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WAVES IN PERIODICALLY LAYERED MEDIA:
A COMPARISON OF TWO THEORIES*

ANDREW N. NORRISt

Abstract. Two distinct asymptotic theories for wave propagation in one-dimensional inhomogeneous media
are compared in their common domain of validity. One theory, due to Santosa and Symes, applies to long
wavelength propagation in periodic media with arbitrary contrast in material properties. The O’Doherty-Anstey
theory, on the other hand, is explicitly intended to describe time-dependent wave propagation in media that
are finely layered but characterized by relatively small reflectivity. The two theories are compared in detail in
the doubly asymptotic limit of low-frequency wave propagation in periodic media with small contrasts. The
equivalence is demonstrated by deriving the asymptotic limit of the dispersion curve of the fundamental Bloch
wave according to each theory. The analysis for the O’Doherty-Anstey theory sheds some new light on its
strengths and limitations, particularly in periodic media. It is shown that it correctly predicts the leading-order
dispersion curve of the first branch for frequencies of O( 1), but fails near the first band edge.
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1. Introduction. This paper looks at the equivalence of two apparently dissimilar
theories for describing waves in nonuniform one-dimensional media, or layered materials.
Both theories are asymptotic in nature and lead to considerable simplification in the
description of wave propagation over many layers, for which exact numerical solutions,
although feasible, are very time-consuming. Also, both theories have been compared
with numerical simulations, with favorable results in each case. The first is for media in
which the variation is small [1], [2] and is known as finely layered medium theory, or
the O’Doherty-Anstey theory. O’Doherty and Anstey [3] first proposed their equation
after noting the apparent attenuation of simulated waves traveling through many layers
of nondissipative materials. The theory was firmly established by Burridge, Papanicolaou,
and White [1] and Burridge and Chang [2], who explained the attenuation phenomenon
in terms of cumulative double scattering over long propagation distances. A summary
of the theory with extensions to elasticity problems is given by Burridge [4], and the
connection with asymptotic methods of averaging has been discussed by Stanke and
Burridge [5]. The attenuation phenomenon is also discussed in [6], while a current
review of waves in one-dimensional layered media can be found in the article of Asch
etal. [7].

The second theory considered here is specifically for media with periodic structure,
but it allows for arbitrary variation in material properties within the unit cell [8], [9].
The basic idea is to expand the dispersion for the first Bloch wave of the system and to
use this asymptotic form of the dispersion relation. Santosa and Symes [ 8] showed how
this can be done for arbitrary layering within the unit cell. They also proved the important
result that this level of approximation is sufficient to describe the evolution of a long
wavelength initial disturbance uniformly in time.

The two theories mentioned are approximate or asymptotic in nature, each with its
own range of validity depending upon material variations, the frequency content of the
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1196 ANDREW N. NORRIS

signal, and the distance of propagation in the medium. Both theories describe the evolution
of a coherent pulse traveling in the forward direction. The long wavelength theory for
periodic media [8], [9] is not limited in the extent of material variations within the
period, but it is a long wavelength approximation based on the assumption that the
shortest wavelength in the signal A is much longer than the length of the unit period 4.
Let

(1.1) s=£;

then, by assumption, ¢ << 1.

The O’Doherty-Anstey or finely layered medium theory [1]-[3] is based upon the
assumption that the reflectivity is small. In the context of the one-dimensional scalar
wave equation, this is tantamount to saying that the relative variation in the acoustic
impedance is small. Let { be the acoustic impedance and A{ the change in impedance;
then the relevant small parameter is

(1.2) 5 ==

where § < 1.

The theory does not explicitly involve a length; however, it is useful to define the
basic length scale as the correlation length of the reflectivity. We denote this by 4, not
to be confused with the basic length in the periodic medium, although we will consider
the special case of a periodical finely layered medium for which the lengths can be con-
sidered the same. We now describe several features of either theory, pointing out common
properties and differences.

Long wavelength , periodic medium theory.

1. The distance of propagation over which dispersive effects become significant
is O(h/e3).

2. The theory is limited to describing the evolution of initial disturbances that are
long wavelength.

3. Energy is conserved.

Small variations, finely layered medium theory.

1. Pulse broadening and dispersive effects become important after propagation over
distances on the order of //62.

2. An explicit formula determines the dispersion and damping at all frequencies,
and therefore the initial disturbance may be arbitrary.

3. Energy is not generally conserved, except, as we will see, for periodic media.

The major distinctions are in the nature of the asymptotic approximation upon
which each theory is founded. For the long wavelength theory, the small parameter is ¢
of (1.1), whereas the small parameter in the finely layered medium theory is 6 of (1.2).
The main purpose of this paper is to demonstrate that the theories agree in the doubly
asymptotic limit where both ¢ and § are small. The physical nature of this situation is
such that an initial disturbance of long wavelength (¢ << 1) encounters very weak scat-
tering (6 << 1), and, consequently, the first dispersive effects will not be seen until the
wave has propagated a very large distance on the order #/5%3. However, this scenario
falls within the realm of either theory, and so we expect them to agree. The task of
demonstrating equivalence is nontrivial, as we will see, bat it is simplified by formulating
both theories in travel-time variables. Then the dependence upon the impedance becomes
apparent. The main reason for the difficulty in comparing the theories is that they are
based upon different physical approximations resulting from (1.1)and ( 1.2), respectively.
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One benefit of the comparison is that it forces us to express the O’Doherty—Anstey theory
in the frequency domain, and it turns out that the general form of the predicted dispersion
equation has a very simple structure. In particular, we can examine it to see how well
the theory predicts the band gap structure for a periodic medium with small variations
in impedance.

2. Long wavelength periodic theory.
2.1. The asymptotic dispersion equation. We consider one-dimensional wave mo-
tion in —oo < z < oo for the pressure p(z, t) and velocity w( z, t), subject to the equations

(2.1) (At 2ww: +p =0,  p.+pw =0.

Here, the density p and the Lamé parameters A and u are periodic functions of z, with
period 4. The subscripts on w,, p,, and so forth denote partial derivatives. We are con-
cerned with the propagation of low frequency, or long wavelength disturbances. It is well
known that to a first approximation the medium acts as a homogeneous medium with
effective sound speed given by

ho ~1/2/ rh —1/2
(2.2) Coff = h(L N+ o a’z) (J; 0 dz) .

The derivation of these results is simplified by switching from z to the dimensionless
travel-time coordinate x, and from ¢ to dimensionless time 7, where
1 % 1

t
2. =— ' ~.
(23) =Thean® 7T

Here, c(z) is the speed and T is the travel time across a unit cell,

/A2 _
(2.4) c—\/————p , T—foc(z)dz.

Now think of p and w as functions of x and 7, so that (2.1) becomes

(2.5) Switp, =0,  pet{w, =0,
where the single material parameter is the impedance {
(2.6) {=pc.
Define the average of a quantity f by
h 1

(2.7) <f>=%o%dz=ﬁfdx.
The effective speed of (2.2) may be written as
(2.8) Ceﬁ"=g—,C0,
where

1\~172
(2.9) Co = <?> (e,

Note that Cy = 1 with equality if and only if { is constant. The effective sound speed
implies that the behavior of the fundamental Bloch wave of the system can be thought
of as a wave in a uniform medium that to leading order has the mechanical properties
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predicted by effective medium theory. However, the first dispersive effects of the Bloch
wave are not contained in the effective medium description. To define the dispersion;
consider a wave of the form

A n | z t
(2.10) {w(z, 1), p(z, 1)} = {W(z2), p(z)} exp [t(x PR ;)] ,
where W(z) and p(z) are h-periodic, and x and Q are a dimensionless wavenumber and
frequency, both referred to the unit period. The starting point for the present analysis is
the result that the leading-order expansion for the dispersion relation of the fundamental
Bloch wave is

Q 1
(2.11) K=E—O+§C00393+0(95),
where C, is the dimensionless effective speed defined in (2.9). The dispersion parameter
in (2.11)is
1 1\? 1\ ! 1
ool )03
33 5 ¢ ¢ § ¢ §
(2.12)

o s3I

The double and triple integrals are shorthand for the explicit integrals of the form

’

[rfe-[ racf sa
fxffgff: _[:fdx’_[jlgdx"fﬂfdxm_

The asymptotic expansion (2.11) with (2.12) is a consequence of a recent result of
Santosa and Symes [8]. Their analysis was performed for the full second-order wave
equation in the physical coordinates (z, t). The present form is simpler since it highlights
the dependence upon the impedance. An alternative derivation was given by Norris and
Santosa [9] based upon the coupled system (2.1). However, the result can be obtained
in the simplest manner from the transformed equations (2.5). This is discussed in the
next section, where we also present some new results for the wave fields associated with
the fundamental Bloch wave in a periodic medium.

It may be checked that the dispersion parameter D; vanishes if { is constant. It is
also known that D; = 0 for the class of two-phase layered media [9]. We show, below,
that D3 = 0 for arbitrary layering in the limit of small contrasts in the impedance function;
see (2.35). It is not obvious from (2.12) that the same inequality holds for arbitrary
finite variations in {. The proof is not apparent to the author, although it is suspected
that the inequality is general. We note that D; can be recast in different ways; for example,

(2.13) D5 = <%>(§‘X%> + <§'><%X§> - % (X + X2>2 — % <X1 - X2>2,
where

1 X , _ Xl ,
(214) Xl—EJ:)de, X2—§'J; g_dx
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Both X, and X, reduce to x when the impedance is constant, in which case it follows
from (2.13) that D; = 0.

2.2. Derivation of the dispersion relation. The Bloch waves of the system are so-
lutions of the form [10], [11]

w(x, )] [w(x) . _
(2.15) [p(x,-r)]_[ﬁ(x)]em{l(kx Qr)},

where w(x) and p(x) are periodic in x with unit period. The vector v(x) = [w(x), p(x)]"
satisfies, from (2.5) and (2.15),

v=0,

dv s -1/¢
(2.16) a(x)+19[ ]

—¢ S

where S = k/Q is the slowness.
It can be shown [12] that S must be an even function of Q. We therefore assume
the expansions (ansatz)

(2.17) S=8o+ (—i)2S, + (—iQ)*Sy- - -,
(2.18) v =10y + (—iQ)v; + (—iQ) v, - .

Substitution of (2.17) and (2.18) into (2.16) and comparison of terms of like power in
Q leads to a series of equations. We summarize the results here, since the analysis is
similar to that of Santosa and Symes [8]. The same type of matrix methods that are
used here have also been used to derive the low-frequency dispersion relation in layered
anisotropic elastic composites; see [13], [14] for further details. The velocity-pressure
fields are, for0 = x = 1,

(2.19a) vy = e,

(2.19b) v = Rle("+f M dx'e™,
0

(2.19c) v, =R{e) 4+ RVe™ + R, f M dx'e™ + f MfMe“),
0

(219d) U3 = R3€(_) + .XS2€(+) + f My, dx', e
0

Here ') and e~ are the vectors that have unit power flux in the positive and negative
x-directions, respectively, for the effective medium. Thus

(+) _ 17)
(2.20) e (1/7 s
where

_ <1/f>)”“
2.2 =|——* .
(2.21) Y (<§>

We have arbitrarily chosen the leading-order solution to be a wave traveling in the positive
direction. The matrix M(x) is

2.22 M=
@ s

So —l/i’]



1200 ANDREW N. NORRIS

The results in (2.19) are all consequences of integrating the ordinary differential equation
(2.16) and imposing the periodicity constraint on each v;. The latter amounts to requiring
that v,(1) = v,(0) for each j. Specifically, the form of e'*’ follows from the requirement
that v, is unit-periodic, which also implies that

1

(2.23) So = Eo.

Thus S is the dimensionless slowness associated with the effective medium. Similarly,
the periodicity of v, determines the first-order reflection coefficient R, as

w25
‘ bas\J ¢ o)
The condition that v; be periodic implies values for both S, and Ré_). We find that

2.25 S, =——,
(225) = s
where Dj is defined in (2.12). Combining (2.17), (2.23), and (2.25), we see that the
asymptotic dispersion relation is indeed given by (2.11). The reflection coefficient
RS proves to be

(2.26) R(“’—1(<s“>"fl§f1f§ <1>lfllfs“fl)
‘ o4 ¢ ¢ ¢ o)

The determination of the transmission coefficient Rgﬂ and higher-order terms involves
considerably more algebra. The form of the terms v, v,, and so forth shows that, at each
order, the field is modified by additional reflected (‘™) terms. The even-order fields, v,
vs, and so forth also include transmitted (e‘*’) terms. The remaining parts vanish at
both x = 0 and x = 1. Thus the total field, considered as a power series in , consists of
forward and backward propagating waves in the effective medium, plus parts that vanish
at one point or more in the unit cell.

We have seen that the dispersion relation (2.17) agrees with the original form (2.11),
which was stated but not proved. There is a subtle distinction between these slightly
different forms of the dispersion relation. The derived relation (2.17) pertains to the
Bloch wave description (2.15) for which the wavenumber k relates to x, whereas (2.11)
was proposed for the waveform (2.10) with wavenumber « associated with z/A. The
correspondence between them follows from the fact that an increase of one in the value
of x is also an increase of one for the value of z/A. Also, the analysis of Santosa and
Symes [8] (see also [9]) begins with an ansatz of the form (2.10) and ends with a
dispersion relation of the form (2.11). It can be shown that the present form of the
dispersion relation agrees with that of [ 8 ] after the appropriate transformations are made.
Therefore the wavenumber parameters « and k of (2.11) and (2.17) with k = QS are
interchangeable.

2.3. The small variations limit. The theory just described is asymptotic in the fre-
quency but is not restricted in the range of variations in material properties. We now
consider the particular limit of a periodic medium with impedance close to constant,
although the speed c¢ can still vary arbitrarily. This is therefore a doubly asymptotic
theory—long wavelength and small reflectivity. Let

1
(2.27) F(x)=§10g (}%),
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where {, is chosen for convenience to be such that
(2.28) (F)=0<1log §{ = (log {).

Thus F = 0 when the impedance is constant, in which case D; = 0. We consider the
approximation to the dispersion relation (2.11) under the assumption that | F| < 1.
Expanding (2.23), using (2.9), we find that

(2.29) So=1+2(F*+ .-,

and therefore the effective medium slowness is greater than the average slowness 7'/ #,
in agreement with (2.8).

The expansion of D; is a bit more tedious, and its simplification requires using
(2.28), (2.29), and the identity

(2.30) f]F2f1f1+fllfF2f1+fllf1fF2=%<F2>,

but eventually yields, to leading order in the small variation,

D3=8[lefFfl+fllfFfF
_flpflfp—z(fl1fF)2]+0(F3).
Then, using the identities
[ F[[r-r [ F[u,

[ r[r
2fllfFfF —leflfF+<F>fllfF,
(2.32) D3=—16[f1Ff1fF+(fl1fF)2]+0(F3).

and ( F) = 0, we deduce
To simplify (2.32), further define the sequence of functions F n =1, 2, . . . such that

(2.31)

F(n+1)

(2.33a) d = Fm,
dx

(2.33b) (F"*D% =0,

(2.33c¢) F = F(x).

We note that F™ inherits the periodicity of F. For now, we need only F?,
R X 1 X
(2.34) F® = f F(x') dx' — f dx f F(x') dx'.
o o 0

Integrating (2.32) by parts then yields the relatively simple result that, to leading order,
(2.35) Ds = 16{F®") + O(F?).

Note that D3 = 0 in the limit of small contrasts, with equality only for a constant imped-
ance profile.
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The dispersion equation (2.11) becomes, using (2.29) and (2.35),
(2.36) k=(1+2(F))Q+8(F®q3+ ...
We defer discussion of (2.36) until after we have obtained the same limit within the

context of the finely layered medium theory.

2.4. Example: A two-phase composite. Consider a laminate made of two alternating
uniform constituents, with parameters ¢{;, {», ¢;, and ¢,. The volume fractions are n,
and n,, and the average of a quantity / becomes

(2.37) (f)=nifi +nofa,

where

(2.38) mo=" (ﬂ+1’3), ny =2 (ﬂ+'—’3).
Cy C) Cy Ca Cy C

We can then readily compute the reference value for impedance {, and the elements in
(2.36). We find that

(2.39) (F¥y = 16ninyA2,  (FO') =4(niny)?A2,

where A is the measure of the reflectivity

(8
(2.40) A= 210g(§‘1)'

The first of these allows us to calculate the approximate dimensionless slowness S, ~
1 + 2{F?*), while the approximate formula for the dispersion parameter D; follows from
(2.35) and (2.39). In summary, the small contrast approximations are

(2.41a) So =1+ 2n\nyA?,
(2.41b) D; = 4(nny)*A%.

These should be compared with the exact forms for Sy, which follows from (2.9) and
(2.23), and for D3, which may be obtained from (2.12) or, more simply, from known
results for the dispersion parameter in bilaminates [15], [16], [9]. The exact results are

(2.42a) So = (1 + 4n' n5 sinh? A)!/2,
(2.42b) D; = %(n’,n'z)z sinh? 2A.

3. Finely layered medium theory. We now convert from the dimensionless variables
(x, 7) to dimensionless characteristic variables (£, ),

(3.1) £=4(7+x), n=3(r —Xx).
Define the continuous version of the reflection coefficient
(3.2) r(¢ —n) =r(x)=F'(x),

where F is defined in (2.27). The local reflection coefficient r is undefined at interfaces
where the impedance is discontinuous. We assume that the medium is everywhere con-
tinuous for simplicity. The presence of discontinuities does not change the general results
here, although the reader is referred to [17] for a discussion of how to include both
discrete and continuous variations simultaneously. Define the down- and up-going waves

(3.3a) D(& ) = 3[¢2p + 12w,
(3.3b) U(E, ) = L[E2p — £17w).
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Then it follows from (2.5) and (3.1)-(3.3) that [1]
(3.4a) Dy(& n) + r(£ —n)U(E 1) =0,
(3.4b) U& n) —r(§ —n)D(&7) = 0.

Burridge et al. [17] showed that the coupled equations (3.4) can be reduced to a
single equation for an approximation to the down-going component D. The form of the
equation for D had been proposed earlier by O’Doherty and Anstey [3]. Let D be the
approximate solution and define its one-sided transform as

(3.5) D(&, A) =J; D(&, n)e™ dn.
Then the O’Doherty—Anstey equation is

(3.6) D(&, A) + d(A)D(E A) = 0.

&Kl

The parameter 4 is the one-sided transform of the autocorrelation function
.1
(3.7) a(n — 1) = Ellm Efo r(¢ —m)r(¢ — ') d¢'.

3.1. A periodic medium. The crucial physical parameter in the finely layered medium
theory is the autocorrelation function of (3.7), which is a spatial, or deterministic, average,
as opposed to a stochastic quantity. The theory as originally proposed by O’Doherty and
Anstey [3] and rigorously derived by Burridge, Papanicolaou, and White [1] can deal
with arbitrary fine structure. The only requirement is that the impedance variations are
small, so that scattering is weak in the sense that the cumulative effects of irregularity
are significant over large distances of propagation. We will now demonstrate that the
dispersion predicted by the O’Doherty-Anstey equation agrees with the low-frequency
periodic theory in the limit of small contrasts. Burridge, Papanicolaou, and White [1]
reported some numerical results for periodic media but gave no analytical results for this
particular limit of the general theory. To compare the theories, we must first obtain the
general form of 4 for periodic media and then take its low-frequency limit.

The autocorrelation function becomes, for periodic media,

1
(3.8) a(n)=f0 r(¢ —n)r(¢') d¢'.

Note that a(n) inherits the periodicity of the medium, i.e., a(n + 1) = a(n), and is an
even function, a(—n) = a(n). The former property presents some formal difficulties
arising from the fact that the autocorrelation function does not decay at infinity, and
hence the Fourier transform is ill-defined in the usual sense. However, by reducing the
infinite integral to an infinite sum of integrals over the unit period, then summing the
phase terms for each of these integrals, in the sense of

(3.9) 1+e+e?+...=

the one-sided Fourier transform can be easily shown to be

. . 1
(3.10) d(A) = ———— | a(n) cos A(n—%)dn.



1204 ANDREW N. NORRIS

Note that 4 is purely imaginary, and hence the effective down-going wave experiences
no dissipation. Generally, when the medium is not periodic, the real part of 4 is strictly
positive, implying decay in the down-going, positive x (or z) direction.

We can now expand 4 as a Taylor series in A. Noting that

1
(3.11) J; a(n)dn =0,

on account of the periodicity of the medium, it is clear that the first term in the expansion
of d is O(A) and that it and subsequent terms may be found by expanding the trigo-
nometric functions in (3.10). A simpler and more appealing approach is to introduce
new functions a?”(5), n = 1, 2, 3, .. . such that

(3.12a) (=" i a®"(n) = a(n)
. dnzn 17 1] B
1
(3.12b) f a®"(n) dn = 0.
0

These functions are also defined to be periodic and even in n (note that, if we were to
represent a(n) as a Fourier series in [0, 1], then the periodicity and evenness properties
follow immediately ). Integration of (3.10) by parts yields

— I 1
SCA) = (2)” Aln——
4(A) 2sin A/2 Jo @™ (g) cos (11 Z)dn
—iA [ 1
R ()’ ; _Z
(3.13) TemA/2 o ® (n) sin A(n 2)dn

A2 ! 1
= —jAg® ! f ) _2 )
iAa (O)+2Sin 272 Js a'”)(n) cos Al n > dn

Proceeding in the same manner, we find by induction that
(3.14) da(A) = —i[a®(0)A + a®(0)A> + a'©(0)A° + ---].

This Taylor series has a finite radius of convergence since it is clear, for example, that,
according to (3.10), d(A) is singular at A = 2nw,n=1,2,....

The terms in (3.14) can be interpreted in another manner. For any unit-periodic
function f, we have

d2 1 1 , ,
(3.15) *Wfof(E—n)f(E)dE—fof(f—n)f(E)dE-
It then follows from (2.34), (3.2), (3.8), (3.12), and (3.15) that

1
(3.16a) ) tl”’(?l):f0 F(&—n)F(§) d¢,
1

(3.16b) aW(n) = J; FO(& =) FP(§) dg,
and hence

(3.17) a?(0) = (F?), a®(0) = <F(2)2>.
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It may be shown, although we omit the details, that similar formulae hold for a®”, n >
2, in particular,

(3.18) a®m(0) = (F™*},

where F™ are defined by (2.33). Thus the expansion of the real wavenumber function
id(A) of (3.14) becomes simply

(3.19) id(A) = <F2>A + <F(2)2>A3 + <F(3)2>A5 -

Note that each of the coeflicients in this power series is positive.
We are now in a position to compare these results with the doubly asymptotic limit
discussed in the previous section. Consider solutions to (3.6) of the form

(3.20) D(& n) = if_w 5(5, A)ei(ié£~m,) dA.

Expanding the phase, using (3.1), (3.17), and the first two terms in (3.14), and also
converting the frequency according to
(3.21) A =29,

we obtain

(3.22)  idG(A)E— An = [x -7+ 2<F2>(x‘2" T)]Q 1 8<F(2)2>(X‘2|' T)Qs.

This is to be compared with the phase (kx — Q7), which follows from (2.36) as
(3.23) kx — Qr = (x — 7+ 2(F?)x)Q + 8(FP)x Q3.

Equations (3.22) and (3.23) are equivalent under the correspondence (x + 7)/2 = Xx,
which is reasonable in the limit that |* — x| << x, which is certainly true if the pulse
has propagated through many wavelengths. The dispersion equation associated with the
O’Doherty-Anstey equation follows from (3.19), (3.22), and (3.23),

(3.24) k=(1+2(F))Q+ (FP)20)* + --- + (FUDH2@)2+! 4 -

Some comments are in order on this equation. First, we have shown by explicit
calculation that the two theories agree in the doubly asymptotic limit of small impedance
contrast and long wavelength. Second, in arriving at the comparison, we have found that
the Taylor series expansion of the O’Doherty—Anstey dispersion relation (3.10) has
coefficients that are all positive. Hence the wavenumber dispersion predicted by the
O’Doherty-Anstey equation is strictly monotone as a function of frequency.

4. Discussion. We have seen that the two theories agree in their common domain
of validity. The long wavelength theory provides the first dispersive term for arbitrary
variation in material properties. The O’Doherty-Anstey formula gives the dispersion for
small reflectivity but is valid for finite frequencies. It is not clear, however, just how high
in frequency the O’Doherty-Anstey formula goes. The theory of Burridge, Papanico-
laou, and White [1] makes no restrictions upon the frequency content; in fact, their
analysis considered the impulse response. In this section, we examine the range of va-
lidity of the O’Doherty—-Anstey formula (3.10) and show that, within the first passing
band 0 < k < =, it is only valid for values of k that may be @ = O(1) but must lie away
from the band edge at k = w. Hence the frequency is not confined to small values exclu-
sively, but it is restricted to @ — k # o(1).
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First, let us write the equation of motion in a different form. Let
(4.1) p(x, 1) = g(x)F(x) e,

where F is defined in (2.27). The two equations in (2.5) can be combined into a single
Hill equation [10] for g(x)

(4.2) g"(x) = [@* + F"(x) = (F'(x))*]q(x) = 0.
We look for a Bloch wave solution of the form
(4.3) . a(x) = Q(x) ™,
where Q(x) is unit periodic. Its equation is
(4.4) 0"(x) + 2ikQ'(x) — [Q% — k? + F"(x) — (F'(x))*]1Q(x) = 0.
Let
(4.5) 0(x)=1+ X d,e?™.
n#+0

If we assume that the Bloch wave is dominated by the effective medium wave propagating
in the positive x-direction, i.e.,

(4.6) d,= O(F), Q*—k*=0(F?,
then a simple perturbation analysis yields

1
= —mn —i2mnx
(4.7) 4= —" fo Fx)e ™ dx.

These coefficients can in turn be used to find the leading-order dispersion,

1
(4.8) 92—k2=f (F)dx+ S —2
0

1 1
” i2wnx F(x' —i2xnx’ ’
n1rn+kfoF(x)e dxfo (x') e dx

Integrating by parts and substituting for r(x) = F’'(x) gives

1 2
(4.9) Q2 —k*= f f r(x)r(x") dx dx'[6(x — x') — G(x — x')],
0
where
_ TR i2wnx
(4.10) Gx)=2 p——— ke

n

The function G can be found by standard means, so that (4.9) becomes finally
1
(4.11) Qz=k2+4Lf a(x) cos k(2x — 1) dx,
sin k Jo

where a is defined in (3.8 ). Furthermore, since a is O(F?), which is small by assumption,
we may write this as
1

12 = k+
(4.12) 2=kt dnk

1
f a(x)cos k(2x—1)dx+ ---.
0

This is very similar to the O’Doherty-Anstey result (3.10) for 4. The equivalence
is id(2Q) < (k — Q). Therefore we see that (4.12) is slightly different from (3.10), the
difference being that (4.12) predicts @ — oo as k approaches =, whereas the O’Doherty-
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Anstey formula gives a finite limit for Q. The singularity in (4.11) and (4.12) is not
realistic since the frequency should reach a finite value less than 7 as k — «. This is the
frequency at which the first stopping band begins, and the frequencies below are the first
passing band. The O’Doherty-Anstey formula can be obtained from (4.11) by substituting
k — Q on the right-hand side. The resulting formula

1
(4.13) Q=K+ .Q f a(x) cos Q2x — 1) dx
sin 2 Jo ’

is entirely consistent with (3.10) and gives a finite value for the frequency that marks
the beginning of the first stop band.

Formula (4.13) is rather interesting in its own right. The dispersion that it predicts
is of O(a), which is O(F?), except as the band edge is approached. There we have

s

1
(4.14) Q2 =7x2—— f a(x) cos 2wx dx.
sin Q Jo

The integral may be simplified using (3.8), and the implicit equation for Q can be solved
easily to give
2

i ,
(4.15) Q=7r——f r(x) e 2" dx| .
0

2

The difference @ —  is O(F), as expected [10]. However, the magnitude of the difference
is wrong. A related calculation in Brillouin’s book [10] shows that the leading-order
deviation of the frequency at the end of the first band gap (k = ) is actually

2

1
(4.16) Q=x-— f r(x)e 2™ dx| + ---.
0

Hence, the O’Doherty-Anstey theory gives the leading-order dispersion within the first
band except near the band edge. As the frequency approaches the band edge, the dispersion
effects change from O(F?) to O(F). The O’Doherty-Anstey theory predicts the same
transition but is only valid in the former regime, i.e., where the dispersion effects are
O(F?). In this regime, the ansatz (4.6) holds, but it breaks down near the band edge at
k = =, corresponding to the fact that d_, becomes of order unity there [10].

4.1. Example. We conclude with an illustration of the preceding general analysis
for a two-phase composite, as defined previously in § 2.4. The exact dispersion relation
can be shown to be [18]

(4.17) cos k = cos @ — 2 sin n}Q sin n5Q sinh? A.

The reflection coefficient and correlation function are, from (2.27), (3.2), and (3.8),
(4.18a) r(x) = [6(x — 0) — 6(x — ny)]A,

(4.18b) a(x) = [86(x — 0) — 8(x — n)]A%.

The modified O’Doherty—Anstey formula (4.13) now becomes

(4.19) k? = 92+s?11A:2 [cos (n) — n5)Q — cos Q].

The systematic discrepancy of the modified O’Doherty-Anstey prediction at the
band edge is apparent in Fig. 1. Note that it always underestimates the width of the first
band gap by 50%.
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FIG. 1. The exact (lower curve) and approximate dispersion curves in the first pass band according to (4.17)
and (4.19), respectively. The parameters are ny = ny = 0.5, /& = 1.5. Note how the O’Doherty-Anstey
prediction (upper curve) gives a band gap at k = =, which is one-half the correct value.

5. Conclusions. The main purpose of this paper has been to show how two different
asymptotic theories for waves in nonuniform media agree in their common domain of
validity. The long wavelength theory for periodic media predicts the asymptotic dispersion
relation (2.11), where the parameter D; of (2.12) describes the first dispersive effects for
arbitrary variations in impedance. The finely layered medium theory, based upon the
O’Doherty-Anstey equation (3.6), gives a quite different representation for the wave
number (3.10). This is restricted to small contrasts in material properties but is not
explicitly restricted in frequency. We have seen that the two theories agree in the simul-
taneous limit of low frequencies and small variations. Although this result is not surprising,
it serves as a useful corroboration of both theories. It should be remarked that these are
among the few rigorous asymptotic theories for nonuniform media. The O’Doherty-
Anstey theory is capable of handling both periodic and nonperiodic media, although it
is primarily used in applications to nonperiodic media, for which there are very few
precise results available.

In deriving the equivalence, we have found that the O’Doherty—Anstey dispersion
relation for a periodic medium has a Taylor series expansion in frequency with coefficients
that are all positive; see (3.24). It has also been demonstrated that the O’Doherty—Anstey
theory does not give the correct band gap in a periodic medium. Hence its range of
validity in the frequency domain is limited to the first pass band with wavenumber of
order unity but bounded away from .
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