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A reciprocity relation for acoustic interaction with fluid-loaded structures is derived. The 
displacement in the direction e (2) at any position x (2) in the solid due to a monopole of strength 
(pjo 2 ) at any position x (l) in the fluid is equal to the pressure at x (•) caused by a unit force in 
the direction e (•) applied at x (•). An application to plane wave scattering is discussed. 

PACS numbers: 43.20.Tb, 43.40.Rj 

INTRODUCTION 

Reciprocity relations in acoustics and elasticity are 
useful since they provide the solution to one problem in 
terms of another. Reciprocity in acoustics is well known 
and straightforward. I Thus, the acoustic pressure at posi- 
tion x (2) due to a monopole source at position x (i) is iden- 
tical to the pressure at x (•) resulting from a monopole of 
the same strength located at x (2). The statement of reci- 
procity for dynamic elasticity pertains to vector quantities, 
force and displacement, and is also known as the dynamic 
Betti-Rayleigh theorem. • Specifically, if a force directed 
along e m, [e(•)[ ---- l, is applied at position x (]) in an elastic 
body, inducing a displacement at x (2) in the direction e (a), 
then an equal force applied at x (•-) in direction e (2) pro- 
duces an identical displacement at x (t) in the e (I) direction. 
In this Letter wc derive a reciprocity relation for the case 
in which one point lies in the fluid and the other in the 
solid. The relation involves scalar quantities in the fluid 
(pressure) and vector quantities in the solid (displace- 
ment, force). 

I. THE RECIPROCITY RELATION 

Let V/and V s denote the inviscid fluid and solid re- 
gions, respectively, which are separated by the boundary or 
interface B. We consider time harmonic motion with the 

term Re{--.e-iO• omitted everywhere. The fundamental 
variables of interest are the pressure p(x) in V/and the 
displacement u(x) in V s. The continuity conditions for the 
normal displacement and the traction on the boundary are 

--/m----T-n, 
on B. (1) 

(pjo2)-ln. Vp=u. n, 
Here, pf is the fluid density and n is the unit normal to B 
directed into the fluid. The stress tensor, T=T(u,x), is 
assumed to depend upon the strain according to the gen- 
eralized Hooke's law for linear elasticity, 

Tij = Cijk/tlk, l, (2) 

where Cijkt are the elements of the elastic stiffness tensor, 
uij=Su/Sx j, and the summation convention on suffices is 
understood. We assume the symmetries 

%•1 •-- Cjikl, Cijkl = Ckli] = Cijll½, (3) 

the first of which guarantees that T is symmetric, and the 
remaining ones ensure the existence of a strain energy 
function. 

Let {pO), u t I)} be the solutions for a unit monopole at 
x ½•) in V/. These fields satisfy the equations 

Ap(•)+k•p(•)=•(x--x(l)), in V/, (4a) 

div T(•)+p•o2u(•)=0, in V s, (4b) 

where k--co/c, c is the acoustic sound speed, and pf is the 
solid density. Similarly, {p(•), u (•)} are the solutions for a 
point force, e (•), applied at x (•) in V s, which satisfy 

Ap(•) +k•p(•-)-----O, in Vf, (5a) 

div T(2)+p•u(•)=e(•)8(x--x(•)), in V•. {Sb) 
In addition, both sets of solutions must satisfy the conti- 
nuity conditions (1) on B. Now consider the sequence of 
identities 

e(•). u(•)(x(•-)) = •,• u(•)(x). e(•)6(x_x(•))dV 
= •,• [u(])(x) ß (div 

--u(•)(x) ß (div T(])-t-pf)2u(•))]dV 

= •tt (u(1) ' T(2)--u(2) ' T(t)) -n dS 
1 

--P• Is [P(•)VP(])--P(])VP(2)] 
ß (--n)dS 

I f•/ [p(•)(Ap(l ) 
--p(•} (Ap (•) + k•p (•)) ]d I/. (6) 

The development should be clear to the reader; it uses Eq. 
(5), the divergence theorem, the continuity conditions ( 1 ), 
and some of the symmetry properties of the elastic stiffness, 
(3). Finally, using Eq. (4) gives the desired relation, 

e (2)- u (•) (x (•)) = (l/pfa)2)p(2)(x(•)), (7) 
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which is equivalent to the statement of reciprocity given in 
the Abstract. 

II. APPLICATION 

As an illustration of how the reciprocity relation can 
be applied we present an example of relevance to acoustic 
scattering from elastic targets. We consider a finite elastic 
structure--the target--in an infinite fluid. The reciprocity 
relation allows us to express the far-field Green's function 
for the target in terms of the target response for an incident 
plane wave. The former is the pressure in the fluid at large 
distances caused by a point force on the target, and it 
satisfies the Sommerfeld radiation condition. To be specific, 
consider a point force of unit magnitude applied at a point 
x (2) on the surface B, and acting in the normal direction n. 
The resulting far field may be written as 

eikr 

p(2)(x)=f(1) r-UdZT•, r-. oo, (8) 
where r= I x I, i = x/r and d= 2 or 3 is the dimension. At 
the same time, a monopole of strength (pf•o a) at a point 
x (l) in the far field produces an incident plane wave near 
the target of the following form: 

p(l),,_ ,,_ 2 -i•ø).x 
inc tX) -- -- pfr..O e 

e d=2, 
X(r(1))(d-1)/2ll/4•r, d=3. (9) 

Therefore, if we define w(x,e) as the normal displace- 
ment on the target surface due to an incident plane wave of 
the form Pinc:=e ike'x, then the reciprocity relation com- 
bined with Eqs. (8) and (9) implies the identity, 

--f(--e) [ xfS•e -i•'/4, d=2, 
w(x,e)=- P7 [4•r, d=3. (10) 

Hence, the normal displacement for plane wave incidence 
can be related to the far-field directivity for a normal point 
force applied at the same point on the target surface. A 
similar relation follows for moments applied on the struc- 
ture. Let m be a unit vector in the tangent plane at a point 
on B, and define a point moment with axis m A n as the 
resultant couple from a pair of forces, + n/e at x 4- (e/2)m, 
in the limit •--•0. If the far-field directivity f is again de- 
fined as in (8), then the associated reciprocity relation is 
given by (10) with the right member replaced by 
m'Vw(x,e). Hence, the reciprocal quantity for the point 
moment is the rotation. 
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