Third-order elastic constants for an inviscid fluid

Sergio Kostek and Bikash K. Sinha

Schlumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108

Andrew N. Norris

Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey

08855-0909

(Received 22 February 1993; accepted for publication 15 July 1993)

In dealing with nonlinear problems involving fluids and solids, whether of a static or dynamic
nature, a common description of the fields in terms of Eulerian or Lagrangian variables is
desirable. Usually the former is used for fluids and the latter for solids. The choice of primitive
variables also differs when dealing with fluids or solids. The material constants describing the
constitutive behavior of these media will thus depend on the description adopted. In this paper,
explicit relations are provided between third-order elastic constants for an inviscid fluid and the
more common coefficients, 4 and B, appearing in the Taylor expansion of the equation of state.
The essential results are ¢(;;=—(54+ B), ¢;;,=—(4+ B), and ¢;33=4—B.

PACS numbers: 43.25.Ba

INTRODUCTION

Nonlinear problems in the acoustics of fluids are usu-
ally formulated in terms of an Eulerian description of the
wave motion.! The elastodynamic of solids, on the other
hand, is mostly formulated in terms of a Lagrangian
descript:ion.2 Also, the choice of fundamental (or primi-
tive) variables is different depending on the type of media.
Pressure and density are usually used in adiabatic pro-
cesses in fluids, and stress (Cauchy or Piola~Kirchhoff)
and strain (Green or Almansi) are normally used for sol-
ids. Therefore, the material constants that describe the
constitutive behavior of such media will depend on the
particular choices of the description and fundamental vari-
ables. In dealing with problems involving both fluids and
solids, it is desirable to use the same description through-
out. We next present a derivation of the relation between
third-order elastic constants of an inviscid fluid and the
more common parameters, 4 and B, appearing in the Tay-
lor expansion of the equation of state.

. THEORY

The adiabatic equation of state for a fluid, p=p(p),
can be expanded in a Taylor series about a given state, and
is usually presented in the following form:

p—po\ B (p—po)2 [(P—po)’]
=po+4 +5 +0 :
p=po ( Po ) 2\ po Po a

where p and p are pressure and density, respectively, with
Po and py being their reference values, A= py dp/dp(pg)
and B=p}d’p/dp*(p,). In terms of this pressure, the
Cauchy stress tensor is given by

re—pl, (2)

where 1 is the second-rank identity tensor. Equations (1)
and (2) define the constitutive relation for an inviscid fluid.
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In a stressed configuration, particles originally at
X (Xg, K=1,2,3) are displaced to x (x;, k=1,2,3), such
that we can define the displacement vector as

u=x—X. (3)

The deformation gradient is defined as

L 4

and the Lagrangian (Green’s) strain tensor is given by
E=3(FTF-I). (5)

The density in the stressed configuration can be expressed
in terms of its value in the unstressed (reference) config-
uration through

P (4 apt At 81T (6)
Po— det F_ E E E ’

where Iz, IIg, and I1l; are the principal invariants of the
Lagrangian strain tensor,” and are given by

Ig=trE, ITg=3i[(trE)>—tr E?], IlIp=detE.
(7

Expanding Eq. (6) to second-order in strain, and substi-
tuting the result into Eq. (1) yields

p=—Alg+1 (34+ B)[o—2AIIz+ O(E?), (8)
which upon substitution into Eq. (2) gives
Tyy=AI8;—3(3A+ B8, + 2411 5;;. 9

Assuming the fluid is “hyperelastic,” we can postulate
the existence of a strain energy density function U, defined
per unit mass in the reference or Lagrangian description.
The strain energy is assumed to be a function of the defor-
mation gradient tensor. Consequently, it depends solely on
the strain, and as such admits the following expansion:?
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PU(E) =%CKLMNEKLEMN+%CKLMNPQEKLEMNEPQ
+O0(EY), (10)

where Cy py and Cyppyypg are, respectively, the second-
and third-order adiabatic elastic coefficients evaluated at
zero  strain®*  These possess the symmetries
Cimv=Crxmn=Cunkr and  Cxrynpo=Crkunpg
=Cynkrrp=Ckrroun- The adiabatic Piola—Kirchhoff
stress tensor of the second kind Tk, is defined by

au

TKL:POE;' (11)

The Cauchy and Piola—Kirchhoff siress tensors are related
through

(12)
Making use of Eqs. (10)-(12), we can rewrite the latter as

Tiij=(p/po) FixF j . Ty -

Ti=(—Ig+-") Bix+u;x) (8;+u; 1) (CxrpnEnn
+1Ck LmnroEmnErg)
=Cijk1Exr+iCijkmnEx LEmn—Cijx1Ex LI g
+ (u;x Cxjun+uj . Coomn
(13)

Comparing the terms linear in E in Egs. (9) and (13),
we get

+uxtjp Cormn) Evn-

Algd;;=Ciix1 Exy - (14)
Assuming Cg;n to be isotropic, i.e.,

Cximv=A8g 1Opyn+1(Bxrd v+ Oxnb Lar)s (15)
leads to

A=A and p=0. (16)

Equating the nonlinear terms in Eqgs. (9) and (13),
and using Eq. (16) gives the following identity:

3CixiMnEx tEun—ATES;+ (ugj+uj i+ u xu; Al

= — 134+ B)Y— 241115, (17

The quantity (u,-'j+uj,,-+u,-,Kuj,K)/25E',-j can be rewritten
as
E=E+%(FTF—FFT) =E+ (QE—EQ) +O0(E?),
(18)
where Q= (F—F7)/2 is the infinitesimal rotation tensor.
However, in deriving both sides of Eq. (17) we have im-
plicitly neglected terms of order E*Q and smaller. We will

say more about this below, but note for the present that to
the same degree of approximation, Eq. (17) becomes

1CijxemnEx LEmn
= —2AIgE;;+ [ 2411z —}(A+ B)I%]5;;. (19)

Again, if we assume that Cg;pypypp is isotropic, we can
express it as
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CrLmnpo=a8k 18ynOpo+ B[Sk L8y no+SrpBnp)
+8n (kS Lo+ kB Lp) +OppSkad Ly

+8adkn) 1 +7[8 Ly (8xdng
+8xdnp) + 8k (8 Lpdng+8 Ldnp)
+8xn (8 LrOpmo+ 8. dmp)
+8 88k mo+Bkpdmp) s (20)
where
a=C1233=C123,
B=3(Ciinn—Cramn) =1(c1n—en3), (21)

Y=8(Crinn—3Ci122+2C1233)

=g(crni—3ein+2e123),

and cg;,, is the tensor of elastic constants in the abbrevi-
ated Voigt notation. Substituting Eq. (20) into (19) gives
the following:

3o I +3(ena—cps) (tr E%gp +21 cEy)

+3(ei1—3c1+20103) ExpEpy

= N A+ B)8x + 241 ;6 ; —2AI gEy, . (22)

Using the second of Eqs. (7) to eliminate tr E2, and equat-
ing the coefficients of similar terms on the left- and right-
hand sides of Eq. (22), we get

cinp=—(4+B),

—(c1p—€13) =24, (23)

¢ —3c1p+2c123=0.

Notice that the second of Egs. (23) is obtained twice in
this process, thus ascertaining the consistency of the deri-
vation. We thus obtain

cin=—(54+B), ¢;=—(A+B), cj;3=4—B.

(24)

We note that had we retained terms of order EQ in the
expansion of Eq. (13), it can be shown, using Egs. (15)-
(18), and the isotropic form of Ckrmnpg in Eq. (20), that
they contribute (244¢y;p—¢p3) z(QE—EQ) to the
Cauchy stress. However, it is clear from the second of Eqs.
(23) that this contribution vanishes. Hence, we have
shown that the hyperelastic and equation of state deriva-
tions are consistent, neglecting terms of order E.

The first of Eqs. (24) was derived in Ref. 5 [see the
first of Eqs. (43)] by comparing the one-dimensional non-
linear equations of motion derived from the Eulerian and
Lagrangian descriptions. Table I relates these constants to
other sets of constants which appear in the literature.®®

For water at a temperature of 30°C and at atmo-
spheric pressure,*® B/4=5.2 and 4=2.277 GPa, giving
the following third-order elastic constants:
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TABLE 1. Relation between third-order elastic constants for isotropic solids.

Eringen and Toupin and Landau and
Murnaghan® Suhubi? Bernstein’ Lifshitz? Eq. (21)
‘i 20+4m 6l vi+6v,+8v, 24 + 6B +2€ a+68+8y
i 2 6lg+2my vi+2v, 28 +2% a+28
cm 21—-2m+n 6l+3mptng v 2% a
c111=—23.23 GPa, c¢j;=—14.12 GPa, E po _
(25) p0U=—f p—tr(I+2E) " dE
¢i3=—9.56 GPa. o P
1 rE
The adiabatic wave speed ¢ is given by’ =—3 J:) P %0 d [log det(I+2E)]. (33)
& p) =ii£ , (26)  Then using Egs. (5) and (6) this reduces to the familiar
dp form,

which for a fluid with equation of state given by Eq. (1) is

A(p)=A4/po+(B/pd) (p—po). (27
The natural wave speed ¢, is thus given by
ct=cX(po) =A/ po. (28)

A measure of the nonlinearity of the fluid is given by the
dimensionless parameter p,dc’/dp, which by using Egs.

(1) and (26) gives
dc*> B 29
Po g;=z- (29)

For isotropic solids there are two parameters which mea-
sure the degree of nonlinearity and are given by”1®

d_Ug_ TA+10u+ciy+201m2
Pogp =~ 342 ’

(30)
dU:_ 31.+6}.L+C||1/2—C123/2
g~ Mt 2p ’

where v, and u; are the speeds of compressional and shear
waves, respectively. If we substitute in these expressions
the elastic constants as given in Egs. (16) and (24), we get

al B dv?
Pogp=a> Po E=0, (3D
which are in agreement with Eq. (29) and the fact that
inviscid fluids do not support shear waves.

The approach taken here compares the Cauchy stress
tensor according to the equation of state and that from the
hyperelastic strain energy density. Alternatively, one can
start from the equation of state and find the strain energy,
from which the third- and higher-order elastic coefficients
could be determined. Thus Egs. (2), (5), (11), and (12)
imply

au

POE;: (32)

—@p(1+2E)—1.
p
Integration then yields
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P 1
U=_J‘ pdp™. (34)
fo
Substituting Eq. (1) into (33), and ignoring the higher-
order terms, gives

2
Po P\ Bp (po

U=(A—B)(——l—lo —)———(——1)
Po P Ep) 2p\p

4 (35)

Then, py/p can be expressed in terms of the strain using
Eq. (6), or the alternative form,

po/p=[1+20+2(I}— 1) +3Q21,— 301, +17) ]2,
(36)

where I,=tr E*, for n=1, 2, or 3. Combining Egs. (35)
and (36) and expanding yields

poU=(A/2) P+ [(A— B)/61 B — Al L+ O(E*).
(37)

This is the same form of the strain energy expansion used
by Landau and Lifshitz,® for instance, and allows us to
read off the values of the third-order moduli. Fourth- and
higher-order moduli could be determined in the same man-
ner.
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