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Membrane and Flexural Waves on
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Thin Shells

Membrane and flexural waves are limiting short wavelength solutions of the equa-

tions of motion for arbitrarily curved, smooth shells. Each distinct wave type is
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found using a geometrical or ray method based upon asymptotics in the small
parameters h/R, where  is thickness and R @ minintum radius of curvature. Useful,
asymptotic formulae are found for the normal displacement associated with mem-
brane waves, group velocities, and other physically significant quantities. Ray paths

on a conical shell are illustrated for each wave type, and it is found that Hexural
rays form a caustic near the vertex.

1 Introduction

Normal mode descriptions of shell dynamics become very
cumbersome at high frequencies, where it is more profitable
to consider local wave effects on the structure. From this view-
point the motion of the shell is the superposition of distinct
wave types, just as the motion of an isotropic elastic solid can
be locally decomposed into compressional and shear waves.
The decomposition is rigorous in the latter case, but .is nec-
essarily approximate for thin shells with non-zero Gaussian
curvature. However, the idea of waves traveling along rays on
the shell is conceptually appealing and simplifies our physical
understanding of the mechanisms for energy transport. For
instance, recent experiments on the nearfield acoustics of sub-
merged thin shells have been interpreted using similar ideas
{(Williams et al., 1990).

Several authors have employed the methods of geometrical
acoustics to analyze shell dynamics, including Ross (1968) who
considered axisymmetric motions, and Germogenova (1973}
who focused on flexural wave solutions. Pierce (1989) and
Pierce and Kil (1990) have shown that the Donnell equations
for a cylindrical shell are similar to those describing structural
wave disturbances in a two-dimensional unbounded homo-
geneous anisotropic medium. Therefore, one can apply results
and concepts for waves in anisotropic media to shell dynarmics.
Recently, Pierce (1992a) has developed a fairly general theory
for waves of short wavelength propagating over thin shells of
arbitrary shape. The principal restriction is that the wavenum-
ber must be large compared with the two principal curvatures,
Pierce’s theory predicts both dispersion and anisotropy, the
latter dependent upon the orientation of the propagation di-
rection with the local directions of principal curvature,

. The focus of this paper is on developing the methods of
geometrical acoustics for wave propagation over the surface
of a shell of arbitrary shape. We use the formalism of ray
theory and the eiconal equation as developed by Ketler (1978)
for general wave problems; however, our work is strongly
influenced by recent work along these lines by Pierce (1992a).
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Separate analyses are performed to extract the governing be-
havior of flexural and membrane waves. Qur method of anal-
ysis emphasizes the fact that the separate wave types correspond
to distinct asymptotic scalings. This leads to some simplifi-
cation in the dispersion relations, and greatly simplifies the
task of finding the polarization vectors and group velocities.
In the following sections we assume a short wavelength asymp-
totic expansion using a general ansatz specifically tailored for
flexural or membrane waves. These asymptotic approxima-
tions are applied to the general equations describing a shell of
arbitrary shape under fluid loading, which are summarized in
Section 2. The asymptotic scalings are discussed in Section 3,
and applied to membrane and flexural waves in Sections 4 and
5, respectively. In each case we discuss the dispersion relation,
the group velocities and the polarizations of the tangential and
normal displacements. The general theory for an arbitrary shel
is applied to conical shells in Section 6, where we also provide
illustrations of flexural and membrane ray paths near the vertex
of a cone. :

2 Thin Shell Theory

The tensor form of the equations summarized here follows
from the works of Green and Zerna (1968}, Koiter (1960) and
Pierce (1992a,b), and are consistent with the theories of each
author. A good review of thin shell theories can be found in
the monograph of Leissa (1973). The equations are for an
arbitrarily curved, smooth shell and include both membrane
and bending effects. It is assumed that the shell is thin, i.e.,
h << Ry, where h is the thickness and R, the smallest
principal radius of the undeformed middle surface, and that
stress is approximately plane, i.c., the traction normal to the
undeformed middle surface is small in comparison with the
remaining in-plane components of stress. The asymptotics in
Section 3 are premised upon the assumption that the wave-
lengths of interest are much shorter than R,,;,; however, at the
same time they must be much longer than #, i.e., thin shell
theory requires that the frequency is restricted to Qh << 1,
where Q is defined in Eq. {8a). The curvilirear coordinates on
the shell are 6" and 6%, with corresponding direction vectors .,
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- E X = 1,2, and surface normal 8; = a, A #/[a; A &1

...directed out of the shell, In general, greek sub- or superseripts
assume the values 1 or 2, and the suffix, « denotes differen-
tiation with respect to §*, The surface metric tensor has com-
ponents a,s = 8, * 8g, and the curvature tensor is d,g = 2,
» 83 5. Vectors are defined relative to these tangent vectors by
their components, e.g., kK = &%a,. Components are raised and
lowered by the metric tensor; thus v, = a,,svﬂ, and ama"ﬁ =
88, The squared magmtude of avectoris k* = k%, = K a.s
= kokga™. The covariant deriyative of a scalar is Daw = w.,
and for vector components Dgt®* = 1* g + T, V¥, or Dgu,
= Upp = e U, where the Christoffel symbols are defined
as T, = a° ayeagy.

'f‘he d:splaccment vcctor of a point originally on the middle
surface is decomposed into tangential and normal components
asu = v*a, + way. The equilibrium equations for a thin sheil
subject to fluid loading are

2

o L r =D, a=1,2, (1a)
#w '
ph 2 g — 1% s — pai, (1b)

where pgr = p. — P- is the difference between the acoustic
pressures on the exterior and interior of the shell and p is the
mass density per unit volume of the solid. Also, n** and m™®
are the in-plane stress resultants and the stress couples, re-
spectwely, and the shearing forces ¢™ are related to the couples
by ¢* ng . The constitutive relations for an elastic shelt
are

n*f=C H®e,, = — B H**¥\D D\w '3

where the in-surface strains are .5 = (95,007 + o Dpt™)/
2 + d,sw. The tensor H depends upon the symmetry of the
material comprising the shell, and simplifies for isotropic ma-
terials of Poisson’s ratic v to
1

HPh =—(1 = o)a™ " + @™ d™) v a7 3
The parameters C = Er/(1 — ) and B = EK*/(1 — ") are
the extensional and bending stiffness, respectively, where E is

the Young's moduius. In summary, the equations of motion
for an isotropic shell may be written,

2 e
ph Zf 7=Dp(ClL-ne™ +vela*?]), «=1,2, (4a)
a2W 3
ph 7= = DuDylB(1 = D" D*w] ~ DD (BsDgD v}

—Cl(1 — v)dged + vd%ef) — pair.  (4b)

3 Short Wavelength Asymptotics
We consider solutions of the form

u(x, 1)=ux, t)explic Mo(x, 1)}, 63)

where ¢(x, ¢) is the phase function and ¢ is a small parameter,
e << 1. The choice of the parameters A = 0and 0 s g < A
determines the wave type, flexural or membrane. Define the
frequency w and surface wave number vector k,

w= =X, '), k=D D(x, ). (6)

The actual surface wavenumber is not k but ¢~ k, which
depends upon the choice of A. After performing the asymptotic
scaling we will set A = ¢ and ¢ = 0 (or equivalently set ¢ —
1) so that there is no distinction between the two. The same
goes for the frequency w. It is useful to consider the small
parameter to be defined by
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where R is & fixed but arbitrary length, such as a typical radius
of curvature, The arbitrary nature of R means that it may be
identified with the radius of curvature for the purposes of
scaling, but may be set equal to h after the scaling is performed,
thus eliminating the explicit dependence upon ¢.

We also define the following parameters,

Q=w/cp, 8a)
.1 1 2y
O P
Bang R} + R + fR;R,r.r’ (80

where R; and Ry, are the principal radii of curvature, and ¢,
is the longitudinal plate wave speed, & = E/(1 ~ »))p. We
will also need the shear speed c;, where c2 E/2(1 + »)p, and
the tensors

1 )
(- v}k a3 -i--é-(l + 0)kkg, {9a)

Fy=1
2
=(1 — »)d + vd Ja3. (9b)

Define the perpendicular wavenumber vector as k* = a; A k.
Hence, if k = (k;, k) in principal curvature coordinates, then
k* = (—ky, k). Finally, define the unit vector in the direction
of the wavenumber vector as n = k/k, also known as the wave
normal, and n* = g; A n.

For fluid loading on the outside only we have p_ = 0, and
we assumne a local fluid Joading impedance, Z,,,, such that

Pe = —iwZgw. (10

However, we do not assume any specific form for the radiation
impedance in this paper, but refer to Junger and Feit (1936)
and Pierce (1992a) for further details. It helps to define a
nondimensional impedance,

- Z

g 5~ (11)
— jwph

where the appearance of & in Z,,, suggests that it should be

scaled with e. The appropriate scaling turns out to be

Zrad = el(,u - )‘)21?0 » (12)

where 22, is assumed to be a quantity of order unity. We will
see in the next sections that this scaling is indeed the correct
one which includes fluid loading effects in membrane and
fiexural waves.

3.1 Pierce’s Dispersion Relation. Pierce (1992a) derived
a general dispersion relation based upon an assumed form
similar to Eq. (5), withe = 1 and u" = &, where  is constant.
The main assumption was that the wavenumber vector k is
large in comparison with inverse lengths of the order 1/R,
where R is a typical radius of curvature, No explicit assumption
was made about the magnitude of the frequency w, although
there appears to be a slight inconsistency on this point, which
we will discuss below. By substituting this ansatz into the
equation of motion, Pierce obtained the 3 x 3 eigenvalue
system

(F§ - Q% 0P~ iG3kA Ve = 0, (13a)
— iG3k O + (nz-l—li hzk“—ﬂf;,,g—ﬂzzmd) Ww=0. (13b)

The dispersion relation follows by setting the determinant of
the 3 X 3 matrix to zero. The procedure for simplifying this
is explained in detail by Pierce (1992a), with the final result
given in Eq. (43) of his paper. We present here the same
dispersion relation but in a slightly simpler form:
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_1—uk1 (Qz_kz) Ql(l+2 )_f‘_l_k4 —P
2 rad 12 ring

=—(1-) Qz(ﬁg+§é —-I—H—V(—kjwﬁ' . (14)
Ry Rp 2 \Ry R
Note that the left member is isotropic as it depends upon K
only through its magnitude, but the right member is aniso-
tropic.

The dispersion relations that we obtain in the next sections
are approximations of this general relation under the scalings
appropriate to the wave types. For membrane waves, longi-
tudinal and shear, the frequency and wavenumber are of the
same order and large, whereas for the flexural wave the wave-
number is large but the frequency may be of order unity. These
distinctions arise from different choices of the numbers A and
# in Eq. (5), and also require appropriate scaling of the dis-
placement components in terms of ¢, as discussed below. The
eigenvalue problem, Egs. (13), from which Eq. (14) is derived
explicitly includes the frequency terms in the membrane equa-
tions, but ignores other terms of order & that appear in the
exact equations. In effect, the resulting dispersion relation is
only valid for frequencies © such that the wavenumber & is
large, which turns out to be the case for membrane waves when
the frequency is also large. For flexural waves it is possible to
get large & for @ of order unity. In both these cases, one can
simplify the roots of the dispersion relation (14) by approxi-
mations. .

4 Membrane Waves

4.1 The Dispersion Relation. Letu = 0, A > 0 in Eq.
(5), and assume the following ansatz for the displacement
components,

VX, £y = VR, 1)+ P, )AL (15a)

Wi, =W, W, D+ .., 0 (15H)

If these are substituted into the w equation, Eq. (4b), it is clear
that the bending terms are of smaller order if 0 < A < 2, We
therefore assume that A = 1, in which case the w equation
implies

W= o1+ 280 Gk, (16)
Next, substitute Eqs. (5) and (15a) into Eq. (4a) and keep only
the leading order coefficients of V* and W, yielding

V- F3VP 1 ie? Gak® w=0. (1N

The appearance of ¢ means that the curvature is asymptotically
negligible for the leading order membrane waves. However, it
is useful to maintain this term in the analysis of the dispersion
relation to see what is the first, albeit small, influence of cur-
vature. '

Eliminating W from Egs. (16) and (17) gives

GOk

) s

o
The dispersion relation follows from the condition that this
system has nontrivial solution, implying that the determinant
of the matrix must vanish. It is possible to expand the deter-
minant by expressing the matrix elements in terms of the prin-
cipal coordinates. After some algebra, similar to the algebra
leading to Eq. (14), we find

3 l=v e 2 g I-—w
(@~ K2 (9»« > H)—QZ(HZ,M) {klsz,mg(n > kl)

BB\ 1-v (KB i3\
2 & Lgy_ v pfr Ra -
—(lwu)[n (R%ﬁR%) > (R”+R,-) ]} 0. (19

Journal of Vibration and Acoustics

The leading order roots of this equation (¢ = 0) give the
nondispersive longitudinal and shear wave modes found in the
theory of thin plates. The first curvature corrections follow
by expanding the roots for e << 1, retaining the first additional
terms, and finally set ¢ = 1 which is equivalent 1o unscaling,
to get

! nt n ny m\ ]2 !
I N I /O AN L ERY
14 Z0 | \R, " Ry) ™" R3+Rn 0 o

k= ; longitudinal,

2 o Q@ung? 1 1\2 1
-0 142, \RRy) O g)  shear
(20)

where ny, 1y are components of the wavenumber normals rel-
ative to the principal axes. These approximate dispersion re-
lations, Eq. (20), generalize the longitudinal and shear
dispersion relations obtained by Pierce and Kil ( 1990} for the
particular case of a circular cylindrical shell. Equation (20)
may also be obtained from Pierce’s (1992a) general dispersion
relation of Eq. (14) by setting Q = ng), with § >> Qyp, and
kk << 1, and then expanding in 1/0°.

Note that the effect of the fluid loading on supersonic mem-
brane waves is to introduce attenuation, since Eq. (20) implies
that Im & > 0. The damping is small over distances on the
order of one wavelength, but may be appreciable over large
distances of propagation.

4.2 Normal Displacement and Group Velocity. Membrane
waves are longitudinal and shear because the corresponding
polarization vectors, V* of Eq. (18) are to leading order parallel
to n and n*, respectively. If we let ¥ = V" and ¥* = "
for the longitudinal and shear wave, then the associated normal
displacements are, from Eq. (16),

W
'17 “ + Zrad) -t

2 2 2 2

ny Ry nnoon : 3
—+~~l+p{—+-—=1 longitudinal,
(R R],r) (RI RII) &

2nm ( Pl )
i R” R; +
Note that the normal displacement for a shear wave vanishes
if the ray is paralle! to a principal direction or if the curvatures
are equal. Hence, W/V = 0 for shear waves on a spherical
thin shell. Considered as a function of propagation direction,
the ratio W/ V| for longitudinal waves is greatest for prop-
agation along the principal direction of greatest curvature and
least for the other direction, while for shear waves the ratio
is largest if the wave normal bisects the principal directions.
The group velocity is defined as ¢, = dw/dk, and may be
derived from the dispersion relations (20). For simplicity we
ignore the effects of fluid loading in order to emphasize the
influence of the surface curvature. Setting 2., = 0 in Eq. (20}
we find that

I
k

@

shear.

k c , (1 1
=— — — e | D
€= c‘2n+k2 n (R,, R,) nny
22 2 2
ny oy myy Ny . .
1-v) | - +—=~+v[==+=-]]|, longitudinal,
( ) [RI Ry (RI RH):I £
(22)
2 —nd) 11 shea
PAak (7 Ra R I.
Here ¢ is the wave speed of the wave on a flat plate, i.e., ¢ =
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¢, for longitudinal waves, and ¢ = ¢; for shear waves. The
component of the group velocity in the direction perpendicular
to the wave normal is of order (kR) -2 which is asymptotically
small. Therefore, it should be emphasized that the correction
to ¢, is necessarily small,

The directional trend in the correction can be surmised from
Eq. (22) by considering the case of R; = Ry > 0. Clearly, ¢,
and n are parallel on spherical regions {R; = Ry), and when
the propagation direction is along one of the principal direc-
tions (nmy = ), or if the mode is shear and n bisects the
principal directions (n2= n%). Otherwise the group velocity has
a non-zero component perpendicular to n. For longitudinal
waves the group velocity is inclined towards the direction of
higher curvature, whereas for shear waves, the group velocity
is inclined away from the closest principal direction.

5 Flexural Waves

5.1 The Dispersion Relation. Let A = 1, p = 1in Eq.
(5), and assume the flexural ansatz .
vlONx, Y e VER, D+ EPX, D+ L., (23a)

WX, D= Wix, D+eWix, 1)+, ., (23b)

Then substitute into Eqs. (4) and isolate the leading order terms
to get an algebraic system for ¥ and V*. At this stage we are
finished with the scaling arguments and it is more convenient
to renormalize the results which can be simply accomplished
by setting ¢ = 1. The system becomes

FogVP—iG kW =0, (24a)

, .
— iGopk® V™ + (92 — P % K+ szzz“md) W=0. (24(b)

The only difference between these equations and Eqgs. (14} of
Pierce (1992a) is that the frequency is absent from.the in-
surface equations.

Hence, from Eq. (24a) and the identity

YL 25)
which follows directly from the definition of F% in Eq. {(Sa),
we deduce
Ve 2
W o(1—w)k
Combining Eqs. {24b) and (26, and then simplifying by sub-

stituting for % and Oy, we deduce the dispersion relation
for flexural waves as

F 3 - [kl aﬁ—%(l + y)k“ka] ,

[ G*ng ~%{1 + v)cﬁ*nﬁnyn“] . 26)

i ;
= (1= o)(dning ) =0,

R B
O+ Zoe) ~ 75 a 27

or, in principal coordinates,

214 P Ho WAL
(1 + Zoa) 12k (1-+9 (R,+R” =0, (28)
The final term introduces anisotropy, but only if R; # Ry In
general, Eq. (28) determines the magnitude of the wave number
k as a function of 0 and the direction of the wave normal n,
f.e., k = k(Q, n).

The dispersion relation of Eq. (28) has been previously de-
rived by Germogenova (1973), Eq. (23), and Pierce (1992a),
Eq. (72). It is important to point out that the anisotropy terms
in Eq. (28) do not arise from an asymptotic expansion of the
leading order dispersion reiation, as was the case for the mem-
brane waves. Thus, the terms involving curvature in the mem-
brane dispersion relations, Eqg. (20) are necessarily small by
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virtue of the asymptotic scaling employed. Each term in Eq.
(28) is of the same order, in principle, implying that the cur-
vature correction is a first order effect for the flexural wave.
It shouid be kept in mind that the asymptotic scalings for the
membrane and flexure waves are slightly different. Referring
to Eq. (5), we note that in the former case A = l and p = 0,

.implying that both the frequency and wavenumber are large.

This is the normal state of affairs in high frequency asymptotics
when the wavenumber and frequency are proportional; if one
is large the other is also. However, for the flexural waves (A
= u = 1) only the wavenumber is large, the frequency may
be of order unity. Therefore, the final term in Eq. (28) may
be of the same magnitude as the first, and the term A%*/12
is also comparable because kh << | by necessity.

5.2 The Tangential Displacement. The polarization of the
tangential displacement field associated with the flexural wave
follows from Eq. (26), which may be expressed simply in prin-
cipal coordinates in terms of components parallel and per-
pendicular to the wavenumber vector, as

A ny oy ny nj
— = ML) gy (g S
4 kﬂ:(R.r Ry) "'\R "R | "
—2nmn LN nt (29)
AR TRy .

It is interesting to note that the polarization of the tangential
displacement is not directly dependent upon fluid loading;
whereas the polarization of the normal displacement for the
membrane waves given by Eq. (21) does explicitly depend upon
fluid loading.

Examining Eq. (29), we see that if R; = Rj, the polarization
and k are collinear, otherwise the polarization is tilted towards
the direction of highest curvature. The angle between the po-
larization direction and the wavenumber is

y=tan"! , (30)
R Ry Ry Ry
which achieves the stationary value
11
Vmax=tan"’ R Ru , (D
J 1oy (L, x
Ry Ry/ \Rp R
when
i v 2 l » 2
—+— | nj={—+= ni (32
(Rl Ru) ! (Rn R;) i

If one of the curvatures is zero, then Yy, = tan” {1/, and
occurs when k makes an angle yna, with respect to the direction
of non-zero curvature. For steel, with » = 0.289, we find ¥yax
= 61.74°. When both curvatures are non-zero and positive,
it follows from Eq. (31) that the maximum value of ¢ will be
less. Hence the maximum possible deviation, ¥, is achieved
on regions where one of the principal curvatures vanishes. We
note also from Eq. (30} that ¢ = (1), and so the degree of
anisotropy is independent of frequency. However, for a fixed
value of W the magnitude of the tangential displacement as-
sociated with the flexural wave decreases as 1/k, from Eq.
{29). At high frequencies the magnitude of & is virtuaily con-
stant as a function of direction of propagation. The magnitude
of the tangential displacement continues to be a strong function
of propagation direction, and has a directional maximum when
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i
o (33)
The maximum value is
\4 2 1 13\2 (14w
k— = : === + . 34
’W max W3- \/ R Ry RiRy @9

If one of the principal curvatures vanishes, the maximum am-
plitude occurs at the angle tan™" (1/4/2—» ] with respect to
the direction of non-zero curvature, which is 37.40 deg for
steel.

5.3 Group Velocity. The group and phase velocities fol-
low from Eq. (28) for fluid loading. In order to simplify things
we consider the case of no fluid loading, Z,,s = 0. The group
velocity, ¢, = dw/3K, follows by differentiating the dispersion
relation Eq. (28) and using Eq. (84), yielding

w pheg=2Bik + C(1 - v*)2mny

L ANA AT
R; Ru) \R, Ry ¥
Consider the case of R; > Ry > 0, then Eq. (35) implies that
¢ has a negative component in the dirgction of k* = (—ky,
k7). Hence, in general the effect of curvature is to incline the
group velocity vector towards the direction of lower curvature.
The size of the angle between n and ¢, becomes independent
of the frequency for high frequencies, and is solely a function
of the wave normal n. For instance, if one of the principal
curvatures is zero, the angle is largest for n oriented at 30 deg
to the direction of zero curvature,
The energy flux vector on a shell has components (Pierce,
1992b) )

(35

sazmgmaﬁ—a—woﬁmg—ng %‘{i (36)

ar  at
The total energy density & is the sum of the elastic energy
density per unit area,
i 1
U:E n"ﬁeug -3 m® D, Dgw,
plus the shell kinetic energy. In both Egs. (36) and (37) the
quantities are the real valued stresses, strains, etc. The energy
propagation velocity for time harmonic motion is defined as
e = (F*)»/(8), where the brackets { } denotes the time
average over one cycle. The vector ¢; can be determined by
direct calculation using the same asymptotic expansion and
the relation Eq. (26) for the tangential displacement compo-
nents. Omitting the details, we find that

37

2 2
(.‘.F“):%-pthIzc“, <8>=5"i»me|2, (38)
and hence we have the anticipated result, that the energy prop-
agation velocity coincides with the group velocity, ¢ = [

6 Applications to Conical Shells

Let 5, s > 0, be the distance from the vertex of the cone,
and ¢, 0 < § =< 2x, the azimuthal angle on the surface. The
principal directions, J and /7, may be associated with the s and
¢ coordinates, in which case we have 1/R; = 0, R;; = R, where
R = stan o, and « is the cone semi-angle, 0 < « < #/2. The
upper and lower limits of a correspond to a flat plate, and a
circular cylinder, respectively. Both limits are included in the

Journai of Vibration and Acoustics

general analysis here, in particular, the limit of the circular
cylinder is given by letting « — 0 while s — z + a/a, where
ais the cylinder radius and z the axial coordinate, The principal
wavenumbers are k; = &, and &y = ku/s sin a.

The'results in the following sections can be obtained by using
the known conical shell equations of motion (Leissa, 1973),
but it is perhaps more illustrative to use the previously derived
approximations from the equations of motion of an arbitrarily
shaped shell. Also, the effects of fluid loading will be ignored
here, Qur main point is te.emphasize the dispersive and an-
isotropic effects,

6.1 Flexural Waves. The dil‘spersion relation (28) be-
comes, with Z,,4 = 0,

K ni
92=1—2- k4+(l“"2)?

_hz | k3 z 2 M
12 (kf+52 sin® o:) =y )s2 tan’ o (39

Since any developable surface is isometric to a plane (Struik,
1968), some conceptual simplification can be gained by con-
sidering the ray equation on the “‘flattened’’ conical surface,
obtained by unfolding the cone. This can be achieved by think-
ing of the cone as cut along a line from the vertex, and then
spread out on a plane. Since the cut is arbitrary, no discon-
tinuity in field variables can occur as the point on the plane
crosses the cut. The unfolding process has the effect of con-
verting a conical cap into a circular segment on the plane, of
interior angle 27 sin &, Let x and y be coordinates on the plane
spanned by the orthonormal vectors e, and e;, with x = xe,

+ yey, and & = x/s, where s = A/ x*+ 7 is the distance from

the vertex. We also define n = k/k, k = \/i2+4i%, and n*
= €; A n, where ¢; = ¢, A ¢;. The eiconal Eq. (39) becomes

nzzh—z k“+(1—v2)~ﬂ (40)
12 & tan’ o
This dispersion relation is both anisotropic and inhomo-
geneous. The associated rays will not be straight lines on the
flattened conical surface, which are the geodesics on the cone.
The situation is analogous to an acoustic medium with variable
sound speed, for which the ray paths are curved. The ray
equations describe one-parameter solutions to the dispersion
relation, and may be found from the Hamilton-Jacobi equa-
tions for Eq. (40) with ¢ and k, considered as conjugate
variables. Let time be the parameter defining the distance along
a given ray, then the general form of the ray equations are

dw

pa_ B0 . 4
8 % ko= <Dy {41)
Hence, the frequency is constant along a ray,
. e - dw
w=0"Dw+k, -a";{:
=0. (42)
The flexural ray equations follow from Egs. (40) and (41) as
.2 C(l =) 5L en 1
=— 5 (1. . 4
A= [BHHMZ g (0 n (43a)
C (1~

(n.8)°[3(n.&)% ~ 2n], {43b)

T wph S tan «

Note that the velocity along the ray is identical to the group
velocity, X = ¢,. It is clear from the ray equations that
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XAk = kAK 4+ xAK

=0, (44)

which is equivalent to the identity ks = constant. More directly,
the fact that Q given by Eq. (39) is independent of ¢ implies,
from Eq. (41), that 4, is constant along a ray but &, is not.
Note that Eq. (44) does not mean that the angular momentum
X A ¢, is conserved, because the velocity ¢, is not proportional
to the wave normal vector. The ray equations may be recast
in a universal form as follows. Define the nondimensional
variables

X= 3 g Kee g
1,2 (12)"\/Qh

Van

fan o
777w,

Tz'\/ 1-4* (12)

and also N = K/K, § = +/X.X, with X = X/5. Then the
eiconal or dispersion relation {40) becomes

(45)

N.X)*
x4+ SZ) =1, (46)
while the ray Eqs. (48) become
ax (N.X)* -
7= UON+2 5 (X _‘(z_s;.xm}, (47a)
dK (N.X) -
&7‘:( SJ} [3(N.X)X ~2N]. (47b)

Note that the dependence upon the physical parameters E, p,
¥, h, v, and w has been eliminated through the use of the scaled
variables of Eq. (45).

We now examine these equations in some detail, It follows
from the analysis of Eq. (44) that X A K is constant on rays.
Also, dot products with each of Eqgs. (52) imply

K.ﬁ> 0, X.-qwls;: 0.
ar dar

The first inequality comes from the assumption that the wave-
number is non-zéro, and means that the instantaneous ray
direction has a positive component in the wave normal direc-
tion. The second relation implies that the wave number vector
is “‘repulsed’’ from the origin, suggesting that rays tend to
curve away from the origin. This is not always the case as we
will see below: sometimes the rays are attracted towards the
vertex. The reason is that the ray direction can and does diverge
significantly from the wave normal. Also, very far from the
origin the ray curvature must vanish as the variation in K
diminishes as 1/5°. It also follows from Eqs. (46) and (52) that
1 K. ax +X. ax =],

‘ 2 ar
The general behavior of the rays can be understood by con-
sidering fans of rays emanating from points at different dis-
tances from the vertex X = 0. All directions are possible for
Kif § > 1, whereas if § < 1 the wave normal is restricted to
a cone about the azimuthal direction which diminishes in extent
as the field point approaches the vertex. Let y denote the angle
between the radius vector X and N, i.e., ¢ = cos™! N.X. If

the distance § < 1, then only wave normals such that

cos? < 8, (50)

are permissible. Figures 1 through 5 display fans for points at
S = 1.1, 2, and 3. The fans are generated by allowing N to
sweep out the unit circle, and the associated initial values of

(48)

(49)
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1+
Y
ol
At
-2 0 2 3
X
Fig.1 Flexural rays on the universal flattened cona. The vertex lies at

the origin and the source point is the S = 1.1. The rays shown are for
0 = T < 3 In the nondimensional units of Eqs. {45},

-2}

i i

-2 XO 2

Fig. 2 Flexural rays with N initially directed such that 140° < ¢ =<
178.5° where y = cos ™' N.X. Agaln, the starting point is a1 § = 1.1 and
0 = T = 3. Note that the inHial wave normals are In the second quadrant,
but the rays appear to generaily head into the third quadrant. The two
tigures differ only in the number of rays shown. The first lilustrates the
way in which some rays tum sharply, and the second shows the caustic
formed near the vertex.

0.10}
0.05} I -
VHTR
P Ry
SN
Y S
0.00} SHNNE e e
e
Wi g
‘1\\\‘-’.“'4""';’
ey
-0.05}
0105 5 4 6

X

Fig. 3 Rays directed away from the verlex at the launch point § = 1.1,
with ~40° < ¢ 5 40° and 0 < T < 3. Note that rays with initial wave
normai in the first quadrant can have ray directions In the fourth quad-
rant. The structure of the caustic near the axis is clear from the expanded
Y scale.

K follow from Eq. (46). The ray paths shown were all generated
using a 4th order Runge-Kutta code, Rays initially directed
away from the vertex are almost linear, and become more so
as the distance increases. On the other hand, rays tending
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Fig. 4 Flaxurai rays on the fiat cone for starting point at & = 2 for 7
< 0 = 3 and evenly space directions N on the unit clrcle. The causlic
in the forward direction that was present for § = 1.1 has now disap-
peared.

W
Z IS

2}

0 X 2

Fig. 5 The same as Fig. 4 but for § = 2. The rays are clearly less
anisotropic as the source point recedes from the verlex.

towards the vertex become highly distorted, and seem to behave
in apparently strange ways. The behavior of the rays are dic-
tated by the direction at which each was launched along with
the radius of curvature encountered as they travel. Some rays
traveling towards the vertex turn around while others bend
and ultimately dive into the vertex, only to be suddenly turned
backwards, and ultimately escape to infinity. Rays with this
latter response form a caustic near the vertex, as displayed in
Fig. 2. As S increases, the rays are generally straight lines
indicating less anisotropic behavior as seen in Figs. 4 and 5,

The fact that rays sweep past the vertex and travel out to
infinity can be related to the behavior of modes on a cone.
Individual modes of order # can be defined by removing the
azimuthal angular dependence, reducing the problem to a uni-
dimensional inhomogeneous waveguide problem. In the high
frequency limit there exists a one-to-one correspondence be-
tween the “far-field”’ azimuthal component of the wavenum-
ber and the azimuthal order {n) of a mode. The turn-around
of the ray can be associated with a modal cut-off, similar to
the cut-off seen in wedge-like waveguides (Arnold and Felsen,
1983).

The behavior of the ray equations simplifies near the vertex.
Because the dispersion relation (46) implies that 0 < X = 1,
it also means that N.X — 0 as § — 0, or more precisely

N.X= ++/5, as S—0.
The ray Egs. (47) become

(51
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aX_ 2 dK
dT ~ “K§? ™ 4r
It is interesting to note that these approximate equations give

d(X A K)/dT = 0, in agreement with the exact ones, but they
satisfy

2
£ :‘:W K. (52)

1. dX _ dK
3 K X s (53)

'in contrast to Eq. (49). The difference can be explained by the
asymptotic nature of Eqgs. (52). Equations (52) imply that the
directions of X and K are essenially constant while the mag-

nitudes vary according to :

das 2
E"f,-— :!:kgm s (54a)
1 dK 1dS
- Kdr~ “sar (546)
The latter equation integrates to
!
K “as’ (55)
and the first integrates to give ‘
S=c(T-Tp)?, (56)

where ¢y and T, are constants. Equation (55) cannot hold for
arbitrarily small § because X is bounded above by unity. The
solution given by Eq. (56) is therefore only valid for some
range of S small but bounded away from zero. When S becorrnes
sufficiently small the approximation given by Eq. (51} breaks
down, and the ray suddenly turns around and heads out. The
+ and — in Eq, (51) therefore correspond to the ray going
towards and away from the vertex, respectively. It should be
noted that as S — 0 the magnitude of the ray velocity LEIows
without bound, which is clearly unphysical. Far from the vertex
the nondimensional speed is simply 2, but the speed of the ray
in Fig. 2 that most closely approaches the vertex W = 178.5
deg) has a maximum speed of 42, which is clearly unrealistic
but nevertheless suggests that the time spent near the vertex is
short in comparison to the total travel time of a ray.

Further understanding of the flexural ray paths can be gained
through examining their slowness and wave surfaces. It is worth
pointing out that the group velocity curve W, or the wave
surface in the terminology of Musgrave (1970) is distinct from
the curve P associated with constant phase, which may be
defined as the envelope of the curves k.(x — Xg) = const., where
Xy is the origin of phase, Thus, in an isotropic medium the
curves of constant phase are circles centered at x,. More gen-
erally, P is the polar reciprocal to the slowness surface S, which
is the curve of k for fixed w. The polar reciprocal of a curve
is a purely geometrical construction (Musgrave, 1970) which
maps a point on S to a point P in the direction of the normal
to S at radius inversely proportional to the distance of the
tangent to S from the origin. The wave surface W, on the
other hand, depends not only on the shape of S at the f requency
of interest, but also at neighboring frequencies, and thus is
not asimple geometrical construet of §. The difference between
P and W disappears if the S curves are similar, i.e. each pro-
portional to frequency. This is the case in a nondispersive
medium, as discussed by Musgrave (1970), and means for
instance, that points of inflection on § become cusps on W.

The slowness surfaces for flexural waves are illustrated in
Fig. 6, which shows the well-known “‘figure of 8" pattern
(Fahy, 1985). Normally, the figure of 8's are associated with
the cylindrical shell, and occur for frequencies around or below
the ring frequency. The curves in Fig. 6 depend upon the
position, which can be associated with frequency on an equiv-
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Flg. 6 Flexural slowness surfaces on the flat cone for the source point
located at § equal to 0.7 (dotted line), 1.1 (dashed line), and 2 {solid line).

[
2.0}
1.0}
c,, 0.0}
1.0/
2.0}

20 10 00 1.0 2.0

c,,

Fig.7 Flexural wave surfaces corresponding to the slowness surfaces
glven in Fig. 6, from Eq. (475). The source polnls are S equal t0 0.7 (dotted
line), 1.1 {dashed line), and 2 (solid line).

alent cylindrical shell. Thus, the value of the ring frequency
depends upon one's position relative to'the vertex. Referring
to the discussion in the previous paragraph, we note that the
wave surfaces shown in Fig, 7 are smooth and do not exhibit
cusps.as one would find in nondispersive media. However, the
concave regions on S do correspond to multi-valued regions
on the wave surfaces as seen in Fig. 7. The nonappearance of
cusps on W is due to the fact, mentioned above, that the
relationship of ¥ to §is both geometrical and differential. As
the vertex is approached (decreasing S}, the slowness and wave
surfaces become more anisotropic. If § < 1, then only wave
normals satisfying Eq. (50) are permissible. When Eq. (50) is
not satisfied the stowness surface has imaginary branches, Cor-
respondingly, the wave surfaces for § < 1 are no longer closed,
but have branches which tend to infinity as K — 0, as exhibited
by Eq. (474a).

Lastly, the polarization of the tangential displacement field
for the flexural wave, given by Eq. (29}, can be determined
for the conical shell using n; — N.X, nyy — —N*.X, as
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Fig.8 The polarization of the tangential displacement associated with
the flexural wave given by Eq. (57) for a conlcal shell. Note that the
vectors indicate the magnitude and the direction of the polarization.

kR %= HINL. X2 + w(NXP N= 2NN XN, (57)

This is shown in Fig. 8. As stated previously, if one of the
principal curvatures is zero, then the maximum amplitude oc-
curs at the angle tan™'{1/+/2 — v} with respect to the direction
of non-zero curvature, which is 37.40 deg for steel. Thus, the
maximum value of the polarization from Eq. (34) is

v

W

2

max j

kR ) (58)

which is 1.214 for steel.

6.2 Membrane Waves. We now consider the behavior of
membrane waves on a conical shell. The dispersion relations
follow from Eq. (20) as

(5 + vrd)?
Sana’
(1=9) 5, (1=9) Qnng)
2 K 2 SFtanfa’

Once again the fact that @ is independent of ¢ implies, from
Eq. (41), that X, is constant along a ray but &, is not. As done
previously for the flexural waves, some conceptual simplifi-
cation can be gained by considering the ray equation on the
“flattened” conical surface. Using the same notation, the ei-
conal Egs. (59} become

longitudinal,

0= (59

shear.

2y = »)(n. X))

0= tan’ o
(1=2) 1o 21— »)
2 5 tan® «

longitudinal,

(.81 - (n.8)], shear.

(60)

The ray equations follow from Eqgs. (41) and (60). For the
longitudinal waves, we have

k=c g [n ”p% [-{- v}(n.i)zj(n.i)(n*.i)n*} ,
(61a)
¢ 11— -]

k =
w 5 tanz [+3

{11 = 3(1 — 0.2k + 201 — »)(n.%)n 3,
615

and, similarly for the shear waves,
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X =Cf£ [n +m [1 —Z(n.i)z](n.f()(n*.i)n*}, (62a)

4n.%
=§ SJ_Mm[:n’; - ([2-3@.%% 0%~ -2(n.8)n]. (625

Recall that in Eqs. (59) through (62), the terms involving
the curvature are of lower order, namely ¢ = A/R, Neglecting
these smaller terms, one obtains dispersion relations w = ¢k,
where ¢ = ¢, for longitudinal waves and ¢ = ¢, for shear
waves, which are identical to the dispersion relations for a thin
flat plate. The rays are straight lines, corresponding to geodesic
curves on the conical surface. The additional terms in the
dispersion relations of Eq. (60} are necessarily small, on ac-
count of the scaling which led to them, and they cannot lead
to any significant department from the geodesic rays. However,
some idea of the qualitative behavior of the rays near the vertex
can be gained by considering the exact solutions to the ray
Eqgs. (61) and {(62), even though they may depart significantly
from straight rays. In fact, we can expect the “‘smaller order”
terms to become important as a ray approaches the vertex
because the radius of curvature is small there. At the same
time, the group velocities may reach unphysical magnitudes.
Thus, in order to gain some insight into curvature effects on
membrane waves, the smaller order ¢ term will be retained
subject to the constraint of meaningful group velocities.

The eiconal and ray Eqs. (60), (61) and (62) which include
curvature effects can be nondimensionalized in much the same
way as for the flexural rays, although in each case the non-
dimensional scaling depends upon the wave type. Introduce
the nondimensional variables;

w 4
==xtan a, ==Kk, T=uwftan a, (63)
¢ w
where ¢ = ¢, or ¢, and define N, §, X, and X as before. Then
the eiconal or dispersion relation (60) becomes, for longitudinal
waves

KM% [I-(1-»INXPP=1, (64)
and shear waves,
K"+% (N.XY [1-(N.RY=1. (65)

The ray equatior;s for longitudinal waves become, using Eqs.
(61),

dX_ o 20-9) o o 1o (N
7= KN (NR)[I - (1= )INRP) (R - (NN,

(66a)
dK

= (1= (L-DN.RY) (1= 30 - HNRY X

+2(1~#}N.XINJ, (66b)
and, similarly for shear waves, using Eqgs. (62),

ﬁxm +4 NX [1-2(N.X) X - (N.X)N],

dr KS (670)

%:4 h;—ax (R2-3(NXYP) (NXOX - [1-2(N.X)PIN}. (67h)
Note that the dependence upon material parameters has been
eliminated from the shear wave equations and reduced to only
Poisson’s ratio for longitudinal waves.

Figures 9 and 10 illustrate ray traces with a source point
located at $ = 2 for longitudinal and shear waves, respectively,
Once again the fans are generated by allowing N to sweep out
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Fig. 8 Longitudinaf rays on the universally flattened cone with N Ini-
tlalty directed such that 115° < ¢ < 175°. The vertex lles at the origin
and the source pointIs § = 2. The rays are shown for¢ < T < 6 In the
nondimensional units of Eqs. (66). Note how the rays curve around the
vertex,

. \\{{ \\Q\\\
2 -
Y
1F ]
0 L

Flig. 10 Shear rays with the same parameters as Flg. 9 using the non-
dimensional Egs. (67). In this Instance, the rays curve into the vertex,
spin around it abruptly with near approach, then head out along a curved
peth. Also, caustics are generated incoming to and outgoing from the
vartex.

the unit circle, and the associated initial values of K follow
from Egs. (64) and {65). Longitudinal or shear rays that are
initially directed away from the vertex are virtually straight.
As the longitudinal rays approach the vertex they swing quickly
around it before continuing on straight paths, The effect of
decreasing curvature has a greater effect on the shear rays.
They curve directly towards the vertex forming a caustic. At
closest approach, they twist about sharply and leave the vertex
along curved paths once more forming a caustic. Finally, the
shear rays move on to infinity along straight trajectories.

We note from Figs. 11 and 12 that the slowness surfaces for
longitudinal and shear waves have inflection points which gen-
erate smoothly varying multi-valued regions in the wave sur-
faces given by Eq. (66a) for iongitudinal waves in Fig. 13 and
given by Eq. (67a) for shear waves in Fig. 14. This is repre-
sentative of a dispersive medium. The anisotropy, indicated
by the extent or size of the multi-valued regions, increases as
Sdecreases. If S < 1 for either wave type, the slowness surface
has imaginary branches and the wave surface is an open curve.
The open branches of the wave surface, or group velocity curve,
tend to infinity as K — 0, as exhibited by Eq. (66a) for lon-
gitudinal waves and Eq. (674) for shear waves.

Finally, the magnitude of the normal displacements asso-
ciated with the membrane waves are given by Eq. (21), which
simplifies for the conical shell without fluid loading to
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1.0 0.0 1.0
K,

Fig. 11 Longitudinal slowness surfaces on the flat cone for source
points localed at S aqual to 0.7 (dotted line), 1.3 {dashed line}, and 2
{solid line). Note the sppearance of “figure of 8" patterns (Fahy, 1985)
as seen previously for flexural waves in Fig. 6.

T

K, 0.0

1.0 0.0 1.0
K

Fig. 12 Shear slowness surfaces on the flat cone for source points
located at § equal to 0.7 (dotied line), 1.3 {dashed line), and 2 {solid line}

i {(N* X)*+w(N.X),, longitudinal, )

|4 —2(N.X)(N*.X),  shear.

These are shown in Fig. 15. It is seen that the normal dis-
placement of the shear wave vanishes if the ray is parallel to
a principal direction, and that the maximum value is unity for
both cases.

7 Conclusions

We have derived asymptotic results for waves on arbitrarily
curved thin shells, based upon the assumption that the wave-
lengths are short compared to the minimum radius of curva-
ture. The scalings imply distinct asymptotic behavior for
membrane {Jongitudinal and shear) and flexural waves, and
lead to relatively simple formulae for the dispersion relations
and associated physical quantities, such as group velocity and
polarization. Some general results for flexural waves include:
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1.0}
c, 0.0t
1.0}
9060 1.0
c,

Fig. 13 Longitudinal wave surfaces corresponding to the slowness
surfaces given In Fig. 11 for the source points located at § equal to 0.7
{dotted line), 1.3 (dashed line), and 2 (solld line}

50 0.0 BEIG

1

Cc

gx

Fig. 14 Shear wave surfaces correspending to the slowness surfaces
given In Flg. 12 for the source points located at S equal to 0.7 {dotted
lina), 1.3 {(dashed line), and 2 {solid iine)

() The tangential polarization is parallel to the wave nor-
mal on spherical regions, otherwise,

(2) The polarization is tilted towards the direction of high-
est curvature, and the deviation from n will be greatest on
regions of zero Gaussian curvature.

(3) The effect of shell curvature is to incline the group
velocity towards the direction of lowest curvature.

The main results for membrane waves are

() The normal displacement for a shear wave vanishes if
the wave normal n is parallel to a principal direction or if the
shell is locally spherical.

(2) The ration |W/V| for longitudinal waves is greatest
for propagation along the direction of greatest curvature and
least for the other direction, while for shear waves the ratio
is largest if the wave normal bisects the principal directions.

(3) The group velocity is parallel to the wave normal if the
shell is locally spherical, or the propagation is along one of
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0.0

ImKR(W/V)],

Flg. 15 The normal displacement for a conicat shell associated with
the longltudinal wave (dashed line) and the shear wave (solid line), as
plven by Eq. (68)

the principal directions, or the mode is shear and n bisects the
principal directions.

(#) Otherwise, the group velocity is inclined towards the
direction of higher curvature for longitudinal waves, and away
from the closest principal direction for shear waves.

In general, membrane waves are weakly affected by the shell
curvature, whereas flexural waves can be strongly influenced.

The ray methods developed here can serve as a tool for
treating scattering and radiation from fluid-loaded shells of
complex shape. We have not dealt with the issues of coupling
and decoupling of the shell waves, which need to be included
for a complete treatment. Some of these missing links are
addressed in detail in a separate paper (Norris and Rebinsky,
1993) where practical applications are also discussed.
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