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An extension of the O'Doherty and Anstey theory [R. F. O'Doherty and N. A. Anstey, 
Geophys. Prosp. 19, 430458 (1971)] is derived for waves in finely layered, anisotropic, 
viscoelastic media. Multiple scattering effects cause the direct wave to be delayed and broadened, 
subject to a deterministic integrodifferential delay equation. The kernel depends upon 
time-domain autocorrelations of reflectivities and the relaxation functions defining the 
viscoelastic effects. The medium differs from a slowly varying medium by O(E), and propagation 
over O(1/•) distances is considered. Both smoothly varying media and interfaces are 
considered simultaneously. A regular perturbation technique is used to show how an 
approximation to the field may be rapidly calculated. The signal delay predicted by the theory 
is identified with the retardation (drift) in the equivalent effective medium for the same interval. 
Numerical examples using synthetic fractal media show the approximate solutions to be in very 
good agreement with exact computations but 30-30 000 times faster. 

PACS numbers: 43.20.Bi, 43.20.Gp, 43.20.Jr, 43.35.Mr 

INTRODUCTION 

A pulse propagates obliquely through a perfectly strat- 
ified, isotropic, viscoelastic earth medium, over a vertical 
distance large compared with the length scale on which the 
medium varies. If the ratio of these lengths is e -2, we shall 
assume the medium differs from a slowly varying medium 
by O(e). We show by a perturbation technique how an 
approximation to the field may be rapidly calculated. The 
method is closely related to that of Burridge and Chang • 
and of De Hoop et al., 2 but extends the region of validity 
further into the wave coda by using the sample autocorre- 
lation instead of the theoretical, ensemble-averaged auto- 
correlation of reflectivity. In the numerical examples illus- 
trating this naive theory we obtain very good agreement 
with exact computations using a layer-matrix code. The 
main error is a small but growing error of timing late in the 
coda. This may be corrected by using the travel times ap- 
propriate to the (local) effective medium throughout. A 
complete analysis of this correction has yet to be made. As 
the degree of variation in the medium e increases, and as 

a)Formerly at: Koninklijke/Shell Exploratie en Produktie Laboratorium 
Volmerlaan 6, 2288 GD Rijswijk ZH, The Netherlands. 

time into the coda increases, the accuracy decreases, but 
accuracy improves as the frequency of the input pulse is 
lowered. 

The line of research followed in this paper was initi- 
ated by O'Doherty and Anstey 3 and has been continued by 
various authors concerned with the time delay (drift) and 
the pulse broadening (stratigraphic filtering) caused by 
multiple scattering. Since similar effects are caused by 
anelasticity there is considerable interest in understanding 
and distinguishing the effects of multiple scattering from 
those of anelasticity. 4 The present paper includes multiple 
scattering and anelasticity together so that their effects can 
be more easily compared. 

For a fuller survey of earlier work with references, see 
Refs. 5 and 6. For a thorough discussion of the correspond- 
ing stochastic problem with emphasis on the reflected 
wave, see Reft 7. 

In Sec. I, the equations governing viscoelastic wave 
propagation in a stratified medium are set up. For suffi- 
ciently small fixed horizontal slowness p, the equations 
take the form of a one-dimensional, first-order, linear, hy- 
perbolic system c•zv + M (z) c•ov = 0, where •r = t--px, with t 
the (absolute) time. The matrix M, which is assumed to be 
piecewise differentiable with discrete jump discontinuities, 
is separated into two parts. One part represents the per- 
fectly elastic, instantaneous response of the medium and 
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contains the effects of scattering by inhomogeneity; the 
other involves the relaxation functions and represents 
anelastieity. The elastic part is diagonalized by means of an 
eigenvector decomposition. The resulting hyperbolic sys- 
tem must be supplemented by jump conditions at the in- 
terraces, that is, at the points of discontinuity of M. 

In Sec. lI, the small parameter e is introduced. After 
diagonalization the elastic scattering term is assumed to be 
O(e) while the anelastic term is assumed to be O(e•). This 
ensures that the two effects will be comparable in the final 
analysis. The fastest downgoing mode, the P wave, is cho- 
sen for special attention and a comoving frame of reference 
is used that travels downward with the P wave speed. We 
postulate a solution in the form of a power series in e and 
then obtain a closed integrodifferential equation with jump 
conditions for the amplitude of the mode of interest correct 
to O(•). By introducing Dirac distributions with weights 
that may be interpreted as reflection and transmission co- 
effieients, the jump conditions may be incorporated into 
the integrodifferential equation. 

The connection with effective-medium theory is dis- 
cussed in See. III. The signal dray, defined as the delay 
between the first arrival and the time of arrival of the cen- 

troid of the pulse, is identified with the characteristic ar- 
rival time of the effective medium. 

In See. IV, some numerical examples are presented 
that show the accuracy of this approximate method. We 
calculate the impulse responses for several purely elastic 
synthetic Goupillaud media derived from fractals of the 
fractional BrownJan motion type. The agreement with the 
exact solution is shown in several plots and is good, espe- 
cially early in the signal, but deteriorates both with increas- 
ing time in the coda and as the magnitude of the reflection 
coetficients increases. The approximate computations were 
carded out by means of fast Fourier transforms, and were 
found to be 30-30 000 times faster than the finite-difference 

computations of the exact solution. • Finally, we calculated 
the particle velocity corresponding to a smooth low- 
frequency incident pulse in a different Goupillaud medium. 
We carry these computations farther into the coda than in 
the previous examples. Here there is very good agreement 
between the approximate and the exact solution even quite 
late in the coda, but there is a small progressive timing 
error at later times. However, this may be corrected by 
using effective medium travel times throughout instead of 
characteristic travel times. 

I. THE BASIC EQUATIONS 

Let x,y• be spatial ca)ordinates, with z vertically down- 
ward, perpendicular to the layering, and let t be the time. 
Assume that the properties of the medium are functions of 
z only, and that the particle velocities and stresses are func- 
tions of z and t--px only. Then it is known that the equa- 
tions of elasticity in a continuously variable medium have 
the form 

a•-I-M(z)•oo=0, (1) 

where v(z,t) is the vector of particle velocities and traction 
components across surfaces z=const, and M(z) is an n Xn 
matrix of material parameters that are functions of the 
density, the elastic constants of the material, and the hor- 
izontal slowness p, and 

a=t-px. (2) 

When the material parameters have discrete jump discon- 
tinuities, Eq. (1) must be supplemented by the interface 
condition that v is continuous at the points of discontinuity 
of M. For isotropic elasticity the system splits into two 
decoupled systems, the 4 X 4 P-S V system for the in-plane 
components, and the 2 X 2 SH system for the out-of-plane 
components. 

We now separate M into two parts, rewriting Eq. ( 1 ) 
as 

a,v+Mo O•v+O•4•,u=O. (3) 

Here, M0 represents the instantaneous elastic response, M• 
involves the relaxation functions and accounts for the in- 

elastic behavior, and * denotes convolution with respect to 
a. The matrix M has the infinitesimal symplectie symme- 
tries 

MorJ=JMo, (4a) 

M•r j=JM•, (4b) 
where 

with I./2 the (n/2)X (n/2) identity matrix. Set 

v(z,a) =E(z)w(z, tr), (6) 

where E is the tensor of eigenvectors of M0 defined by 

MoE----EA, (7) 

with 

A=diag[y• ..... y,]. (8) 

Thus 

E= (e• ..... e,), (9) 

where the vertical slownesses Yk are the eigenvalues and 
the ek are the eigenveetors of M0; they are assumed to be 
real and nonzero. Let 

sk=sgn(yk), (10) 

and 

K---- diag [ s• ..... s, ]. ( 11 ) 

We shall normalize the eigenvectors so that 

ErJE=K. (12) 

Then mode k propagates in the direction of s•z. Since 
K- I =g, it follows that 

E-•=KETj. (13) 
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Using Eqs. (7), (8), and (13), we rewrite Eq. (3) in the 
form 

K(Oz+A Oo)w=--ErJ(O•E)w--ErJ(c9oMl)E*w. (14) 

From Eq. (12) and the fact that 0•K=0, we see that 
ErJ(•zE) is skew symmetric: hence, when the medium is 
perfectly elastic, 

Oz( wrKw) +O•(wrKAw) =0, (15) 

which corresponds to the invariance of vertical power flux. 
When M is discontinuous at z (t) the continuity of v 

implies that 

E(z (t) +O)w(z (t) +0) --E(z (t)--O)w(z (t)--O) =0. (16) 

By separating the outgoing modes from the incoming 
modes at z (t), we may rewrite Eq. (16) in terms of a scat- 
tering matrix S(t): 

= •]SjkWk(Z --sjO). (17) Wj(Z (1) .-{-sjO) (1) (I) 
k 

It follows from the conservation of energy flux at z (0 that 
S (t) is orthogonal. 

II. THE INTEGRODIFFERENTIAL EQUATION 

In this section we shall derive an integrodifferential 
equation governing the evolution of the pulse carried by 
the mode of interest, which we shall assume to be the 
fastest, for instance, the up- or downgoing P wave in iso- 
tropic elasticity. 

A. Scaling 

In order to estimate systematically the order of mag- 
nitude of various terms occurring in the analysis we intro- 
duce a small parameter e, 0 < e< 1. We shall assume that 
inhomogeneities in the mechanical parameters are O(e) 
while imperfections of elasticity are O(e•), but we shall 
consider wave propagation over large distances O(e-2), so 
that the effects of these perturbations become appreciable. 
Let 

ET(z)J( O•E) (z) = eA (z), (18a) 

ET (z)J( OoMi ) (z,o')E(z) = e• B(z,o'), (18b) 

S (t) =I-- ed © -- e2• (1). (18c) 

It follows from the normalization [Eq. (12)] that the ma- 
trix KA is skew, whereas, by Eq. (4), KB is symmetric. 
The orthogonality ofS (ø implies that the O( 1 ) term ofS (t) 
is I, that s/© is skew, and that 

•(l) 1 n--I •(1)2 1 n-1 • •t•. (19) 
k=l k=l 

It is convenient to define •(z,z') here as the travel 
time in mode k between z' and z. Thus, 

fz: •'k(Z,Z')= , y•(•)d•. (20) 
Let (z,0) be new coordinates related to (z,a) by 

O(z,•)=a--•'•(z,O). (21) 

In this way we emphasize the nth mode as the mode of 
interest, which, as stated above, we shall take to be the 
fastest. In these coordinates the diagonal differential oper- 
ator of Eq. (14) is transformed: 

K(0z+ A 0•)--, diag[ L• ..... L•_• ,s, 0•], (22) 

where 

L •,=&,( &•+ •k 0o), ( 23 ) 

and 

•k = Y• -- Yn. (24) 

For later use we define 

•(z,z') = , •(•)d•=r•(z,z')--•'n(Z,Z'). 
Let 

(25) 

W(z,O) = w,(z,a) . (26) 

be the amplitude of the mode of interest while we retain 
w•(z,O) =wk(z,a) for l•k•n-1. Then Eq. (14) may be 
written 

n--1 n--I 

SnOzW+e Z AnjWj+ff2Bnn*Ve'+ 62 Z Bnj*wj=O, (27) 
j=l j=l 

for the mode of interest and 

n--1 n--I 

k•l k=l 

= --eAjnW--e•Bjn*W, (28) 
with 1 •j•n--1 for the other modes. At interface z •t•, we 
write Eq. (17) as 

W ( z (1) + s•O, . ) - W ( z (1) - s,, . ) 

+e ") (t) ) •kw•,(z -sD,' ) +ea• (t> 
k•n 

+e • • •(•)' •-(•) s n •.•n•t• -- k•,,. )=O(e3), 

and 

Wj(Z (I) +sjO,' )--Wj(Z (l)--sjO,' ) 

(29) 

• •kWk(Z -skO, ' ) 
k•:n 

(1) .(1) +e•j• W(. -s.O,-)+• • •(•)' '-")-s•0, '• jk tøk• ' ) 
kskn 

=O(e3). (30) 

Equations (27) and (28) are supplemented with initial 
conditions 

W(z,O)=wj(z,O)=O, for 0(0. (31) 
This is possible by consideration of dependence domains, 
since mode n is the fastest. 
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B. Perturbation analysis for small • 

Let us solve this system by a perturbation method for 
small e as far as O(e2). 

Suppose that in a region in z,O of diameter O( 1 ) con- 
taining the point (zl,0) we may expand W and w/as 

W= W (ø) +eW (•) +•W (•) + O(e3), (32) 

Wj=W50) -[- 6W51) -[-62//352) +O(63), (33) 
with 

W51) (Zi,0)= -- ;•jI AJ n(Z') W(Zl 'O--'•J (ZI'Zt))MZ' 
-- •'zff)•)W(z•,O--q/(Zl,Z(O)), (46) 

1 

where we have also used Eq. (37). The lower limit of 
integration ffj is such that 

qj(Z 1 ,•j) = O, (47) 

W (1) (z 1,0) = W (2) (g1,0) -•-0. (34) 

Then, setting 6=0 in Eqs. (27) and (29), we get 

0•W(ø)=0 between interfaces, (35) 

W © (z (ø +s,0, ß ) = W (ø) (z (t) --s,0, ß ) 

at interfaces. (36) 

Thus, from Eqs. (35) and (36), 

W © (z,O) = W © (z(O,O) = W(z• ,0). (37) 

Setting 6=0 in Eqs. (28) and (31), we get 

(s• Os+ I•jlOo)w}ø)=o between interfaces, (38) 
and 

(0) •(1). • r/L•x .,,(0) I.(l) 
bUj (• '-r-aju, ttl--t• j •.. --$jO, O)•. 0 

at interfaces. (39) 

Integrating Eq. (38) along a characteristic of the hmily 

(40) 

and making use of Eqs. (39) and (31), we find that 

w)ø)=0. (41) 
Next we differentiate Eqs. (27) and (29) with respect to 6 
and set 6=0: 

0•W (i) =0, 
(42) 

Wt•)(z(ø +s,O, ß ) -- W(•)(zq)--s,O, ß )•0, 

where we have made use of Eq. (41). Integrating •. (42) 
and using Eq. (34) show that 

W ø) =0. (43) 

On differentiating Eqs. (28) and (30) and setting 6=0, we 
find that 

(sj 3z* [ •j[ Oo)W) •)= --AjnW ©, (44) 

w( • ) t •(t) -- w ( • ) (z U) --sjO, ß ) j • +sj0, ') j 

= _ w(o)(z(0_s.O, ß ). (45) 
Then, integrating Eq. (•), adding the contributions from 
Eq. (45), and taking into account the zero initial condi- 
tions [Eq. (31)], we find that 

(•/,-0) and (z• ,0) lie on the same j characteristic, and in 
the summation over 1 only those terms are included for 
which qj(z I ,z (0) • 0 (i.e., excluding the end point if that 
happens to be a point of discontinuity). We may write Eq. 
(46) in the form 

x W(z• ,O-qj(z• ,z' ))dz'. (48) 

Now we differentiate Eqs. (27) and (29) twice with re- 
spect to 6, set 6=0, and divide by 2: 

$n 0z w(2) (Z1,0) -'[- 
n--I 

• .,t•jw(•)(z•,O) +B•*W(z•,O) =0, 
/=• (49) 

W (2) (z (l) .-[-$nO,O) -- W(2) (z (1) --SnO,O ) 

+ y• .v•(h,(]) (h (h - w'øi (z -sjO,O) + •½ •. W(z•,O) =0. 
/•" (50) 

Notice that on substituting w (1) from Eq. (48) into Eq. 
(50) the term j =n does not arise in the sum over j. Equa- 
tions (49) and (50) may be written as the following single 
equation: 

n--I 

( •'•(I)Ri. .(I)•) s.O•Wt2)(z•,O)+ • A•i(zt)-- z• .•' W•,•.t--. • 
j=! ! 

' (l) • •(1)• , 
I 

X W(z!,O) =0, (51) 

provided that we interpret 0• in the sense of distributions. 
We have set z=z• in Eq. (51), but we shall later drop the 
subscript 1 on z!. On setting z=z• in Eq. (48) and then 
substituting in Eq. (51), we obtain 0•W (2) (z! ,0) in terms 
of W(z•,O). Equations (32), (35), and (43) yield 

0zW(z 1,0) =• e2 0z W(2) (Z 1,0). (52) 

So, setting z =z], substituting w•.!) from Eq. (48) into Eq. 
(51), and then using Eq. (52), we get 
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n--1 S. azW(Z,O) =d 5• •.j(z) .•jn(Z') W(z,O 
j=l 

-- '• j (z,z') )dz' -- Bnn* 

- •'•(•)•5(z-z(O)W(z,O)) +O(e3), 
where 

(53) 

•' .d(l).•[• g(l)'• •jk(z) =.4•k(z ) + • •j• •.•.-- ,. (54) 
l 

There is a slight complication in Eq. (53) when z-z (l), for 
some L Then W(z+s.O,O) - W(z-s.O,O)-%0 and the right 
side is not well defined. However, this difference is O(e2); 
thus, we may replace W(z,0) on the right of Eq. (53) by 
W(z+s.O,O), W(z--s.O,O), or any value between these, 
and the equation will remain true to the same order in e. 
Also, in the product J(z)•(z'), there are terms of the 

(l) (m) (l) form .a½.7.•gj• lS(z-z )8(z-z('•)). But the diagonal 
terms with m = 1 do not arise. They appear with a coeffi- 
cient « when Eq. (19) is used in (0 _ _(0• 

The integrodifferential equation (53) is the main result 
of this section. We proceed now to write its solution in a 
convenient form. 

C. The solution of the integrodifferential equation 

We may rewrite Eq. (53) in the form 

s.OzW(z, ')--caP(z, ß )*W(z, '), 

where 

P(z,O) = •] •.(z) • dz' Jj.z')•(O-•j(z,z')) j=l 

(55) 

' (l) (l) --Bn(2,0)-- E •3•..•( z--z )t•(0). (56) 

The convolution and delay operators appearing in Eq. 
(56) are mutually commuting (and may be diagonalized 
by a Fourier or Laplace transform). Let us assume that 
Sn= 1; then the solution of Eq. (55) may be expressed as 

W(z,' )=exp(ea•P(z ", ')dz"*)W(O, .), (57) 
and this equation is valid on a scale of e-2 in z with an 
O(e) error. [Ifs,= -- 1, Eq. (55) must be integrated in the 
negative instead of the positive z direction.] The exponen- 
tial is the operator exponential of its argument regarded as 
a convolution operator in the second slot rather than as a 
function. This is indicated by the *. We may write the 
exponent more explicitly. Thus, with an O(6) error, 

W(z, ß )=exp[a(z, ß )*+b(z, ß )*]W(0, ß ), (58) 

where 

n-I 

a(z,O)= • ½_•.(z") 
j=l 

- f.i( z",z' ) )dz' dz" 

- (50) {/[0<z •t) 
and 

b(z,O) = -- fj eaB,z",O)dz ". (60) 
The convolutions in 0 implied by Eq. (58) may be treated 
conveniently by means of Laplace or Fourier transforms, 
but when this is done we should be aware of important 
time-domain considerations relating to causality, which are 
difficult to treat adequately in the frequency domain. 

In the next section we shall show how a and b may be 
discretized so that Eq. (58) can be treated numerically. We 
note that the e 2 factors appearing in a and b imply that the 
approximations are valid on a z scale of e-2. 

D. The reflected waves 

In practice we need the particle velocities, which are 
observable quantities. They are components of v, which is 
related to W and wj by Eq. (6), and so 

v= • wjej+We•. (61) 
j=l 

Thus, before calculating v we need to obtain not only W 
but also the wj, l•j•n--1. But, to leading order in e, wj 
is given by Eq. (48) as 

Wj(z,O): -- ff.,•jn(2 't ) W(z,O--•j(z,z'))dz', (62) 

where .•j, is given in Eq. (54). So, finally, using Eq. (62) 
in Eq. (61), we have 

v(z,O) = -- •] e.•j.(z') W(z,O--fj(z,z')}dz' ej 
j=l 

+ W(z,O)e•. (63) 

Thus, we see that all components of v(z,O) are obtained 
from W(z,O) by convolutions in time. 

III. THE TRAVEL-TIME CORRECTION AND THE 
EFFECTIVE MEDIUM 

The effect of the heterogeneity of the medium as rep- 
resented by a(z,' ) in (58) is twofold: a delay in the pulse, 
and an evolution of the pulse shape, usually a broadening. 
It turns out that the delay is O(e z) and to this order is the 
same as the delay calculated by means of an effective me- 
dium theory. The delay and the effective medium will be 
made precise in the course of the discussion. 

The delay At(z) of the pulse after the leading charac- 
teristic may be defined as the centroid in 0 of the pulse 
W(z,O). It is given by the equation 
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OW(z,O)dO=At(z) W(z,O)dO. (64) 

Let •(z,s) be the Laplace transform in 0 of f(z,O): 

o f(x,s) = e-Søf(z,O)dO. (65) 

Then 

f: f(z,O)dO=)(z,O), 
(66) 

; Of(z,O)dO=--)s(z,O). 
Laplace-transforming (58), and assuming for the present 
purpose that b(z,O)=0, we have 

l•/(z,s) = exp [c•(z,s) ] I•7(0,s), (67) 
and so, on differentiating and using the fact that d(z,O) =0, 

;•s(z,0) =as(z,0) 6'(z,0). (68) 
Thus, using (64) and (66) in (68), we get 

at(z) = 

= Oa(z,O)dO 

ai.(z')r(z",z')dz' &", 
j=• 

(69) 

by (59). 
On the other hand, an effective medium over the in- 

terval (0,%) may be defined by replacing M ( =M 0) in ( 1 ) 
by 

1 

fo M0(z)&. (70) 
It will not be demonstated here, but may be shown by 
direct calculation, that the characteristic traoel time from 0 
to z o in this effectioe medium is larger than the characteristic 
traoel time r(O,z o) by at(zo), correct to O(•), which is the 
result stated at the beginning of this section. 

IV. SIMULATIONS 

A. Discretization 

In general, when both jumps and continuous variation 
of the medium occur, it is convenient to discretize j{.tl on 
a uniform grid in z with step d, say. Then, in the integrals, 
.•(t) dz becomes 

ai,,m=A i•(z,n)d + Y'.c• _ (71) 
I 

where the second term arises only if z,.«d<z (•) < z m +«d. 
Then, to discretize a(z,O) of (59) we discretize 0 with step 
size h and sample intervals [(q--«)h,(q+«)h). Set aq=0. 
Fix z. Then, for each admissible pair m, m', find q' such 
that 

(q'-«)h<•j(Zm,•m,) < (q' q-«)h. (72) 
We accumulate aq, by adding a term as follows: 

aq, •aq, + Elct•j,rnct j•,m,h. (73) 
In addition, for q'=O, we add the contribution from •2 
of (59): 

•z• ) • (I) aø'-aø-- UI0 <z) •. (74) 
The quantity b(z,O) may be discretized in 0 for fixed z by 
any numerical quadrature formula (in z) and at the same 
discretization points O=qh as for aq. Thus in the crudest 
approximation, 

bq= -- f: •Bnn(z",hq)dz". (75) 
We can form the sum 

Cq=aq+bq (76) 

and its generating function 

C(•) = • c•. (77) 
q--O 

It is now possible to compute the convolutional exponen- 
tial {Uq} of {cq} as follows: 

U(•)= • u•q=exp[C(•)l . (78) 
q=O 

Differentiate with respect to • to get 

U'(•) = U(•)C'(•), (79) 

that is, 

• mttm• m-l=- • • qum_qcq• m l (80) 
m=l m--I q=l 

Thus u m may be computed recursively by means of 

1 • qCqUm--q' u•=-- (81) 
m q•l 

The recursion needs to be started at m=0 by 

uo=e-% (82) 

The sequence {u,•} may also be computed by means of the 
Fourier transform. This is more efficient provided wrap- 
around errors are avoided. For Goupillaud media and nor- 
mal incidence the Fourier transform of the autocorrelation 

function of reflection coeffÉcients is easily and rapidly com- 
puted from the reflection coefficient sequence and leads to 
a very fast algorithm, which is 30-30 000 times faster than 
competing methods, depending on the number of receivers, 
the number of layers the waves must traverse, the lengths 
of the time series to be computed, and the frequency con- 
tent of the incident wave. 

B. Results 

Synthetic media were constructed consisting of a stack 
of a large number of homogeneous layers. The statistics 
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were governed by fractional Brownian motion with Hurst 
exponent H. The relationship of H to the fractional Brown- 
ian motion will be specified later in (86); H can be ex- 
pressed in terms of the fractal (box) dimension D by 
means of 

H=2--D. (83) 

There is evidence s-m that actual media show power spec- 
tral densities arising from this class of stochastic fractai. 
Here, we summarize some of the basic relations among the 
fractal, its power spectral density, its autocorrelation func- 
tion, the realization it generates, and the resulting reflec- 
tivity sequence. 

We shall be concerned with normally incident plane 
waves. Let •(v)(z) be the stochastic process for the acous- 
tic impedance v. For the time being we will consider en- 
semble averages (g'), but later on we will focus on a par- 
ticular realization. The variogram 7• v of •(v) is given by 

7%(½) = )12}. (84) 
It is related to the power spectral density b•,, by 

•"v(•)= f/ [1--eos(k•)]•,,,(k)dk, (85) 
through the spatial Fourier transformation •-. Here k is 
the wave number conjugate to z. For fractional Brownian 
motion the power spectral density is related to the Hurst 
exponent by the simple power law 

•(k) =C•t/k •+t, (86) 

where Cu is a coefficient, depending upon H and the length 
of the process, which normalizes the variance to 1. Then 
the variogram is stationary. If the Fourier inverse exists, 
and •(•) is stationary, we have 

= ß 
(87) 

where c•, denotes the autocorrelation function. Then the 
correlation function of the derived process •1•}, (associ- 
ated with the reflectivity function) is 

+ (88) 

Fractal, H- I 

o 500 io00 150o 2000 15oo 10oo 

ß 
FIG. 1. A fractional Brownian motion fraetai w•th Hurst exponent H= 4 
used to generate the reflection coefficient sequences shown in Figs. 2 and 
7 through formula (92}. 

o.2{ 
0.15 

O.I 

0.05 

-0,15 
o 

Reflection Coefficient Sequence 

200 400 600 800 1000 1200 1400 1600 1800 

Depth 

FIG. 2. The reflection sequence•generated from the fractal shown in Fig. 
I using formula (29) with a•.=•. 

For 0 < H < «, the left member of (88) exists even though 
c,, does not. We then regard (88) as defining c'•,, which 
will need to be interpreted as a distribution. At zero lag we 
have 

ß )}= (89) 
oo 

This implies, through the Wiener-Khinchine theorem, that 

E7 ,,(k) = •{ (•-g(•)) (•-•1).} (k). (90) 

The latter relation, without the averaging, was used to con- 
struct a fractional Brownion motion from a random pro- 
cess by enforcing the desired power spectral density (86). 

For the more general case of oblique incidence, several 
parameters need to be generated. Then (85)-(90) may be 
simply extended to cover covariances and the generation of 

•'•1 ,Downgoing Wave at Three Receivers 

o.?ff ( Step Response, H = •, • = • 
W 

O.6 

05 

0.4 

0.3 

Exact Solution (Finite Difference) - solid line 

•.pproximate Solution (O'Doherty-Anstey) - dashed line 

02 
0 50 lO0 150 200 250 300 350 400 

Time 

FIG. 3. The downgoing wave response to a unit step function pulse 
incident from above on a stack of layers with reflection coefficient se- 
quence shown in Fig. 2. There are three pairs of curves showing the pulse 
at three receiver locations: in the 1st layer (just below the top interface), 
in the 601st layer, and in the 1201st layer. For each receiver, the solid line 
depicts the exact solution as calculated by means of a discrete solver for 
a Goupillaud medium, and the dashed line the approximation computed 
according to (58}. Toward the left of the figure the curves corresponding 
to the three receivers are lower the deeper the receiver. The curves for the 
first receiver both almost coincide with the line Ig= 1. H=¬ and o•=•. 
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.0 

-1 

-I.2 
500 I ooo 1500 2000 2500 3000 

FIG. 4. A fractional Brownian motion fractal with Hurst exponent H=] 
used to generate the reflection coefficient sequences shown in Fig. 5 
through formula (92). 

the c•,,, provided that the fractal dimension is the same for 
all parameters. For practical purposes the discretization 
•(ff) of the process •(v) implies a natural high wave-number 
band limitation of the power spectral density since the 
sampling rate is to be regarded as the Nyquist wave num- 
ber. The finite support of the process implies a band limi- 
tation with respect to the low wave numbers. 

Once •(? is generated, the sequence of characteristic 
impedances (vk} may be generated by means of 

vk=exp(cr•?)), (91) 
where or= governs the magnitude of the reflection coeffi- 
cients {r•}, which are given by 

• (•) (•) 
r•=tanh[•av(•+•--•, ) ]. (92) 

We consider two classes of models: in one class, H= ¬, and, 
in the other, H={. The first synthetic structure consists of 
a stack of 1600 layers with H= ¬ and a•= {. Plots of the 
underlying fractal and the reflection coefficients are shown 
in Figs. 1 and 2. The impedance is not stationary although 
the reflection coefficients are. 

In the model, receivers were placed at three locations: 
in the 1st, the 601st, and the 1201st layers. For each re- 

Downgoing Wave at Three Re 
I . 

W 0.6 y•. :' 

t n e, 

o•A • S I f (O'D•••y-A•t•) - dash• line 
0 50 1• 150 2• 250 3• 350 

Time 

FIG. 6. As in Fig. 3, we show the downgoing wave response to a unit step 
function pulse incident from above on a stack of layers, but with the 
reflection coefficient sequence shown in Fig. 5. The results are shown for 
the same receiver positions as before. Here H=¬ and cv=2. 

ceiver the approximate downgoing wave was computed. 
The exact downgoing wave was computed with a finite 
difference code. The results are plotted in Fig. 3. Next we 
increase cr• to 2. A different realization was used but with 
the same value of H. Plots of the fractal and the reflection 

coefficients are shown in Figs. 4 and 5. Both the exact and 
the approximate downgoing waves are plotted in Fig. 6. 
Note that the pulse is broader the larger the value of c% and 
the deeper the point of observation. However, the validity 
of the approximate method breaks down at earlier times. 
To illustrate this an extreme case with c•= 4 is plotted in 
Fig. 7 (the fractal realization of Fig. 1 used). The results 
are plotted in Fig. 8. 

A realization of the second class, with H--], is shown 
in Fig. 9; the corresponding reflectivity, with cv= 15, is 
plotted in Fig. 10. Here c% was chosen so that a 0 [see (74)] 
has the same value as for the case H=¬ and c%= 2. The 
strength of the reflection coefficients is comparable with 
those shown in Fig. 2. Figure 11 shows the exact and the 
approximate downgoing waves. Notice that there is no 
broadened pseudoprimary pulse in this case, only the ex- 

0.3[ . Reflection Coefficient Sequence 
0.2 

Depth 

FIG. 5. The reflection sequence generated from the fractal shown in Fig. 
4 using formula (92) with cv=2. 
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FIG. 7. The reflection sequence generated from the fractal shown in Fig. 
1 using formula (92), a•--4. 
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W o.e 

O.4 

0.2 

0 

Downgoing Wave at Three Receivers 

Step Response./-/: 41-, • = 4 

App;oximate Solution (O'Doherty-Anstey) - dashed line 
o 50 ioo 150 200 250 300 350 400 

Time 

I 

0.8 

W 0.4 

Downgoing Wave at Three Receivers 

Step Response, fit _ 3 --•,a= 15 

Exact Solution (Finite DifFerence) - solid line 

u2JApproximate Solution (O'Dohert¾-Anstey) - dashed line 
, . . .:. '.. . ':, :......,, 

o 

Time 

FIG. 8. As in Fig. 3, we show the downgoing wave response to a unit step 
function pulse incident from above on a stack of layers, but with reflection 
coefficient sequence shown in Fig. 7. The results are shown for the same 
receiver positions as before. Here H=¬ and •v=4. 

12 

O.6 

O.4 

O.2 

ø I 
-0.2 

-0.4 

-0.6 - 

FIO. 9. A fractional Brownian motion fractal with Hurst exponent 
used to generate the reflection coefficient sequences shown in Fig. 10 
through formula (92). 

Reflection Coefficient Sequence 

0.0• i i o ''[:' 

Depth 

FIG. 10. The reflection sequence generated from the fractal shown in Fig. 
9 using formula (92) with cry----15. 

FIG. 1 !. As in Fig. 3, we show the downgoing wave response to a unit 
step function pulse incident from above on a stack of layers having the 
reflection coefficient sequence shown in Fig. 10. The results are shown for 
the same receiver positions as before, in the 1st, 601st, and 1201st layers. 
Here H=• and •= 15. 

ponentially decreasing first arrival, followed by an incoher- 
ent coda. This is to be contrasted with the pulses shown in 
Figs. 3 and 6. 

For 0 < H < «, neighboring values of the reflectivity are 
negatively correlated; then a pseudoprimary wave exists 
(see Figs. 3 and 6). For «<H< 1 neighboring values of the 
reflectivity are positively correlated; then the pseudopri- 
mary wave vanishes (see Fig. 11 ). 

Next we consider the backscattered signal. Here we 

1000 

1500 

2000 

2500 

-0.5 0 0.5 0 50 100 150 200 

Reflection Coefficients Slowness (/•s/ft) 

FIG. 12. Plots of the slowness and reflection coefficient sequence for the 
structure used in the computation of the solutions shown in Figs. 13 and 
14. The structure consists of three distinct sections that are statistically 
stationary. The density was assumed constant. 
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Particle Velocity 
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0 0.5 I 1.•5 2 2.5 

Time (/zs) x10 5 

FIG. 13. Particle velocity, which is a linear combination of upgoing and 
downgoing waves, as a function of time at 31 different receiver positions 
for the model illustrated in Fig. 12. The incident pulse is broad here (low 
frequency) and is seen at the beginning of the first trace. This simulation 
is pushed further into the coda than in the preceding examples. Again 
solid lines represent the "exact" solution, computed by means of the 
layer-matrix code OASES, and the dashed lines represent the approxi- 
mate solution using the method of this paper. 

use a smooth source signature rather than a step function 
in time to investigate the effect for longer wavelengths. The 
medium, consisting of 3000 layers, is shown in Fig. 12. The 
upgoing wave was approximated, according to (62), and 
the particle velocity •, say, was computed according to 
(63). To compare with an exact solution a layer matrix 
code was run for the same structure and the same incident 
waveform; the (exact) particle velocities v(z,O) were then 
computed as functions of time at 31 receivers spaced at 
intervals of 100 layers. Both sets of waveforms •(z,O) 
(dashed line) and v(z,O) (solid line) are plotted in Fig. 13. 
Note that the agreement is close but there is a small pro- 
gressive error in timing as time increases. To improve the 
approximate results at later times (and hence for the back- 
scattered waves) we introduce in Eqs. (59) and (62) a 
correction to •'.i(z',z"), the vertical travel time delay for 
double-scattering between z" and z', by emphasizing the 
timing of the centroids of the pulses rather than the char- 
acteristic travel time, even for the short propagation paths 
involved in the double scattering process. Thus, to bring 
the timing of the centroids into agreement with the long- 
wavelength equivalent medium (as for the primary pulse) 
we replace the quantities 'Fj(z',z") by 

• j(z',z") -• ( •'j) (z',z") -- 0'.) (z',z"), (93) 
where ( ß ) refers to the equivalent medium for the interval 

11 

21 

26 

31 

Particle Veloci•/ 

0.5 1 1.5 2 2.5 

Time (,•s) x 105 

FIG. 14. Same as Fig. 13 except that in the computation of the approx- 
imate solution all travel times were calculated relative to the effective 
medium. Note that errors of timing are now corrected. 

[z",z']. This assumes that the pulse shape of the multiple is 
similar to that of the primary. Further, the timing of the 
head of the primary pulse is not affected by the replace- 
ment (93) since the correction is O(e•0) and only becomes 
appreciable at later times, 0= O(e-2). Figure 14 shows the 
result of using the effective medium timing instead of 
•'j(z",z') throughout in computing a(z,O) in Eq. (59). No- 
tice that the agreement between the two solutions is excel- 
lent, especially for early times where their graphs are seen 
to coincide. Some slight difference is found at later times. 
The computation of the approximate solution • was one to 
three orders of magnitude faster than the layer-matrix 
computation. We note the coherent up- and downgoing 
waves (pseudomultiples) that appear to have been re- 
flected from the interior of the stack of layers, presumably 
where some favorable correlation between the downgoing 
wave and the structure occurs. 
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