors. These plane-wave velocities are thus calculatedraking the inner product of equation (12) WU™ *(r , &, k)
along the borehole axis to determine the equivalent isotropicgnd using the orthogonality conditions, we obtain uncoupled

constants for the solution of the background medium in the equations for the modal amplitude functions, which have the
perturbation model.

form
Next, we describe a procedure for obtaining synthetic i
flexural waveforms resulting from a dipole source in aniso- ) 5 F™t, k)
tropic formations. To this end, we first consider transient Gm(t, k) + w,qm(t, k) = YR
solutions of the borehole modes with an impulsive source
located in the liquid-filled cylindrical borehole. The forced where
equations of motion describing such transient solutions may
be written as

(13)

M™(k) = fzn dé fw rdr pU™ - U™, (14)
Lu(r, b, z, 1) — pit = —F(r, b, 2, 1), ) 0 0

N .
where& is a linear operator, and F is a forcing function. A denotes complex conjugate, and
partial solution (see discussion below) to equation (5) may be

A 21T ®© A
expressed in terms of a summation over the eigenfunctionst™(¢, k) = f do J rdrFE(r, b, t, k)-U™(r, b, k),
of the operato¥. The borehole and formation are assumed 0 0

to be independent of the axial coordinate, implying that it is (15)

convenient to use eigenfunctions in the form of vertical The solution to equation (13) follows from a standard
transforms. Accordingly, we generalize the preceding anal- procedure based on Laplace transform technique and can be
ysis to include the associated complex-valued eigenfunc-expressed in terms of a convolution integral (Sneddon,

tions. The modal sum becomes 195 1). Assuming that the forcing is zero f< 0, we have
® o m H(1) ‘.
u(r, ¢, z, £) = Re >, u"(r, &, z, k)qu(t, k) dk, gmlt, k) = ————— Fm(z, k) sin 0, (t — 1) dr,
m 0 @,y aM™ 0
(6) (16)
where g,,(t, k) are the modal weighting functions to be Wher_e H(t) is .the Heaviside function. For simplicity, we
determined for a given forcing function, and the index  consider a point force on the borehole axis,
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3(r) formation were of finite radius, rather than infinite, then the
F(r, ¢, z, t) = Fo(t) — 3(2), modes of the borehole plus formation would indeed be

2mr discrete. However, the infinite radial extent of the formation
5(r means that there are continuous spectrum contributions. In
F(r, o, t, k) =Fo(t) —. (17) the isotropic case these correspond to the branch line
2mr integrals for the P- and S-waves, and manifest themselves
Here, Fy() is the point force vector, with units of force. Physically as head waves. Similar head wave effects can be
Substituting for the weighting functiog,, (t, k) into expected in the anisotropic formation, and these must be
equation(6), the time-domain solution for the particle dis- 2dded to the modal expansion to provide the complete
placement caused by the impulsive force on the boreholesSolution. However, unlike the borehole modes, the head

axis at t = 0, may be expressed as waves decay with distance along the borehole (Kurkjian and
Chang, 1983), and may be safely ignored at relatively large
H(z) source-receiver separations. In the numerical results re-
ur, , z, 1) = n Re > ported here, we have not included any head wave effects,
" but just used the modal expansion in equation (19).

o dkeikt In applying equation (19) to anisotropic formations, it is

f —— U, (r, b, k) necessary to know both the dispersion relations and the
o @nM™(k) mode shapes for each term in the series. Howevesniaf

anisotropy the dispersion relation can be approximated well
! by the perturbation theory described in Appendices A and B.
x f [Fo(7).U™*(0, k)] sin w, (k)(t — 1) d7.  (18) The mode shapes may be determined by a similar type of
0 asymptotic analysis. However, it can be easily shown that
Equation (18) represents a time-domain solution in terms ofthe change in the mode shape is of Q?J%nd is therefore
a wavenumber integral. The procedure for obtaining a solu-Of less significance than the change in dispersion curve.
tion for borehole modes in the frequency-domain in terms of In the numerical computations we have used the unper-
their dispersion characteristics is explained in Appendices turbed mode shapes combined with the perturbed dispersion
A, B, and C. Once the wavenumber-frequency relationship relations. . )
is known via the dispersion curve, we can transform Referring to equation (19), the modal amplitude of the
equation (18) into a more illuminating frequency integral that ra(jlal component of the particle acceleration on the borehole
clearly shows the convolution of the flexural mode spectrum @xis may be defined as
U™ (0, k,, (w)) and source spectruy(w). The resulting
expression takes the form

H
@ Re >

™

w?e” 1 U™0, k,,)|?
M"™(kp,)Cy

Ao, 6) = , (22)

u(r, ¢, z, 1) = wheree’ is a unit vector along the radial direction associated
with the direction of the dipole that excites the flexural wave
e de eitmz (s_ee Appendix D). Thi§ guantity measures the cqupling of a
dipole to modem, and its frequency dependence is of some
o M7k (0)Cq'(w) significance. We note that the normalization paranM™r
can be obtained in closed form from Appendix C.
sin wt Since we are interested in obtaining synthetic waveforms
X [Fo(w) - U0, ki (@)]U"(r, &, knm(w)) ——, exclusively caused by either thgSV- or SH-polarized
flexural modes, only one term in equations (18) or (19)
(19) contains the flexural wave solution, and the summation over
_ : . : the indexm is not needed. The polarization direction for the
vr\r/]r(;?j;elkg,,;oapk\,;,e(lgt):itl\sc"[nh(ewl)ni\éerse of equation (9), and the flexural mode(m = 1) is along thep = O direction, where
9 ¢ is the azimuthal angle in the plane perpendicular to the
dop, (k) borehole. The frequency dependenceA;” indicates the
Cg'(w) = PTaRE (20) excitation potential of the mth mode as a function of
frequency of the dipole source. The dipole source spectrum
The functiony(w) in equation (19) is the transform of the %y(w) employed in this study is given by the second-

forcing function, defined as derivative of the Blackman-Harris window and is described
in Kurkjian and Chang (1986).

- it It is assumed for the remainder of the paper that the

Folw) = _[0 Fo(n)e™ dt. D formation is transversely isotropic with its axis of symmetry

aligned in an arbitrary direction relative to the borehole, as
Appendix D contains a derivation of the source spectrum shown in Figure 1. Given the borehole axis as the propaga-
%F,(w) for a dipole source placed on the axis of a fluid-filled tion direction, there are two canonical (or principal) direc-
borehole. tions in the plane normal to it that correspond toShkeand
The preceding analysis is exact for a system that can beqSV-wavepolarizations in the formation. Specifically, when
described completely by a discrete spectrum of modes. If thethe Tl symmetry (¥ axis is normal to the borehole,)x
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axis, the SH- and gSV-wavepolarizations are oriented along
the x, and x; directions, respectively. Assuming that the
dipole transmitter is oriented at an azimuthal anyildrom
the symmetry axis, the radial component of the flexural
waveforms u™¢ and u"*"¢ at the inline and crossline
receivers, respectively, are given by

witline = SH gin? 4 *+ 45V cos? . 23)
and

pkTossline — ]3 ('SH _ s Yy sin 24, (24)
where uS* and u®V are, respectively, given by equation (19)

with all the quantities referred to the appropriate solutions
for the SH- or SV-polarized flexural waves at a given
frequency w. It is clear from these results that there will not
be any flexural arrivals at the crossline receivers when
the dipole transmitter orientatioys is either O degree or
90 degrees.

COMPUTATIONAL RESULTS
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where x3 is coincident with the Tl symmetry axis. These
constants are then transformed into rotated constants re-
ferred to the primecx’ , x5, and x5 = z axes for the case
when the borehole axis makes an an#levith the TI
symmetry axis (Auld, 1973). The resulting elastic constants
referred to the rotated axes exhibiting monoclinic symmetry.
However, it is worth noting that those elastic constants, C
Cy4, Cy4, and Cse, Which couple the normal stresses and
shear strains, do not have any influence on the flexural wave
dispersion curves since all the perturbation integrals associ-
ated with them vanish (see Appendix B). Note that in this
example the elastic constants possess monoclinic symmetry,
with x; = x| as the binary axis. That is, the material
constants exhibit 180 degrees rotational symmetry about the
x, axis. Nevertheless, the same elastic constants do produce
coupling between the flexural and axisymmetric Stoneley
waves along the borehole.

To illustrate the application of the perturbation model to
predict the flexural wave propagation characteristics in a
liquid-filled borehole in an anisotropic formation, we present
results for theqSV- and SH-polarized flexural wave disper-

A schematic of a borehole of radius a inclined at an angle sion curves for various inclinations with respect to the TI

6 with respect to the Tl symmetry axis is shown in Figure 1.

symmetry axis for two types of formations: (I) Bakken

Since the measurements are performed along the boreholeshale, a fast Tl formation and (2) Austin chalk, a slow TI

axis, the TI elastic constants of the formation are initially
expressed with respect to the unprimed %, and % axes,

i

Fluid:
Anisotropic Solid: Elastic Modulus A¢
C11, CSS! CTS! C44. CGG Density Pf
Density p

Fic. 1. Schematic diagram of a fluid-filled borehole. The
borehole axis makes an andiewith the TI symmetry axis.

formation. A fast formation implies that both tlgSV- and
SH-wave velocities are higher than the compressional-wave
velocity in the borehole fluid; whereas in a slow formation,
both shear-wave velocities are lower than the borehole fluid
velocity.

When referred to the Cartesian ax x| , X, Xg), with g
as the Tl symmetry axis, the mass density and elastic moduli
for Bakken shale (Vernik and Nur, 1991) and Austin chalk
(White, 1983) are shown in Table |. The borehole liquid is
assumed to have a compressional speed of 1500 m/s and
mass density of 1000 kgfmAll computational results are for
a borehole of radius 10.16 cm (4 inches).

Figures 2a and 2b, respectively, sha®-, and qSV- and
SH-wavevelocities in Bakken shale as a function of propa-
gation direction from the TI symmetry axis. The corre-
sponding wave velocities in Austin chalk are displayed in
Figures 3a and 3b, respectively. Note the significant differ-
ence in the variation ofjSV-wavevelocity with the propa-
gation direction in these two cases. These velocities play an
extremely important role in obtaining the dispersion curves
for the borehole surrounded by an anisotropic formation.
For given propagation and polarization directions, they
provide parameters for an equivalent isotropic medium
corresponding to eithegP- and qSV-velocities omgP- and
SH-velocities. As part of an illustration, consider the prop-
agation of flexural waves along the borehole axis that make
an anglet = 26 degrees with the Tl symmetry axis for the

Table 1. Model parameters.

p (kg/m?) C,; N/m? C > N/m? C,; N/m? Ciyy N/m? C 44 N/m?
Bakken shale - .
2230 40.9 x 10° 10.3 x 10° 8.5 x 10° 26.9 x 107 10.5 x 10
Austin chalk . . 5
2200 22.0 x 10° 15.8 x 10° 12.0 x 10° 14.0 x 107 2.4 % 10
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Bakken shale formation. We can obtain exact plane-wavehigher than 10 kHz for the planar interface between the
velocities from equations (3) and (4). These velocities areborehole liquid and anisotropic formation. Since the Stone-
also plotted in Figures 2a and 2b. or 26 degrees, the ley-wave velocity in a fast formation is essentially close to
plane-wave velocities in Bakken shale &V, = 3568.5 the compressional speed in the liquid, curves for the differ-
m/s;V,sy = 2263.22; anV sy = 2289.89. The equivalent ent borehole inclinations coalesce more tightly than at lower
isotropic moduli, . and A, for the SH-polarized flexural  frequencies. The corresponding curves for Austin chalk (a
waves along thiorehole axis are given byigy = pViy, slow Tl formation) are shown in Figures 5a and 5b, respec-
andAgy = p(VJp — 2V3y), and that for the qSV-polarized tively, for the SH- and @V-polarized flexural waves. Un-
flexural waves are obtained frogysy = pvgsv, and\ sy like fast formations, bottSH- and @V-polarized flexural

= p(Vjp - ZVZ'sv), where the subscriptsSH” and waves in these plots exhibit a rather uniform spread at higher
‘‘gS V'’ denote the equivalent isotropic moduli for SH- as well as lower frequencies. Of course, the low-frequency
and ¢S V-polarized flexural waves, respectively. These asymptotes of all these flexural wave dispersion curves are
equivalent isotropic parameters serve to define the flexuralthe corresponding shear speed in the formation; whereas the
wave solutions in the reference or unperturbed state. Anyhigh-frequency asymptotes turn out to be the Stoneley-wave
contribution to the flexural wave dispersion curve because ofvelocity appropriate for the propagation and polarization
the differences in the elastic moduli of the anisotropic directions. Both the low- and high-frequency asymptotes of
formation and the aforementioned equivalent isotropic mod- the flexural wave dispersion curves contain information
uli is accounted for in the perturbation model discussed about the anisotropic constants of the surrounding formation
earlier. However, perturbative corrections to the flexural and are independent of the borehole geometry. Comparison

wave dispersion curves are rather small for the two exam-of the perturbation model predictions of dispersion curves
ples considered in this paper when the equivalent isotropicwith those of the finite-difference results (Leslie and Randall,
moduli are obtained from the appropriate plane-wave veloc- 1992) for Austin chalk over a band-limited window of the

ities for propagation along the borehole axis.

Figures 4a and 4b illustrate ti&H- and @V-polarized
flexural wave dispersion curves, respectively, for four dif-
ferent inclinations of the borehole with respect to the TI
symmetry axis for Bakken shale (a fast Tl formation). Both
the SH- and @V-polarized flexural wave dispersion curves

source pulse shows agreement in the range of 2 to 5 percent.
This agreement is good in view of the coarse grid size in the
finite-difference model and band-limited source pulse em-
ployed in the calculations together with possible limitations
of the perturbation model in treating formations with mod-
erately large anisotropy, such as that of Austin chalk.

tend toward the Stoneley-wave velocity at frequencies Although we have not included results for Cotton valley

shale in this paper, a similar comparison between the per-
turbation model and finite-difference resulfteslie and

4400.0
3200.0
4200.0-
@
E —~  3060.0-
E  4000.0- <
2 qP E 202001
g 3800.0 » qP
— oy
2 S 2780.0-
3600.0- ;;,
@ 2640.0
3400.0 r r . : T @
2700.0 2500.0 r T , : T
1200.0
- 2560.0 1 SH
E . 1160.0 SH
S 24200 R
>
= E 12001
Y  2280.0- qsv >
° 3
1080.0-]
2140.01 _8. qsVv
®) Z 1040.0-
2000.0 T T T T T
00 150 300 450 60.0 750 90.0 ()
Propagation Direction 6 (deg) 1000.0 T T T T T
00 150 30.0 450 600 5.0 90.0

Fic. 2. (a) ThegP -wave velocity in Bakken shale as a
function of propagation direction from the TI symmetry axis.
T(b) ThegSV-and SH-wave velocities in Bakken shale as a Fic. 3. (a) The same as in Figure 2a, but in Austin chalk. (b)
unction of propagation direction from the Tl symmetry axis. The same as in Figure 2b, but in Austin chalk.

Propagation Direction 6 (deg)



Borehole Flexural Modes

700.0

620.0

540.04

460.0

Slowness (us/m)

380.0

6=0°
45°

90 @

300.0

700.0

620.0+

540.0 1

460.0

Slowness (us/m)

380.0 1

6=0°
90°

60° 45°

300.0

0.

.0 8.0 8.0
f (kHz)

g
o
.

0

FiG. 4. (a) Phase velocity dispersion curves for S&polarized
flexural waves alonﬁ boreholes in Bakken shale with differ-
ent inclinationss with respect to the TI symmetry axis. ?b)
Phase velocity dispersion curves ¢S V-polarized flexura
oreholes in Bakken shale with different incli-

waves alon )
nations® with respect to the Tl symmetry axis.
1100.0
SH -
’g 1040.0 - 6=0
SN
é 980.0- 45°
@ 60°
g e20.0 90°
z
K]
”  860.0-
800.0 T T T . @
1100.0 e
qSVv _
'é‘ 1040.0 Q0°
3
980.0 o 60°
\; f 4 45
]
920.0
: o
% seo] 12
800.0 T r T . ®)
0.0 2.0 4.0 8.0 8.0 10.0
f (kHz)

1043

Randall, 1992) shows better agreement than that for Austin
chalk.

Radial distribution of modal amplitudes is indicative of the
radial depth of investigation with flexural logging at a given
frequency. To demonstrate the significant frequency depen-
dence of the modal amplitude distribution, we present the
normalized radial coefficient for the displacement and nor-
mal stress components at frequencies of 1.22, 2.24, 3.34,
6.32, and 12.3 kHz. The first four frequencies are denoted by
fi. 2. f3,and fy, respectively, in Figure 5b for the borehole
inclined at an angle of 45 degrees to the symmetry axis. The
fifth frequency of 12.3 kHz is outside the range of Figure 5b.
These results are for @V-polarized flexural waves in a soft
formation represented by Austin chalk. The radial displace-
ment and stress components are defined in Appendix B.
Only the radial coefficients of the displacement and normal
stresses have been plotted in Figures 6 through 10, and the
guantitiesu , ando,, are normalized to unity at the borehole
surface given by/a = 1.

Figures 6a and 6b, respectively, illustrate the particle
displacement componentz, , u, , andu, and the three
normal stress components in the borehole liquid, which
extend tor/a = 1 and in the adjoining formation, in the
region r/la > 1 for the flexural mode at 1.22 kHz. To
illustrate the stronger confinement to the borehole surface
with increasing frequency of the flexural mode, we present

f, = 1.22 kHz
15
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Fic. 6. (a) Radial distribution of displacement component
coefficients forqSV-polarized flexural waves along a bore-
hole inclined at an angle of 45 de_lghrees with respect to the TI
symmetry axis of Austin chalk. The borehole surface is at
a = 1, and the harmonic frequency is 1.22 kHz. (b) Radial

rl
Fic. 5. %a) The same as in Figure 4a, but in Austin chalk. (b) distribution of normal stress component coefficients for the

The same as in Figure 4b, but in Austin chalk.

flexural wave. The notation is the same as in Figure 6a.
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these plots in Figures 7a and 7b, 8a and 8b, 9a and 9b, and
10a and 10b for frequencies at 2.34,3.34,6.32, and 12.3 kHz,
respectively. What is noteworthy in these plots is how
rapidly the modal amplitudes decay away from the borehole
surface with increasing frequency. This radial decay of the
modal amplitudes has important implications in its potential
interaction with radial inhomogeneities. In addition, it is
obvious from Figures 10a and 10b that the flexural wave has
almost transformed into a planar Stoneley mode at the
interface between the borehole fluid and the formation at
around 12 kHz.

Next, we discuss the flexural wave dispersion curves and
synthetic waveforms caused by a dipole source oriented
along theqSV-and SH-displacement directions in a bore-
hole normal to the Tl symmetry axis of Austin chalk.
Figures lla and llb, respectively, show the normalized
phase and group velocities g5V-and S&polarized flex-
ural waves as a function of frequency. Note that these two
sets of curves appear to be very similar, but the normaliza-
tion factor in each case is the approprig/-or SH-wave
velocity. Figure 1 Ic illustrates the excitation amplitude
A" (o, 0) of equation (37) for the radial component of
particle acceleration on the borehole axis associated with the
SH- (solid line) andqSV- (dotted line) polarized flexural
waves as a function of frequency. These curves may be
viewed as the modal frequency spectrum, which indicates
the excitation potential of the flexural mode as a function of

Fic. 7. () The same as in Figure 6a, but for the frequency offrequency for a given borehole diameter, formation param-
2.34 kHz. (b) The same as in Figure 6b, but for the frequency eters and flexural polarization direction. These results are

of 2.34 kHz.

f, = 3.34 kHz
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£, = 6.32 kHz
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FiG. 8. (a) The same as in Figure 6a, but for the frequency ofFiG. 9 |_Sa) The same as in Figure 6a, but for the frequency or

3.34 kHz. (b) The same as in Figure 6b

of 3.34 kHz.

, but for the frequency 6.32 k

z. (b) The same as in Figure 6b, but for the frequency
of 6.32 kHz.
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SH polarized flexural wave at about 4 kHz. Note that the of Austin chalk and oriented at an azimuthal angle of
SH-polarized flexural wave with higher phase velocity than 30 degrees from the SV-displacement direction (which coin-
that of the SV-polarized flexural wave exhibits a higher cides with the TI symmetry axis). Figure 14c shows the
excitation level. The overall behavior of the excitation inline dipole receiver waveforms for a dipole that is perpen-
function is similar to that observed in the isotropic case.  dicular to the orientation of Figure 14a. The source spectrum

The time waveforms for the radial acceleration component and the source-receiver offsets are the same as those in
for a dipole source directed along tBEl-and SV-polariza- Figures 12a and 12b. Each of these three sets of waveforms
tion directions are shown in Figures 12a and 12b, respec-have been synthesized from the same two dispersion curves
tively. The source spectrum is given by the second-deriva- associated with th&H- and qSV-polarized flexural waves
tive of the Blackman-Harris window (Kurkjian and Chang, and an assumed source spectrum. The differences in the
1986) and is centered at 2.5 kHz. These waveform tracesyaveforms are a result of the vector decomposition of the

have been computed at eight source-receiver offsets of z =flexural wave along the two canonical directions and the

243.84cm (8 ft), 259.08 (8.5), 274.32 (9), 289.56 (9.5), 304.8 resulting interference between t&#H- and qSV-polarized
(10), 320.04 (10.5), 335.28 (11), and 350.52 (11.5). Note thatwaves.

the waveform amplitudes are somewhat larger forShie
polarized flexural wave than for the SV-polarized flexural
wave for the same source amplitude. This difference in
amplitude is a result of the difference in the modal spectra for

gl 1.00
the two flexural waves as shown in Figure 1 Ic. In fact, the
time waveform for the SH-polarized flexural wave is signif- - \
icantly larger than that of the SV-polarized flexural wave for g 0.957
a source pulse centered around 4 kHz. K ‘Fl’g%iiy
Figure 13 shows a schematic diagram of orientation of a 0.904
dipole source and inline (X-X) or crossline (X-Y) receivers in & .
a borehole. Figures 14a and 14b, respectively, show the Z 0851 Teeemeemmom o Group
inline and crossline dipole receiver waveforms caused by a 8 velocity
. . . (3]
dipole source in a borehole normal to the Tl symmetry axis > 0.80
@) 8 = 90°; V,=1187.05 m/s
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Fic. 11. (a) Normalized phase and group velocities for the
SH-polarized flexural wave. Propagation direction is normal
to the Tl symmetry axis. (b) The same as in Figure 1 la, but
SV-polarized flexural wave. (c) Frequenc

depen-

FiG. 10. g(a) The same as in Figure 6a, but for the frequencydence of excitation function (radial component of particle

of 12.3
frequency of 12.3 kHz.

Hz. (b) The same as in Figure 6b, but for the acceleration on the borehole axis) &i- andqS V-polar-
ized flexural waves.
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SH-FLEXURAL WAVEFORMS @

CONCLUSIONS

Amplitude: £1.40

We have demonstrated that proper selection of equivalent

A
-

isotropic parameters for given propagation and polarization
directions can greatly simplify modeling of borehole flexural

waves in anisotropic formations. These equivalent parame-

ters for the SH -polarized flexural waves are obtained from

the exact gP- an8H-wave velocities; whereas those for the
@V-polarized flexural waves are derived from the exact qP-

andgSV-wave velocities for propagation along the borehole

A
— A
A
Al

axis. With this choice of isotropic parameters for the unper-
turbed solution, we have observed that the perturbative

i

correction to the flexural wave dispersion curve is negligible

qSV-FLEXURAL WAVEFORMS )

for fast and slow formations considered in this study. A

small perturbative correction not only ensures a greater

Wﬁ Amplitude: =1.45

accuracy in the prediction of the dispersion curves in the

presence of anisotropic formations, but also implies that the
anisotropic formation can be adequately represented in

terms of two equivalent isotropic formations for the purpose

of modeling the SH- andSV -polarized borehole flexural
waves. This conclusion is further supported by the observa-

Al
A
Al
Al
Al
Al
Al

CROSS DIPOLE WAVEFORMS: X-X @
! % Amplitude: =1.2
2
1124 2047 8371 4494 5618 6742 7865 8989 10112 11236 3 AN\
Time {ps) 4 /\/\/\/\
Fic. 12. (a) Synthetic waveforms caused by a dipole source® — W\
directed along th&H wave polarization direction. Propa%;_a- 6 N\
tion direction is normal to the Tl symmetry axis. (b? he 4 A\~
same as in Figure 12a, but for the SV-polarized flexural wave. . A
CROSS DIPOLE WAVEFORMS: X-Y ®)
1 ~AMVN Amplitude: +0.8
2 AN
3 ~ W\
4 AW\
5 W/
Source ’ ~Wip-
7 W\
8 —\ w “ v
CROSS DIPOLE WAVEFORMS: Y-Y ©
1 JXX\’/\/ Amplitude: =1.2
2
Symmetry 3 A\
Axis 4 A\~
5 J\/\/\/-
6 \/\/\/"\/‘
7 ~Af\n
; ) —"1l
Recelver 0 11'24 22'47 33l71 44I94 56l18 67‘42 7é65 SQIBQ 10‘112 11236
Time (us)
| Fic. 14. (a) Inline dipole receiver waveforms caused by a
: dipole source directed along an azimuthal angle of 30 degrees
Symmetry Axis | from the Tl symmetry axis. Propagation direction is normal

Fic. 13. Schematic diagram of orientations of a dipole source Figure 14a, but for the dipole source an
and inline or crossline receivers in a borehole.

to the symmetry axis. (b) The same as in Figure 14a, but for
the crossline dipole receiver waveforms. éc) The same as in

receivers perpen-
dicular to that of Figure 14a.
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g p p X
mirror symmetry. As a result, the qP- and #V-displace-  SH traveltimes: Geophys. J. Roy. Astr. Soc., 91, 461-484.
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APPENDIX A
PERTURBATION MODEL

Different ways of deriving perturbation models for elasto- the bounding surfac& are such that either the traction
dynamic problems have been reported (Auld, 1973; Tierstennjci‘}kfu,?,( or the displacemenu? vanishes orn¢. The
and Sinha, 1979; Ellefsen et al., 1991). Here we present acorresponding equations of motion in the perturbed state are
simple derivation of a perturbation model specifically By :
adapted for the waves propagating along a borehole. Before Cijkett je + po’u; =0, inv, (A-3)
considering the specific problem of the borehole, we sum- and the associated boundary conditionsfoare such that
marize some general results for an arbitrary volVnef eithern;C ety ¢ OF u; vanishes. The elastic constacC

anisotropic elastic material bounded by the sur¥ce and mass densitp; respectively, in the perturbed state are
We assume that the reference unperturbed state of theyssumed to take the form

general medium is governed by the equations of motion

b o oot | Cije = Cijre + £Clie. (A-4)
Cijkfuk,jf + pwu; = 0, In OV, (A-l) and
whereu? denotes a harmonic solution »®, andp® is the e ,
mass density in the unperturbed state. A superscript O refers p=p tep. (A-5)
all quantities to the unperturbed state. The unperturbedHeree is a small positive numbeg,<< 1, which is intro-
elasticity tensor is duced to simplify the asymptotic analysis. Its actual value is
immaterial, but its order of magnitude is characterized by the
Ciike = Noydre + m(dudje + 8i¢8j1), (A-2) 9 y

relative difference between the perturbed and unperturbed
and A» and p are thelLame constants of the equivalent parameters. Generally speaking, the small perturbation pa-
isotropic medium. Theself-adjoint boundary conditions on rametere defined by the relative difference between the
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perturbed elastic constanC;;, and unperturbed elastic
constantsCY%. should be less than 0.1. However, the small d‘VC,km uy @ d°V uful*
ijke ij k€% ] puju;
perturbation parameter in this context depends on the ch0|ce (A-11)
of the unperturbed elastic constants, and it differs from weak )
200 J dcv‘po 0 0* f dcvp() 0 0*

material anisotropy as defined by Thomsen (1986). While the
small perturbation parameter may be made progressively
smaller by selecting the unperturbed elastic constants cIos;eEOr a circular borehole of radias which is invariant alon

to the perturbed constants, weak material anisotropy param; the axial z-direction, we can wlar?te the displacement flel%l in
eters are fixed for a given material. A solution to the P

equation of motion (A-3) with the self-adjoint boundary the following separable form

conditions in the perturbed state may be expressed as ul(r, ¢, 2) = a%r, b)e*z. (A-12)
u; = uj + ev;, (A-6) Equation (A-l 1) can now be written explicitly in the
and cylindrical coordinates for waves propagating along the
borehole, and noting the periodicity of the solution along the
o=0+tcn. (A-7) axial direction,
Taking the inner product of equation (A-3) wu?, integrat- o 2 o
ing over the volum¢V, using the perturbational expressions j f Ad[Clixeujuif — p'o” uju;*]
in equations (A-4) to (A-7), and keeping terms up'torder i

of approximation, we obtain

®
20 [pff f ufuf*dd)-i-pj J O*dd)
f dV[Cijreur,je + pwzui]u’?=f dV[Creuy jou;
¥ ¥

(A-13)

+ p%° u 95 0% 4 eClireliy, Jeuo whereu{ is the displacement in the borehole liquid of mass
densityp,. The perturbed material parameters in equation
(A-1 1) or” equation (A-13) may have arbitrary dependence
0 0 0 on 020 upon bothr and ¢, as long as.the perturbation is small. Thg

+ eCiplvpjeut;™ + wy jvi) + ep 20" u;vi] =0, (A-8) procedure for applying equation (A-13) to borehole modes in
where* denotes complex conjugate. anisptropic formgtion:(c;,-ke #0,p =0)is dispussed in

The first two terms in the integrand of the right-hand side d€tail in Appendix B. For each value of the axial wavenum-
vanish according to equation (A-l). The last three terms Perk (see Appendix B and below) the unperturbed mu e

02
+ epR0 %’ 0uo"‘ +ep'w uouo*

simplify as shown below is first obtained. Then the integrals in equation (A-13) are
performed to give the frequency perturbate’s These are
f d“V[C,Jke(vk jeud* + u,”(v*) +2p%° 2 %] added to the eigenfrequenw? for various values ok to

obtain the final dispersion curves for the anisotropic case.
The phase slowness dispersion curves may also be readily
obtained by expressing the slowness perturbation in terms of
the frequency perturbation at a given wavenumber. Let the
unperturbed modal phase slowness S%and the actual
phase slowness be SS° + ¢§’ at a given wavenumbi.

_ 0 0 0 %
=g f dV Cipe(vp jeu; * — ug jev7) Then
¥

— 0 0 0 * 0 *
=€ f doVCijk((vk,jeui* + uk’jevi - 2uk,je'Ui)
v

k= 0= (0" +£0')(S° +eS), (A-14)

3 dFn-CO 0x which yields the following relationship between the slowness
€ ’ 1 CijkeVi,elti™ - (A-9) and frequency perturbations at a given wavenumber

0
In deriving equation (A-9), we have used equation (A-l) in S - S_ ', (A-15)
the first equality, and the divergence theorem along with the = o
unperturbed traction free boundary conditions on the bound-
ing surface¥ in the last equality. The remaining terms in
equation (A-8) along with equation (A-9) then take the form

where terms of order higher tharare neglected.

The analysis in Appendices B and C is for modes of
arbitrary azimuthal order = 0 although our interest here is
sf dynjcgkevkeu?**'EJ W[Ciykeugjgu?* is primarily for the flexural moden = 1. Appendix B

g ? ¥ ’ discusses the modes and provides an outline of the eval-
uation of the perturbation integrals in the numerator
of equation (A-13). In particular, closed form expres-
isions are given for thep integration of the flexural
Integrating the first term by parts, then applying the diver- wave solution in cylindrical coordinates. Closed form
gence theorem and boundary conditions on the boundingexpressions for the integrals in the denominator are given
surface¥ in the perturbed state, we obtain in Appendix C.

+2p wom’uouo* +p'wl u uo*] = 0. (A-10)



Borehole Flexural Modes 1049

APPENDIX B
THE PERTURBATION INTEGRAL IN CYLINDRICAL COORDINATES

Since the unperturbed solution in the axisymmetric case isEquation (B-6) represents the elastic mocCliin polar
known in terms of cylindrical functions, it is expedient to coordinates.
carry out the volume integrals appearing in the perturbation Since the¢ dependence of botCjy, ande; are now
result in equation (A-13) in cylindrical coordinates. To this known, we can carry out tt¢2 integration analytically. The
end, we first note that surface integral in thr— ¢ plane can now be expressed as

2w ]
f dAC jjreu; juie = f dACijeejexe, (B-1) f dé J rdr e;Cireete
r>a r>a 0 a

where the strain tensej; = % (u;,; + uj;), and the equality -

is justified because of the symmetry of the second-order =2 f r dr E'(r)C'"E*(r), (B-8)
elastic constantCi;,,. The integration in equation (B-l) is a

conveniently performed in cylindrical coordinat2&nd ¢. . L

The r-integral cannot, in general, be simplified. However, Where* denotes complex conjugate, and it is assumed that
the $-integral may be explicitly performed, which we now the complex form of solution is employed. The constant

demonstrate. matrix C" is defined by

We first transform the strain into cylindrical coordinates. 1 -
It may be shown that the six strain components for a C'=— dé T,C'T,. (B-9)
borehole wave of nth order in the circumferential parameter 27 ),

¢ can be expressed in separable form,

Explicit integration implies that the elements of C"(6 X 6)
e =T, (d)E(r), (B-2) have the values

where ¢ is the rotation of theradial direction abouthe
boreholeaxis; the six vectors and E are, respectively

e'(r, ) = [eepper2€p,2€,2e0], (B-3) Chy = C2(GY + G3) + (Cyy + Cpy —4Ce)G5,  (B-11)

Ch1 = C11GT + €G3 + 2(Cyy + 2Ce6)G3, (B-10)

E'(r) = [E,,E44E;E¢,E 1 E 4], (B-4) C3 = C3F} + Cyp3F, (B-12)
where the superscrigtdenotes transpose, and Cle = (Cia — C11 + 2Ce6)G™
T, ()
' +(Cp — Ci3 —2C)Gg,  (B-13)
= diag [cos nd cos nd cos nd sin nd sin nd cos ndl.
(B-5) C% = CnGi+ C11G; + 2(C1z2 + 2Ce6)G3, (B-14)
" — n n "
The representation of the moduli in cylindrical coordinates Ch = CuFy+ Cyi3Fy, (B-15)

can be achieved by rotating the coordinate system with 4.
Thus, when 4 = 0, the components in the cylindrical and
Cartesian coordinate systems coincide wiM andz
directions being parallel to the axx’s, x5, andx; of Figure

C% = (Cp2 — C12 — 2Ce6)G7

+(C12 — C11 +2C46)Gy, (B-16)

1, respectively. The original elements of_G(GB) .in this . C%; = C33(0.5 + 0.58,0), (B-17)
system are assumed to be of arbitrary anisotropic form, i.e.,
as many as 21 independent elements. These transform with 4 Clhe = % (Cy3 — C13)8,1, (B-18)
into the following form in the rotated frame,
Clyq = C44F3 + CssFy, (B-19)
C' = QCQ’, (B-6)
C'ys = (C4g — Css)F5, (B-20)
where the elements of Q(6 X 6) are (Auld, 1973)
— . C%s = CssFT + CyyF3, (B-21)
cos? & sin?é o 0 sin Zdﬂ 3 : :
sin2 ¢  cos’d g o 0 —sin2d C'ss = Ce6(G4 + G3)
Q- 0 © 1 0 0 0 +(Cyy + C2 —2C; — 2C46) G, (B-22)
= 0 0 0 cos ¢ —sind 0
0 0 and
0 sind cos ¢ 0
—3 sin 24 2sin26 0 0 0 cos2d Cly=Cls =C =C% =C% =C% =Cl = Cs = 0.
- —t (B-7)

(B-23)
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The F and G quantities are obtained from the ¢ integrals in
equation (B-9) and are

1 1 1
Fi=2+78.0+538u,

n_ gn 1 n__1 n n_ pn 1
Fy=F{ 3%y, Fy=3-F, Fg=F{—33,

n_ 3 3 1 1
Gl—1—6+l—6‘8n0+§8n1+§8n2,

Gi=Gi—;du, Gi=F[-G, Gi=};-G,

3 11 1
Gi=3+318m —Gi, G§=15—1c3m0 +358m,
G7 = *5155»10 +1—16'8n1 +$8n2’
G§ =55 8m0 + 5 8u1 — 35 02 (B-24)
For the particular case of the flexural mode (n = 1), these
become
Fl=Fi=2, F}=Fi=Fi=1, (B-25)
5
G] = GSI = g,
(B-26)

Gy=G3=Gi{=G4=G;=Gg = .

We note that the matriC” is generally monoclinic with
respect to the z-direction and independent of the “non-
monoclinic” elements ofC, i.e., the same elements that
occur in equation (B-23). In additioC” does not depend
upon the moduliCy¢, Cy6, C3¢, andCys, but only on the

nine “orthorhombic” elements cC.

We close this Appendix with a discussion of the elements
of the r-dependent six components of veEoof equation
(B-4). The strains in equation (B-4) are obtained from the
complex representation of the flexural wave solution, which

may be written in the form
n .
u, = ;Hn(klr)'—len+1(klr) + ik Hy 41 (k2r)Ay

n ‘
+ — H,(k,r)A; | cos nde %2, (B-27)
,

n
ugp = [—;H,,(k.r)A + ikH,,+,(k2r)A

n .
+ (szn+1(k2r) ——H,,(kzr)>A3 sin mbe‘kz,
r

(B-28)
u, = [ikH,(k{r)A — ko H,(kyr)A ] cos nde*?,  (B-29)

wheren = 1 for the flexural wave solutiortl,(x) repre-
sents Hankel function of the first kind and of ordewhich

is consistent with the outgoing waves for the assumed time
dependence of ~'*!, The radial wavenumbeik, andk, are
given by

k= — - k2, (B-30)
1 V12
2
w
k3 =— - k2, (B-31)
2 V%

where V, and V, are thegqP and ¢qSV- (or SH-) wave
velocities along the borehole axis for ti$8/- (or SH-)
polarized flexural waves. The associated flexural wave solu-
tion in the borehole fluid may be written as

n .
ul = A= T, (k) — k,J 4 1 (kyr) | cos ndpe®,  (B-32)
r
n .
uly= —=J,(k,r)A sin npe™, (B-33)
r
ul = ikJ, (k,)A’ cos npe™, (B-34)

where the superscrijfirefers the quantity to the borehole
fluid, andk, is given by
2
K=ok, (B-35)
cf

and ¢, is the compressional-wave velocity in the borehole
fluid.

The radial displacement coefficients #r, u, , andu, in
the formation and borehole fluid are given by the quantities
in square brackets of equations (B-27 to B-29) and equations
(B-32 to B-34), respectively. The associated radial stress
coefficients foro,,, 044, and ¢,, are similarly defined by
collecting the radial functional dependence of these stress
components.

The amplitude coefficientA’, A, A, and A3 are ob-
tained from the four continuity conditions at the borehole
surfacer = a. The four continuity conditions at = a are

u, = u’, (B-36)
o, =ol, (B-37)
Oy =0, (B-38)
o, = 0. (B-39)

Equations (B-36 to B-39) constitute a system of four linear
homogeneous algebraic equations in the wave amplid’Jes

A, A, and A;, which yields nontrivial solutions when the
determinant of the coefficients of the wave amplitudes van-
ishes. The solution, and the corresponding relationship be-
tweenk and w, is obtained numerically for a given modal
propagation.
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APPENDIX C
THE NORMALIZATION INTEGRAL
In this Appendix we give a closed form expression for the Applying this to the integral in the formation, we find

integral that occurs in the denominator of equation (A- 13)
and also in the definition dfl ™ in equation (14). The integral dd)u u*
may be separated into separate integrals in the fluid andn
solid. The former follows simply from the definition u/ in
Appendix A as wllA ) ®? 2 o)

== || Yadnlk1a) + = [—| 2[,+1(k2a
fardr J-h dou’ - uf* Vi lk V2

0 0 0.)2 c3 2 ' k 2 B
+ V_% 1:2— Ay tics ;(_2- Ynln(kra)
= 1T'Yn|Af|2 Jn(kra)[kra-,n - l(kra) - an (kra)]
) 5 _lAlz'YnLn(kla)_IAIIZ'YnLn+l(k2a)
wa
"3 (?) k) = Ju 1ty ()] |, (D ~les | nLakya) = (1 + m)y,lhy |2 = |kyal§,hy i
wherey, = 1 + 3,,. The remaining integral is more _ feika o\ L
complicated, but can be simplified using the following iden- ~ Yna - hih;y
tity for the elastic displacement field in an isotropic solid 3
= A*
u=Vé+VxH, (C-2) + 2y, Re | — h%(nhs + ikahy) |, (C-4)

where4 is a compressional potential, and H a vector shear €3

potential. Assuming time harmonic motion, each of these

potentials satisfies a corresponding Helmholtz equation. LetWhere Yn = 1= 8,
V be an arbitrary volume with surfaGand outward normal  and
n. Then it can be shown that k
c3 =A;3 —i k_ Ay,
fu-u*dV -—f¢¢*dV+—JHH*dV 2
v hy = A1H, 1 (kya),
oH
—f (V-H)(V-H)* dV + f [q) a_¢+ H* . Py h3 = c3H,(k;a),
s n n
Ly(x) = H},(x)[nH,(x) = xH, 1+ 1 (x)],
—n-(H*-V)H +n-H*V-H) |x|?
In(x) = (=" —= [H3(x) = Hy o (0Hp -1 ()]
+ f [2 Re [¢*n - (V X H)]] dS. (C-3) Note that both k; and k, are assumed to be purely imaginary
s in these equations.
APPENDIX D

THE DIPOLE SOURCE SPECTRUM

The equations of motion in the borehole fluid may be given and
by
@0(0)) = —)\fSV()((O)éB.VVB(x),
VS + ikl = —Fg(e)s, (D-1) ,
for a dipole source, (D-3)
where the subscript or superscii‘f’* refers the quantity to

the fluid, #¢(w) is the forcing function densith, = pref is
the bulk modulus of the fluid, ark; = w/c;. The forcing
function %y(w) for a monopole and dipole sources are,

respectively, given by Kurkjian and Chang (1986)
Fo(o) = =NV (0)Vd(x),

for a monopole source, (D-2)

wheregg is a unit vector directed along the dipole direction
oriented at an angl@ from the reference yaxis in the
borehole cross-sectional plane, and the constémt to be
confused with the Dirac delta function) is the multipole
separation parameter in meters.

To evaluateF(w), the forcing term in equatio21),
we note that the modal displacement fi€U™ in the
borehole fluid is equal to the fluid displacement fiu/)
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which may be expressed in terms of a displacement potentiabnd J,(x) denote the Bessel function of the first kind of

¢™ given by

w = Vo™= VAN, (k) cos md, m=1,

for a flexural mode, (D-4)
where
v i’ 8 D-5
=8, ~—4+ 8, — s -
ar % g (®-3)

order m. Substitution of equations (D-3) and (D-4) into
the expression within the square-bracket of equation (19),
yields

Fo(w) - U™(0, k,y(w))
= —pr0?Vy(w)ksdm cos BAT*8,,, (D-6)

wherep represents the dipole orientation from the reference
axis, * denotes complex conjugate, a(ks3) and Vgy(w)
represent the strength and frequency spectrum of the dipole
transmitter.



