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The influence of wall elasticity on the response of a Helmholtz resonator is examined by 
analyzing the canonical case of a thin elastic spherical shell with a circular aperture subject to 
plane wave excitation. By neglecting the thickness of the wall and representing the elasticity 
via a "thin shell" theory the problem is reduced to one of solving an integral equation over the 
aperture for the polarization velocity, which is related to, but distinct from, the radial particle 
velocity of the fluid. The integral equation can be solved by asymptotic methods for small 
apertures, yielding closed-form expressions for the major resonator parameters. In general, 
wall compliance reduces the resonance frequency in comparison with an identically shaped 
rigid cavity. The Q value of the resonance is increased and the scattering strength of the cavity 
at resonance is enhanced by wall compliance. The asymptotic results are supported and 
supplemented by numerical calculations for thin steel shells in water. 

PACS numbers: 43.20. Ks, 43.20. Rz, 43.30.Ky, 43.55.Ev 

INTRODUCTION 

The Helmholtz resonator is characterized by a volume 
of compressible fluid connected to the exterior via a small 
opening. The inertia of the fluid entrained in the neighbor- 
hood of the opening conspires with the compressibility of the 
enclosed volume to produce a resonance frequency whose 
acoustic wavelength may be considerably longer than the 
maximum dimension of the vessel. This long wavelength or 
low-frequency nature of the resonance makes the phenome- 
non quite distinctive, as it tends to accentuate this mode as 
compared with others at higher frequencies. In most circum- 
stances it is perfectly reasonable to consider the vessel en- 
closing the resonating fluid as rigid, which is the basis for the 
successful explanations of Helmholtz and Rayleigh for the 
resonance phenomenon. • The rigid cavity idealization is cer- 
tainly adequate in air but may need to be reconsidered if the 
acoustic fluid is water and the cavity is a thin shell. In this 
paper we consider the canonical geometry of a spherical elas- 
tic resonator with a circular aperture excited by an incident 
acoustic wave. 

The approach taken here is to model the wall of the 
cavity as a thin shell of negligible thickness across which the 
normal velocity is continuous but nonzero. The explicit form 
of the thin shell theory used is of secondary importance, 
although a specific theory is adopted for numerical compu- 
tations. The concept of a polarization velocity is used to re- 
duce the scattering problem to one of solving an integral 
equation for the unknown polarization velocity on the aper- 
ture, similar to the problem for the rigid resonator. In fact, 
the rigid limit is simply obtained from the general theory 

Permanent address: The Departmenl of Mathematics, University of 
Manchester, Manchester M 13 9PL, UK. 

developed here. The problem is formulated in Sec. I within 
the context of an arbitrarily shaped cavity. Several transfor- 
mations are employed in Sec. II to reduce the singular inte- 
gral equation for a spherical cavity with a circular aperture 
to a relatively well-behaved set of linear equations. In Sec. 
III we develop some asymptotic approximations, valid in the 
small aperture limit. These results imply simple relations for 
the effective mass and capacitance of the elastic resonator, 
and comparisons are made with both the rigid case and to 
some related published findings for an elastic Helmholtz res- 
onator. 2 Numerical computations for rigid and elastic reso- 
nators are presented in Sec. IV. 

Before commencing we note that detailed treatments of 
the corresponding rigid spherical resonator have been given 
by many authors, among whom we mention Rayleigh -• and 
Levine, 4 who have obtained successively better asymptotic 
approximations to the resonance frequency in the small ap- 
erture limit. Related results for the elastic resonator will be 

presented in Sec. III. The elasticity of the cavity can be sig- 
nificant if the fluid loading is large, which could occur in 
underwater applications. A paper by Henriquez and Young 5 
discussed practical issues related to the design and use of 
low-frequency underwater Helmholtz resonators. In the 
present paper the mechanism that excites the resonator is a 
simple plane wave. For more complicated excitations asso- 
ciated with vortices we refer to Howeft Also, no internal 
dissipation is considered here, our objective being to describe 
the contribution of the wall elasticity. The only damping is 
from radiation loss. However, it is well known 7'• that dissi- 
pation due to viscosity and heat conduction greatly exceeds 
the radiation loss in air. These mechanisms must certainly be 
taken into account for a complete description of the resona- 
tor. Finally, we note that the present treatment of the Helm- 
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holtz resonator includes the possibility of singular but inte- 
grable velocity fields at the aperture edge. As noted by 
Ingard, 7 a thorough analysis of the problem should include 
nonlinear effects and realistic treatments of sharp corners. 

I. THE GENERAL THEORY 

We consider time harmonic motion of radial frequency 
co. The term Re [...e - i,o, ] will be understood but omitted 
everywhere. Our main object is to analyze the specific case of 
a spherical resonator of radius a with a circular mouth or 
aperture of semi-angle a, see Fig. 1. Spherical polar coordi- 
nates r and 0 are used, where 0 = 0 is the center of the 

mouth, and no assumptions are made at this stage about the 
size of the opening. The related problem of a cylindrical reso- 
nator of infinite length with an opening in the form of an arc 
may be treated by similar methods. The details are in Appen- 
dix C. However, it is both convenient and instructive to first 

formulate the scattering problem for a thin elastic cavity of 
arbitrary shape with a general aperture, which we will do in 
this section, proceeding to the specific case of interest in the 
next section. The general method is based upon the use of a 
polarization velocity across the aperture, which allows us to 
reduce the issue to an integral equation over the same region. 
Applications of this approach to other scattering problems 
in acoustics and elasticity are discussed by Wickham. 8 

Letp denote the acoustic pressure in the fluid and w the 
outward normal velocity on the shell. The pressure satisfies 
the Helmholtz equation in the fluid, which is assumed to be 
inviscid and occupying both the interior (r < a) and the exte- 
rior (r3 a) of the resonator. Thus, at all points excepting 
sources, the total pressure satisfies 

V2p + k 2p = 0, in the fluid, ( 1 ) 

where k = co/c and c is the sound speed. The jump in pres- 
sure across the shell is defined as 

[p] (0) =p(a -- 0,0) --p(a + 0,0). (2) 

The actual pressure jump across a shell of thickness h is 
[p(a -- h/2,0) -p(a + h/2,0) ]. However, if the acoustic 
wavelength is much greater than h then it is justifiable to take 
the limit of h-,0. The present analysis could be developed 
with the jump for finite values of the shell thickness. How- 
ever, for simplicity we neglect this effect as a higher order 
contribution to the resonance. 

The equations on the shell are 

w =L •[p], ] 0 = [-•r ]' r=a, on the shell. (3) 
w = ( ipoJ ) ' •r ' 

The first condition defines the equation of motion of the 
shell. The quantity L denotes an operator on w, which will 
generally include supplementary equations for the insurface 
compounds of the velocity of the shell. Specific examples of 
L are presented in Appendix A, but for the moment we will 
keep it general. The inverse operator L - • is used specifical- 
ly to emphasize that there are additional edge conditions that 
must be satisfied at the edges of the shell, which defines the 

FIG. 1. The geometry of the spherical shell resonator of radius a with aper- 
ture semiangle ct. The numerical results in Sec. V consider the incident plane 
wave shown. 

mouth. The edge conditions are implicitly accounted for in 
L - •. In the present case, where the fluid is assumed to be 
inviscid, the bending moment and shear must vanish at the 
edges. The inverse operator L • is the Green's operator for 
the fluid-loaded finite shell, and could be represented as a 
convolution integral operator with the kernel being the 
Green's function. If L were a scalar then it could be identi- 

fied as the local shell impedance. The second condition in 
(3) states that the radial velocity in the fluid is continuous 
across the shell. The third condition stipulates that the fluid 
and shell radial velocities are identical, where p is the fluid 
mass density per unit volume. Across the mouth the pressure 
and radial velocity must be continuous, implying the com- 
plementary conditions 

[p] = 0, } [c9p]=0 ' r=a, onthemouth. (4) 
We decompose the total solution into two parts: 

p =p(O) +p(•), (5a) 

w = w © + w (•). (5b) 

Here, p(O) and w © contain the incident fields and the re- 
sponse from the complete shell, i.e., as if the mouth were not 
there. The solution for the full shell satisfies 

w © =L -'[p(ø>], L-•--r ] r = a, all 0. (6) 
•p(0) w(ø) ( O) = ( ipco ) -• -- •r ' 

The effects of the mouth are described by the additional 
fields p( •> and w (•>. The full-shell response is the driving 
force for the additional pressure and shell vibration, which 
solve, from Eqs. (3)-(6). 

w (•)--L •[p(•>] =0 on the shell, 

[p(,)] = _ [p(m], on the mouth, (7) 
and 

[ Op(' ] = O, } w{')(0) = (ipco) , r•p<,• r = a, o• r ' 

all 0. (8) 
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We now introduce the velocity polarization, W(O), de- 
fined as 

W(0) = w --L 

=w½O_L lip{i)]. (9) 
It is clear from (7)• that the polarization vanishes for all 
values of 0 except on the mouth, where from (7)z we have 

L W(O) -- Lw • i• = [p{m ], on the mouth. (10) 

Equation (10) turns out to be the crucial relation which 
must be solved for W'(0) in order to calculate the response of 
the shell cavity. First, however, we must use (9) to eliminate 
Lto • in favor of W(0), which requires using the acoustic 
Green's function associated with the particular geometry. 
However, as we will see, there is no need to explicitly involve 
the Green's function for the spherical geometry considered 
here. We note that the classical case of a rigid enclosure may 
be considered by taking L to be a scalar and then letting 
L--. oo. In general, the total radial velocity may be written 

to(0)=W(0)+L '[p]. (11) 

In the rigid limit Wis just the radial velocity on the mouth, 
but in general the polarization does not have this simple in- 
terpretation. 

II. APPLICATION TO THE SPHERICAL RESONATOR 

A. The full shell solution 

Before solving the integral equation for the shell with 
the mouth present, we present the solution to (6) for the full 
shell subject to an incident wave of the form 

p,.C = • C.d.(kr)P. (cos 0), (12) 
n 0 

wherej. are spherical Bessel functions of order n and P.are 
the Legendre polynomials. The constants C. in (12) define 
the type of incident wave. For instance, 
C. = (2n + i ) ( -- i)"if the incident wave is the plane wave 
pi.C = e - ik ..... a propagating directly into the mouth, see Fig. 
1. It is easily shown by standard separation of variables that 

Z ß 

.=o z{ +z; 

j.,(kr), for r<a, 
XP. (cos O)• j,, (ka) (13) [• •, (-•-a)h.(kr), for r>a. 

Here, h. are spherical Hankel functions of the first kind of 
order n, and the scalars Z{ and Z j, are impedances associat- 
ed with the fluid and shell, 

z,f, = pc (14) 
(ka)Zj•, (ka)h • (ka) 

The shell impedances are the eigenvalues of the shell opera- 
tor L for normal velocity w = P. (cos 0), i.e., they are de- 
fined by 

LP. (cos 0) = Z •,P. (cos 0), (15) 

for each n = 0,1,2 ..... The existence of Legendre polynomi- 
als as pure modes follows from the symmetry of the full 

sphere, although the precise values of Z ,• depend upon the 
particular thin-shell theory used. A specific example will be 
considered later (see Appendix A). Finally, we note that the 
prOD solution is quite distinct from the solution for the spheri- 
cal shell which is empty, i.e., the pressure vanishes on the 
interior surfaceß In that case the solution for r< a is irrele- 

vant, but the solution in the exterior can be represented in 
the same manner, but with the replacement 

Z• Z'• + ipc[j.(ka)/j,;(ka) ] (16) 
Z; +Z• Z; +ipc[h.(ka)/h•,(ka)] 

It is important to remember this difference, since most nu- 
merical results in the literature are for empty shells, ø or for 
shells loaded by water on the outside with air inside, m"• 
which are almost identical in their response to the empty 
shell. 

B. The kernel 

Let the mouth be centered at the north pole, 0 = 0 in 
spherical polar coordinates, with extent 0<0<a. We as- 
sume, for simplicity, that the total response possesses azi- 
muthal symmetry about the direction 0 = 0. Then the radial 
velocity due to the presence of the mouth may be expanded 
as 

w<•>(O) = • A..(cosO), (17) 
where A.are to be determined. The pressure in the fluid 
follows from (8) as 

f h,,(kr) , r>a, 
(cos 0){ . ,...: ]j}(kr) , ilS) L•(• r<a. 

It now follows from (2), (15), (17), (18) and the Wrons- 
kian relation for spherical Bessel functions, •2 that 

w (•'--L-•[p'•] = • Z'. +Z• A,,g,(cos0). 
.-o 

(19) 

Substituting from (9) for the left member in (19) and then 
taking inner products with P. (cos 0), using the fact that 
W(0) = 0 for 0> a, gives •z 

( ) I z• w(o') = zf +z; 
XP• (cos 0 ')sin 0' dO. (20) 

It follows from (15), (17), and (20) that 

Lw("= •(n+-•--) (Z:'• ,t:o- Z, f, +Z•, P.(cos 0) 

X W(O ')P•(cos0 ')sin 0' dO '. (21) 

We note the identity 
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X W(O')P. (cos 0')sin 0' dO ', (22) 

which follows by expanding Was a Legendre series and then 
using (15), Subtracting (21) from (22) and using (10) we 
finally deduce the desired integral equation for W(0), 

" W(O')K(O,O')sin O' dO' = [p(O)] (0), 0<0<a. 
(23) 

The kernel K(O,O ') = K(O ',0) is 

K(O,O') = • K.P. (cos O)P. (cos 0'), (24) 
where 

Z.Z. (25) K,= n+ 
Equation (23) is a Fredholm integral equation of the first 
kind with a symmetric kernel. Note that the effective imped- 
ance in K, is the result of the enclosed fluid and shell acting 
in series, as one might expect. The integral equation for the 
rigid cavity is of exactly the same form with •(0) = w(O), 
the total velocity on the mouth. The kernel is the same with 
the effective impedance given by the limit of Z •, • •, i.e., 

K, = (n + •)Z{, rigid. (26) 

C. An infinite set of equations 

We wish to solve the integral equation (23) for the po- 
larization W(O) on the mouth O<O<a. The polarization, 
although it vanishes for 0 > a, may behave in a singular, but 
integrable, manner as O-,a. Examination of the shell equa- 
tions in Appendix A shows that the singularity for W is the 
same as that for a rigid enclosure: W- (a - 0) 1/2, 0 ta. 
The singular part of W(O) can be removed in the following 
manner. Expand the forcing in Eq. (23) in terms of Le- 
gendre polynomials 

[p(ø)](0) = • [p(•ø) ]P, (cos O), (27) 
where the coefficients [p(.)] for the incident wave of Eq. 
(12) are 

- [p,, ], (28) 
+z'. 

and [p•f'g) ] are the coefficients of the pressure jump for the 
rigid sphere, 

[p(,,rig) ] = (29) 
(ka)2h ;, (ka) 

Now using (24) and the Mehler-Dirichlet integral represen- 
tation for the Legendre polynomials •3 

P.(cos 0) 42 fo ø cos(n + •)u = du, (30) 
u - cos 0 

the integral equation (23) may be written as 

;o {;o a O= 42 o du sinO'W(O') 
r: x/cos u - cos 0 

- 4. 
Because this holds for all 0, 0<0<a, it follows that 

•i• •' •(•') 

= [p•,ø)]cos n+ u, 0<u<a. (32) 

Note that (30) has been used again here. Now interchange 
the order of integration in (32), to give 

• H(u,v)q(o)do 
= [p}ø)]cos n+T u, 0<u<a, (33) 

with 

H(u,o) = K, cos n + u cos n + v, (34) 

and 

q(v) = x/2 ff• W(0)sin 0 dO. (35) rr x/cos v - cos 0 
Equation (35) is an Abel integral equation for the determin- 
ation of W. Its solution is 

•1 d ; q(•u)_sinud__u_ . (36) W(O) -- ,f• sin 0 dO x/cos 0 - cos u 
This can be further simplified as 

w(o) = 
1 q(O) 

x/cOs 0 - cos a 

1 • q'(u)du 42 ,/cos 0 cos u 
(37) 

This form clearly shows the singular behavior of W at the 
mouth edge, and implies that q is smoothly behaved and 
bounded function over the entire month, including positions 
arbitrarily close to the edges. 

The transformed integral equation (33) is therefore 
more desirable than the original integral equation (23) for 
the polarization. We now look for a solution to q in terms of a 
complete orthogonal set of functions on [0,a]. We assume 

/) q(v) = q. cos mr--. (38) 
n = 0 O• 

Substitute this expansion into the integral equation (33), 
then multiply by cos mrru/a and integrate over u. This gives 
the algebraic system of equations 
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• q.M..• = • [p•O,]p..,, (39) 
where 

M... = • Ktpt. pt,. 
I=O 

and 

(40) 

Pt. = f cos(l +•) ocosnrr---ø do 
(1 + •)sin(l + «)a 

= ( -- 1)" (1+•)•_ (nrr/a)z . (41) 
Notice that the matrix M is symmetric. 

In summary, the main problem is to solve the system of 
equations (40), which amounts to inverting a truncated ver- 
sion of the symmetric matrix M. We will see below that this 
becomes relatively simple in the limit of low frequency and 
small a, for which we need only consider the single term 
Moo. The singular behavior of the velocity polarization at 
the mouth edge has been removed by the introduction of the 
function q(O), which is defined only on the mouth. Once 
q (0), or equivalently its moments q,, has been obtained, the 
scattered field due to the mouth follows from (18) and (20). 
The integral in (20) may be simplified, using (30), (35), 
(38), and (41), as 

(cos 0) W(0)sin 0 dO ----- p.,.q.,. (42) 
m--O 

The additional radiated pressure caused by the mouth may 
then be written, from (18), (20), (25), and (42), as 

) p(•} = i(ka) 2 "(ka p,,,,,q,, 
o 

xh.(kr)P.(cos 0). (43) 

The radial displacement, both on the mouth and the shell, 
follows from (18), (20), and (42). Finally, we note that the 
polarization, which is nonzero only on the mouth and singu- 
lar at the edges, may be expressed as 

W(O): • q.•(O), (44) 

where the functions W.0) are given by (37) with 
q(O) = cos nrrOIct. The integral in (37) may be reduced to 
an infinite sum by the use of the identity, •3 

•co$19 - cos u 

=•f• • P•(cosO)sin(m+-•-)u, u>O. (45) rrt--O 

We find 

cosnrr0/ct + nrr ,.•_f ., (cos 0) x/cos O -- cos ct 

sin(m + l)ct .2•rr [ (m + «)2 _ (nrr/ct)2] 
sin(m + « + nrr/ct)O sin(__m_ +_I - -- nrr/a)O,I . 

m+«+nrr/a m+«-nrr/a } 
(46) 

These functions clearly display the singular behavior at the 
edges and thus they provide a suitable basis set for obtaining 
a uniformly convergent series for the polarization. It is diffi- 
cult to imagine how one might have predicted the form of the 
W. (0) prior to performing the analysis in this section. On 
the other hand, if we were to be content with a nonuniformly 
convergent representation we could follow the method used 
by Vinogradov et al.•4 For the special case of a rigid shell the 
latter authors proceed from the slightly different perspective 
of dual series equations. Those are solved by noting that, in 
the static limit ka-.O, the integral operator in (23) has an 
explicit inverse. It then follows that for all ka>O, their dual 
series equation or, equivalently, (23) may be recast as a cer- 
tain Fredholm second-kind system of algebraic equations 
whose "kernel matrix" appears as a perturbation about the 
static solution. In deriving (39) we have set out to explicitly 
obtain the singular behavior of W(O) and we conclude that 
our algebraic system is simply the appropriate rearrange- 
ment of that given in Reft 14. 

IlL ASYMPTOTIC ANALYSIS OF THE RESONANCE 

We now analyze the Helmholtz resonance in detail, tak- 
ing advantage of the small parameters in the problem. By 
assumption, the resonance is a low-frequency phenomenon, 
so we assume that ka • 1. The corresponding asymptotic be- 
havior of the acoustic impcdances ofEq. (14) are as follows: 

Z•0=iPc 3(1--2-•-,ka)2-•,ka)3+'"), (47a) ka 

Z{ = --ipcka3(l + •-o (ka)2 +•(ka)• + '"), 
(47b) 

Z/.= -- ipcka (2n + 1•) + O((ka)'), n>•2. (47c) 
n(n + 1) 

Note that to leading order Z• is a stiffness, whereas all the 
other Z{, n> 1, are mass-like. The low-frequency behavior 
of the shell impedances follow from Appendix A as 

) Z;=iPc(•(l+v)•--•(ka)2+ --- , (48a) 
kak• c' • 

, 2 CO(ka)• + ... Z • = --ipcka + ( l + v)• c 2 ' 
(48b) 

+ O((ka)•), n>2. (48c) 
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Note that Z • is purely mass-like, all the others are pure 
stiffnesses. In the following we will not use these specific 
forms of the shell impedances. The only thing required is 
that the shell, whatever it may be, has the same low-frequen- 
cy behavior for its impedances, in that all of them are stiff: 
ness-like except for the n = 1 impedance, which is mass-like. 
Also, we are not including any loss terms in the shell in this 
analysis, so that the shell impedances are purely imaginary 
with zero real parts. 

We now make the further assumptions that (1) the 
mouth opening is small, a • 1, and (2) the resonance is gov- 
erned by the low-frequency behavior of the single element 
Moo. This is equivalent to saying that the polarization near 
resonance is dominated by the first term in its expansion. 
The accuracy of this assumption is borne out by the numeri- 
cal results. The exact form of Moo follows from (25), (40), 
and (41) as 

• Z•'iZ"• sin2(n + 2•)a Moo = Z•.+ Z ,• n + 2 • (49) 
Taking into account the asymptotic form of the impedances, 
and anticipating the final dependence upon a, this may be 
approximated as 

M• : Z•[2sin• • Ro(l --• •o(ka)2- t+ Ro(ka) 3) 
-- D(a)--•R•sin 2 a (ka) 2 , (50) 

where 

R o-- , R• - (51) 
+ z-i + 

Here, Z o• and Z o• denote the leading order stiffness contri- 
butions to Z• and Z'•, while Z• and Z'• are the leading 
order mass-like parts of Z• and Z '•. The number R o depends 
upon the next term in Z •, and for the thin shell theory de- 
scribed by (48a) it is 

4 c 2 
R o = R o + (1 -- Ro) 2 

5(1 + v) c. 
The real-valued function D(a) in (50) is 

D(a) = • sin2(n + 
,,=• n(n+ 1) 

= (3 -- or)sin a + sin2 -•- ß 

(52) 

(53) 

Details on the evaluation of the infinite sum may be found in 
Appendix B. The form of Moo in (50) is motivated by the 
desire to find both the real resonance frequency and the 
width of the resonance. Note that no explicit approxima- 
tions have yet been made using the fact that a is also small. 
We note that for the thin shell model of Appendix A, 

a 3_pc• .) • Ro= 1 4 • 2(l+v)p.•c• ' 
(54) 

where the parameters are defined in Appendix A. Hence, 
both R o and R • tend to zero for very thin shells (h/a-, O) and 
to unity for very stiff and dense shells 

(pc2 /psc2p --,0, P/Pt -,0). 
Setting the real part of Moo to zero we see from (50) that 

the resonance frequency occurs at k•k o, where 

= / ( 55 ) 
Here we have written the resonance frequency in classical 
form, with S = 2rra2(1 - cos a) the spherical area of the 
mouth, V= 4rra3/3 the cavity volume, and fi is the "end 
correction" for the aperture, which follows from (50) as 

•=a D(ct) +•-R(}Rosin 2------R• sin 2 2 2 •-a . 
(56) 

Thus, the effect of the elastic stiffness is to increase the end 
correction, while the mass contributions decreases it. How- 
ever, it should be borne in mind that both effects are of sec- 
ond order in a since D(a) = arr12 + O(a 2) for small aper- 
tures. The Q value of the resonance, defined in Eq. (60) 
below, also follows from (50) as 

Q = 4rr/Rok• V. (57) 

These approximations have been deduced under the assump- 
tion that ka is small at resonance, which is true only if a is 
also small. We can now take the limiting forms for these 
expressions for a { 1, giving 

koa = (3ct•'/2 R o•/2 
\27r/ 

3•(1_ 2 R,•o + q-"' (58a) X I + 4rr\ •- 2 

Q= \•1 Ro-S/2q- ... . (58b) 
We have retained enough terms so that the expansion for the 
resonance frequency agrees with the expansion found by 
Rayleigh 3 for the rigid cavity, which follows by setting 
R o = •() -- 1 and R • = 0, yielding 

køa •/ 2•r \ + 20•- 
The subsequent term, of order a 2, in the expansion for the 
rigid cavity has been derived by Levineft 

Thus, to leading order the elasticity of the cavity de- 
creases the resonance frequency and increases the Q value of 
the resonance. Both results are in qualitative agreement with 
the findings of Photiadis, 2 although he concluded that Q is 
increased by a factor of R o •/2 relative to the rigid value 
whereas we find the larger factor of R 

Using the above definitions, Moo may be expressed in 
resonance form, 

2 

Moo =-•Z•o•:Ct6[ko 2 --k2-- (i/Q)ko] ß (60) 

The system of equations (39) can now be solved approxi- 
mately by focusing on the n = m = 0 terms, to give 

qom (aRo/Moo) [Po ("e• ] - (61) 
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Also, at low frequency it follows from (29) that 
[po (r'g) ] = -- Co, where Co = 1 for an incident plane wave of 
unit amplitude. Combining these approximations with equa- 
tion (43), the radiation associated with the Helmholtz reso- 
nance becomes quite simply 

The small-opening approximations (58) have been used in 
simplifying the numerator in (62). 

It is instructive to recast this result within the context of 

lumped parameters systems, which are commonly used for 
Helmholtz resonators. First, we need to find the net volume 
flow near resonance. The radial velocity on the spherical 
surface r = a is best expressed using equation (11) rather 
than (17), since the latter does not capture the rapid vari- 
ation near the mouth. Referring to (17) and (19), we have 
L -[[p]•(1 --Re [)Ao, where Ao follows from (20), 
(41), and (42) as Ao.•aRoqo/2. The radial velocity then 
follows from equations ( 11 ), (44), and (46) as 

qo on the mouth, w(O)= •x/cos0-cosa ' (63) 
-- (a/2) ( 1 -- Ro)qo, on the shell. 

The shell motion is therefore out of phase with the fluid 
motion in the mouth. The former is small in comparison 
with the latter, the ratio of the average velocities being 
a2( 1 -- Re)/4. However, the total fluxes are comparable, as 
can be seen by integrating the velocities in (63) over the 
respective surface areas and using the fact that a is small, 
yielding 

inward flux of shell 
= I -- R o. (64) 

outward fiux of mouth 

Define the net volume flux out of r<a per unit time as 

ff•=f, wdS 
= 2•ra2ctR•flo. (65) 

We now rewrite Eq. (61 ) in the suggestive form 

Moo 
__pinC• •. (66) 

2•r( aaRo) z 
Here we have used the low-frequency approximation 
[po•] = _ psi. Equation (66) implies that the net vol- 
ume flow is driven by the incident field. Using Eqs. (55), 
(57), and (60) this can be expressed in the form era forced, 
single degree of freedom damped oscillator, 

__ pi.c•,.• (Zt4 a q_ r• )•, (67) 

an elastic Helmholtz resonator. The volume impedance of 
the resonator, Zna, contains a stiffness and a mass, but no 
dissipative term. One could add an internal dissipation to 
Zna, but we neglect this here, preferring instead to focus on 
the elasticity effects. The effective compliance, or capaci- 
tance, C•, and the effective inertia, M•, are both similar to 
their standard forms for Helmholtz resonators, • but modi- 
fied in the present circumstances by the elasticity parameter 
R o. Note that lhe capacitance is decreased relative to the 
rigid value V/pc •, but the mass is enhanced by a greater 
amount, with the net result that the resonant frequency 

0ao = 1/ C• is lowered. The increased effective stiffness, 
1/C•, and effective mass, M•, appear at first glance to be 
counter to one's expectations. However, it should be kept in 
mind that the effective impedance Zna refers to the net vol- 
ume flow • of Eq. (65) and not the volume flow across the 
mouth, which equals ff•/Ro> •. Similarly, the enhanced 
mass can be ascribed to the increase in kinetic energy asso- 
ciated with the greater volume of fluid entrained in the out of 
phase motions of the shell and the fluid in the mouth. 

We conclude this section with an analysis of the scatter- 
ing cross section near resonance. The far-field monopole ra- 
diation resulting from a compact volume source • is 

p(]) = ( -- iop/4•rr) e•'•. (69) 
Eliminate • between ( 67 ) and (69), and use p'"• = Co, to get 

ipck e '•' p([•= Co (70) 
4trr Zna + r n 

It may be verified, using the identities of (67), that the scat- 
tered pressures of Eqs. (62) and (70) are identical near the 
resonant frequency Oo: Cko. It is interesting to note that 
right at resonance, 

pC [ • • iCo ( d•' /'kr), (71 ) 

which is independent of the shell elasticity. Hence the total 
scattering cross section at resonance, a, which is dominated 
by the field p(• ), is increased relative to the corresponding 
rigid resonator. Using Eq. (58a), we see that 

o'/orig'Cl•R o I (72) 

This contrasts with Photiadis '• finding era reduction at reso- 
4 

nance by a factor err o- The identity (71 ) for the strength of 
the scattered field at resonance can be found in Rayleigh's 
treatise of 1896. • Subsequent papers by Lamb •6 and Ray- 
leigh • discuss its generalization to arbitrary multipole reso- 
nators. Hence, the increase in scattering cross section is 
purely a consequence of the lowered resonance frequency 
and is completely independent of the intrinsic properties of 
the resonator. 

where 

Z•a = ( -- icoC• ) -' -- ioM•, (686) 
and 

.... • r n = (68b) pc• 4• 

The parameter r• is the radiation resistance for a monopole 
source.'S It depends only upon the exterior acoustic medium 
and is independent of the nature of the monopole, in this case 

IV. NUMERICAL RESULTS AND DISCUSSION 

Before considering an elastic resonator we first apply 
the asymptotic theory of the previous section to the rigid 
cavity. Ingard •s reported some measured frequencies of a 
spherical cavity in air which may be compared with the pre- 
dictions of Eq. (55). Ingard also provided comparisons with 
two other approximate theories in which the velocity field 
across the mouth was approximated as either uniform or 
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TABLE I. Resonance frequencies of a spherical resonator, a = 0.09 m, h = 10 3 m. From lngard (Ref. 18). The acoustic speed has been taken as c = 340 

Measured Uniform Variable This 

resonance distribution distribution paper, Eqs. 
Hole frequency from Deviation from Deviation (56) and Deviation 

diameter (cm) (Hz) Ref. 18 % Ref. 18 (%) (73) (%) 

1.6 120 117 -- 2.5 123 2.5 121 0.64 
2.05 135 134 -- 0.75 142 5.2 138.5 2.53 
3.1 168 168 0 180 7.8 174 3.45 
3.7 190 185.5 -- 2.27 202 6.3 192 0.92 

3.82 195 189 -- 3 206 5.65 195 0.11 
4.9 224 216 -- 3.57 242 7.4 225 0.36 

with the distribution w = We(COS 0 - cos a)t/2. The theo- 
retical expressions use the well-known formula for the reso- 
nance frequency of a rigid cavity 

ko = x/S /V(h + •5), (73) 
where S is the area of the mouth, V the cavity volume, and •5 
the "end correction" for the aperture neck. The thickness h 
is also included here and may be understood as the "neck" 
length. The numbers in Table I were calculated using Eq. 
(73) with the end correction of Eq. (56). Also shown are the 
experimental values reported by Ingard and the predictions 
of the two theories discussed by Ingard, which differ in their 
choice of an end correction & It can be argued from Table I 
that the present theory is at least as good or better than the 
commonly used formula based upon the velocity being uni- 
form across the aperture rs'2 

The curves in Figs. 2-9 summarize extensive numerical 
calculations for both rigid and elastic resonators. We have 
focused on the far-field backscattered amplitude for plane 
wave incidence as shown in Fig. 1. The far-field scattering 
amplitude is defined as 

f(O) = lim (2r) (ø- •/2e-•t'r(p __pi.C), (74) 

lO 

8 

4 

2 

o 
o 

RIGID 

o.=0.1 

0.2 0.3 

5 10 ka 15 20 

FIG. 2. The backscatter from a rigid cavity with a = 0.1. The dashed curve 
shows the response of a rigid sphere for comparison. Note the low-frequency 
Helmholtz resonance and the higher frequency cavity resonances. The aver- 
age response at higher frequencies is decreased relative to the full sphere. 
The insert compares the Helmholtz resonance of the exact theory with the 
asymptotic approximation of Eq. (62) (dashed curve). 

where D ----'3 or 2 is the appropriate dimensionality for the 
sphere or the cylinder (see Appendix C). Numerical results 
are presented here for D ---- 3 only. The numerical computa- 
tions required two truncations, at n -- 300 for the Legendre 
polynomial series, as in Eqs. ( 13 ) and (18), and a truncation 
for the series expansion (38) for the polarization. The latter 
was taken as n = 12 and convergence checks were underta- 
ken by comparing the results with smaller values, n = 8 or 
n = 10. In all cases the solution was found to converge to the 
degree of accuracy discernible in the graphs. These are re- 
ferred to as the "exact" results, in contrast to some approxi- 
mate calculations based upon the asymptotic results in the 
previous section. 

The acoustic backscatter from rigid cavities of different 
apertures is illustrated in Figs. 2-5. Several aspects are worth 
noting. First, as expected, the Helmholtz resonance is the 
largest feature for small values of a, see Figs. 2 and 3. Also, 
as Fig. 2 shows, the resonance is well approximated by the 
asymptotic theory of Sec. III for small apertures, although 
higher-order discrepancies can be seen in Fig. 3 for a = 0.25. 
In addition to the Helmholtz resonance there are obviously 
higher frequency "internal" resonances excited, which grow 
in significance as the aperture is increased. These modes are 
a combination of the pure modes inside the full, rigid con- 
tainer, modified by the access to the exterior region, of creep- 
ing waves, whispering gallery modes, and edge diffraction. 
Precise explanations for these are beyond the scope of this 

4 

If(O)l 

2 

RIGID 

= 0.25 

0 

0 5 10 ka 15 20 

FIG. 3. The same as Fig. 2 but for the larger aperture a = 0.25. 
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FIG. 4. The rigid backscatter for a ---- zr/6. Note the decrease in strength of 
the Helmholtz resonance and the stronger cavity modes. The general linear 
increase in the response with increasing frequency is suggestive of specular 
reflection--in this case from the inside of the sphere. 

paper, but we note that for a = •/6, for example, these high- 
er frequency effects are comparable to or larger than the 
Helmholtz resonance. Furthermore, the overall response for 
larger mouths clearly shows the reflection of the plane wave 
from the inner concave surface. This is evident from the 

overall linear increase in amplitude as a function ofka, char- 
acteristic of specular reflection. Thus, for a --- •r/3, although 
the Helmholtz resonance is the main feature for ka< 1, it is 
quickly dominated by high-frequency effects for ka > 1. In 
contrast, the average high frequency response (ka > 3) for 
at = 0.1 in Fig. 2 appears to be consistently less than that for 
the full sphere. The hole in the sphere thus allows energy to 
enter the sphere, in the process causing a reduction in the 
specular return. 

The remaining numerical results in Figs. 6-9 are for 
steel resonators in water, with c = 1482.5 m/s, p---- 1000 
kg/m 3, c•, ----- 5431 m/s, p, = 7700 kg/m •, v = 0.29, 
a/h = 90, and the same range of values for a considered in 
Figs. 2-5. No internal dissipation is included in the compu- 
tations, the only loss mechanism is from radiation. 

In comparing Figs. 2 and 6 it is clear that the Helmholtz 
resonance frequency has been decreased and the response at 

lO 
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If(0)l 
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RIGID • = •[/3 

5 10 ka 15 20 

FIG. 5. The rigi:t sphere with ct = rr/3. The Helmholtz resonance has virtu- 
ally disappeared in comparison with the cavity modes, while the specular 
reflection effect is more pronounced. 
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ASYMPTOTIC EXACT 
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FIG. 6. The backscatter from a thin steel shell in water, a/h = q0, c• -- 0.1. 
The two dominant shell modes near ka = 1 correspond to n = :2 and n = 3 
in Table II, and their positions are accurately predicted using the conversion 
ka = 3.663 fl. The dashed curve showing the full shell response of Eq. (13) 
is difficult to distinguish, but may be more clearly seen in Figs. 7, 8, and 9. 
The insert compares the exact computations with the asymptotic theory of 
Eq. (62). 

resonance is larger, with both effects accurately described by 
the asymptotic theory of the previous section. However, 
there are more striking differences at higher frequencies, 
ka = O( 1 ), where the shell modes dominate the response of 
the elastic resonator. In particular, the full shell response 
displays strong resonances near ka = I and these resonances 
are more significant than the Helmholtz resonance itself, see 
Figs. 6 and 7. These relatively low-frequency structural 
modes are associated with the lower of the two branches 

predicted by ignoring the bending effects and keeping only 
the membrane effects in the thin shell theory. ]9 The effect of 
fluid loading on these modes has been examined by Junger •9 
and Strifors and Gaunaurd • for the case of one-sided load- 

ing from the exterior, but not for symmetric loading on both 
sides, which is the case of relevance to the Helmholtz resona- 
tor. We note that Strifors and Gaunaurd •ø have provided 
numerical results for the response of water-filled shells in 
water, but they do not discuss the quantitative nature of the 
low frequency resonances. In general, the fluid-loaded mod- 
al frequency of order n is given by the smaller root of the 
equation 

Im(Z•, + Z,) = 0, (75) 

where Z, is the fluid loading impedance. Three cases may be 
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FIG. 7. The same steel shell of Fig. 6 but for the large aperture tr = 0.25. 
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FIG. 8. The same as Fig. 7 but for a = zr/6. 
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FIG. 9. The same as Fig. 7 but for a = •r/3. 

distinguished: (i) no loading, for which Z. = 0; (ii) one- 
sided loading on the exterior surface only, 
A 

Z. = ipch. ( ka ) /h • ( ka ) •[see Eq. (16) ]; and two-sided 
loading by the same fluid, Z. = Z/.of (14). At the frequen- 
cy range of interest the bending effects in the shell impedance 
may be ignored. Hence, using Eq. (A8) with/3 = 0, the fre- 
quency equation may be reduced to a transcendental equa- 
tion in .Q (Refs. 19 and 20), 

•J4(1 +17/• . --11211 +3v+/[.+1']r•.•,, -- I +v)] 
+ (1 -- v z)(A. -- 2): 0. (76) 

The quantities •I, T/, and/[. are defined in Appendix A, and 
we have introduced dimensionless radiation loss and incr- 

A 

tance terms by Z. = pc(•.-- ikarh. ). Table lI summarizes 
the results for the three cases. In general, the modal frequen- 
cies decrease as the fluid inertial loading is increased. The 
radiation loss ?• is also included in Table lI as it provides an 
estimate of the width of the associated resonance. 

Is it possible for the Helmholtz resonance to coincide 
with the lowest of the structural resonances? In order to 

answer this it helps to focus on the dependence of both reso- 
nance frequencies on the same parameter, which we take as 
the fluid loading parameter •/ofEq. (A3). The lowest struc- 
tural frequency, 11 = 112, where 11 = kac/%, can be reasona- 
bly approximated from (76) by using the low-frequency esti- 
mate ofr•t 2 • 5/6 from (47a). At the same time, we assume r/ 
is large, in fact •/= 11.69 in Table II. Then we find 

11,2 -- 4( 1 -- •) (77) 
7 + 3v+ (5 + v)Sr//6 

This yields f•:•0.2483 as compared to 112 = 0.2423 from 
Table II. At the same time, the Helmholtz resonance is at 

f•Ha = koac/%, which follows from (51) and (58a) as 

:' rr\l + v •-•7! (78) 
It is apparent from Eqs. (77) and (78 ) that both frequencies 
decrease as •/increases. However, the Helmholtz resonance 
frequency is always much less than the lowest structural fre- 
quency because a/rr • 1 by assumption. Hence, the two reso- 
nance phenomena will always be distinct and the answer to 
the above question is in the negative. These conclusions are 
consistent with the results of Figs. 6-9, which also show how 
the Helmholtz resonance disappears as a becomes larger. 

Another obvious feature of Figs. 6-9 is the appearance 
of many sharp structural resonances. The first six or so of 
these for 1 <ka<2 can be associated with the higher modes of 
Table II. The other modes for kay2, roughly, do not corre- 
spond to either solution branch of (76) but appear to be 
flexural waves on the shell. This conject.ure is supported by 
the trend k,, a--m 2 for these frequencies, which one would 
expect for higher-order standing waves of flexural type. We 
note that as the mouth size is increased the membrane modes 

become less significant in comparison with the bending 
modes. Also, the membrane modes are shifted to higher fre- 
quencies, which can be thought of in terms of the "effective" 
shell becoming smaller. We note that the flexural modes are 
all subsonic, in fact the coincidence frequency for this shell is 
at ka > 40. Also, the specular reflection effect, so apparent 
for the rigid cavity at larger values of a, is missing in Figs. 8 
and 9. This is simply explained by the small reflection coeffi- 
cient for a thin steel plate in water at these frequencies. 

V. CONCLUSIONS 

A general theory for acoustic scattering from elastic 
Helmholtz resonators has been described and applied to the 
speci•c case of thin spherical shells with circular apertures. 
The resulting integral equation can be solved numerically 
and is amenable to asymptotic analysis for small mouth 

TABLE II. The lower branch of the modal frequencies of a fluid-loaded 
spherical steel shell in water, a/h = 90. 

Mode 

order In •acuo Loading on exterior only Loadin• on both sides 
n It,t1,, ?, 11,, •, 

I 0 0 0 0 0 

2 0.7049 0.3364 0.03742 0.2423 0.00561 

3 0.8338 0.4228 0.00740 0.3118 0.00071 

4 0.8842 0.4829 0.00084 0.3611 0.00005 

5 0.9089 0.5277 0.00006 0.4001 0 
6 0.9228 0.5631 0 0.4326 0 

7 0.9315 0.5923 0 0.4606 0 

8 0.9372 0.6169 0 0.4851 0 

9 0.9412 0.6382 0 0.5069 0 
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sizes. The asymptotic results indicate that wall elasticity re- 
duces the resonance frequency by a factor of R o m in com- 
parison with a rigid cavity, where Re < ! is defined in Eq. 
(51 ). Both the Q value of the resonance and the scattering 
cross section are enhanced by the wall compliance, by fac- 
tors ofR • 5/2 and R o •, respectively. The increased scatter- 
ing strength is a consequence of the lowered resonance fre- 
quency and is independent of the type of thin shell theory 
used. Numerical results for thin steel shells in water indicate 

that the asymptotic theory is adequate for describing the 
resonance behavior for small apertures, and for larger aper- 
tures the Helmholtz resonance is relatively insignificant in 
comparison with structural modes. 
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APPENDIX A: SPHERICAL SHELL THEORIES 

Define the shell parameters 

[J2= h 2/12a2, 11=o•a/cp. (AI) 
Here, h and a are the shell thickness and radius, respectively, 
with h •a by assumption. The plate speed c, is 

= E/p,(1 -- (A2) 
where E and v are the Young's modulus and Poisson's ratio, 
and p.• the density of the shell. The fluid loading on the shell 
may be characterized by the fluid loading parameter 

?l = pa/p, h. (A3) 

It is assumed for simplicity that there is no dependence 
upon the azimuthal angle •. Only one in-surface component 
is zero, the one associated with 0 and we denote it by u. Let 
/z-- cos 0, then the operator L of (3) for the spherical shell is 
defined by 

LL0 

where 

tea 2 

X(fFw 2(l+v)w * • 

2 =_ff_d (1-W') d 
The subsidiary equation for u is 

(•2 d- 1 ,,)u+xf•--t •- d • 

(A4) 

(AS) 

(A6) 

These are the shell equations of Green and Zerna 2• applied 
to a sphere. The equations are similar to those of Junger and 
Felt, •ø Eqs. (7.102), (7.103) et seq., which contain addi- 
tional terms proportional to/32. If we put to = P,(cos 0), 
then it is a simple matter to show that the impedance defined 
by Eq. (15) is 

Z } ipc c 2 ( , -- P 2(l+v)--D. •+/3-3..(A,,--l+v) 
ka rlc2 • 

A,(I +v)-') -- 2.1+v--.0. 2 ' (A7) 
where A.= n(n + 1). The effect of including the higher- 
order terms in the Junget and Feit equations •ø is that Z •. 
changes to 

Z; =/pc c ( •. 2(1 +v) --•-•2•t-[•2An(A n -- I + v) 
ka rlc- x 

+ - X.l'- ) -- (A._ 1 + v)(1 •-•5• Z•22 . (AS) 
Whether Green and Zerna's or Junget and Feit's equations 
are used, the tangential velocity field is of the form 
u = B. sin OP;, (cos 0). In the latter case, 

1 + v--/32(1 --v--A,,) 
B• = , (A9) 

•C-+ (1 --v--A,)(l +1• 2) 
and for Green and Zerna's theory B, is the same but with the 
/3 2 terms eliminated. The impedance function (AS) was 
used in the numerical computations discussed in Sec. IV, 
although it was found that (A7) gave identical curves for the 
cases considered. 

APPENDIX B: AN INFINITE SUM 

The infinite sum in (53) may be determined as follows. 

•. sin2(n+•)a 
,• n(n+ 1) 

,•( 1 1 cos(2n + l)a) =1 'n(n + 1) n(n+ 1) 

Then (53) follows using Eq. (1.448.1) of Reft 22 for the 
infinite sum in (B1). 

APPENDIX C: THE CYLINDRICAL RESONATOR 

The solution to (6) for the full shell subject to an inci- 
dent wave of the form 

p'"• = •. C.J,, (kr)cos nO, (C1) 
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is now 

.=o + z; 

d,,(kr), for r<a, 
Xcosn0 / J;(ka) (C2) [H;(ka) H,kr), forr•>a. 

Here, H, are Hankel functions of the first kind of order n 
and J, are Bessel functions. The fluid impedances are 

Z•"= 2pc (C3) 
wkaJ; (ka)H; (ka) 

and the solid impedances are the eigenvalues of 

L cos nO = Z•,cos nO, (C4) 

for each n = 0,1,2 ..... Again, the values of Z7, depend upon 
the shell theory used. Finally, we note that for the plane 
wave incidence traveling directly towards the mouth, 
ff.c = e ik .... o, the constants in (C1) are C, = 2( -- i)" 

The mouth now has semi-angle a, and is defined by 
-- a < 0 < a, where -- rr < 0<re is the polar angle about the 

center. The general solution may be split into the sum of 
parts which are symmetric and antisymmetric about the di- 
rection 0 = 0. We will only discuss the symmetric solution 
here, since it yields the Helmholtz resonance behavior. The 
antisymmetric solution could be handled in a similar manner 
but it would not exhibit the same resonance. The symmetric 
part of the radial velocity caused by the presence of the 
mouth can be expressed as 

cos nO. (C5) 

The fluid pressure then follows from (8) as 

I H,,(kr) r>a, kH • (ka) ' 
p(•) = ipto • A. cos nO (C6) ,, = o J,, (kr) 

ß , I'•a. 
k J;, (ka) 

The procedure is obviously very similar to that for a spheri- 
Cal shell. We will not repeat the steps analogous to (19)- 
(22), except to note that the coefficients A, may be ex- 
pressed in terms of the symmetric polarization 
W( O) = W( - O) as 

A, e, Z'•, W( O ')cos nO' dO ', 
•' Z( + Z•, 

(C7) 

where eo = 1 and e,, = 2, n > 0. The resulting integral equa- 
tion for W(O) over 0<0<a becomes 

o a W(O')K(O,O')dO'= [ptø)](0), O•<O<a. (C8) 
The kernel K( O,O ') = K( O ',0) is now 

K(O,O') = • K,, cosnOcosnO', (C9) 
where 

f 6,, Z .Z. K. -- (ClO) 

z+z[ 

The derivation of the matrix equations is slightly differ- 
ent than for the spherical case. We begin by assuming that 
the polarization may be represented as 

W(O) - q(O) (Cll) 

This form contains the correct singularity near the edge, and 
means that the function q (0) should remain bounded for all 
O, -- ct¾O•<ct. Because we are only considering the symme- 
try problem, the range of interest is 0<0<a. Comparing Eqs. 
(37) and (CI 1 ) it is clear that the function q(O) bears some 
similarity to the function for the spherical case. 

With regard to (C8), we note that 

f W( O')cos(nO')dO' 
•z12 = q(a cos •)cos(na cos •)d•. (C12) 

dO 

This suggests we try an expansion of q(ct cos d•) as a cosine 
series in d•, or since • = cos - • (0/ct), we assume 

n=0 

Note that cos(2n cos - • x): T2, (x), which are the Cheby- 
shev polynomials.•2 We have omitted the Chebyshev poly- 
nomials of odd order from the sum (C 13) as these all have 
discontinuous slopes at 0: 0. This makes them inadmissible 
because q(O), being symmetric, should have zero slope at 
0=0. Substituting the expansion (C13) into (C8) and 
(C12) reduces the integral equation to 

•, K,cosn0 • p,,,q,• = [p(ø'](O), O<O<a, 

(C14) 

where now 12 

rr/2 Pl,, = cos( 2mb )cos( la cos •)dd• 
dO 

= ( -- 1)"rr/2)J2,(la). (C15) 

We now expand the right member of (C14) as 

[p(ø>l(0) = • [p•,ø)]cosnO. (C16) 
tt =0 

Next, multiply both sides of (C14) by T2, , (O/a)/a.j• • 
and integrate over the mouth. This results in a system of 
linear equations for the unknowns q,,which is identical to 
the spherical case, i.e., Eqs. (39). The symmetric matrix M 
is again given by (40), where now pi, are defined in Eq. 
(CI 5). We note that the coefficients [p•,O> ] for the incident 
wave of Eq. (C1) are of the same form as those for the 
sphere, Eq. (28), where the rigid coefficients are now 

-- i2C. [P?I -- (C17) 

rrkaH ,; ( ka ) 

We note that the singular integral equation for the cylindri- 
cal resonator is similar to one obtained by rang and Nor- 
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ris 23 in analyzing the scattering from a partially bonded fiber 
in a matrix. The same type of Helmholtz resonance occurs in 
that problem, but with different interpretations on the effec- 
tive inertia and stiffness. Further discussion of the fiber reso- 

nance can be found in Refs. 24 and 25. 

The cylindrical shell equations are 2ø 

--ip, hc•/ • d4w du) L,,,= In ao 4 2g ' (c8) 
where u is the tangential velocity in the direction of 0 and the 
other parameters are defined in Appendix A. The subsidiary 
equation for u is 

d2u dw = 0. (C19) 11•u + •-ff •+ dO 
The eigenvalue Z•, of Eq. (C4) can then be easily deter- 
mined as 

7{• fl 2--1+n2_fl • fl2n 4 . (C20) 
The asymptotic analysis of the resonance follows the 

same lines as that of the sphere. The major details are sum- 
marized here. The impedances follow from Eqs. (C3) and 
(C20) as 

Zlo = i pc 
ka 

(C21a) 

(C21b) = - i/:,cka--2 + n>l, 
where 

A(ka) = I[ 1 - 4y -- 41og(ka/2) ], (C22) 

y is Euler's constant, and 

Z; = i pc (c.• I (ka) 2 +" .), (C23a) ka \ •7 c2 

_ i PC c: 2•/4 •?)(ka)2 Z:-- ka[•c• --•(l+ • 
+ •(ka)•)], n>l. (C23b) 

Applying these approximations we find 

Mmm(v/2)D(a)Z•[F(ka,a) -- (ka)•(l + iQ 
(C24) 

where 

F( ka,at ) = • R o 
2D(a) 

c 2 

Cp • a 
(C25a) 

8D(a) 
(C25b) 

D(a) = • Jø•(na) (C25c) 
n=l /• 

Quantities like Z•o/• have the same meaning as before, al- 
though different values, and Ro is again defined by Eq. (51 ). 
The main difference compared with the spherical resonator 
is the presence of the logarithmic term. Also, the sum D(at) 
cannot be reduced to a simple expression, but it can be as- 
ymptotically approximated for small at,24 

D(at) = 1og(2/at) + O(at2), at•l. (C26) 

The resonance frequency is given by the root of 
F(ka,at) -- (ka) • = 0, which simplifies for small apertures 
to 

2 log -2 = •1 + R• 
• (ka) 2 2 

X(•--• + ,og•)+ (1--Ro) • . (C27) 
Norris and Yang 24 obtained a formula for the r•onance 
&equency of a fiber partially attached to an elastic mat fix, 
and their •. (34) agrees with (C27) in the rigid limit 
(R o = 1 ). Taking the leading order approximation to the 
root of (C27), the resonance frequency and the Q value may 
be expressed as 

8 ko= •, Q= • , (C28) Rok o g 

where S = 2aa and V = va • are the two-dimensional ana- 

logs of the aperture area and cavity volume, and the "end 
correction" is 

• = (2/•)aaD(a) 

• (2/•)aa log (2/a). (C29) 

Finally, we note that the scattered field near resonance can 
be approximated • 

p• iQ •C•o(kr) (C30) 
•F(ka,a) • (ka)2(1 + iQ i) ß 

Hence, right at the resonance the response is 

p(ll• __ C•o(kr), (C31) 

which is similar in its simplicity to the three-dimensional 
result (71). 

J. W. S. Rayleigh, The IheoryofSound (Dover, New York, 1945), Vol. 2. 
D. M. Photiadis,"The effect of wall elasticity on the properties of a Helm- 
holtz resonator," J. Acoust. Soc. Am. 90, 1188-1190 ( 1991 ). 
$. W. S. Rayleigh, "The theory of the Helmholtz resonator," Proc. R. Soc. 
London Set. A 91, 265-275 { 1916). 
H. Levine, "The wavelength of a spherical resonator with a circular aper- 
ture," J. Acoust. Soc. Am. 23, 307-311 ( 1951 ). 

ST. A. Hcnriquez and A.M. Young, "The Helmholtz resonator as a high- 
power deep-submergence source for frequencies below 500 Hz," J. 
Acoust. Soc. Am. 67, 1555-1558 (1980). 

6M. S. Howe, "On the Helmholtz resonator," .I. Sound Vib. 45, 427-440 
( 1976}. 

U. Ingard, "On the theory and design of acoustic resonators." J. Acoust. 
Soc. Am. 25, 1037-1061 (1953). 
G. Wickham, "A general theory of scattering by thin interface layers, 
plates and shells," submitted for publication to Wave Motion (1992). 

629 d. Acoust. Soc. Am., Vol. 93, No. 2, February 1993 A.N. Nords and G. Wickham: Elastic Helmholtz resonators 629 



'•G. C. Gaunaurd and M. F. Werby, "Acoustic resonance scattering by 
submerged elastic shells," Appl. Mech. Rev. 43, 171-207 (1990). 

•o H. C. Strifors and G. C. Gaunaurd, "Differences in the acoustic echoes 
from submerged elastic shells containing different fluids," Ultrasonics 30, 
107-112 (1992). 
H. C. Strifors and G. C. Gaunaurd, "Multipole character of the large- 
amplitude, low frequency resonances in the sonar echoes of submerged 
spherical shells," Int. J. Solids Struct. 29, 121-130 (1992). 

•2 M. Abramowitz and I. Stegun, Handbook of Mechanical Functions (Do- 
ver, New York, 1972). 

•3 P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McG raw- 
Hill, New York, 1953). 

•4S. S. Vinogradov, Y. A. Tuchkin, and V. P. Shestopalov, "On the theory 
of scattering of waves by nonclosed screens of spherical shape," Soy. 
Phys. Dok. 26, 169-171 (1981). 

•5 A.D. Pierce, Acoustics: A n Introduction to its Physical Principles and Ap- 
plications (Acoustical Society of America, Woodbury, NY, 1989). 

• H. Lamb, "A problem in resonance, illustrative of the theory of selective 
absorption of light," Proc. London Math. Soc. 32, 11-20 (1900). 

17j. W. S. Rayleigh, "Some general theorems concerning vibrations and 
resonance," Philos. Mag. 3, 97-117 (1902). 
U. Ingard, "The near field of a Helmholtz resonator exposed to a plane 
wave," J. Acoust. Soc. Am. 25, 1062-1067 (1953). 
M. C. Junger, "Normal modes of submerged plates and shells," in Fluid- 
Solid Interaction, edited by J. E. Greensport (ASME, New York, 1967), 
pp. 79-119. 

2øM. C. Junger and D. Felt, Sound Structures and Theirlnteraction (MIT, 
Cambridge, MA, 1972). 
A. E. Green and W. Zerna, Theoretical Elasticity (Oxford U.P., London, 
UK, 1968). 

I. S. Gradshteyn and I. M. Ryzhik, Tables oflntegrals, Series and Prod- 
ucts (Academic, New York, 1980). 
y. Yang and A. N. Norris, "Shear wave scattering from a debonded fi- 
bre," J. Mech. Phys. Solids 39, 273-294 ( 1991 ). 
A. N. Norris and Y. Yang, "Dynamic stress on a partially bonded fiber," 
J. Appl. Mech. 58, 404-409 ( 1991 ). 
Y. Yang and A. N. Norris, "Longitudinal wave scattering from a partially 
bonded fiber," Wave Motion 15, 43-59 (1992). 

630 J. Acoust. Soc. Am., Vol. 93, No. 2, February 1993 A.N. Norris and G. Wickham: Elastic Helmholtz resonators 630 


