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When the slowness surface % of an anisotropic elastic medium consists of three
concentric ellipsoids, solutions of the displacement equations of motion can be
generated from functions satisfying scalar wave equations and the problem of
constructing the fundamental, or Green’s, tensor G for an infinite region becomes
tractable. This paper has two aims: first, to find all the conditions on the linear
elastic moduli under which & is ellipsoidal (that is the union of concentric ellipsoids),
and, second, to determine G for each case in which & simplifies in this way. The two
stages of the investigation have a key idea in common. The ellipsoidal form of %
requires the eigenvalues of the acoustical tensor Q(n) to be quadratic forms in the
unit vector argument n: at least two of the associated eigenvectors are either
constant or linear in n and the squared moduli of the linear eigenvectors are divisors
of eigenvalue differences. These algebraic properties provide a classification of media
with ellipsoidal slowness surfaces and aid in characterizing the membership of each
class. The first stage culminates in four sets of conditions, labelled A, B, C(i) and C(ii):
case C(i) is a restriction of transverse isotropy and the others are specializations of
orthorhombic symmetry. At the second stage n is replaced by the gradient ¢ with
respect to spatial position and polynomials in n become differential operators. The
construction of G involves two canonical problems of classical type, an initial-value
problem for a scalar wave equation and a potential problem for a pair of ‘charged’
ellipsoids. The divisibility property indicated above implies that the ellipsoids are
confocals carrying equal and opposite charges and these characteristics render the
fundamental solution causal in the sense that the entire disturbance excited by the
point impulse begins with the first and ends with the last of the wavefront arrivals.
The structures of the fundamental solutions in cases A, B, C(i) and C(ii) are described
and the latter solution is shown to reduce to a standard result of Stokes in the
degenerate case of isotropy. Mention is also made of a specialization of case B,
appropriate to a transversely isotropic medium which is inextensible in the direction
of the symmetry axis.

1. Introduction

It is well known that there are special forms of anisotropy for which the slowness
surface &% of an elastic material has a particularly simple shape and structure. In the
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case of transverse isotropy there are two relations between the elastic moduli
(equations (3.13) and (6.13) below) under which &% consists of three spheroids with
a common axis of symmetry (Payton 1983, p. 96; Chadwick 1989, §5¢). In the cubic
system a connexion similar to (6.13) has been noted which reduces % to three
identical spheroids with mutually orthogonal axes of symmetry (Chadwick & Smith
1982, §8.3). In each instance the displacement equations of motion decompose into
scalar wave equations with a concurrent simplification of the linear elastodynamics.

Recently, two of the authors set out to find all the restrictions on the moduli of an
elastic material of general anisotropy which resolve & into the union of aligned
ellipsoids, that is three ellipsoids with common principal axes each defining a
direction in which a longitudinal plane wave can propagate (Chadwick & Norris
1990). They showed that the material has to have orthorhombic symmetry and
obtained five sets of conditions on the moduli, one of them necessary and each
sufficient for & to consist of aligned ellipsoids. The five solutions reproduce, by
appropriate specialization, the results for transversely isotropic and cubic materials
referred to earlier.

It is shown herein that it is not necessary to assume « priors that the ellipsoidal
sheets of & are aligned in the sense defined above: the restriction to orthorhombic
symmetry (in one case to transverse isotropy) and the conditions on the elastic
moduli found by Chadwick & Norris (1990) continue to hold when the sheets of &
are required only to be ellipsoidal and concentric. This relaxation is achieved on the
basis of algebraic properties of the eigenvalues and eigenvectors of the acoustical
tensor Q(n) which are also found to have a wider significance.

The most basic elastodynamic problem for which an explicit solution is brought
within reach by the simplification of & to ellipsoidal form is that of determining the
fundamental, or Green’s, tensor G for an unbounded body. The differential system
governing G (equations (4.1) below) contains the operator Q(0d) where 0 is the spatial
gradient. When % is ellipsoidal, the eigenvalues of Q(0) are second-order linear
differential operators. The duality between algebraic and differential objects extends
to the eigenvectors of Q(0) and leads naturally to representations of G in terms of
functions satisfying scalar wave equations. The construction of G requires only the
solution of a Cauchy problem for the typical wave equation and the calculation of the
potential due to two ‘charged’ ellipsoids. These surfaces are, in essence, polar
reciprocals of sheets of ¥ and the ‘charges’ arise from the solution of the Cauchy
problem. Crucially, the algebraic properties mentioned in the previous paragraph
imply that the ellipsoids are confocals and the total charges equal and opposite. The
causality of the fundamental solution stems from these relations.

The algebraic consequences of & being the union of concentric ellipsoids are
elicited in §2 and are shown there to impose a threefold classification on the
eigenvectors of Q(n). The three possibilities entail the results obtained, under more
restrictive hypotheses, by Chadwick & Norris (1990), but only after long and
elaborate manipulations. To avoid disturbing the logical development, we summarize
the conclusions in §3 and defer the derivations to the Appendix. The representation
of G in terms of scalar wave functions is effected in §4 and the two canonical
problems underlying the actual construction of G are solved in §5. The structures of
the fundamental solutions corresponding to the various ellipsoidal forms of & are
discussed in §6 and two special cases are considered : isotropy, for which the Stokes
solution is recovered, and inextensible transverse isotropy, for which a result of
comparable simplicity is obtained.
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2. The nature of the eigenvalues and eigenvectors of the acoustical tensor
when the slowness surface consists of concentric ellipsoids

We are concerned with an elastic material that is anisotropic in relation to a
natural reference configuration N. The mass density and the linear elasticity tensor
of the material in N are denoted by p and C, respectively, and the components of C
relative to an arbitrary orthonormal basis b = {b,, by, by} by Cy;,;: C is assumed to be
symmetric and positive definite, so that

O'ikl = Oklii = Oijkl (2.1)

7

and CrparsSpeSys >0 ¥V non-zero symmetric tensors S. (2.2)

Italic subscripts take the values 1, 2, 3 throughout and summation is implied on
repetitions of p, g, 7, s only. In this section all vector and tensor components relate
to b.

{a) Basic properties of the acoustical tensor

Given the set % of all unit vectors and an arbitrary member n of %, the acoustical
tensor Q(n) of the elastic material under consideration is defined component-wise by

Qyn)=Cppymyn, ¥ nel. (2.3)

On account of (2.1) and (2.2), Q(n) is symmetric and positive definite and thus has
positive eigenvalues A,(n) and mutually orthogonal real eigenvectors g,(n) satisfying

Q(n)q;(n) = A(n)q;(n) YV ne%. (2.4)
The slowness surface & of the material is the three-sheeted surface in R® specified
by .

s(n) ={p*A(n)}7n, i=1,2,3, ¥ ne%, (2.5)
the slowness vector s{n) measuring position relative to the centre O. If the sheets of
& are concentric ellipsoids, it follows from (2.5) that the eigenvalues A,(n) are
homogeneous quadratic forms in n, and then from (2.4) and (2.3) that the
eigenvectors g;(n) are also homogeneous polynomials in n. We suppose that each
eigenvector has been made irreducible by the removal of scalar factors and denote by
d; the degree of ¢,(n) in n.

(b) Distinct eigenvalues
We consider first the situation in which no two of A,(n) are equal for all ne%
and label the eigenvalues and eigenvectors so that d; < d, < d,. Because of the
orthogonality of ¢,(n) we can set

gs5(n) = q,(n) X q5(n), (2.6)
in consequence of which
dy = d, +d,. (2.7)
Let my(n) = q,(n) q,(n). (2.8)
Then Q(n), its adjugate Q*¥(n) and the identity tensor I have the spectral forms
3
Q(n) = T Ay(n){m;(n)} " q;(n) ® q,(n), (2.9)
=1
3
QB(n) = T Ay(n) Ay (n) {my(m)} ' q,(n) @ qi(m), i #j#k#1,

K3

1
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I= 3 {m(n)I"" q,(n) ® qi(n). (2.10)

3
=1
These representations combine to give

Q*¥(n)+Ay(n) Q(n) = Ay () {Ay(n) + A5(m)} T )

_’{ml(n)}ﬂ {/\1('1) _/‘2(”)} {/‘3(") _/\1(”)} ql(”) ® q](n), (2.11)
my(n) @(n) = Ay(n) my(n) I+{A5(n) = Ay(n)} g,(n) @ g,(n)
—my(n) {my (1)} {Ag(m) = Ay (1)} 44 (n) ® g3(m), )
QU (n)+Ay(n) Q(n) = Ay(m) {Ag(n) + Ay ()} T
—{my(n)} {2y (1) — Ay (m)}H{A5(n) — A5(n)} g5(n) ® gy(n), 2.12)
ms(r) Q(n) = Ag(n) my(n) I—{Ay(n) —As(n)} q3(n) @ q;( ) '
() {my(m)} ™ {Ay (1) — A5 (n)} g, (n) @ qy(m). )

All the terms in equations (2.11) and (2.12) except those involving {m,(n)}"* or
{my(n)}~* are polynomials in n. We infer from (2.11) that m,(n) divides Ay(n)— A (n)
and from (2.12) that m,(n) divides A,(n) —A4(n). In view of (2.8), this means that
d, < 1,d, <1, and, bearing in mind (2.7), we arrive at the following possibilities.

A . d;=0,d,=0: 91,49, and g, are all constant.

B. d, =0,d, = 1:g,is constant; g,(n) and g,(n) are homogeneous linear forms in n.

C. dy=1,dy,=1:¢q,(n) and g,(n) are homogeneous linear forms and g¢,(n) a
homogeneous quadratic form in n.

(¢) Coincident eigenvalues

When A,(n) = Ay(n) for all ne, equations (2.9) and (2.10) yield

Q(n) = Ag(n) I—{m,(n);7* {A5(n) — Ay (n)} 44 (n) ® g, (n). (2.13)

We deduce that m,(n) divides A;(n) —A;(n), and hence that d;, < 1. In this case ¢,(n)
and g,(n) are any pair of vectors mutually orthogonal with ¢,(n) and we can take

qx(n) = k x q,(n),

together with (2.6), k being a constant vector. Then d, = d,, and either d, = d, =0
or d, =d, = 1. We thus return to possibility A or C.
If the three eigenvalues are identioally equal we have

Qm)=Am)1, Q(n nl Y mne,
and hence Alm) = n-{Q(m) n}, A(n) = m-{Q(n)m}. (2.14)

The right-hand sides of equations (2.14) are equal, by (2.3) and (2.1). The repeated
eigenvalue is therefore a constant, A, and

Om)=A YV ne%. (2.15)

As proved in part (@) of the Appendix, (2.15) is incompatible with the positive
definiteness condition (2.2), so at most two of the eigenvalues of Q(n) can coincide.

3. Classification of elastic materials with ellipsoidal slowness surfaces
The elastic moduli in N relative to the basis b are defined by

¢,y = b1 {B, C[B,]}, (3.1)
Proc. R. Soc. Lond. A (1993)
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where B, =B,,, B,=B,, B,=B,,,
(3.2)
B, = §(By;+Byy), B;=4(By+By;), By=3B,+B,y),
and B,;,=b,8b,. (3.3)
In (3.1), CTA4] is the second-order tensor with components Cy;,, 4, and tr denotes the

trace: when no indication is made to the contrary, Greek subscripts take the values
1,...,6. The notations ¢,; and n; are used in the sequel for all elastic moduli and all
components of ne %, care being taken to specify the basis to which reference is made.
The useful inequalities

¢y >0, ¢ytey+2c;>0, ©#), (3.4)

result from the choices S'= B;; and S = B+ B;; in (2.2).

For each of the possibilities A, B and C distinguished in §2b, the elastic material
turns out to be orthorhombic or transversely isotropic and each of the ellipsoidal
sheets of & has, as its principal axes, mutually orthogonal axes of symmetry. In
relation to the orthonormal basis a = {a,, a,, a,} aligned with these axes, the elastic
moduli therefore satisfy the conditions

Crq = C15 = C1g = Cgq = Cp5 = Cagq = Cgq = Cg5 = Cyg = Cg5 = Cgg = C56 = 0, (3.5)
and the equations of the sheets of & are of the form
4;83+B;s3+Cs3 = p,

where s; = a," s(n) are the components of the slowness. From (2.5), the eigenvalues of

Q(n) are
Ay(n) = A;nf+B;ni+Cyni,

with n, = a, n.
The results stated in the following subsections are proved in the Appendix. They
refer exclusively to the crystallographic basis a.

(@) Possibility A
The material is orthorhombic and the non-zero elastic moduli are related by
C4qg = —Cg3  Cg5 = 0135 Cgg = —Cra- (3.6)

The eigenvalues and associated eigenvectors of Q(n) are

_ 2 2 2
Ay(1) = €1, 17 + Cog g+ C55 703,

Ag(R) = Cog M} +Cyp M5+ Cog M3, (3.7)
Ag(1) = ¢35 M7 + ¢4y M+ Cyy 13,
and q; = a,. (3.8)

Equations (3.6) to (3.8) reproduce case 5 of Chadwick & Norris (1990).
(b) Possibility B
The symmetry is again orthorhombic and the non-zero elastic moduli satisfy

Cag = Cp5 = —C13 = —Cay,  Cgg = (Cy3+F Cop+2615) 7" (011 Cop— ). (3.9)

Proc. R. Soc. Lond. A (1993)
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The eigenvalues of Q(n) are
Ay(n) = cyy(n2+nd)+cqymi,
Ag(n) = €1 15+ Cop B + €4y M3, (3.10)
Ag(n) = cog(ns+13) +Cag s,

and corresponding eigenvectors are

q, = 4as,
qx(1) = (C11+C10) 7y Ay F (C1p+ Cop) Mg Ay, (3.11)
q5(n) = — (C1p+ Cop) Mo @y + (€15 +€15) 1y Ay,

Equations (3.9) to (3.11) duplicate case 4 of Chadwick & Norris (1990). Two of the
sheets of & are spheroids with a common rotational axis.

If, in addition to (3.9), ¢,, = ¢4, We recover equations (C2),, (S2), and (P2), of
Chadwick & Norris (1990) and hence their case 2.

(¢) Possibility C
There are two alternatives.
(i) The material is transversely isotropic with the axis of symmetry in the
direction of a;. Equations (3.5) are accordingly supplemented by
C11 = Cag,  Ci5 = Ca3,  Cag = Cg5y  Cgg = 5(C1y — Cra)s (3.12)

and the relation i .
Cha = (€13 FC33F2C,5) " (€15 C33—CT5) (3.13)

also holds. The eigenvalues and accompanying eigenvectors of Q(n) are
Ay(n) = ey (ni+mg) +egmi,  Ag(n) = coe(ni+nf) +egyns, Ay =cy,  (3.14)
and
qy(1) = (CyFC13) (0, @y + 15 a,) + (€154 C55) Ny a3,
q,(n) = —n,a,+n, a,, (3.15)
g5(n) = —(Ci5+C55) Ny(ny @y +1y @) + (¢4, +C45) (B +13) @
Equations (3.12) to (3.15) represent case 3 of Chadwick & Norris (1990), and (3.13)
defines one of the specializations of transverse isotropy mentioned in the opening

paragraph of §1. Two sheets of & are spheroids, with a, along the axis of rotation,
and the third sheet is a sphere.

(ii) Orthorhombic symmetry once more prevails with the non-zero elastic moduli
connected by

Cag = G55 = Cop = (Can T Ca3 2Cy5) 7" (Cpp Gy~ C33)
= (C11 FCg5+2015) 7 (041 Ca— €y) = (044 +Cgp+201,) F (€45 655 —€3y). (3.16)
The eigenvalues of Q(n) are
Ay(n) = ¢y Ml Fcop i+ cyanl, Ay = A3 = cyy, (3.17)

indicating that & consists of an ellipsoid and two coincident spheres. Associated
eigenvectors are

q1(1) = (C13+C4q) My @y + (Cop + C4q) My @y + (Co5—Cyy) 1y as (3.18)
and any pair forming with ¢,(n) a mutually orthogonal set.
Proc. RB. Soc. Lond. A {1993)
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This alternative replicates case 1 of Chadwick & Norris (1990) and demonstrates
that the coincidence of two eigenvalues, considered in §2¢, can arise only under
possibility C.

(d) Summary

The four ellipsoidal slowness surfaces to which possibilities A, B and C give rise are
henceforth referred to as cases A, B, C(i) and C(ii). As noted above, they are
equivalent, in turn, to cases 5, 4, 3 and 1 in the classification of Chadwick & Norris
(1990). Case 2 of Chadwick & Norris is a particularization of case B and does not
require individual consideration.

4. Representations of the fundamental elastodynamic tensor in terms of
scalar wave functions

The first step in the determination of fundamental elastodynamic tensors for
anisotropic media with ellipsoidal slowness surfaces is to decompose the initial-value
problem for G into uncoupled Cauchy problems for scalar wave functions from which
G can subsequently be constructed. In this section we formulate the scalar Cauchy
problems by a formal symbolic argument the results of which may be confirmed by
direct calculation for each of cases A, B, C(i) and C(ii).

The initial-value problem for the fundamental tensor can be stated as

p1Q0)G =G/, t>0, |

(4.1)
G=0, 3G/at=d(x)I, t=0)

(Burridge 1967, §1), where 0 is the gradient with respect to position x from the point
at which the impulsive force acts and ¢ is the time elapsed from the instant of
application. If z; = b, x are cartesian coordinates in b, 0 has components 0/0x; in this
basis and 8(x) is the product 8(x,) 8(x,) §(x,) of delta functions.

(a) The spectral form of p~*Q(0)
We denote by L,(0) the eigenvalues and by D,(0) associated eigenvectors of the
symmetric tensor-valued differential operator p™*Q(d) and define

M,(0) = Di(a)'Di(a)’ Ez(a) =M;1(8)Di(8) ® Di(a)' (4.2)

When & is the union of concentric ellipsoids, 1,(0) are second-order differential
operators with constant coefficients, derived from p~! A,(n) by substituting 0 for n.
The eigenvectors, assumed to be irreducible as in §2a, are either constants or
differential operators formed from g,(n) by the same replacement. The tensors E,(0)
are projection operators, satisfying

Ei(a)Ej(a) =dy E;(0). (4.3)
The spectral forms analogous to (2.9) and (2.10) are

w
W

p71Q(0) = X L,(0) E{9), I= X Ey9). (4.4)

=1 i=1

Taking first the case in which L,(0) are distinct, we eliminate E4(0) between
equations (4.4) to obtain

p_lQ(a) = L3(5) I— {L3(@) —~L1(@)} E1(a) + {Lz(a) —L3(5)} Ez(a)’ (4-5)
Proc. R. Soc. Lond. A (1993)
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or, using (4.2),,
p1Q(0) = Lg(0) I—{L,(0) —L,(0)} M;7(0) D,(0) ® Dy(0)
+ {Lz(a) —L3(@)} Mgl(a) Dz(a) ® Dz(a)-

The algebraic considerations in §2b affirm that M,(0) and M,(0) divide L,(0)—L,(0)
and L,(0)— L,(0) respectively, so there exist C; and C, such that

Ly(0)~Ly(8) = O, My(D),  Ly(0)—Ly(0) = C, M,(9). (4.6)

Since L,(0) are second-order differential operators, C; (respectively C,) is a constant
or a second-order differential operator according as D,(0) (respectively D,(0)) is a
linear differential operator or a constant.

When L,(0) = L4(0), equation (4.5) reduces to

pQ(0) = Ly(0) I—{L5(0) — L4 (0)} E4(0), (4.7)
and the algebraic argument again produces (4.6);.

(b) Representations of G

Suppose now that the fundamental tensor is generated by scalar functions ¢,
through the representation

G=% El(ﬁ) ¢z (4.8)

Introducing (4.4), and (4.8) into equation (4.1), and applying (4.3), we obtain

3
% Ej(0){L(0) ¢;—0%p;/t* =0, t>0, (4.9)
=1
while the conditions (4.1),, in conjunction with (4.8) and (4.4),, yield
3 3
0)¢; =0, 0){0¢,; /0t —8(x)} = t=0. (4.10)

i=1 =1
It is evident from (4.9) and (4.10) that the initial-value problem (4.1) is solved if, for
1= 1,2,3, ¢, satisfies the Cauchy problem
— N2 2
0)¢p; = 0%p, /08, t>0, (4.11)
¢; =0, 0¢;/0t=26(x), t=0.
Equation (4.4), can be used to rewrite (4.8) as

G = ¢o I+ E(0) (§s — h3) + E,(0) ($o— ¢s)- (4.12)

This variant of (4.8) avoids the calculation of E,(0) ¢, which becomes difficult in case
C(i) where, as seen from (3.15),, D,(0) is a second-order differential operator. It
transpires, however, that (4.12) is more convenient than (4.8) whenever the
eigenvectors of Q(0) are not all constant. We consequently use (4.12) in cases B and

C(i), and (4.8) in case A.
When L,(0) = L,{0), we adopt, in place of (4.8), the representation
G = ¢ I+ E\(0) ($1— $3)- (4.13)
The result of entering (4.7) and (4.13) into equation (4.1); and using the relations
{E,(0))* = E\(0), {I—E\(0)* =1—-E\(9), E\(0){—E\0)}={I-E0)}E)=0,
Proc. . Soc. Lond. A (1993)
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supplied by (4.3), is
El(a) {Ll(a) ¢1 "‘az¢1/at2}+{l“ E1(a)} {L3((9) ¢3"‘az¢3/at2} =0, t>0.
The conditions (4.1), combine with (4.13) to give
E\(0)¢,+{I-E(0)} ¢, =0, E;(0){0¢,/0t—(x)}
+{I— E,(9)} {0, /01— 3(x)} = 0, =0

The initial-value problem (4.1) is therefore solved by (4.13) if ¢, and ¢, satisfy (4.11).
Equation (4.13) is the appropriate means of determining G in case C(ii).

5. The canonical problems

It has been shown in §4 that, in each of cases A, B, C(i) and C(ii), the fundamental
tensor G is given by one of the formulae (4.8), (4.12) and (4.13), each of the scalar
wave functions appearing in these representations satisfying the Cauchy problem
(4.11). Remembering that D,, and hence E,, are constant in case A, we gather from
(4.8), (4.12) and (4.13) that the construction of G requires only the solution of (4.11)
and the evaluation of E;(0) (¢, — ¢,) for those values of ¢ for which D,(0) is a first-order
differential operator. Using generic forms of L,(0) and M,(0), and referring to the
crystallographic basis a, we proceed now to the solution of these canonical problems.

(@) Solution of the scalar Cauchy problem
We choose, as the archetype of (4.11), the problem
L(0) ¢ = *@/0t2, t>0,
=0, /0t =0(x;)0(x,)0(xy), t= 0,}
where z;, = a;" x, 3

L(0) = 3 v2e/0at,

=1

(5.1)

and v, are positive constants with the physical dimensions of speed. The values of v,
for each of the eigenvalues L,(0) in the four cases are provided by equations (3.7),
(3.10), (3.14) and (3.17): the v; for cases B, C(i) and C(ii) are displayed in table 1,
wherein L

€y = (Cou/ P)*- (5.2)

The anisotropy of the wave equation (5.1), can be removed by making the change
of variables x; = v;§;. The Cauchy problem (5.1) then becomes

A£¢=az¢/at2, t>0, }
¢ =0, 09/0t = (v;0,05)7 8(&;)8(&,) 8(E3), £=0,

A, being the laplacian in the new variables. The solution of (5.3), as given, for
example, by Courant & Hilbert (1962, pp. 737-740), is

¢ = (dmv, v, 0, 7)1 (1 —T), (5.4)

(5.3)

3 3 3 3

with T= (E gf) = {E (xi/vi)z} . (5.5)

-1 i=1
(b) Evaluation of E(@) (¢~ ¢)

Inspection of equations (3.11), (3.15), (3.18) and (4.12), (4.13) shows that the

eigenvectors of p~1Q(d) involved in the construction of G which are first-order

Proc. R. Soc. Lond. A (1993)
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Table 1. Constants relating to the eigenvalues and associated eigenvectors of p~*Q(0) for cases B, C(i)
and C(ii)
(* denotes a repeated eigenvalue, 1 a constant eigenvector and { an eigenvector not involved in
the construction of G)

eigenvalues eigenvectors
f—_J;—ﬁ I A Al
case v, U, U, m, My My C
B €y € G T
€1 € €y Cytly CpptCy 0 {plegy +Cap+2015)17

Cl) ¢ ¢ € Cute Cutey  Catoy  {ple+eg+20,))

C¢ Cg Oy L 1 0 (2p) (e —C1a—204)
Cp  Cg G I

Cli) ¢ € €  CutCy  CputCy Cy—Cy {pless—caa))™?

* Gy  C Oy

differential operators are D,(0) in case B, D,(0) and D,(0) in case C(i), and D,(0) in
case C(ii). By (4.2),, the associated M,(0) are each of the form

3
M(0) = X mi0?/ox3, (5.6)
=1

where m,; are constants which are either dimensionless or have the physical
dimensions of stress. The values of m, for the first-order eigenvectors are set out in
table 1. In two of the four entries, m, = 0. It turns out, however, that no special
provision is needed and we proceed on the basis that m,; # 0.

It is seen from the representations (4.12) and (4.13) that, for each contribution to
G of the form E(8) (¢ — @), the eigenvalues appearing in the Cauchy problems for ¢
and ¢ and the eigenvector composing E(0) are related as in (4.6). We accordingly
postulate, first, that gz§ satisfies (5.1), with

M

L) =

2

0% /o2

1

replacing L(0), and, second, that
v2—37 = Om}, (5.7)

where (' is a constant because of L(8), L(d) and M(0) all being second-order operators.
The final column of table 1 lists the values of C corresponding to the first-order
eigenvectors: they have been obtained with the aid of (3.9),, (3.12),, (3.13) and
(3.16), . i

Let D = M) (p— ).

Then, from (5.6) and (5.4), @ satisfies the Poisson equation

3
M@)D =3 md

=1

i = (4) 7 {(0y 0,0, 7)1 —7) — (18, 5,5, 7) 7 Ot — )},

where ,

2

#={ 3 @) (538)

Proc. B. Soc. Lond. A (1993)



Fundamental solutions in anisotropic elastodynamics 665

and the comma notation is used from now on for partial derivatives with respect to
%;. As in (5.1),, the differential operator can be transformed into a laplacian by
suitably scaling the variables. Here we put

Ty =My, (5.9)
whereupon
4,® = (41)7 {(v, 0,0, 7)1 81— T) — (6, 8,5, 1) 8t — )}, (5.10)
and, from (5.5) and (5.8),
3 3 3 3
T= {Z (miﬂi/vi)z} , T= {Z (mi”?i/ﬁi)z} . (5.11)
i=1 i=1

Equations (5.10) and (5.11) assert that @ is the potential due to two surface
‘charges’ occupying at time ¢(> 0) the ellipsoids

3 . 3
& Z (mym,/v)* =1t and &: X (myn;/0,) =1

=1 i=1

in 7-space. Significantly, on account of (5.7), & and & are confocals and, by virtue of
this relation, we refer to (5.7) as the confocal property of the acoustical tensor. The

total charge on & is
— (16720, v, v,)~ f f J 7) dn, dyg, dy,,

or, with the change of variables

Ny = (v/my) T cos psin D, g, = (v,/m,)TSInPsSInG, %y = (vy/Mmy) T cOS B,
— (41m, m, M)~ J St —71)dr = — (dmm, mymy) 7 8. (5.12)

The total charge on & is plainly —e.

The continuous solution of equation (5.10) which behaves appropriately at infinity
and on the surface charges & and & is formed by superposition from a standard result
in potential theory (see Kellogg 1929, pp. 184-190). Let

f5) = B stfm+siini— 1, gls) = T1 {(wyt/m)+s),

i=1 i=1

and let § be the algebraically largest real root of the cubic equation

f(s)g(s) = 0. (5.13)
Then, assuming for definiteness that ' > 0, so that & lies outside & ,
0, 0<i<rT,
0
-1 id <t<7,
@ — 26 J‘S {g(s)} 8, T T (514>

0
—%ef {g(s)}tds, 7<t,
-t

the interiors of the intervals of ¢ describing, in turn, the outside of &, the region
between & and &, and the inside of &.
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The solution (5.14) can be simplified by means of the substitution k= ¢2s.
Defining

Pk = #1100 = 5 () ad =, 6.15
GUb) = (mymy ) 9(0%) = TT (TR (.16
with Viik) = vi4+mik, (5.17)

and invoking (5.12), we find that
0
@ = (8m)! f Gy 3dk, 7<t<7 (5.18)
K

where K =728, the largest zero of F(k)G(k), lies between —C and 0. If, for some
i,m; 0, one semi-axis of & and & tends to infinity and one root of (5.13) tends to
—o0. No singularity occurs, therefore, in (5.14) or (5.18) and, as anticipated earlier,
the limit is regular.

For the typical eigenvector D(J) introduced through (5.6), each non-zero
component, of D(J)® D(0) is a constant multiple of 0%/0x;0x; for some 4,j. To
complete the determination of

0)(¢—4) =M "'(0) D O)($—) = D(0)® D(©O) P
we thus have to calculate @ ;.
According to (5.14), @ depends on z; only when 7 < ¢ < 7. Hence, from (5.18),
8nd ;= —{GK)} =K {H(t—7)—H(~7)}, (5.19)
where H is the unit step function. A second differentiation yields
81 ;= —{GK) K 4—3C (K)/GK) K K | {H(t—7)— H(t—7)}

HOEK K jaf(0Fr) 8 —1)— (3 F) 1 —F)},  (5.20)
use being made of (5.11) and (5.9). When € <0 in (5.7), 7 and T are effectively
interchanged in the preceding argument and, instead of —C < K <0, we have
0 <K <—C. To cover both possibilities the right-hand sides of (5.19) and (5.20)
must be multiplied by sgn C.

Since ('(k) does not normally vanish at the zeros of F(k), #(K) = 0 and we deduce
from (5.15) that

K, = —2(V(K) F"(K)\ ", (5.21)

K 35 = —4{Vi(K) VK){F' (KPP [{F7(K)/F(K)}
+{m [ V(K +{m3 V(K e, — 2{V(K) F'(K)} 1 6y, (5.22)
The derivatives of F and (¢ appearing in (5.20) to (5.22) are given by (5.15) to (5.17)

as

Pk = — 3 (G miad, POk =2 3 (V) miad

i=

-
.
Il
-

(5.23)
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When ¢ = 7, K is zero and when t = 7, K = —C. The coefficients of 8(t —7) and 8(t—7)
in {5.20) can therefore be evaluated at K = 0 and K = —C respectively (Jones 1982,
p- 167) and they are found, with the aid of (5.16), (5.17), (5.21) and (5.7), to be

—2{v, w050} 0} F/(0) 7} 2y and  2{8, 0,0, 0 07 F/(—C) Ty a2y (5.24)

Combining equations (5.20) to (5.22) and making the substitutions (5.24), we
conclude that

4nd ;; = [2{V/(K) Vi(K) F"(K)} 7 [{F"(K)/F ' (K)} + 56 (K) | GK)} + {mi | V(K
+{m3/ Vi(K) a2, + (V(K)Y ™ 8,0 {F (K H{G(K)y #{H(t—7)—H(t—F )} sgn C
—[{vy vyvgviv; F(0) 731 8t —7) — {0, 0, 03 07 0 F'(— C) 7} 6(¢—7)] ; ; sgn C.
(5.25)
(¢) Simplifications
We take note here of two cases in which equation (5.25) is considerably simplified.

(i) When
VT Uy =0y, My = My = My, (5.26)

equation (5.17) yields
Vilk) = Vy(k) = Vy(k) = vi+mik, (5.27)

and it follows from (5.15), (5.16), (5.23) and (5.7) that
F(k) = {V(k)} 2 =12, F'(k)=—{Vi(k)}*mir®,  G(k)={V(k)}

{F"(K)/F"(K)}+HE(K)/GK)} = =L (K)} md, (5.28)
F(0) =—m2v%r?, F'(—C)=—mio{*r?
where r= (%, xp)% (5.29)
is distance from the origin. The unique zero of F(k) is K, whence
Vi(K) = r*2, (5.30)
and, from (5.5) and (5.8),
T=wvlr, T=0r (5.31)

With the use of (5.26) to (5.31), equation (5.25) reduces to
D = (drmir®) [ —r WH(E— v ) — H{t—, )} (0, — 37; 7))
+r{v 2 Ot —vyt ) =02t — 7 )} Ay 7] sgn O, (5.32)

with 7, = r 1z,
(ii) When
V=0, My =M, Mmy=0, (5.33)

we obtain, by the same steps as in case (i),
Vik) = Vak) = w2 +mk, TVy(k) = o2,
and F/(k) = — V() 2m2 RS, G(k) = (Vi(k)}*o2,
{F"(K)/F(K)} 30 (K)/ G(K)} = — {(K)} 7 md,
F'(0)=—miv*R?, F'(—C)=-—mio*R?
where R = (22 +22) (5.34)
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is distance from the z, axis. When these expressions are entered into (5.25), V,(K)
cancels out and there is no need to evaluate K. We find that

D, = (dnmiv,) [ —R¥H(t—1)— H(t— )} (8,,— 2B, R))

{21 18t —T) — (RS —F) R, By sen O, a,f=1,2, (5.35)
where B, = Rz, and, from (5.5) and (5.8),
7= (2R 40;220):, 7= (72R%+9;2a2)

Since m, = 0, (5.35) are the only derivatives of @ required in the construction of G.

6. The structure of the fundamental solutions

It is now apparent from the representations (4.8), (4.12) and (4.13) that, when .%¥
is ellipsoidal, G is a bilinear combination of generalized functions of the forms (5.4)
and (5.25) with the elementary tensors a; ® a;. Equation (5.4) depicts a single
wavefront, the arrival of which at ¢t = 7 produces an instantaneous singularity in the
displacement. We refer to the associated contribution to G as the 7-wawvefront. The
motion described by equation (5.25) consists of two wavefronts, arriving at ¢ = 7 and
t =7 and each carrying displacement singularities, and a continuous disturbance,
sandwiched between the wavefronts and characterized by the terms involving step
functions. The order in which the wavefronts arrive is decided by the sign of C'in the
confocal property (5.7): 7S 7 accordlng as C' 2 0. The contribution to G provided by
(5.25) is referred to as the (7,7)-pair. The fundamental solution as a whole contains
either two or three wavefronts and either no pair, one pair, or two pairs with a
wavefront in common. The presence of pairs is a direct consequence of the confocal
property and is, in turn, responsible for G being causal in the sense of being
identically zero up to the first and after the last of the wavefront arrivals.

With these facts in mind we can infer the structure of the fundamental solution for
each of cases A, B, C(i) and C(ii) from the relevant representation of G and the
information collected in §3 and table 1.

(@) Case A
All the eigenvectors of Q(J) are constant in this case and, from (3.8) and (4.2),
D, =a, E=a®a,
Equations (4.8), (5.4), (3.7) and (5.2) then lead to

G = (4meyc5¢6)7" T ocyps(eity) P o(E—t)a; ® a,,

.
VR

with _ _ _ 1 _ _ _
t,= (P at4cgtal gt al)y, f, = (cgiad+cziai+ 42x§)2

ty = (c52ad+c; a4y ad)e.

The fundamental solution consists of ¢,-,¢,- and {,-wavefronts, the structure of
minimal complexity. All three wavefronts are ellipsoidal, the order of the arrivals
depending on the relative magnitudes of ¢, and, when the wavefronts intersect, on
position.

(b) Case B

The appropriate form of G is, in this case, (4.12). From equations (3.11), , and
table 1, the eigenvectors involved are

D, =a;, D,(0) =m,(0/0x,)a,+my(0/0x,)a,, (6.1)
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with m; = ¢;;+ ¢y, My = €15+ oy, and, from (4.2),

E\(¢,—¢s) = (¢1_¢3 a; ® as, (6.2)
0) ($y—$3) = Dy(0) @ D,(0) ¥, (6.3)
where o) =M; ) (g — Ps).
Substitution from (6.2), (6.3) and (6.1), into equation (4.12) results in
2 2
G=¢a,Q@a,+¢; J+ X X m,m;P%a, ®ay, (6.4)
a=1 =1
with J=1-a,Qa,=a,a,+a,® a,. (6.5)

The fundamental solution is made up of ;- and t,-wavefronts, specified by ¢; and
b5, and a (¢, t,)-pair generated by @*¥. The times of arrival, derived from equation
(6.5) and table 1, are

t, = (c;2R2+c;2ad), 1, = (¢ a4 cg2ad+e2ad)t, ty = (c;?R2+c;%ad)E,  (6.6)
with R defined by (5.34), and, from (5.4),
¢y = (dmegcity) 1 O(E—ty), @y = (4meycfty) T Ot —1Ly). (6.7)

In view of (3.4),, the value of C given in table 1 is positive. Hence ¢, < t,: the leading
wavefront of the (t,, ¢;)-pair is ellipsoidal and the trailing wavefront spheroidal. The
t,-wavefront is also spheroidal.
(¢) Case C(i)
Equation (4.12) again applies. Calling on (3.15), ,, (4.2),, (3.4), and the relevant
rows of table 1, we find that

G = ¢, I+m? Z Z P a ®aﬁ+m1m3 Z Pla, ®a;+a,® a,)+mi L a; @ a,

a=1p=1
+{¢f§§) a,®a,+ gp(%l a,®a,— ¢f%g)(a1 ® a,+a, ® a,)} sgn (¢y;— 15— 2¢4,),
with m, = ¢;; + €3, My = ¢35+ C55 and
U = Ml_l(a) (¢1 _¢3)> P = M;l(a) (¢2_¢3)- (6'8)

From (5.4) and (5.5), 35 1
¢y = (dmcity) Ot —1y), (6.9)

and the arrival times are
t, = (c2R24c;2ad), t, = (2 R2+c%ad), ty=cp'r,
r being defined by (5.29).

The fundamental solution has the structure of maximal complexity, comprising a
spherical {,-wavefront, represented by ¢, and (t;,;)- and (£,,1;)-pairs, described by
@ and D respectively, in which the wavefronts arriving at ¢t = ¢, and t = ¢, are
spheroidal. The upper value of C in table 1 is positive, so t; <?;, and since, for a
transversely isotropic elastic material, the condition (3.4), gives ¢;; +¢;, > 0, we
deduce from equations (5.2), (3.12), and (3.13) that ¢, <{,. Reference to the lower
value of C in table 1 thus shows that {; <, <t, or ¢, <t, <t, according as
13— C19— 2644 2 0. In the former case, the (t2,t )- pair is superimposed on the (f,,{,)-
pair and the disturbance is terminated by the t;-wavefront. In the latter case, the
(t5, t5)-pair follows the (¢;,¢;)-pair and the entire motion lies between the spheroidal
wavefronts.
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An alternative method of constructing G in case C(i), based on integral transforms,
has been developed by Payton (1975).
(d) Case C(ii)

The representation (4.13), in conjunction with equation (3.18) and table 1,
provides the fundamental solution

3 3
G=g¢, I+ % Zmm P3P a;Q®a, (6.10)
i=1j=1

where ;= 5+ Cgq My = Co3+Cay, My = Co3—C4y, and ¢, and O are given by
equations (6.9) and (6.8),. The times of arrival, acquired from (5.5), are
b= (et ad ot el ot et =o'

The disturbance consists of an ellipsoidal ¢,-wavefront and a (¢;, t,)-pair in which the
wavefront arriving at ¢ = ¢, is spherical. Equations (3.16) and (5.2) imply that ¢;,c,
and ¢, all exceed ¢,. The value of C in table 1 is therefore positive and ¢, < {,: the
ellipsoidal wavefront arrives first and the spherical wavefront last.

(e) Two special cases
It is seen from table 1 and equation (5.2) that the simplifying relations (5.26) and
(5.33) apply respectively to case C(ii) when
Cyp = Copp = Cag,  Cp3 = Cag = Cy3— 20y, (6.11)
and to case B when
C13 = Cgp. (6.12)

(i) Equations (6.11), in conjunction with (3.16), imply isotropy, with characteristic
speeds ¢, for longitudinal and ¢, for transverse waves. Replacing @? in (6.10) by the
right-hand side of (5.32), substituting for ¢, from (6.9) and setting

My =My =My, U, =0, Py=¢, T=1t =ci'r, T=t,=ctr, C>0,
we recover the fundamental tensor
G=dn?) [—r Y {HEt—c*r—H{t—c,"r)} (I—3F ® F)
+r{c 200 —c i) FQ F+c 2ot —ctr) I—F @ F)Y,
due to Stokes (1849; see also Gurtin 1984, §68), 7 = 7,a, being the unit vector
directed radially outwards from the origin.

(ii) When the relation (6.12) is adjoined to (3.9), the symmetry becomes
transversely isotropic and subject to the additional condition

€13+ €y = 0. (6.13)

This is one of the special cases mentioned in the opening paragraph of §1, case C(i)
being the other. The fundamental tensor is secured by replacing @¢? in (6.4) by the
right-hand side of (5.35), substituting for ¢, and ¢, from (6.7), and putting
My =My, V=0, V3=2¢, D=0, T=1, T=1, C>0.

The result is
G = (dnc,) [~ RYH(t—t,)—H(t—1t,)} (J— 2R ® R)+ (c3t,) ' 0t —t,) RQ R

+(cite) 1Ot —ts) (J—R®@ R)+(cycqt) " Ot —t)ay @ @], (6.14)
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with £, and t, given by (6.6), ; and (6.6), reducing to
t, = (7> R+ c 2 a2)t,

The tensor J is defined by (6.5) and R = R, a,+R,a, is the unit vector directed
radially outwards from the axis of material symmetry. As noted in §6b,t, <{,.
Otherwise, the order of arrival of the three wavefronts contained in (6.14) depends
on the signs of ¢;;— €44, €35 — €44 a0d 615 —C;5— 2044, and possibly on arctan (R7'x;) as
well. A complete listing of possibilities may be drawn from table 6 of Chadwick
(1989). (In the third column of this table, the third c,(n) from the top should be ¢, (n).
In the fourth column, C,; should be D,;.)

When ¢,y —>00, with the other elastic moduli held fixed, the transversely isotropic
material becomes inextensible along the axis of symmetry. As pointed out by
Chadwick (1989, §5f), the mechanical properties of the special material satisfying
(6.13) and the unrestricted transversely isotropic elastic material coincide in this
limit, so the fundamental solution for an inextensible medium can be obtained by

proceeding to the limit ¢,; 00 in (6.14). Only the final term is affected and, with
reference to (6.6),,

0, R#0,
(cgeaty)? 3(t—t1)—>{

(Calegl) 7 8(0), R =0, z,#0.

The t,-wavefront therefore disappears except on the x, axis, where a signal is received
simultaneously at each point at ¢ = 0. This behaviour is consistent with the speed of
longitudinal plane waves in the direction of symmetry becoming unbounded as
g5 —~>00 (Chadwick 1989, §5f) and with examples of the channelling of disturbances
along inextensible fibres that have been encountered in other contexts (Pipkin 1984 ;
Captain & Chadwick 1986, §6).

This work was supported, in part, by the award of fellowships to P.C. and A.N.N. by the
Leverhulme Trust and the Science and Engineering Research Council respectively.

Appendix. Conditions under which the slowness surface of an anisotropic
elastic material is the union of concentric ellipsoids

(@) Preliminaries

The definition (2.3) of the components of the acoustical tensor relative to b can be
written as

Q;;(n) = tr{(n® b,;) C[n ® b;]} = tr{B,, C[B,lin,n,,
use being made of (3.3). It follows from (3.1) and (3.2) that
Q11(n) = €13 13 + € M+ Co5 M5 + 2056 My T+ 2015 10 7y 20170 T,
Qag(1) = 0o MT+Cop G+ Cyg M5+ 205y My Ny + 2046 113 Ny + 20561y 1y, (A1)

_ 2 2 2
Q33(1) = €55 M + Cyq M5 + Cg 15 + 203 Mg Moy + 2035 M3 11y + 2045701 My,

Qo3(1) = CgMT+0gq M3+ Cag M3 + (o5 + Cq) Ty Ty + (G367 Ca5) Mg 7y + (Co5 7+ Cag) 1y T,
Qs1(1) = Cy5nF + 046 M3+ Cg5 5+ (g + Cy5) Ny Mg+ (Cr+ Cs5) My Ty F (€14 C56) Ny g, } (A 2)
Q19(R) = €1 NF + Cgq 5 -+ 045 5 + (Cop + Cag) Ty oy + (C14 + ) g Ty + (CppF Cg) 7y 7

If Q(n) has the spherical form (2.15), we deduce from equations (A 1); , and (A 2),

that ¢, = ¢y = — ¢, = €4, In violation of the inequality (3.4),. This justifies the
statement in the final sentence of §2c¢.
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Let b" = {b], b, b;} be the orthonormal basis related to b by
b} = cos b, +sin O0b,, b, = —sin 6b, +cos 0b,, b, = b,, (A 3)

and let Bj; and B, be derived from b; by relations analogous to (3.3) and (3.2). Then,
as may easily be verified,

B, +B,=B +B, B;=B,
(Bi—B;) ® (B~ B;) +4B;® By = (B, —B,) ® (B, — B,) +4B, ® B}, (A 4)
B,® B,+B;® B, = B,® B,+ B, ® B;.
We require for later use the following result.

Lemma. Suppose that, in b, the matriz [c,z] of elastic moduli takes the form

[Tty Y. ST Ys Yi¥e ViYs  YaYe]
r+y; —S$+Y2¥Ys  YolYs  YoYs Y2V
t+ys YsYa  Ys3Ys  YsYs (A 5)
STYL Ya¥s  Yals |
) stys  Ys¥s
i . 7“+3/Z_

Then, if r, s and t are invariant under the change of basis b—>b" and y,, are transformed
into
Y1 =y cos® 04y, sin® 0+ 2y, sin 0 cos 0,

Ys = ¥, Sin® O+y, cos? 0 —2y, sin 0 cos 0, vy = y,, (A 6)

Yy =Yg 008 0—yssin b, vy, =y, sin O+y, cos b,

Ye = — (Y1 —¥,) sin 0 cos O+ y,(cos? O —sin? §), )

the matrix of elastic moduli in b’ is given by (A 5) with iy, replacing vy,. Furthermore,

Y HyS+2y8 = it ys 28 v = vty = vityl (A7)
and the tensors
Y, B+, Bzz‘['ye(B,lz‘*'Bm)’ Y1 Boy — Yy Bio—y6(By — Byy), (A 8)
YsBss, Yu By +ysBig, Yy By, +y; By, y, B,;—y; B,

are unchanged by the replacement of y,, b, by y., b;.

Proof. Confirmation of (A7) and the form invariance of (A 8) is a matter of
straightforward calculation based on (A 3) and (A 6). The linear elasticity tensor, as
assembled from (A 5) and (8.1), is '

C =r{(B,~B,) ® (B,— B,)+4B,® B} +s{4(B,® B,+ B, ® B,)
—(B,+B,)® B,—B,® (B,+B,)}+tB,®B,+ YR® Y, (A9

3 6
where Y=2y,B,+2% y,B,. (A 10)
a= a=4

It is plain from (A 4) that the tensors multiplied by 7, s and ¢ in (A 9) are unaltered
by the addition of primes to B, and from (A 10), (A 8) and (3.2) that Y is unchanged
when y, and B, are both modified in this way. ]
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(b) Case A
The eigenvalues of Q(n) are constant and mutually orthogonal, so we can take
q;=b; (A 11)
Then, from (2.4),
Qi(n) = An), Qym)=0, i#j, V nel (A12)

in b. Equations (A 12), and (A 2) entail the conditions (3.5) for orthorhombic
symmetry, together with the relations (3.6). We can thus identity the base vectors
b, and a,. Equations (3.8) follow from (A 11) and (3.7) from (A 12),, (A 1) and (3.5).
(¢) Case B
Without loss of generality we can set

4, = by, qy(n) = a(n)b,+B(n) by, q,(n) = —f(n) b, +o(n)b,, (A 13)
with an) = oy oyt agng,  pr) = fyng+Pyny+fyns. (A 14)

F 2.8),
o (28 my =1, my(n) = my(n) = {o(n)}*+{B(n)}*. (A 15)

On substituting (A 13) to (A 15) into the spectral representation (2.9) of Q(n) and
reading off the coefficients of B,, we obtain expressions for the components of Q(n)
relative to b. As shown in §2b, m,(n) divides A,(n) — A,(n) and, from (A 15) and (A 14),
my(n) is, like A,(n)— A4 (n), of degree 2 in n,. Hence,

Ag(n) = Ag(n) = c[{a(m)}* +{B(n)}?], (A 16)
where ¢ is a constant. The seven equations consisting of (A 16) and the expressions
for @;(n) provide the formulae

A(n) = Qg3(n),  Ay(n) = @y, (n) +c{B(n)}?,  A4(n) = Qye(n) —c{f(n) (A 17)

for the eigenvalues of Q(n) together with the relations

Q11(n) — Qop(n) = c[{ia(m)P—{f(n)}*], Qy5(n) = ca(n) f(n), (A 18)

and Q23(n) = 0, @5 (n) =0, (A 19)
valid for all ne%. We infer from (A 19) and (A 2), , that

Crg = Cp5 = Cgq = Cg5 = Gy = C35 = Cg5 = C56 = 0, (A 20)

CagtCys =0, Cyutey =0, c3+e;=0, (A 21)

and from (A 18), (A 14), (A 1), ,, (A 2); and (A 20) that
— 1) =1 —Cgq C(AF—f3) = Coe—Cap,  C(0t Byt oty fr) = C1pFCees  ( )
(o ay— By fy) = 16— 6267 Coy By = Crg €Ly fy = Cog, ( )
oty — By =0, ogo =31 =0, ayfytoyfs=0, ayf+o,f;=0, (A24)
—B5) = Cos—Caar €Oz Py = Cys. ( )
Equations (A 24) yield
(a3 +43) =0, a,(a3+p3) =0, p(ai+p5) =0, Pylas+ps) =
implying that either
1=ay=p=p=0 (A 26)
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or oy = ff; = 0. (A 27)

But equations (A 26), together with (A 22), give ¢;; +¢o5+2¢;, = 0, incompatibly
with (3.4),. Equations (A 27) therefore apply and we see from (A 25) and (A 21) that

Cg = €45 = 0, €4y = C55 = —C13 = —Cg. (A 28)
Next, from (A 22) and (A 23),
cflag+82)° — (g = B1)% = ey Fepp 201, (o + ) (=) = 0,

presenting the mutually exclusive alternatives
Bi=ay >0, (A 29)
and Be=—0y, ¢<O. (A 30)

Supposing that (A 29) hold, we put

Y= c%“p Yo = c%ﬂz’ Yo = C%‘xz' (A 31)

Then, with reference to equations (A 22), (A 23), 5, (A 20) and (A 28), we find that the
matrix of elastic moduli in b has the structure (A 5) with y, =y, =y, = 0 and

T = CegYa, S =Cy, = Cyy (A 32)
From (A 13), (A 14), (A 27), (A 29),, (A 31) and (3.3),
q.(n) = C_%{?h B, +y, Byy +ys(Biy+ By )i 1, (A 33)
qs(n) = 6_%{?/1 B,, —y, B, —ys(B,; — By,)} 1.

Provided that r, s and ¢ are invariant under the change of basis b—b’, we can
therefore make use of the Lemma. The modulus ¢y, is unchanged by the
transformation and, because of (A 28), 5, 50 is ¢, ¢g4 becomes
(€11 Cop—2¢,,) SIN? O €O8% 0 —2(Cq4— Coq) SIn O cos G(cos? §—sin? G)
+ cgg(cos® 0 —sin? 0)2
(see, for example, Hearmon 1961, pp. 12, 13), and it can easily be checked from (A 5)
and (A 6), that this equals r+y2. The Lemma now enables us to transform to &/,
retaining the forms of the elastic moduli and the eigenvectors (A 33). By (A 6),,,
ys = ¥y = y5 = 0 and, by (A 6),, the particular choice
0 = 5 arctan {2(y, — )" ¥} (A 34)
of rotation angle makes y; zero as well. From (A 31), (A 29),, (A 22) and (A 23) we
then have, in &/,
Y =i O YE = Cor—Cgg Y1Ys = CiatCeg  Crp = Co6 =0, (A 35)
and (A 14), reduces to
p(n) = fany = €73(Cop— Coq)? Mo (A 36)
Equations (A 35), ; complete the requirements (3.5) for orthorhombic symmetry,
thus allowing 6" to be identified with the crystallographic basis a. Equations (A 35),_,
imply the relations
Vil ys) = cuit e, YalyitYs) = CratCo, (A 37)
(€11~ Cgg) (Cap—Co5) — (€121 Cg)* = 0.
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We now collect results. Equations (A 28), , and (A 37), supply the conditions (3.9).
Substitution from (A 1), (A 28); and (A 36) into (A 17) produces the eigenvalues
(3 10). Lastly, combining (A 37), , with (A 33), transformed to 6’, omitting the factor

¢ ¥y, +y5) " and replacing b; by a;, we obtain the eigenvectors (3.11).

When the alternative (A 30) is selected, the definitions

Y= _(_C)%r/))p Y= (—C)%O‘z, Ye = (_C)%“p
lead to the same matrix of elasticities as before and, by steps exactly parallel to those
described in the last two paragraphs, the same conclusions are reached, with A,(n)
and A,(n) interchanged and g,(n), g,(n) replaced by —g,(n), g,(n).
(d) Case C(i)
The two eigenvectors of degree 1 in n, are of the form
qi(n) = niky+nyky+ns ks, gy(n) =nili+nyly+ngly,
and, on account of these vectors being orthogonal for all ne%,
ki-l,=0, ki"l,=—k;"l,, i#j.
The identity
kil ki'ly kil
(ki Ko s [0, 1, ] = [ky Ky by Kyl
ks ly ky'ly kil
therefore shows that either [k, k,, k,] or [1,, L,, L;] is zero. When the second option is

chosen there is a unit vector orthogonal to each of [, 1,, I, which we take to be b,. We
can then set

g,(n) = o(n) by + (n) by+y(n) by,  qy(n) = —f(n) by +o(n) by, (A 38)
with a(n) and b(n) defined by (A 14) and

y(n) =y ni+y,ny+ysn,. (A 39)
The third eigenvector is given by (2.6) and (A 38) as
q:(n) = —y(n){a(n) by + B(n) by} + [{a(n)}* +{B(n)}*] bs. (A 40)

From (2.8),
) = {lm)E+ B+ mam) = AR g
J

mg(n) = m,(n) my(n).
It should be noted that none of a(n), f(n),y(n) can vanish for all ne%: otherwise,
either g,(n) or g,(n) would be reducible to a constant vector and possibility C would
not apply. ‘

The components of Q(n) relative to b are found by entering (A 38), (A 40) and
(A 41) into the spectral representation (2.9) and distinguishing the coefficients of B,.
As proved in §2b, m,(n) and m,(n) divide Ay(n) — A (n) and Ay(n) — A,(n) respectively
and, by (A 41), ,, (A 14) and (39), m,(n) and m,(n) are, like A,(n), of degree 2 in n,.
There consequently exist constants ¢; and ¢, such that

Ag(m) = Ay(m) = e, [{a(m)}* +{A(m)}* +{y (m)}].} (A 42)
Agn) = Ag(n) = cyl{a(m)*+{B(n)}*]. J
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The eight equations consisting of (A 42) and the expressions for ;(n) can be
arranged, in parallel with (A 17) to (A 19), as

Ay(n) = Q1(n)— (¢ +c,) {B(n)}* —ci{y(n)}?,

Qoo(m)+ (¢, +¢,) {f(n)}E, Ay(n) = Q33(n)+01{7(n)}2,} (A 43)

>

P

2
il

together with
Q11(n) — Quy(n) = — (¢ + ) [{a(m)}* —{f(n)}*],
@s3(n) — Q11 (n) = ¢, [{a(m)}* —{y(n }2]_02{:3 W Qes(n) = —c, f(n)y(n),} (A 44)
@51(n) = —cya(n)y(n), Q(n) = —(c;+c) a(n) fln).
If ¢, = 0, equations (A 44), , deliver the false conclusion that Q(n) has the constant
eigenvector by. If ¢, +¢, = 0, equations (A 44), ;, in conjunction with (A 1), , and
(A 2);, contradict (3.4), by giving ¢;; = ¢y = —¢;5 = ¢4 Hence,
e #0, ¢+c, #0. (A 45)
Introducing (A 1), (A 2), (A 14) and (A 39) into equations (A 44) and equating the
coefficients of the squares and products of n, provides 30 equations that can be
rearranged into sets of 20 and 10. The first set, specifying the elastic moduli other
than cgg in terms of ¢gq, ¢4, ¢, and o, ..., v, is
— (e F¢) (o z_ﬁz )+ Cess  Cop = (01 FCo) (a5 — B3) +Ces
= c(af+ B —yi—v3) —cy(ai + B3) + Cee,
Cra = —(C1FCy) 0‘1ﬂ2+0‘2ﬂ1 — Cep>

Crg = — (@ Yy tagy,+ =V +epaf —ce

Co3 = —C1(Ba Vst B3 Vet a5 —v3) 0o f7—Ce, (A 46)
Cy= =0 Yot oY1 —F1Y1), G5 =010 Yy, G = —(C1FC) oy By,
Cos = —C1 P2 Ve Cos = —CiB1Vat PoVi—aVa)s Cog = —(C1HC5) 0y fs,
C34 = —C1 P35V Cy5=—Ci Y5 Cg6=— /7)1 Vst Bsvi)+(ciF6) s fs,
Cy = Colas—V3) = f3+ Cosr o5 = (BT Y1) — €T+ Cegs
Cis = —(CrHC) oy By, Cpg=—0C1 %Y, C6 = ”61/))1 Y1 )
The second set, comprising relations between ¢, ¢, and a,...,y,, is
Cy(0t Y1 =ty Ya) = (¢ F65) ( — i) = (A 47)

e (B yet Byl —(cr+¢y) 0‘2ﬁ3+°‘3ﬂ2 = >J
(B yi—=PBave) = (61 + ) (pas—fa f3) = 0
C1(0 Vot oy yy) = (¢ +6,) (2 fatas fy) = 0
(e1+co) (o +Bs) (e — 1) = 0, o yy—fyyi+ (=B yst =0, (A 49)
(o o+ P fs—oq vy tay v =y ¥s) — (it c) BB =0,
¢ty 05+ By fs— P17 +ﬂ37’3_727’3)‘” 01 +65) B2 53 =0,
ci(af—of+ 1= A —yi+ys) — (¢ +6) (o =i+ 55 =0,
Cy(ey oty + By By =1 7a) — (€1 FCy) a1ﬂ1_“3ﬁ3+ﬂlﬂz )=0.
Proc. R. Soc. Lond. A (1993)
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Adding together equations (A 46), , , and equations (A 47) and subtracting (A 48)
results in
Cr1F Cap 201, = (61 +5) {0ty — B1)* — (o + )},
(g + o) o1y, —(er+ o) ot — (g — Bi) {oy yo (61 +0,) B} = 0, (A 51)
(g + Bo) ey ye— (1 o) Bab+ (as—fr) {ey yi+ (e H ) o} = 0.

In view of the inequalities (3.4), and (A 45), the relations (A 49) and (A 51) offer the
mutually exclusive alternatives

(1) Pr=0y yvi=04n 0, v.=1+79)p; ¢+c, <0, (A 52)
and

(i) Bo=—0y, Yi=—{1+pay, yo=—0F+9p, v:=0, ¢ +c¢, >0, (A53)
where N = Cy/fC,. (A 54)

Equations (A 52) satisfy (A 47) to (A 49) in full and, with the aid of (A 54), reduce
(A 50) to

Cz{ai'—ﬂg'*' (1+7) (&?,—,33)} =0, cylag(a;+B,)+ (1+9)ogfs} =0.
Equations (563) reduce (A 47) and (A 48) to
20y — Py, + 1) =0, ag(ag+ )+ 20, fy = 0,
linear combinations of which are
(a3 + 5 =0, (ay+py) (a3+/53)

If ay = f, = 0, equations (A 53), , and (A 39) give y(n) = 0, which is inadmissible.
Hence

colog(oy +ys) to B} =0, colayay+Fy(Ba+7v,)l =0, } (A 55)

0.

a=py=0, fi=—a, (A 56)
and these relations, with (A 53), , and (A 45),, simplify (A 50) and (A 51), to
G0y By =0, cyazay=0, cylaf—p3) =0, ca;6,=0,
CyqtCop 201, = 4(c; + ) a3
By virtue of (3.4), and (A 45),, o, # 0, and, as already proved, o, and £, are not both
zero. Hence ¢, = 0, which, from (A 55), is also a possible outcome of alternative (i).
When ¢, = 0, equations (A 43), 5, combined with (A 1), 5, (A 46) and either (A 52) or

(A 53) and (A 56), lead to
Ay = Ay = ¢, 05+ Cg, (A 57)

indicating that % has two identical spherical sheets. Because of the coincidence of
eigenvalues we are concerned here with case C(ii) and further discussion is postponed
to section (e).
Returning to alternative (i) and assuming that ¢, # 0, we define

Y= (_61_62)%0% Yo = (”‘01—02)%ﬂza ys = (1 +"7)_1(—61_62)%73a‘l (A 58)

Ys=(—C1—CPfs Y5 =(—01—06) 0y Yg=(—C1—0C)
Equations (A 55) then yield the relations

YiYsT Yl T L+ Y3y =0, Yoyy+ys Y+ (1 +0) Y3y, = 0>} (A 59)

Vi—yi— ) Wi—v) =0, (Y +y)ys+(1+7)y,y, =0.
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Tt is found from (A 46), (A 52) and (A 59), that the matrix of elastic moduli assumes
the form (A 5) with » given by (A 32), and

s=r+{(l+n Wi +ys+200) +yi+ysh t=s+ply+ 0+ (wityd)) (A 60)
With the use of (A 14), (A 39), (A 52) and (3.3), the eigenvectors (A 38) can be
expressed as

q,(n) = (—¢ _Cz)»%{% B+, By, ys(Bio+ Byy) + 4y Bys +ys By
+(1+7) (Y4 Byo + Y5 By +y5 Bs)im, (A 61)
gy(n) = (—c;— o)y By — 1y By —Yo(Biy — Byy) — (44 Bis — Y5 Bys)i -
It was shown in section (¢) that » is unaffected by the change of basis b—b" and we
see from (A 60) and (A 7) that this property extends successively to s and ¢. The form
invariance of gq,(n) and g,(n) is likewise a consequence of (A 8) and it is easily
confirmed from (A 6) that equations (A 59) remain valid when y, is replaced by y,.

The application of the Lemma is thus justified and, as before, y; is made zero by
choosing the particular value (A 34) of 4. By (A 59),, one or both of y; and y; is also
zero. Suppose that y; # 0, y; = 0. Then, from (A 59), (A 32), and (A 60), transformed
to &,

Yo =—(1+0) "y vt = (L) (07 —5), 1 (A 62)
r=cg s=rbp(lby)lyR t=rtg24n) (L) Py
The principal minor formed by the first four rows and columns of (A 5) is
M = s[—drs®+ri(y, +y,)" ="y —ya) Hdrs{a o) s —yill, (A 63)

and on mapping into &', substituting from (A 62) and noting that s = ¢,;, we obtain

M = — cg5(y* + cge) {2066+ (1 + ) Y1y —y2)}™
Due to (3.4),, M is non-positive, contrary to the positive definiteness condition (2.2).
The assumption that y; = 0, y; # 0 similarly leads to a contradiction, so
Yo =Ys =45 = 0. (A 64)
In the particular basis o', 5, # —a, and hence y{+y, # 0 (see (A 52), (A 53) and
(A 58), ;). Equations (A 59) thus contract to the single relation
Yi = Ys- (A 65)
The result of applying (A 64) and (A 65), in &', to equations (A 32);, (A 60) and
(A 61) is
r=cg, S=rbq(ln) Ty U= sty (A 66)
and .
g,(n) = (—c;—co) {yi(n b1 +m, by) + (L +7) yym, b;}l (A 67)
qy(n) = (—¢;— ) 2y (—ny b +ny bY).
Equations (A 64) imply, via (A 5), that the elastic moduli in & meet the
requirements (3.5) for orthorhombic symmetry. We can accordingly equate b" to a,
in which basis the non-zero moduli, other than ¢y, are given by (A 5) and (A 64) to
(A 66) as
C1p = Cop = YPFCges gy = (L +7) Y2+ (1 +79) y5? + g,
Clo = Y1"—Ceer  C13 = Cog = —N(L+9) "y + Y1 Y3 —Ces ' (A 68)
Cag = Cs5 = (1 +7)7 Y ¥+ Cee
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The connexions (3.12) and (3.13) evidently apply and
Yy =Ney+e), (1+m)y; =Ny +es), (A 69)
with N={1+9) " y;+y
Entering (A 69) and the substitutions b; = a; into (A 67), removing the factors
(—cy—¢,)EN and (—c¢, —c¢,) 2y, from g,(n) and g,(n) respectively, and calculating
q,(n) from (2.6) delivers the eigenvectors (3.15).

In the light of (A 52), (A 64) and (A 65), we see from the definitions (A 58) that, in
a, a, = ff, and vy, are the only non-zero members of ay, ..., ;. It follows from (A 14),
and (A 39) that

pn) = oy ny = (_01_02)_%?/1 Ny, y(n) = y3ng = (1+7) (_01_02)_%y§n3)
whence, with reference to (A 68) and (A 54),
(e o) {B(n)}? = (cgs—c11) m3,  cr{y(m)}* = (0gy —C35) 3.
Inserting these expressions, together with (A 1), into the formulae (A 43) and
utilizing (3.5) and (3.12), 4, we arrive at the eigenvalues (3.14).
(e) Case C(ii)
We know from equations (A 57) that when ¢, =0,% has coincident spherical

sheets. It is convenient in this case to make b the basis in which the eigenvalues of
Q(n) take the form

A(n) = g ni+gny+qsng, A, =Ag=r. (A 70)

Equations (A 38); and (A 42), again hold and on introducing them into the spectral
representation (2.13) we obtain

Q(n) = Ay(n) I—c,{a(n) b, + f(n) by +y(n) by} @ {a(n) b, + f(n) b, +y(n)b}. (A T1)
Since @(n) has at most two coincident eigenvalues,
¢ #0. (A 72)

The seven equations consisting of (A 42); and the expressions for @;(n) supplied by
(A 71) can be written in terms of n, by means of (A 1), (A 2), (A 14), (A 39) and
(A 70). Equating the coefficients of squares and products then gives rise to 42
equations, made up of the formulae

g = r=c, (g + i +v7) (A 73)
for ¢;, 21 equations for the elastic moduli in terms of ¢, and «,...,y;, and 18
relations between a,...,v,. The moduli are given by

Clu =7—0 08, Cop=7—0ff3, Cyu=7—0173,

Cro = —r—cioy(Bi—an) o B}, 0y = —r—c{ay(y; —og) + oy Vsl
Coz = —T—C{f3(Vo— F3) + P2 V3),

Ca = —C{a(Bi— ) oy B}, Gy =—Croqay, Cp=—Cr o, (A 74)
Cos = —C1 Po By Cos = C{fa(Bi—a) — 03 fo},  Cog = —C1 0, fy,

Co = —0C1 B3 Vs C35 =—C103Yy C36 = —C{as(Yoa—f3) T 3},

Cag =7—C ff, C5 =T—0 a3, Cgg=7—0105,

Cas = —C1 03 B3, Cie =—0C1f1 s C56=—0C10%, }
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and, using (A 72), we can set out the additional relations as

Br=o5 vyi=oas Vi=p; woy=pFv. Bifi=0aVe osfs=7Y17. (AT5)
ay(fy—op) =0, ﬁz pr—ay) =0, oy(y;—ay) =0, ysly;—o) =0,
Bo(ve—Ps) =0, vslya—fs) =0, Bayi—osv,+vs(f— ?) =0, (A 76)
Bive— oy Byt falyi—os) =0, oyyr—ay fi+ay(y,—fs) =

ayoy+ B fotyvive =0, oy +p f+yy: =0, “2“3+ﬂzﬂ3+7’273 =0. (A7)

We observe from (A 74), , , that

C1yF Cop 2015 = —Ci{(ay +8)* + 20,(f1 —25)}- (A 78)

Equations (A 75) imply that either
Pr=0y, Yi=as Vo= [ (A 79)
or Bi=—0y, Yi=—0y Yy=—ps (A 80)

The first solution, (A 79), satisfies (A 76) in full, reduces (A 77) to
gy +ys)tasfs =0, fy(fatys)toagas =0, ay(o+pfy)+osf; =0, (AB8I)

and requires, through (A 78) and (3.4),, that ¢; < 0. Adopting the definitions (A 58),
with ¢, = 0, we find from equations (A 79) that the moduli (A 74) can be compiled
into the matrix (A 5) with r = s = 1. Kquations (A 81) reproduce (A 59), , ,, with
7 =10, and (A 61), holds with the same simplification. The invariance of r under an
arbitrary change of basis is obvious from (A 70), ;. We can therefore make a third
application of the Lemma. The details are much the same as in section (d). The
rotation b-+b" with the choice of angle (A 34) makes y; zero and, by (A 59),, one or
both of ¥, and vy is zero. If ¥, # 0,y; = 0, equation (A 59), gives y; = —y, and, from
(A T4)5, 7(=8=1) =ce. We thus infer from (A 63),, transformed to &', that,
contrary to the basic condition (2.2),

M= _-4026(y;2+y:12+666) <0.

The assumption that y; = 0,y. # 0 is similarly untenable, forcing the conclusion
(A 64) and the corollary that orthorhombic symmetry prevails in 4". The non-zero
elastic moduli in this basis are specified by equations (A 74), (A 79) and (A 58) as
Co =THY% Oy =—THYiYh  Cay = Cs5 = Ces =T, (A 82)
and, from (A 73),
g =4y =cy. (A 83)
The conditions (3.16) follow directly from (A 82) and the eigenvalues (3.17) from
(A 70), (A 82), and (A 83). The eigenvector (3.18) is derived from (A 61),, transformed
to a, by setting ¢, = 0, inserting the factor (—¢,)?%} and using the relations
YiYs = CistCu Yols = Coyt0us  Y3' = Cy3—Cug
furnished by (A 82), together with (A 64).
Equations (A 80) reduce (A 76) and (A 77) to
Oy Oy = 04y Oty = Oy Oy = 0y fly = 0y By =ty f3
=oyfy=fofls =3y = ys =Yy =37, =0. (A 84)
If a, #0, we deduce from (A 84), (A 80) and (A 39) that y(n)=0: if a, #0
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(respectively S, # 0), we see from (A 14) that f(n) = 0 (respectively a(n) = 0). None
of a(n), B(n), y(n) can vanish identically, however, as noted in the opening paragraph
of section (d), so a, = ay = B = 0 is the only solution of (A 84). This means, vide
(A 58), that the alternative (A 80) induces the same situation in b as applies in b’
when (A 79) holds. Equations (3.16) to (3.18) follow as before.
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