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SUMMARY

A heterogeneous medium composed of inviscid fluid and solid constituents is
pre-stressed, resulting in relative slip of material particles at the interfaces between
the solid and the fluid. The standard theory of acoustoelasticity, which is concerned
with small deformation superimposed upon large initial strain, is generalized here to
include the effects of the interfacial slip. Difficulties arise from the possibility that
the traction, viewed as a function of either the undeformed material (Lagrangian)
coordinates or of the intermediate coordinates, is not necessarily continuous across
the interface. It is shown that the problem is most easily considered in the
intermediate coordinates, leading to a divergence formulation of the equations of
small motion from which the interface conditions arise naturally. The theory is
demonstrated for the problem of a fluid-filted borehole with a pressurized fluid and
pre-strained solid. An explicit expression is found for the change in the speed of the

tube wave, which is the quasi-static limit of the Stoneley wave mode.

Key words: acoustoelasticity, interface, pre-stress, tube wave,

1 INTRODUCTION

Pre-stress is known to affect the speed of small-amplitude
waves in crystals by effectively altering the linear moduli
governing small-amplitude motion (Toupin & Bernstein
1961; Thurston 1965; Sinha 1982). The description of this
non-linear process is appropriately known as ‘small-on-large’
theory or acoustoelasticity. In this paper we consider the
effects of initial deformation on waves in a heterogencous
body comprising fluid and solid constituents, Under some
applied static deformation particles can slip relative to one
another, with the result that material particles originally
side-by-side become distant relatives, and possibly strangers.
The interfaces between the distinct fluid and solid regions
therefore represent possible material slip surfaces, i.e.
surfaces across which the material deformation is not
necessarily continuous. In order to fix ideas, imagine a
ftuid-filled borehole (a cylindrical hole in an elastic solid of
infinite extent) in which the fluid is pressurized, resulting in
inifial pre-stress and pre-strain in both the fluid and solid.
The acoustoelastic problem is to find the change in speed of
guided waves. We deal with this example later.
Acoustoelasticity of fiuid/solid systems is complicated by
both the possibility of slip at interfaces and the spatially
inhomogeneous nature of the pre-stress/pre-strain, The
latter introduces difficulties that are surmountable using the
‘standard’ theory of acoustoelasticity, but the issue of slip
introduces fundamental novelties. 1t is therefore important

to distinguish several different, but equally valid, descrip-
tions of the same system. In the reference configuration
each position vector is associated with a material particle
and the mapping from the material particles to the vector
basis is continuous. Hence no slip interfaces are present in
the undeformed medium because, by assumption, there is a
continuous bijective mapping of every material particle to
some mathematical vector space. The associated coordinates
in a continuous frame will be called the reference or
Lagrangian coordinates. This state of contiguity may be
disrupted by an arbitrarily small deformation. For instance,
an tnviscid fluid in contact with a solid may slip locally
relative to the solid. The existence of slip interfaces means
that tractions measured in the reference frame are not
necessarily continuous across such interfaces. A simple
thought experiment may help in clarifying this point. Again,
consider the generie situation of a fluid/solid interface, the
fluid being inviscid. A static deformation is applied,
resulting in slip of the fluid relative to the solid. The
associated Piola—-Kirchhoff (PK) stress is defined as the
force per unit area acting over an elemental area defined in
the reference configuration. However, the material particles
are no longer adjacent across the interface, and the PK
tractions are not necessarily continuous functions of the
Lagrangian coordinates. Consider an extreme example in
which a fiuid particle becomes far removed from its original
solid neighbour. The pressure at the new site of the fluid
particle could be quite different from the state of affairs in
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the current fluid element adjacent to its original solid
particle.

The normal treatment of finite deformation of elastic
solids is to consider everything in the reference frame, which
is a reasonable procedure as long as the particles remain
contiguous. However, once interfaces are present it is not
clear that the same Lagrangian formalism is optimal,
because, as pointed out above, the PK traction can be
discontinuous. The associated Cauchy stress, defined in
terms of current elemental area, leads to a continuous
traction across any interface, bonded or otherwise. One
could quite reasonably argue that the problem should be
attacked in current or Eulerian coordinates completely,
thereby avoiding the issue of dealing with discontinuous
tractions. However, acoustoelastic problems present a
fundamental difficulty when dealt with in current coordin-
ates, namely, the positions are a priori unknown. Here we
will describe the dynamics in terms of three alternative
configurations, the reference, the intermediate and the
current. The formulations are equally valid, in principle, but
we will demonstrate that the intermediate coordinates are
preferable for practical use.

In this paper we outline a general procedure for attacking
acoustoelastic  problems for fluid/solid systems, The
terminology and notation of small-on-large theory is
introduced in Section 2. Section 3 deals with continuity
conditions across slip interfaces, with explicit formulae
derived for the intermediate and reference configurations,
Similar conditions have been obtained previously by
Grinfel'd & Movchan (1979) for the intermediate coordin-
ates, although the present derivation is, we believe, more
physically intuitive. The interface conditions are used in
Section 4, where a natural, or divergence, formulation of
the acoustoelastic theory is presented. The constitutive
relations appropriate to the acoustoelastic equations are
described in Section 5, with particular emphasis on the
moduli for an inviscid fluid. The divergence formulation of
Section 4, combined with the linearized constitutive
relations of Section 5, permits the standard artillery of
perturbation analysis to be applied, with the details given in
Section 6. Finally, a practical application of the whole
theory is given in Section 7.

2 SMALL-ON-LARGE THEORY
2.1 Definitions and notation

Three configurations are distinguished: the reference,
intermediate and current, denoted by 9%, % and @,
respectively. The material of interest occupies the respective
regions (volumes) V,, V and V, each of which is a simply-
connected subset of R* In the undeformed or reference
condition, the material is unstressed with position vector X
denocting a position in V,,, which is a continuous function of
the material particles, even across fluid-solid interfaces. The

Table 1. Parameters in the three descriptions.

Description Position
Reference/Lagrangian 97, X
Intermediate/initial & E
Current/Eulerian R x

initial or imtermediate configuration, &, is obtained by the
static deformation of each point according to X — §(X) e V.
This mapping is not necessarily continuous, and gives rise to

the possibility of interfaces across which material particles -+ -

slip relative to one another, A slip interface is defined by a
surface in the reference configuration, %,:f(X)=0, such
that %, forms a bounding surface between the disjoint sets
of points on either side, which we label V,, and Vi for
convenience. The unit normals to %, are N' and N@
directed out of ¥, and Vj,, respectively, with NV 4+ N =
0. The slip condition means that '

lim E[X ~ N} # lim E[X — eN®@],  Xe %, ()
€0 €10

with strict inequality at, possibly, all points on £,. The
points on either side of %, define material surfaces for the
regions V4, and V;, in the reference configuration. We will
assume that the static deformation maintains these material
surfaces as bounding surfaces, i.e. that the limits in eq. (1),
though distinct, are both elements of the same deformed
interface %, Thus, the static deformation forms fwe distinct
bijective mappings between £,(X) and Z(E), defined by the
unequal members in eq. (1). Our main interest here is in
cases where the slip interface separates an inviscid
compressible fluid from an elastic solid. We may then
identify V;,, and ¥, with V,; and V,,, the fluid and solid
regions, respectively. At the same time, we define %, and
Fys as the fluid and solid surfaces that coincide with Zy. We
define % and %, by analogy, and note the identities
o= Lo U Lo =% U Z.. An important consequence of
the slip is that % does not coincide with Z..

We will consider later the example of a pressurized
borehole in which a column of fluid surrounded by solid
may be compressed in a piston-like manner in the static
deformation. In this case, %, and %, are defined by the
cylindrical fluid/solid interface. The solid undergoes no
strain in the axial direction under the static deformation,
implying that the axial extents of Z, and %, are the same.
However, the axial length of %, is diminished compared
with %y because of the smaller fluid surface meeting the
solid after compression, so that ff’fc.ﬁ?s in this particular
case. Obviously, %, < % would hold if the fluid were to
undergo an expansion (negative compression).

The current state of the medium resuits from additional
small acoustic disturbances in which material particles
deform according to the motion £~ x € V, where x denotes
the current position of the material particle described by X
in %, We distinguish the static and dynamic displacement
fields, w = w(X) and u(X, ¢), defined respectively by

w=E—-X, u=x-E,

The location of the slip interface in the current configuration
is the set of points in R* defined by %, which is the mapped
version of £ The different notations for the three
configurations are summarized in Table 1. The surface S,

Volume/Surface  Density  Disps./Stresses
Ve §(1._N--f£n Pa 4 Tays f.’m:__PMj
V.S, N, ¥ p By Tojy Pl oy
vV, 5w & P Wy Ty Y Ty



denotes an arbitrary surface element in V), which is
transformed into § and § in the other configurations.

Different types of subscripts are used to distinguish the
three states. Upper case Latin, lower case Greek and lower
case Latin refer to the reference, intermediate and current
states, respectively. Thus, for example, the components X, ,
E, and x; are unambiguous, although we can equally well
write &, with no confusion. The summation convention on
repeated subscripts is implied. Partial derivatives are defined
by subscripts preceded by a comma and are specific: thus
fa=3fl8X,, f.=38f/3E, and f,=8f/8x, A note
concerning functional dependence: vectors describing the
dynamic displacements and stresses are always indicated as
functions of points in R*. Thus &,(X) means the value of the
displacement at the physical spot X in R* defined by the
vector X € Ry, Quantities with tildes refer to variables
expressed in the intermediate coordinates. Thus #{E) and
u{X) mean the same thing. In general, we will use the
notation f(E) = f(X). The notation in current coordinates is
a source of possible confusion: thus we use u(x) to indicate
the displacement as a function of x, while the same symbol
is used to denote for the displacement as a function of X.
The reader can easily discern the meaning by context.

The basic measure of stress is the total Piola-Kirchhoff
stress tensor T, sometimes known as the nominal stress
(Chadwick 1976). The transpose T7 is called the
Piola-Kirchhoff stress of the first kind. However, we will
refer to T here as simply the Piola~Kirchhoff or PK stress.
The total stress can be expressed in the intermediate and
current coordinates as T and ¥, respectively, with

Trxj = (ﬁ/p())ga,LTLj) Ty = (P/Pn)xf.LTt,j’ {2)

where t=1" is the Cauchy stress tensor. By definition,

podVy=pdV =pdV, and hence the densities are related
by po=pdet (£, ,)=pdet(x;,). The point forms of the
equations of motion in the three descriptions are

TLf- L(x) = p()uj,.m X € ‘/(),
Taj.a(‘g) - ﬁﬁj_m g [ I7- (3)
xeV.

Tr’j. i(x) = puj.rn

The tractions at any material point can be expressed using
either stress tensor. The force acting across the material
element of area dS,, with unit normal N, is the same as the
force on the current element of area d8, with unit normal n,
where the current and reference directions and areas are
related by

dS/dS, = (det F) [N F~!|, n=IN-F"["IN.-F .. (4

Here F is the deformation gradient, with components
Fix =x, x, and N-F! denotes the action of the transpose

of F~! on N. Relations similar to eqs {4) exist for the
intermediate parameters dS and N. Thus,

n-xdS=N.TdS=N.Tds,, (5)

where S,, § and S refer to the same element of material
surface. The traction vector {= it - T is continuous across any
interfaces in the medium, viewed as a function of current
coordinates. However, the traction is nor necessarily a
continuous function of the reference coordinates.
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2.2 Acoustoelasticity assumptions
The ‘smail-on-large’ theory is based on the assumptions that
u| << |wl,

and that the associated deformation gradients are similarly
refated, [Ju/dX}<<!ow/X|. The standard procedure in
small-on-large theory is essentially to perform a doubly
asymptotic expansion where we are interested in effects of
orders O(w}, O(u) and, most importantly, O(wu). It is the
latter which enables us to determine the first derivative of
physical parameters, such as modal frequencies, as a
function of the pre-strain. The small-on-large stresses are
defined by

Ty (X) = P (X) + PrfdX)y+ -, (6
Tf(8) = PL{E) + PfE) +-- -,

T(X) = n}f(x) +a(x)y+- -,

M

where P! is the pre-stress in Lagrangian coordinates, and
P);and x} are related to it by the standard transformations
(2). The extra stresses Prgi Fa}- and m; are also related by
eqs (2) and, by assumption, they are linear in the small
strains. The pre-stress is in equilibrivm and therefore
satisfies the equilibrium equations in any of the three

coordinate systems:

P.}\,]LM=P3\,L“=-"E}}J:0. (8)

3 INTERFACE CONDITIONS

Consider an element of surface, with area dS,, dS, 45 in the
configurations %, %, @&, respectively. The associated
outward nermals are defined by the unit vectors with
components N, , N,, n, (see Table 1), We note that

dS/dS=1=E, + -, dSo/dS=1~E'~E, + .-, (9
where

EY :EiL_NKNLE}(L: E, =“k,k—ﬁkﬁ1”am (10
and

Ey= %.(WK.L + W k)

The total traction per unit current area can now be
expressed in the alternative descriptions by combining eqs
{5)}-(7) and (9) as

ne(mtm)=(1-E N-(P'+P)
=(1-EY —E N-(P'+P). (11

The traction expressions (11) are well known and their
application to small-on-large motion is straightforward (see
Baumhauer & Tiersten (1973) for a thorough discussion).
However, it is usually assumed that the surfaces remain
bonded, and hence surface elements transform in the same
manper on either side of a material interface. This
assumption is not valid here. There is no slippage in bonded
solid materials, and therefore the area changes dS/dS and
dS,/dS in these identities are continuous across the
interface. However, it is the lack of continuity of these
functions in the presence of slip that is the key to our
problem. The possibility of jumps in these guantities must



442 A. N. Norris, B. K. Sinha and 8. Kostek

be taken into account. At the same time, the slip of particles
at the interface makes pointwise conditions difficult to
formulate in reference and intermediate coordinates,
because the traction condition must be applied at the same
current point on either side of the interface. These two
aspects, the jump in areas and the guestion of identifying
the points on £ and %, will be dealt with separately.

The traction vector of eq. (11) is continuous across a
deformed interface, and it is immaterial which coordinate
system is used to define the functional dependence of the
vector. Continuity of the total traction vector therefore
implies, using eq. (11) and expanding subject to the doubly
asymptotic procedure, that the intermediate stress tensor
satisfies the continuity condition

(N-P'+N-P~- £, N-P}, =0 (12)

The notation {f}, means the difference in the quantity f
cvaluated at adjacent points x + en, € — 0, on either side of
the interface & Similarly, {f}z and {f}, will be used to
denote the difference evaluated at neighbouring points
across &£ and %,, respectively. The jump condition (12)
involves quantities at neighbouring current positions, not at
neighbouring intermediate positions. The transformation
from one to the other requires evaluating eq. (12) at the
different points § = x — u for the same x but different u on
either side of %. The only constraint upon u is that the
normal component be continuous:

{u-n},=0

We split u into normal and tangential parts, according to
u=mu,+u,, 50 that

E=(x~u)—u,. (13

This permits us to convert the jump condition (12) to
one defined on Z. In so doing, the bracketed term on the
right of eq. {13) is considered constant, and the guantities in
eq. (12) have to be evaluated at points in % separated by
{~u, }e. This can only affect the first term in eq. (12)
because the changes in the other terms are negligible. Thus

{(N-P'},—{N-P'—u, - VN-P'} 5

= {—u, - VN- P}z, (14)
where we use the fact that the pre-stress is in equilibrium:
(N-PYz=0.

The desired, converted, form of eq. (11) is therefore
(N-P~E,N-P'~u, - VN-P);z=0. (15)

The analogous form of the force balance condition in the
reference configuration follows from eq. (11),. We first
write it as a jump condition across the current interface:

{(N‘P'+N-P-E,N-P' —E'N-P},=0.

In order to convert this to a jump condition across &, we
need to go one step further than before, because

X= (X -, wn) —u, W,

with obvious notation. Therefore, in addition to the

expansion in eq. (14}, we need to include
{(N-Pyy— (N-P—w, VN P},
Finally, we deduce that
{(N-P~E NP ~u, -VN-P'~E'N-P
W, rVN-P}, =0 (16)

Equations (15) and (16) are, perhaps, the central results
of the paper. The jump condition in intermediate
coordinates, eq. (15), is equivalent to equation (2.16) of
Grinfel'd & Movchan {1979), although the derivations are
somewhat different. Grinfel'd & Movchan (1979) applied a
formal expansion of the continuity conditions to deduce
their result, while we have used a two-step argument, based
first upon the kinematic relation (11), then identifying the
‘converston’ of eq. (12) to intermediate coordinates. The
general continuity conditions (15) and (16) apply to any
interface conditions, whether bonded or not. They reduce to
the simple, standard, forms

(N-P)z;=0, {(N-P}g, =0,

when the interface is bonded.

4 A DIVERGENCE FORMULATION FOR
SOLID/FLUID MEDIA

The dynamical equations for the small motion follow from
eqs (3) and {6)-(8) as

PLj.L(x) = Poll; g, XeV,, (17
I’S(Yf,cr(g) = ﬁaj.:,u g 3 ‘P/’, (18)
7, {X) = pu; xeV. (19)

The equations in current coordinates lead to a natural or
divergence formulation, in the sense that the interface
conditions can be found by integrating the ‘diverged’ stress.
Thus, {n-m}, =0 arises directly from the equations in
current coordinates. However, the position of the interface
& is not-known a priori, which makes this formulation
rather difficult to handle. The other two formulations are
not in divergence form, because the interface conditions
(15) and (16) are clearly unrelated to the differential
equations of motion (17) and (18).

We now show how eq. (18) in intermediate coordinates
can be rewritten in divergence form for a particular type of
heterogeneity. We consider a fluid/solid composite medium
in which the fluid phase is connected. A fluid-saturated
porous medium serves as a good example. The connected
property is required to ensure that the initial pressure in the
fluid phase, caused by the pre-stress, is homogeneous
throughout the fiuid, i.e,

P!=—p'T  in the fluid, (20

where p' is constant. Furthermore, the inviscid nature of the
fluid means that the initial traction on the interface is
everywhere a normal stress of —p’. Consider the new stress

P=P+p'(Ldiva — (Vu)"), (21)

where (Vu),; = u, .. This addition to P is divergence-free,
and hence the equations of motion in intermediate



coordinates, eq. (18}, may be equally well written
ﬁt\'j.a’(g) = ﬁﬁj.m El € ‘7' (22)

We will now demonstrate that the interface condition (15)
can be expressed as

(R-Byz=o. (23)

The jump condition (15) may be rewritten, using eqs (20)
and (21), as

0=(N-P}z+p"{(u, V)N}z
+p{E,N=Ndivu+N-(Vu)"} 5. (24)
The differential operator u, - V in the middle term of the
right member is the same as u - V, where V, represents the
in-surface derivatives. The final term in eq. (24) can be
simplified, using this operator and eq. (10),, to give
0={(N:-P}z+p'{(u-V )N}z +p"{N-(V.0)}z
={N-Pia+p'V {N-u}z.
But the final term is zero because of the continuity of N - u

across the interface. Hence we have proved the equivalence
of eqs {13) and (23).

5 SMALL-ON-LARGE CONSTITUTIVE
RELATIONS

5.1 General theory

It remains to define the linearized constitutive relations for
the small-on-large motion. We will demonstrate that these
are as follows (Sinha 1982);
Pry = Griontin, or (25)
where
Gujok = Cagjor + Prigbu + W, pCrrpro

+ CMjPka.P + CMijl’lw!.Ps (26)

and the second- and third-order elastic moduli are defined
below. Note that the extra moduli Gy, are linear in the
applied fields. The linearized constitutive equations for the
perturbed stresses in the intermediate description are

p«f = éa'fﬂvav-ﬁ' (27)
where
C«f‘ﬁv = Cajpy + Papds — CojpyWs, 5+ CoipyrWip

+ Wo pCrpy + W pCoppy + wﬁ.PCa,-,,Y

+ Wy pCajpp- (28}

Similarly, the linearized Cauchy stresses in the current
configuration are

Ay = Cijk.'u!.k' (29)

Also, the pre-stress satisfies the linearized stress—strain
relation

Pijz CrLiokWr. o
We need only deduce eqs (25) and (26), because the
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others, (27)-(29), follow from these using the general
relations (2) and appropriate linearizations. Expanding eq.
(6) for small-on-large deformations yields

.
Twi=Ppri+ Grnoultp ¥+,
where

8T
B ol

GMz‘Qk = (30)
and the subscript ‘1’ denotes quantities in the intermediate
state, i.e. with u=0, We assume the existence of a stored
energy function U/ = U(E, X) per unit mass in %,,, where the
finite strain, E, is defined in the usual manner as
E=3(F'F—1I). Then the total Piola-Kirchhoff stress
follows as

au
T= po’é&; F. (31
Eq. (30) then becomes
14 3*u
Guior = Porm—| G + pPo—7————
MiQk PanMQ . it T Po BEpn 0Egply
X (Sin + Wi M) (Okp + Wi p)
02 gyt
ETN G- FTo §
rp U
o T Wy oo
C8E 3Eoph kot
*U
+ pg | Wi pt e, (32)
COEpp 3Eily

where we have ignored terms of quadratic or higher order in
w; p. We now assume that the strain energy possesses a

i

Taylor expansion of the form
P X)U(E, X) = %CABCDEABECD
+&CascoerEanEcpEpr+-- -, (33)

where the second- and third-order elastic moduli possess the
symmetries Casen=Cpaco= Cepan Cascper=
Cpacoer= Cepaper= Crrepag The heterogeneity of the
medium is reflected in the dependence of p, and the energy
function on the Lagrangian coordinates. In practice we are
concerned with piecewise constant material properties.
Combining eqs (32) and (33) implies that G, are as
defined in eq. (26}, thus verifying the stress—strain relation
(25). The remaining stress—strain relations can then be
found by using egs (7) and (31).

5.2 Moduli and equations for an inviscid fluid

The general equations simplify considerably for the speciat
case of an inviscid fluid, The second- and third-order moduli
are (Kostek, Sinha & Norris 1993)

Cijk! =A 5.',-6*{:
Cijk!mn = (A - B)(Si,l'ékfémn - ZA(éifIk[!nn
+ ‘Srmllijki)r (34)

where A and B are the usual linear and non-linear moduli of

+ 8,1l

ijme
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a fluid (Pierce 1981), with 4 = p,c? and ¢ the acoustic sound
speed. Also, I, = 3(8,8, + 6,5,) are the elements of the
fourth-order identity tensor. The static pre-strain in the fluid
must be both uniform (homogeneous) and symmetric,
Wi ae=Eipy and Py=-p'd,; where p'=—AE}, is the
initial hydrostatic pressure. Therefore, egqs (26) and (34)
imply that

Garign = Abpyd o + [(A™'B — Déabos + Sandoilp’
- A(éMfEégk + 5QkEkﬁ)' (35)

The PK stress in the reference coordinates follows from eqs
(25) and (35) as

Pri=[(A+A"'Bp Yuy s~ AE}MK“K,MléLj ~ Aug xE};
+ (4 O — Ui k6,0P " (36)

This stress is not symmetric in general since the
displacement can have a small but non-zero rotational part,
as we will demonstrate. We first note that the final part of
eq. (36) is self-equilibrating, because (u, g8y, ~
Ug x0.;), . =0, regardless of the precise form of u. The
equations of motion in reference coordinates are, from eqs
(17) and (36),

UZ(PI)“K.KJ - CZE.I'CLMK.LJ - CZELIMK,KL ~ Uy, =0,

where

vi(plYy=(1+A"2BphHc (37)
Now consider a wave solution of the form

u X, )= ljjf(N?.XL — Ugt),

where N is a unit vector. Standard perturbation analysis
shows that

vo=v(p') = eNgNLE L, + O[(p')],

and hence the speed depends not only upon the pressure p*
but also the strain. The difference v{(p') — v, is the standard
Lagrangian-to-Eulerian correction, reflecting the change in
length between the two configurations in the direction of
propagation. Perturbation analysis also shows that the
amplitude vector U is not parallel to the propagation
direction, but the angle of deviation is of second order in the
pre-strain, This small departure from longitudinal wave
motion indicates that the motion is not irrotational in the
reference coordinates.

The equation of motion in the current coordinates, eq.
(19), can be shown to reduce to

Uz(p l)uk.ki U y= 0, (38)

where the speed v is defined in (37). Taking the
divergence of eq. (38) implies a scalar wave equation for the
dilatation, with wave speed in current coordinates equal to
v{p*), in agreement with standard non-linear acoustics
(Pierce 1981). The equations of motion imply that
(w;;~u;;}..=0, and hence the small-on-large motion is
irrotational in the current coordinates.

Finally, we consider the intermediate configuration. The
PK stress in the intermediate coordinates is

P =(A+ A7 BpYid, b, +pliy 0,

which is not symmetric. However, the ‘modified’ PK stress

of eq. (21) is symmetric:

Py=[A+(A'B+1)p'a, 8, (39)
The equations of motion, (18) or (22), reduce to isotropic
form:

Uz(p 1)&1’.70‘ - aa{.rr = 0’

where v(p') is defined above. The motion is again
irrotational and the wave speed is the same as in the current
coordinates. This is not surprising since the difference
between the two configurations depends upon the small
motion, not on the pre-stress.

6 APPLICATIONS
6.1 Problem definition and representation

We are interested in how the initial deformation changes a
mode of a composite solid/fluid system. The undeformed
mode (w = 0) is defined by the time-dependent displacement
field ™ and the deformed mode by u. The original mode is
time-harmonic with radial frequency @™ and the perturbed
mode has frequency w. The equations of motion for both
modes can be formulated in Lagrangian, intermediate or
current coordinates. However, the current coordinates have
the unavoidable difficulty that the interface position depends
upon the solution uw. The Lagrangian coordinates do not
have this problem, but the interface conditions (16) are
not the -natural ones for the equilibrium equations (17).
Furthermore, there is a conceptual difficulty in dealing with
Lagrangian coordinates for heterogeneous media. For
instance, the ‘speed’ of a small-on-large wave is not a useful
concept in Lagrangian coordinates, as the case of the
pressurized borehole demonstrates. Recall, in that case, that
the axial deformation of the solid and fluid can be different,
so that a wave speed defined relative to the original length
of a fluid column is not the same as a wave speed referred to
the solid.

We therefore propose that the divergence formulation of
the acoustoelastic equations, (21)-(23), is optimal for
dealing with practical situations. It does not suffer from the
problems mentioned above, and its divergence form permits
us to use many of the techniques normally applied to
acoustoelastic problems. We focus here on an integral
formulation analogous to the perturbation procedure of
Sinha (1982). The analysis from now on is entirely in
intermediate coordinates, and to simplify the expressions we
adopt a simplified notation. To be specific, we use the
notation for current coordinates, so that position is denoted
by x rather than E, stress is denoted by o, rather than P,
etc. The point of this change is that we want to emphasize
that the acoustoelastic problem is now in the ‘standard’
form, The critical parameters are then the changes in the
effective elastic moduli and density, both of which are linear
in the pre-stress.

6.2 The perturbation integral

Consider the perturbed and unperturbed equations of
motion as, respectively,

aji.j(x) + szui(x} =0, 0;:’;(?‘) + pn(w"’)zui"(x) ={,



Contract the first with »™ and the second with u, and
integrate the difference over an arbitrary volume V, yielding

fv [pw2 _ pn(wm)zlu’_um dv = f ( ﬂj p; ‘m) 4av.

Then integrate by parts, using the fact that the equations are
in divergence form, allowing us to integrate ‘through’
interfaces. This gives

L [pw® ~ pol @™Vl av = —fv (o7 ; ~ opul) dV.

(40)
We can now estimate the shift in modal frequency, using

p=pethp, C=Cu+AC, w=0"+Aw,

where Ap = —w, .p, is the change in density associated
with the pre-strain, and the incremental elastic moduli
follow from eqs (21), (27) and (28) as

AC = uk! + P88 ~ 8:8;) — Cipu
=p (6;;5k.' - ffajk) - C:’jklwm m
+ Citmnn,nOt + CittrrnWon
+ kalw + Ce.okf b
+ Cw,,wk st ka‘,,w,.r,. (41)

Substituting into eq. (40), making the approximation u =~ u™
and retaining only the terms linear in the deviations gives

f ACy i dV
2™ Aw = v ( m)Z

f Apu??lulﬂ dV

J‘ p unlu!n dV

(42)

The change in phase speed associated with the material
change is

Avju=Aw/e™. (43)

In applying eqs (42) and (43) to fluid—solid media we need
only consider the integrals over the solid portion V,, because
the effects of the fluid perturbations enter through the
dependence of v on p; and A. The change in the fluid
density is simply Ap;= (p'/A)p;, and the perturbation in A4
follows from eq. (39) as AA=(1+ B/A)p’. Hence

o |, ACautiav

3 ! B
Av_plpr 3y 4—51-(1-+ )

] ‘_Ijapf v A

q¥y

2(w"l)2J’ 0 um L av
j Apumumdv

(44)
2j pnun!unr dv

7 EXAMPLE: THE TUBE WAVE

We consider a circular borehole of radius a in an isotropic

elastic formation. The bore is filled with fivid and the axis is
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aligned with the x,- or z-direction. The initial stress is
caused by an applied pressure in the borehole fluid, which
induces an inhomogeneous deformation in the solid. The
general result (44) can be used to determine the change in
phase speed of any given waveguide mode. However, we
will focus here on the change in the tube-wave speed due to
the pressure,

The unperturbed wave has axial dependence of the form
cos (kz — @™r), where & is the axial wave number. The
low-frequency limit of the fluid motion is defined by the
low-frequency behaviour of the Stoneley wave mode, for
which we use the appropriate quasi-static approximations
(White 1983). The pressure in the fiuid, r <a, and the strain
in the solid, » > a, are

P =pocos{w™(t—vT'2)]in ¥,

=3poNia®r e cos [0™(t ~v™2)] in V,
where

s = Oap — 2 Pxoxp, @, B=1,2, €5 =e,,=0. (45)

Here, p is the tube-wave pressure N[ the linear compliance
of the borehole wall and r = (x? +x2) Thus, N, = 1/u for
an isotropic formation of shear modulus u (White 1983),
The unperturbed speed is v, where

v"2=p AT N, 46)

and pq is the reference fluid density. The problem depends
only upon the modal behaviour in the (x|, x,)-plane, and
hence we drop the explicit dependence upon z and ¢ in
subsequent equations.

The applied pressure, p', like the tube-wave pressure, Po
induces plane strain of the form

E'=1p'Na*r % in V,,

where e is defined in eq. (45). Thus E},=w, , =0,
implying that the mass density of the formation is
unchanged under the pre-stress. The dependence of the
tube-wave speed with pressure then follows from eqs (44)
and (46) as

f AC, ity dV

@wﬁfi+(l+A"‘B

24 \1+AN )EZ
v I 2(0)’”)2] p“um mdv

(47)

The upper integrand can be simplified, using eq. (41) and
the symmetries of the elastic moduli, to give

o 2 4,.~4

AC{;M“: S = 4P0N19 5 C wertns

+ Cuklmne iCriCrmn 2[) l) in VS! (48)
where the repeated Greek suffixes indicate summation only
over & =1 and 2. Substituting the general form for isotropic
clasticity intp eq. (48), which involves two second-order and
three third-order elastic moduli, it turns out that the terms
involving Cyy and Cyyy,,,, are individually zero, independ-
ently of the five moduli. The volumetric integrals in eq. (47)
should be understood as time averaged over one cycle, or
alternatively, as averages over one axial wavelength, and
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they can be replaced by integrals in any cross-plane. Thus,

AC il dV— —p Yp2INIa 2

Ve

e = i PN )
a r

The integral in the denominator of eq. (47) is dominated, in
the quasi-static limit, by the integral of (u%")? over the fluid
volume, because all other displacements are O(w) in
magnitude relative to the axial displacement in the bore
fluid. Furthermore, the axial speed is approximated by the
relation ui, = {p)”'p™, appropriate to a medium with
acoustic impedance psv. Hence

@ pouigu v~ [ piutav = pipd) ae
v t

(56)
Combining eqs (46}, (47), (49) and (50), we find that
Av Pl -1 142002
B e T e . S —— — - , 51
v 2A(1+AN) (A7 B = AN, = 347N 1)
or
pedv?ldp|, o= (A7'B + {)v/c) ~ L. (52)

Note that the speed in eq. (51) depends upon the applied
pressure p' but not on the specific fluid strain field. This is
physically reasonable. One could visualize different initial
strain fields in the fluid, all with the same pressure but
different values of the axial strain E3;. For instance, a
piston-like loading in the borehole induces a fiuid strain
proportional to the tube-wave strain, whereas an axial or
line load along the axis would give Ei,=90. However, all
yield the same tube-wave speed. We also note that eq. (52)
agrees with Johnson, Koster & Norris (1993). They
considered the possibility of variable elastic properties
within the formation, but their general formula collapses to
eq. (52) for a uniform formation. When the formation

compliance becomes infinite {rigid walls), then v = ¢ and the
result (52) reduces to eq. (37), as expected. Eq. (52)
indicates that the fluid non-linearity parameter B/A, which
is positive, is diminished by the presence of the formation.
However, the non-linearity parameter is magnified when the
formation properties are not uniform, as discussed by
Johnson et al. (1994).
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