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In dealing with nonlinear problems involving fluids and solids, whether of a static or dynamic 
nature, a common description of the fields in terms of Eulerian or Lagrangian variables is 
desirable. Usually the former is used for fluids and the latter for solids. The choice of primitive 
variables also differs when dealing with fluids or solids. The material constants describing the 
constitutive behavior of these media will thus depend on the description adopted. In this paper, 
explicit relations are provided between third-order elastic constants for an inviscid fluid and the 
more common coefficients, A and B, appearing in the Taylor expansion of the equation of state. 
The essential results are Ell I = -- ( 5.4 + B), C 112 = -- (.4 -{- B), and C12 3 =•4 -- B. 

PACS numbers: 43.25.Ba 

INTRODUCTION 

Nonlinear problems in the acoustics of fluids are usu- 
ally formulated in terms of an Eulerian description of the 
wave motion. l The elastodynamic of solids, on the other 
hand, is mostly formulated in terms of a Lagrangian 
description. 2 Also, the choice of fundamental (or primi- 
tive) variables is different depending on the type of media. 
Pressure and density are usually used in adiabatic pro- 
cesses in fluids, and stress (Cauchy or Piola-Kirchhoff) 
and strain (Green or Altoansi) are normally used for sol- 
ids. Therefore, the material constants that describe the 
constitutive behavior of such media will depend on the 
particular choices of the description and fundamental vari- 
ables. In dealing with problems involving both fluids and 
solids, it is desirable to use the same description through- 
out. We next present a derivation of the relation between 
third-order elastic constants of an inviscid fluid and the 

more common parameters, A and B, appearing in the Tay- 
lor expansion of the equation of state. 

I. THEORY 

The adiabatic equation of state for a fluid, p=p(p), 
can be expanded in a Taylor series about a given state, and 
is usually presented in the following form: 3 

• po J 2 \•--•o ! L\--•'•--o ! J' 
(1) 

where p and p are pressure and density, respectively, with 
P0 and P0 being their reference values,/l=podp/dp(po) 
and B=p•d2p/dp2(po}. In terms of this pressure, the 
Cauchy stress tensor is given by 

r= --pl, (2) 

where I is the second-rank identity tensor. Equations (1) 
and (2) define the constitutive relation for an inviscid fluid. 

In a stressed configuration, particles originally at 
X (X K, K= 1,2,3) are displaced to x (xk, k= 1,2,3), such 
that we can define the displacement vector as 

u=x--X. (3) 

The deformation gradient is defined as 

(4) 

and the Lagrangian (Green's) strain tensor is given by 

E=«(FTF--I). (5) 

The density in the stressed configuration can be expressed 
in terms of its value in the unstressed (reference) config- 
uration through 

p 1 
po--det F = ( 1 + 21 E+ 4II E+ 8111 •) -- ]/2, ( 6 ) 

where IE, II•, and IIIE are the principal invariants of the 
Lagrangian strain tensor, 2 and are given by 

I•=tr E, II•-----«[ (tr E)2--tr E2], IIl•=det E. 
(7) 

Expanding Eq. (6} to second-order in strain, and substi- 
tuting the result into Eq. (1) yields 

(3A + (8) 

which upon substitution into Eq. (2) gives 

•'ij =AIE½•ij--«( 3•1 + B)I•(j + 2•HE•ij. (9) 
Assuming the fluid is "hyperelastic," we can postulate 

the existence of a strain energy density function U, defined 
per unit mass in the reference or Lagrangian description. 
The strain energy is assumed to be a function of the defor- 
mation gradient tensor. Consequently, it depends solely on 
the strain, and as such admits the following expansion: 2 
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1 i 

+O(E4), (10) 

where CKœM• v and CK•4m, 0 are, respectively, the s•ond- 
•d •ird-order adiabatic e•stic c•fficients evaluated at 

zero strain. •'4 These possess the symmetries 
CKLMN = C•M N: CMNKL and Cg•,v• = C•.u• 
=C•ge•=Cg•. The adiabatic Piola-Kirchhoff 
str•s tensor of the second kind T• is defin• by 

OU 

TKL = PO OEKL . ( 11 ) 
The Cauchy and Piola-Kirchhoff stress tenmrs are rdated 
throu• 

Zij = (p/po)Fi•FjLT•L. (12) 

M•ing use offs. ( 10)-(12), we c• rewhte the latter as 

i 

+ •CKLMN•MNE•) 

+ (u•,g CKi•+ Uy, L C•z• 

+ U i, K Uj,• Cg•M•) E•g. ( 13 ) 

Comparing the terns finear in E in •s. (9) and (13), 
we get 

AI•o = CijK•EKL. (14) 

Assuming CK• • to • isotropic, i.e., 

CKL•=A•+g(•g•Z.V+•K•t.U, (15) 

leads to 

A=A and g=0. (16) 

•uating the nonlinear terns in •s. (9) and (13), 
and using •. (16) •ves the following identity: 

«CqKLMNE•c rEM•v--.4I•Sij + ( ui, j + u j,i+ Ui, KU j,K)AIE 

= - [«(3A + B)I•--2.4IIEIOq. (17) 

The quantity (u•j + Uj,i'-• Ui, KUj,K)/2 • •ij Can be rewritten 

•=E+«(FrF--FF r) =E+ (liE--Ell) + O(E2), 
(18) 

where ll= (F--Fr)/2 is the infinitesimal rotation tensor. 
However, in deriving both sides of F_q. (17) we have im- 
plicitly neglected terms of order E2ll and smaller. We will 
say more about this below, but note for the present that to 
the same degree of approximation, Eq. (17) becomes 

«Cqtcr•u•vEtcLEst.¾ 

= --2AIœEq+ [2AIIœ--«(.4 + B)I•]•ij. (19) 
Again, if we assume that CKr•Vw, Q is isotropic, we can 
express it as 

CKœMNp Q = atJKL•SMStSp{ 2 + fl [ 5Kz ( SM•NO + 5M•) 

+ •s•s•) + •(•z•sa+ •s•) 

+ 8LN(•K•MQ+ SKIMP ) ], (20) 
where 

• • C112233 = C123, 

•=•(Cll1122-- el 12233 ) =•(C112--C123) , (21) 

Y=•(CIlllll- 3Cl11122+2Cl12233) 

=•(Clll--3c112+ 2ci23), 

and c•.• is the tensor of elastic constants in the abbrevi- 
ated Voigt notation. Substituting •. (20) into (19) gives 
the following: 

• C123 1•KL+•(C112--C•23) (tr 

+ «(c11 • -- 3c• 12 + 2cu3)EKeEe• 

: --«(A + B)I•KL+2AII•SKœ--2,qIœEKœ. (22) 

Using the second of Eqs. {7) to eliminate tr E z, and equat- 
ing the coefficients of similar terms on the left- and right- 
hand sides of Eq. (22), we get 

C112 = -- (A q- B), 

-- (C112--C123) =2•, (23) 

Clll -- 3c112q-2Cl23=0- 

Notice that the second of Eqs. (23) is obtained twice in 
this process, thus ascertaining the consistency of the deri- 
vation. We thus obtain 

cln:--(SA+B), c!12:--(A+B), c!23:A--B. 
(24) 

We note that had we retained terms of order E2li in the 
expansion of Eq. (13), it can be shown, using Eqs. (15)- 
(18), and the isotropic form of C•:t.•t• in Eq. (20), that 
they contribute (2,4q-cl12--c!23)lE(llE--Ell) to the 
Cauchy stress. However, it is clear from the second of Eqs. 
{23) that this contribution vanishes. Hence, we have 
shown that the hyperelastic and equation of state deriva- 
tions are consistent, neglecting terms of order E 3. 

The first of Eqs. (24) was derived in Ref. 5 [see the 
first of Eqs. (43)] by comparing the one-dimensional non- 
linear equations of motion derived from the Eulerian and 
Lagrangian descriptions. Table I relates these constants to 
other sets of constants which appear in the literature. 6-8 

For water at a temperature of 30 øC and at atmo- 
spheric pressure, 3'9 B/A=5.2 and A=2.277 GPa, giving 
the following third-order elastic constants: 
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TABLE I. Relation between third-order elastic constants for isotropic solids. 

Eringen and Toupin and Landau and 
Murnaghan 6 Suhubi 2 Bernstein ? Lifshitz a Eq. (21) 

ell I 21-t-4rn 61tr Vl -I- 6v2-{- 8v 3 2.a/d- 6• +2c• a+6flq.-Sy 
ct • 21 6/E+ 2mE Vl + 2v2 2•/+ 2 • a + 2/• 
c m 21-- 2m + n 61E+ 3m•+ n• v• 2• a 

cn1=--23.23 GPa, Cn2=--14.12 GPa, 
(25) 

cn3=--9.56 GPa. 

The adiabatic wave speed c is given by • 

c2(p) =d•' (26) 
which for a fluid with equation of state given by Eq. ( 1 ) is 

c2( P ) =-4/p0+ ( B/po 2) ( P-- Po). (27) 

The natural wave speed c o is thus given by 

c•=c 2( po) =A/ po. (28) 

A measure of the nonlinearity of the fluid is given by the 
dimensionless parameter Po dc2/dP, which by using Eqs. 
(1) and (26) gives 

dc :• B 

Po dp--.,1 ' (29) 
For isotropic solids there are two parameters which mea- 
sure the degree of nonlinearity and are given by 7Jø 

dv• 7•[+ 10/•+cl•l + 2cn2 
Po de 

(30) 
dos 2 37c +61a +c•n/2-c•23/2 

Po dp = 3A+2/.t ' 
where v c and v s are the speeds of compressional and shear 
waves, respectively. If we substitute in these expressions 
the elastic constants as given in Eqs. (16) and (24), we get 

o, Po dp--.4' Pø•p = (31) 
which are in agreement with Eq. (29) and the fact that 
inviscid fluids do not support shear waves. 

The approach taken here compares the Cauchy stress 
tensor according to the equation of state and that from the 
hyperelastic strain energy density. Alternatively, one can 
start from the equation of state and find the strain energy, 
from which the third- and higher-order elastic coefficients 
could be determined. Thus Eqs. (2), (5), (11), and (12) 
imply 

0U = _P0p(i+2E)_• (32) PO OEKL p 
Integration then yields 

poU=-- p Pø tr(I+2E)-I dE 
P 

1 f• po d [log det(l-l-2E) ]. (33) ----2 P p 
Then using Eqs. (5) and (6) this reduces to the familiar 
form, 

U= -- p dp -•. (34) 

Substituting Eq. (1) into (33), and ignoring the higher- 
order terms, gives 

p0t/=(A__B,(•__l__log•) ___Bp (•__ -2Foo l) 
+.... (35) 

Then, Po/P can be expressed in terms of the strain using 
Eq. (6), or the alternative form, 

po/p= [ 1 +2I, + 2(I•-h) +-•(2I•-3I•I•+I•)] m, 
(36) 

where l,=tr E n, for n= 1, 2, or 3. Combining Eqs. (35) 
and (36) and expanding yields 

poU= (A/2)I•2 + [ (A -- B)/6] I]--Al•h+ O(E4). 
(37) 

This is the same form of the strain energy expansion used 
by Landau and Lifshitz, 8 for instance, and allows us to 
read off the values of the third-order moduli. Fourth- and 

higher-order moduli could be determined in the same man- 
ner. 
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