Waves in stratified viscoelastic media with microstructure
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An extension of the O’Doherty and Anstey theory [R. F. O’Doherty and N. A. Anstey,
Geophys. Prosp. 19, 430458 (1971)] is derived for waves in finely layered, anisotropic,
viscoelastic media. Multiple scattering effects cause the direct wave to be delayed and broadened,
subject to a deterministic integrodifferential delay equation. The kernel depends upon
time-domain autocorrelations of reflectivities and the relaxation functions defining the
viscoelastic effects. The medium differs from a slowly varying medium by O(¢€), and propagation
over O(1/€*) distances is considered. Both smoothly varying media and interfaces are
considered simultaneously. A regular perturbation technique is used to show how an
approximation to the field may be rapidly calculated. The signal delay predicted by the theory
is identified with the retardation (drift) in the equivalent effective medium for the same interval.
Numerical examples using synthetic fractal media show the approximate solutions to be in very
good agreement with exact computations but 30-30 000 times faster.

PACS numbers: 43.20.Bi, 43.20.Gp, 43.20.Jr, 43.35.Mr

INTRODUCTION

A pulse propagates obliquely through a perfectly strat-
ified, isotropic, viscoelastic earth medium, over a vertical
distance large compared with the length scale on which the
medium varies. If the ratio of these lengths is € =2, we shall
assume the medium differs from a slowly varying medium
by O(e). We show by a perturbation technique how an
approximation to the field may be rapidly calculated. The
method is closely related to that of Burridge and Chang'
and of De Hoop er al.,” but extends the region of validity
further into the wave coda by using the sample autocorre-
lation instead of the theoretical, ensemble-averaged auto-
correlation of reflectivity. In the numerical examples illus-
trating this naive theory we obtain very good agreement
with exact computations using a layer-matrix code. The
main error is a small but growing error of timing late in the
coda. This may be corrected by using the travel times ap-
propriate to the (local) effective medium throughout. A
complete analysis of this correction has yet to be made. As
the degree of variation in the medium € increases, and as
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time into the coda increases, the accuracy decreases, but
accuracy improves as the frequency of the input pulse is
lowered.

The line of research followed in this paper was initi-
ated by O’Doherty and Anstey’ and has been continued by
various authors concerned with the time delay (drift) and
the pulse broadening (stratigraphic filtering) caused by
multiple scattering. Since similar effects are caused by
anelasticity there is considerable interest in understanding
and distinguishing the effects of multiple scattering from
those of anelasticity.* The present paper includes multiple
scattering and anelasticity together so that their effects can
be more easily compared.

For a fuller survey of earlier work with references, see
Refs. 5 and 6. For a thorough discussion of the correspond-
ing stochastic problem with emphasis on the reflected
wave, see Ref. 7.

In Sec. I, the equations governing viscoelastic wave
propagation in a stratified medium are set up. For suffi-
ciently small fixed horizontal slowness p, the equations
take the form of a one-dimensional, first-order, linear, hy-
perbolic system Jp+ M (z)3d,p=0, where o=¢—px, with ¢
the (absolute) time. The matrix M, which is assumed to be
piecewise differentiable with discrete jump discontinuities,
is separated into two parts. One part represents the per-
fectly elastic, instantaneous response of the medium and
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contains the effects of scattering by inhomogeneity; the
other involves the relaxation functions and represents
anelasticity. The elastic part is diagonalized by means of an
eigenvector decomposition. The resulting hyperbolic sys-
tem must be supplemented by jump conditions at the in-
terfaces, that is, at the points of discontinuity of M.

In Sec. II, the small parameter € is introduced. After
diagonalization the elastic scattering term is assumed to be
O(e¢) while the anelastic term is assumed to be O(€?). This
ensures that the two effects will be comparable in the final
analysis. The fastest downgoing mode, the P wave, is cho-
sen for special attention and a comoving frame of reference
is used that travels downward with the P wave speed. We
postulate a solution in the form of a power series in € and
then obtain a closed integrodifferential equation with jump
conditions for the amplitude of the mode of interest correct
to O(€%). By introducing Dirac distributions with weights
that may be interpreted as reflection and transmission co-
efficients, the jump conditions may be incorporated into
the integrodifferential equation.

The connection with effective-medium theory is dis-
cussed in Sec. III. The signal delay, defined as the delay
between the first arrival and the time of arrival of the cen-
troid of the pulse, is identified with the characteristic ar-
rival time of the effective medium.

In Sec. IV, some numerical examples are presented
that show the accuracy of this approximate method. We
calculate the impulse responses for several purely elastic
synthetic Goupillaud media derived from fractals of the
fractional Brownian motion type. The agreement with the
exact solution is shown in several plots and is good, espe-
cially early in the signal, but deteriorates both with increas-
ing time in the coda and as the magnitude of the reflection
coefficients increases. The approximate computations were
carried out by means of fast Fourier transforms, and were
found to be 30-30 000 times faster than the finite-difference
computations of the exact solution.® Finally, we calculated
the particle velocity corresponding to a smooth low-
frequency incident pulse in a different Goupillaud medium.
We carry these computations farther into the coda than in
the previous examples. Here there is very good agreement
between the approximate and the exact solution even quite
late in the coda, but there is a small progressive timing
error at later times. However, this may be corrected by
using effective medium travel times throughout instead of
characteristic travel times.

I. THE BASIC EQUATIONS

Let x,p,z be spatial coordinates, with z vertically down-
ward, perpendicular to the layering, and let ¢ be the time.
Assume that the properties of the medium are functions of
z only, and that the particle velocities and stresses are func-
tions of z and t—px only. Then it is known that the equa-
tions of elasticity in a continuously variable medium have
the form

3p+M(2)3,v=0, (1)
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where v(z,t) is the vector of particle velocities and traction
components across surfaces z=const, and M(z) is an nXn
matrix of material parameters that are functions of the
density, the elastic constants of the material, and the hor-
izontal slowness p, and

g=t—px. (2)

When the material parameters have discrete jump discon-
tinuities, Eq. (1) must be supplemented by the interface
condition that v is continuous at the points of discontinuity
of M. For isotropic elasticity the system splits into two
decoupled systems, the 4 X4 P-SV system for the in-plane
components, and the 2 X2 SH system for the out-of-plane
components.

We now separate M into two parts, rewriting Eq. (1)
as

a,u+M0 aaU+aa-M1*U=o. (3)

Here, M, represents the instantaneous elastic response, M,
involves the relaxation functions and accounts for the in-
elastic behavior, and * denotes convolution with respect to
o. The matrix M has the infinitesimal symplectic symme-
tries

MII=IM,, (4a)
MIy=um,, (4b)
where
0o I,
J=( ”), (5)
) In/Z 0
with I, the (n/2) X (n/2) identity matrix. Set
v(z,0)=E(2)w(z,0), (6)

where E is the tensor of eigenvectors of M|, defined by

ME=EA, @)
with

A=diag[yi,--Yal- (8)
Thus

E=(ey,...e,), 9)

where the vertical slownesses y, are the eigenvalues and
the e, are the eigenvectors of My; they are assumed to be
real and nonzero. Let

sp=sgn(v), (10)
and

K=diag[s,,...,s,]. (11)
We shall normalize the eigenvectors so that

ETJE=K. (12)

Then mode k propagates in the direction of s.z. Since
K '=K, it follows that

E-'=KE'J. (13)
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Using Egs. (7), (8), and (13), we rewrite Eq. (3) in the
form

K(3,+A3,)w=—ETJ(3,E)w—ETI(A M) Exw. (14)

From Eq. (12) and the fact that 3,K=0, we see that
ETJ (9,E) is skew symmetric: hence, when the medium is
perfectly elastic,

3, (wTKw) +3,(wTKAw) =0, (15)

which corresponds to the invariance of vertical power flux.
When M is discontinuous at z” the continuity of v
implies that

E(zD +0)w(z? +0) —E" -0)w(z"—0)=0.  (16)

By separating the outgoing modes from the incoming
modes at z'¥), we may rewrite Eq. (16) in terms of a scat-
tering matrix S'V:

w (2 +5,0)= 2 SFw (2" —5,0). (17)
k

It follows from the conservation of energy flux at z”) that
S is orthogonal.

Il. THE INTEGRODIFFERENTIAL EQUATION

In this section we shall derive an integrodifferential
equation governing the evolution of the pulse carried by
the mode of interest, which we shall assume to be the
fastest, for instance, the up- or downgoing P wave in iso-
tropic elasticity.

A. Scaling

In order to estimate systematically the order of mag-
nitude of various terms occurring in the analysis we intro-
duce a small parameter €, 0 <e<1. We shall assume that
inhomogeneities in the mechanical parameters are O(€)
while imperfections of elasticity are O(€*), but we shall
consider wave propagation over large distances O(e™ %), so
that the effects of these perturbations become appreciable.
Let

ET(2)J(3,E) (z) =€A(z), (18a)
ET(2)J(3,M,)(z,0)E(z) =€ B(z,0), (18b)
SO=1—ea V-5 (18¢)

It follows from the normalization [Eq. (12)] that the ma-
trix KA is skew, whereas, by Eq. (4), KB is symmetric.
The orthogonality of S O implies that the O(1) term of s
is I, that &7‘" is skew, and that

1 n—1 s 1 "=t
BU=> 3 dW'=— T AP (19)
2 5 2 5

It is convenient to define 7,(z,z’) here as the travel
time in mode k between z’ and z. Thus,

T(2,2') = J-, Ye(£)dE. (20)
Let (z,6) be new coordinates related to (z,0) by
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0(z,0) =0—1,(2,0). (21)

In this way we emphasize the nth mode as the mode of
interest, which, as stated above, we shall take to be the
fastest. In these coordinates the diagonal differential oper-
ator of Eq. (14) is transformed:

K(d,+A d,)~diag[L,,..,L,_,,s,3,], (22)
where

Ly=5:(3;+ 7P« ), (23)
and

Pk=Yk—¥n- (24)

For later use we define

Fr(z,2')= Ji Ye(§)dE=1y(2,2") —T,(2,2"). (25)
Let

W(z,0)=w,(z,0) .(26)

be the amplitude of the mode of interest while we retain
w(z,0) =wi(z,0) for 1<k<n—1. Then Eq. (14) may be
written

n—1 n—1

Snd,WAe X Ag;+EB 2 W+ Y B, xw,=0, (27)
j=1 j=1

for the mode of interest and

n—1 n—1
(Sj 32+ |}7j|60)wj+e kzl Ajkwk+€2 kzl Bjk*wk
=—€d;,W—€eB;,*W, (28)

with 1<j<n—1 for the other modes. At interface 20 we
write Eq. (17) as

Wz 45,0, ) —W(z"=s,0,-)

+e kE o Pw (20 —5,0, - ) +EB Wz —5,0,)
=~n

+€ Y BRuw(P—50,)=0(&), (29)
ks£n
and

w; (20 +5,0,+ ) —w; (2" —5,0,)

+ed W (20 —5,0,-)+e 3 & Juwlz?—50,)
ks£n

+el%’j-f,) w(zh—5,0,-)+€ E .@;ka(z(”—sko, )
kstn

=0(€%). (30)

Equations (27) and (28) are supplemented with initial
conditions

W(z,0)=w;(z,6)=0, for 6<0. (31

This is possible by consideration of dependence domains,
since mode n is the fastest.
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B. Perturbation analysis for small ¢

Let us solve this system by a perturbation method for
small € as far as O(é?).

Suppose that in a region in z,8 of diameter O(1) con-
taining the point (z;,0) we may expand W and w; as

W=wO+ew® WD +0(e), (32)

wj=w§-°)+ew§~”+ele-2)+0(63), (33)
with

w1 (z,,0)=W?(z,6)=0. (34)

Then, setting €e=0 in Eqs. (27) and (29), we get
8,W(°)=0 between interfaces, (35)
WO (20 45,0, )= WO (20 _s,0,)

at interfaces. (36)

Thus, from Eqgs. (35) and (36),

WO (z2,0) =W (z,0) = W(z,6). (37)

Setting €e=0 in Eqgs. (28) and (31), we get
(s; 9,+ |f/j|69)w§-0)=0 between interfaces, (38)

and
w}-o)(z(’)+sj0,0)—wﬁ.o)(z“)—st,B)=0

at interfaces. (39)

Integrating Eq. (38) along a characteristic of the family
db=7; dz (40)

and making use of Egs. (39) and (31), we find that

w(® =0, (41)

Next we differentiate Eqs. (27) and (29) with respect to €
and set €=0:

a,w) =0,
(42)

w450, )W (D 5,0, -)=0,

where we have made use of Eq. (41). Integrating Eq. (42)
and using Eq. (34) show that

w=q. (43)

On differentiating Eqs. (28) and (30) and setting e=0, we
find that

(s; 0+ | 7;] Bg)wV = — 4, W, (44)
(H n . N ) .
w; (2! +5,0, )—wj (z()—SJ-O, )

=—ZDWOED 5,0, ). (45)

Then, integrating Eq. (44), adding the contributions from
Eq. (45), and taking into account the zero initial condi-
tions [Eq. (31)], we find that
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2,0 = [ ey Wiar .84, (a1.20)z

Zj
—EI,'M}QW(zl,e—fj(zl,z(”)), (46)

where we have also used Eq. (37). The lower limit of
integration Z; is such that

‘fj(zl,z_j)=9, (47)

(z;,—0) and (z,,0) lie on the same j characteristic, and in
the summation over / only those terms are included for
which 7 j(zl 2"y <6 (i.e., excluding the end point if that
happens to be a point of discontinuity). We may write Eq.
(46) in the form

wil(2),0) = — f ' (A,-,,(z') + Z’m;{,)a(z'_zm)
Zj {

2j

X Wiz,,6—7;(z,,2"))dz". (48)

Now we differentiate Eqs. (27) and (29) twice with re-
spect to €, set €=0, and divide by 2:

n—1
Sn azW(Z)(zl 16) + z Anjw(l)(zlae) + Bnn* W(Zl,e) =0,
=1
’ (49)
WA (2D 45,0,0)— WP (2D —5,0,0)
+ 2 A w0 —50,0)+ B ) W(z,,0)=0.
JFn (50)

Notice that on substituting w'" from Eq. (48) into Eq.
(50) the term j=n does not arise in the sum over j. Equa-
tions (49) and (50) may be written as the following single
equation:

-1

500G, 0)+ 3 (e = 3ot P5(ai-2")
j=1 /

Xw$'(2,,8) + B, *W(z,,0) + ;’@;Qa(z—z(“)

X W(z,,0) =0, (51)
provided that we interpret d, in the sense of distributions.
We have set z=z; in Eq. (51), but we shall later drop the
subscript 1 on z;. On setting z=z, in Eq. (48) and then

substituting in Eq. (51), we obtain 9, ‘¥ (z,,0) in terms
of W(z,,0). Equations (32), (35), and (43) yield

3,W(z,,0)=€ 3,W(z,,0). (52)

So, setting z=z,, substituting w}” from Eq. (48) into Eq.
(51), and then using Eq. (52), we get
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n—1 2z
5, a,W(z,0)=e2( > Z,,,-(z)J Aj (") W(z,0
j=1 fj
—1i(2,2'))dz' — B, *W(2,0)

— 2 BPs(z—2") W(z,9)) +0(é),
I

(53)

where

Ajp(2)=A;(2)+ 2 ot R8(z—2D). (54)
!

There is a slight complication in Eq. (53) when z=2", for
some /. Then W(z+s5,0,0) — W(z—s,0,0)5~0 and the right
side is not well defined. However, this difference is O(€?);
thus, we may replace W (z,0) on the right of Eq. (53) by
W(z+s5,0,0), W(z—s,0,0), or any value between these,
and the equation will remain true to the same order in €.
Also, in the product A(z)A(2"), there are terms of the
form 42!,(,5-)42{5-;,”)6(2—2(1))6(2—2("‘)). But the diagonal
terms with m=1/ do not arise. They appear with a coeffi-
cient 1 when Eq. (19) is used in ZP8(z—z").

~ The integrodifferential equation (53) is the main result
of this section. We proceed now to write its solution in a
convenient form.

C. The solution of the integrodifferential equation

We may rewrite Eq. (53) in the form
5,0, W(z, )=€P(z, " )W (z, -), (55)

where

n—1

P(z8)= 3 Ay(2) f dz' A,,(2)8(0—#,(2.2'))
j=1 z;

—B(2,0)— X' BL8(z—2")5(0).  (56)
I

The convolution and delay operators appearing in Eq.
(56) are mutually commuting (and may be diagonalized
by a Fourier or Laplace transform). Let us assume that
s,=1; then the solution of Eq. (55) may be expressed as

4

Wiz, - )=f:xp(e2 J.o P(z", - )dz"*)W(O, ), (5T)
and this equation is valid on a scale of €% in z with an
O(e) error. (If s,= — 1, Eq. (55) must be integrated in the
negative instead of the positive z direction.] The exponen-
tial is the operator exponential of its argument regarded as
a convolution operator in the second slot rather than as a
function. This is indicated by the *. We may write the
exponent more explicitly. Thus, with an O(e) error,

W(z, - Y=expla(z, ‘- )*+b(z, - )*]1W(O0, -), (58)

where

2888 J. Acoust. Soc. Am., Vol. 94, No. 5, November 1993

n—1 - 0o
a(z,0)= 2 eA,,j(z”)jz ed;,(2')5(0
j=1 Jo Z

—7(2",2'))dz’ dz"”

— E#6(0),

(59)
lo<® <z

and

r4

b(z,0)=— fo e B,,(z",0)dz". (60)
The convolutions in 8 implied by Eq. (58) may be treated
conveniently by means of Laplace or Fourier transforms,
but when this is done we should be aware of important
time-domain considerations relating to causality, which are
difficult to treat adequately in the frequency domain.

In the next section we shall show how a and b may be
discretized so that Eq. (58) can be treated numerically. We
note that the €* factors appearing in @ and b imply that the

approximations are valid on a z scale of € 2.

D. The reflected waves

In practice we need the particle velocities, which are
observable quantities. They are components of v, which is
related to W and w; by Eq. (6), and so

n—1

v= z wjej+We,,. (61)
j=1

Thus, before calculating v we need to obtain not only W
but also the w;, 1<j<n—1. But, to leading order in €, w;
is given by Eq. (48) as

w;(z,0)=— j €d; (2 )W (z,0—F;(z,2'))dz!,  (62)
zj
where A = 18 given in Eq. (54). So, finally, using Eq. (62)
in Eq. (61), we have
n—1 z
p(z8)=— 2 | €d;(2)W(z6—7;(z2))dz ¢
j= .

=1 z;

+W(z,0)e,. (63)

Thus, we see that all components of v(z,0) are obtained
from W (z,0) by convolutions in time.

ill. THE TRAVEL-TIME CORRECTION AND THE
EFFECTIVE MEDIUM

The effect of the heterogeneity of the medium as rep-
resented by a(z, - ) in (58) is twofold: a delay in the pulse,
and an evolution of the pulse shape, usually a broadening.
It turns out that the delay is 0(62) and to this order is the
same as the delay calculated by means of an effective me-
dium theory. The delay and the effective medium will be
made precise in the course of the discussion.

The delay A¢(z) of the pulse after the leading charac-
teristic may be defined as the centroid in @ of the pulse
W(z,0). It is given by the equation
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J.: OW (2,0)d0=1Ar1(z) f: W (2,0)d0. (64)
Let f(z.s) be the Laplace transform in 8 of f(z,0):
Flxs)= J. e9f(2,0)d6. (65)
Then
f‘” F(20)d8=F(z0),
° (66)

fw 0f(2,0)d0=— }(z,0).
(1]

Laplace-transforming (58), and assuming for the present
purpose that b(z,0) =0, we have

W (z,s) =exp[d(z,s) | W(0,s), (67)
and so, on differentiating and using the fact that 4(z,0) =0,
W,(2,0) =6,(2,0) W(z,0). (68)

Thus, using (64) and (66) in (68), we get
Al(z) =—d,(2,0)

- fw 0a(z,0)do
0

n—1 Z 7
:6'2 Zl . Z,,j(Z") J-_ Ajn(Z’)T(Z",Z')dZ’ dz",
1= Z;

(69)

by (59).

On the other hand, an effective medium over the in-
terval (0,z5) may be defined by replacing M (=M,;) in (1)
by

1 2

<M0)20=;(; L Mo(Z)dZ. (70)
It will not be demonstated here, but may be shown by
direct calculation, that the characteristic travel time from 0
to z, in this effective medium is larger than the characteristic
travel time 7(0,zy) by At(zy), correct to O(é€?), which is the
result stated at the beginning of this section.

IV. SIMULATIONS
A. Discretization

In general, when both jumps and continuous variation
of the medium occur, it is convenient to discretize Z D on
a uniform grid in z with step d, say. Then, in the mtegrals,

“) dz becomes

A=Az d+ 2’)’&1}{3, (71)
where the second term arises only if z,,—1d<z" <z,,+1d.
Then, to discretize a(z,0) of (59) we discretize 8 with step
size 4 and sample intervals [(g—3)A,(g+3)h). Set a,=0.
Fix z. Then, for each admissible pair m, m’, find ¢’ such
that
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(4 —DA<F (2 2} < (@' + D). (72)
We accumulate a,- by adding a term as follows:
aq. ‘-‘aql+€2a"j,maj"'mrh. (73)

In addition, for g’ =0, we add the contribution from 55},{,)
of (59):

ay—ag— end. (74)

(0<zN <2}

The quantity b(z,0) may be discretized in @ for fixed z by
any numerical quadrature formula (in z) and at the same
discretization points §=gh as for a,. Thus in the crudest
approximation,

— f 623,,,,(2”,hq)dz". (75)
0
We can form the sum
c,=a,+b, (76)
and its generating function
C&)= X cto. (1M
q=0

It is now possible to compute the convolutional exponen-
tial {u,} of {c,} as follows:

w0

Ug)= X ufi=exp[C(£)]. (78)
=0
Differentiate with respect to £ to get
ure)=u()c (), (79
that is,
2 muEnl= 5 un £Em L (80)
m=1 m—1 g=1

Thus u,, may be computed recursively by means of

1 m
— . 81
= 2:: Cqttm--q (81)
The recursion needs to be started at m=0 by
ug=e— . (82)

The sequence {u,,} may also be computed by means of the
Fourier transform. This is more efficient provided wrap-
around errors are avoided. For Goupillaud media and nor-
mal incidence the Fourier transform of the autocorrelation
function of reflection coefficients is easily and rapidly com-
puted from the reflection coefficient sequence and leads to
a very fast algorithm, which is 30-30 000 times faster than
competing methods, depending on the number of receivers,
the number of layers the waves must traverse, the lengths
of the time series to be computed, and the frequency con-
tent of the incident wave.

B. Results

Synthetic media were constructed consisting of a stack
of a large number of homogeneous layers. The statistics
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were governed by fractional Brownian motion with Hurst
exponent H. The relationship of A to the fractional Brown-
ian motion will be specified later in (86); H can be ex-
pressed in terms of the fractal (box) dimension D by
means of

H=2-D. (83)

There is evidence™ " that actual media show power spec-
tral densities arising from this class of stochastic fractal.
Here, we summarize some of the basic relations among the
fractal, its power spectral density, its autocorrelation func-
tion, the realization it generates, and the resuiting reflec-
tivity sequence.

We shall be concerned with normally incident plane
waves. Let £(*)(z) be the stochastic process for the acous-
tic impedance v. For the time being we will consider en-
semble averages (&), but later on we will focus on a par-
ticular realization. The variogram ¥, of £) is given by

8-10

7 =gV (- +5)—EM ()} (84)
It is related to the power spectral density 2, by
0= [ 1-cosk)) 2 ik (85)

through the spatial Fourier transformation . Here % is
the wave number conjugate to z. For fractional Brownian
motion the power spectral density is related to the Hurst
exponent by the simple power law

P (k) =Cp/KH+1, (86)

where Cy; is a coefficient, depending upon H and the length
of the process, which normalizes the variance to 1. Then
the variogram is stationary. If the Fourier inverse exists,
and £ is stationary, we have

(F'Z2)E)=FLEV(HEN(- +O)}=e,(5),
(87)

where c,, denotes the autocorrelation function. Then the
correlation function of the derived process £ (associ-
ated with the reflectivity function) is

g{g(v):( . )g(v)l( 4+ &) }=—cr (E). (88)
15
Fractal, H =%
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|
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! NE
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FIG. 1. A fractional Brownian motion fractal with Hurst exponent H= 1
used to generate the reflection coefficient sequences shown in Figs. 2 and
7 through formula (92).
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Reflection Coefficient Sequence
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Depth

FIG. 2. The reflection sequence ﬁenerated from the fractal shown in Fig.
1 using formula (29) with o,=3%.

For 0 < H <}, the left member of (88) exists even though
¢,, does not. We then regard (88) as defining ¢;,, which
will need to be interpreted as a distribution. At zero lag we
have

g{g(v)( . )g(v)( . )}= J‘w ,@w(k)dk (89)

This implies, through the Wiener-Khinchine theorem, that
P (k) =E{(F ENFE*} (k). (90)

The latter relation, without the averaging, was used to con-
struct a fractional Brownian motion from a random pro-
cess by enforcing the desired power spectral density (86).

For the more general case of oblique incidence, several
parameters need to be generated. Then (85)—(90) may be
simply extended to cover covariances and the generation of

11 —- —

Downgoing Wave at Three Receivers

09

08

07 Step Response, H = 41, o= % ]
W
| ]
Qs
Exact Solution (Finite Difference) - solid line

04 |

Approximate Solution (O'Doherty-Anstey) - dashed line
a3 1
02, 50 00 150 20 250 300 250 400

Time

FIG. 3. The downgoing wave response to a unit step function pulse
incident from above on a stack of layers with reflection coefficient se-
quence shown in Fig. 2. There are three pairs of curves showing the pulse
at three receiver locations: in the Ist layer (just below the top interface),
in the 601st layer, and in the 1201st layer. For each receiver, the solid line
depicts the exact solution as calculated by means of a discrete solver for
a Goupillaud medium, and the dashed line the approximation computed
according to (58). Toward the left of the figure the curves corresponding
to the three receivers are lower the deeper the receiver. The curves for the
first receiver both almost coincide with the line W=1. H:% and av=%.
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FIG. 4. A fractional Brownian motion fractal with Hurst exponent H= l
used to generate the reflection coefficient sequences shown in Fig. 5§
through formula (92).

the ¢, provided that the fractal dimension is the same for
all parameters. For practical purposes the discretization
£ of the process £ implies a natural high wave-number
band limitation of the power spectral density since the
sampling rate is to be regarded as the Nyquist wave num-
ber. The finite support of the process implies a band limi-
tation with respect to the low wave numbers.

Once £ is generated, the sequence of characteristic
impedances {v,} may be generated by means of

vi=exp(a,£L"), (91)

where o, governs the magnitude of the reflection coeffi-
cients {,}, which are given by

ry=tanh[jo, (47 — £ 1. (92)

We consider two classes of models: in one class, H=3, and,
in the other, H=3. The first synthetic structure consists of
a stack of 1600 layers with H=} and o,=32. Plots of the
underlying fractal and the reflection coefficients are shown
in Figs. 1 and 2. The impedance is not stationary although
the reflection coefficients are.

In the model, receivers were placed at three locations:
in the 1st, the 601st, and the 1201st layers. For each re-

03

Reflection Coefficient Sequence
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0.1 l

‘ ol
0 ‘l
i ‘

<l1f

02

H =

Lo =2

P

0.3
]

200 400 600 800 1000 1200 1400 1600 1800
Depth

FIG. 5. The reflection sequence generated from the fractal shown in Fig.
4 using formula (92) with o,=2.
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Downgoing Wave at Three Receivers

[=4

Step Response, H = %, og=2

04

02 Exact Solution (Finite Difference) - solid line

Approximate Solution (O’Doherty-Anstey) - dashed line

00 50 100 150 200 250 300 350 400

Time

FIG. 6. As in Fig. 3, we show the downgoing wave response to a unit step
function pulse incident from above on a stack of layers, but with the
reflection coefficient sequence shown in Fig. 5. The results are shown for
the same receiver positions as before. Here H=3 and o0,=2.

ceiver the approximate downgoing wave was computed.
The exact downgoing wave was computed with a finite
difference code. The results are plotted in Fig. 3. Next we
increase o, to 2. A different realization was used but with
the same value of H. Plots of the fractal and the reflection
coefficients are shown in Figs. 4 and 5. Both the exact and
the approximate downgoing waves are plotted in Fig. 6.
Note that the pulse is broader the larger the value of ¢, and
the deeper the point of observation. However, the validity
of the approximate method breaks down at earlier times.
To illustrate this an extreme case with o,=4 is plotted in
Fig. 7 (the fractal realization of Fig. 1 used). The results
are plotted in Fig. 8.

A realization of the second class, with A =%, is shown
in Fig. 9; the corresponding reflectivity, with o,=15, is
plotted in Fig. 10. Here o, was chosen so that a, [see (74)]
has the same value as for the case H=4 and 0,=2. The
strength of the reflection coefficients is comparable with
those shown in Fig. 2. Figure 11 shows the exact and the
approximate downgoing waves. Notice that there is no
broadened pseudoprimary pulse in this case, only the ex-

0.5 T — T T T —

Reflection Coefficient Sequence

=4

I =Z’

"y

20 400 &0 800 1000 1200 1400
Depth

1600 1800

FIG. 7. The reflection sequence generated from the fractal shown in Fig.
1 using formula (92), o,=4.
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Downgoing Wave at Three Receivers

e

asl Step Response, H = %, og=4
W 0.6
04}

o2t { /" Exact Solution (Finite Difference) - solid line -

Appr'oximate Solution (O’Doherty-Anstey) - dashed line
i . .

Qo
0 50 100 150 200 250 300 350 400

Time

FIG. 8. As in Fig. 3, we show the downgoing wave response o a unit step
function pulse incident from above on a stack of layers, but with reflection
coefficient sequence shown in Fig. 7. The results are shown for the same
receiver positions as before. Here H=3 and 0,=4.

12

08
Fractal, H = %
06
04

02

0.6

_0.30 500 1000 1500 2000 2500 3000

FIG. 9. A fractional Brownian motion fractal with Hurst exponent H= 3
used to generate the reflection coefficient sequences shown in Fig. 10
through formula (92).

Reflection Coefficient Sequence
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FIG. 10. The reflection sequence generated from the fractal shown in Fig.

9 using formula (92) with ¢,=15.

2892 J. Acoust. Soc. Am., Vol. 94, No. 5, November 1993

o8} .
Downgoing Wave at Tliree Receivers
06 1
Step Response, H = %, =15
04
w Exact Solution (Finite Difference) - solid fine
a2}Approximate Solution (O'Doherty-Anstey) - dashed fine ]
A i

FIG. 11. As in Fig. 3, we show the downgoing wave response to a unit
step function pulse incident from above on a stack of layers having the
reflection coefficient sequence shown in Fig. 10. The results are shown for
the same receiver positions as before, in the Ist, 601st, and 1201st layers.
Here H:% and o,=15.

ponentially decreasing first arrival, followed by an incoher-
ent coda. This is to be contrasted with the pulses shown in
Figs. 3 and 6.

For 0 < H <3}, neighboring values of the reflectivity are
negatively correlated; then a psendoprimary wave exists
(see Figs. 3 and 6). For } < H < 1 neighboring values of the
reflectivity are positively correlated; then the pseudopri-
mary wave vanishes (see Fig. 11).

Next we consider the backscattered signal. Here we

1000 |

1500 -

Depth (ft)

2000

2500

3000 | = 1t ]

05 0 050 50 100 150 200
Reflection Coefficients Slowness (ys/ft)

FIG. 12. Plots of the slowness and reflection coefficient sequence for the
structure used in the computation of the solutions shown in Figs. 13 and
14. The structure consists of three distinct sections that are statistically
stationary. The density was assumed constant.
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i

Time () x10°

FIG. 13. Particle velocity, which is a linear combination of upgoing and
downgoing waves, as a function of time at 31 different receiver positions
for the model illustrated in Fig. 12. The incident pulse is broad here (low
frequency) and is seen at the beginning of the first trace. This simulation
is pushed further into the coda than in the preceding examples. Again
solid lines represent the “exact” solution, computed by means of the
layer-matrix code OASES, and the dashed lines represent the approxi-
mate solution using the method of this paper.

use a smooth source signature rather than a step function
in time to investigate the effect for longer wavelengths. The
medium, consisting of 3000 layers, is shown in Fig. 12. The
upgoing wave was approximated, according to (62), and
the particle velocity 7, say, was computed according to
(63). To compare with an exact solution a layer matrix
code was run for the same structure and the same incident
waveform; the (exact) particle velocities v(z,0) were then
computed as functions of time at 31 receivers spaced at
intervals of 100 layers. Both sets of waveforms o(z,8)
(dashed line) and v(z,8) (solid line) are plotted in Fig. 13.
Note that the agreement is close but there is a small pro-
gressive error in timing as time increases. To improve the
approximate results at later times (and hence for the back-
scattered waves) we introduce in Eqs. (59) and (62) a
correction to 7;(z’,z"”), the vertical travel time delay for
double-scattering between z” and z’, by emphasizing the
timing of the centroids of the pulses rather than the char-
acteristic travel time, even for the short propagation paths
involved in the double scattering process. Thus, to bring
the timing of the centroids into agreement with the long-
wavelength equivalent medium (as for the primary pulse)
we replace the quantities 7 (2',2") by

7j(2',2") = (1) (2',2") —(7,) (2',2"), (93)

where (- ) refers to the equivalent medium for the interval
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Time (us) =10

FIG. 14. Same as Fig. 13 except that in the computation of the approx-
imate solution all travel times were calculated relative to the effective
medium. Note that errors of timing are now corrected.

[z”,2’]. This assumes that the pulse shape of the multiple is
similar to that of the primary. Further, the timing of the
head of the primary pulse is not affected by the replace-
ment (93) since the correction is O(€%0) and only becomes
appreciable at later times, 6=0(e™?). Figure 14 shows the
result of using the effective medium timing instead of
7;(2",2") throughout in computing a(z,0) in Eq. (59). No-
tice that the agreement between the two solutions is excel-
lent, especially for early times where their graphs are seen
to coincide. Some slight difference is found at later times.
The computation of the approximate solution  was one to
three orders of magnitude faster than the layer-matrix
computation. We note the coherent up- and downgoing
waves (pseudomultiples) that appear to have been re-
flected from the interior of the stack of layers, presumably
where some favorable correlation between the downgoing
wave and the structure occurs.
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