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The influence of wall elasticity on the response of a Helmholtz resonator is examined by
analyzing the canonical case of a thin elastic spherical shell with a circular aperture subject to
plane wave excitation. By neglecting the thickness of the wall and representing the elasticity
via a “thin shell” theory the problem is reduced to one of solving an integral equation over the
aperture for the polarization velocity, which is related to, but distinct from, the radial particle

velocity of the fluid. The integral equation can be solved by asymptotic methods for small
apertures, yielding closed-form expressions for the major resonator parameters. In general,
wall compliance reduces the resonance frequency in comparison with an identically shaped
rigid cavity. The Q value of the resonance is increased and the scattering strength of the cavity
at resonance is enhanced by wall compliance. The asymptotic results are supported and
supplemented by numerical calculations for thin steel shells in water.

PACS numbers: 43.20.Ks, 43.20.Rz, 43.30.Ky, 43.55.Ev

INTRODUCTION

The Helmbholtz resonator is characterized by a volume
of compressible fluid connected to the exterior via a small
opening. The inertia of the fluid entrained in the neighbor-
hood of the opening conspires with the compressibility of the
enclosed volume to produce a resonance frequency whose
acoustic wavelength may be considerably longer than the
maximum dimension of the vessel. This long wavelength or
low-frequency nature of the resonance makes the phenome-
non quite distinctive, as it tends to accentuate this mode as
compared with others at higher frequencies. In most circum-
stances it is perfectly reasonable to consider the vessel en-
closing the resonating fluid as rigid, which is the basis for the
successful explanations of Helmholtz and Rayleigh for the
resonance phenomenon.' The rigid cavity idealization is cer-
tainly adequate in air but may need to be reconsidered if the
acoustic fluid is water and the cavity is a thin shell. In this
paper we consider the canonical geometry of a spherical elas-
tic resonator with a circular aperture excited by an incident
acoustic wave.

The approach taken here is to model the wall of the
cavity as a thin shell of negligible thickness across which the
normal velocity is continuous but nonzero. The explicit form
of the thin shell theory used is of secondary importance,
although a specific theory is adopted for numerical compu-
tations. The concept of a polarization velocity is used to re-
duce the scattering problem to one of solving an integral
equation for the unknown polarization velocity on the aper-
ture, similar to the problem for the rigid resonator. In fact,
the rigid limit is simply obtained from the general theory
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developed here. The problem is formulated in Sec. I within
the context of an arbitrarily shaped cavity. Several transfor-
mations are employed in Sec. II to reduce the singular inte-
gral equation for a spherical cavity with a circular aperture
to a relatively well-behaved set of linear equations. In Sec.
IIT we develop some asymptotic approximations, valid in the
small aperture limit. These results imply simple relations for
the effective mass and capacitance of the elastic resonator,
and comparisons are made with both the rigid case and to
some related published findings for an elastic Helmholtz res-
onator.” Numerical computations for rigid and elastic reso-
nators are presented in Sec. IV.

Before commencing we note that detailed treatments of
the corresponding rigid spherical resonator have been given
by many authors, among whom we mention Rayleigh® and
Levine,* who have obtained successively better asymptotic
approximations to the resonance frequency in the small ap-
erture limit. Related results for the elastic resonator will be
presented in Sec. III. The elasticity of the cavity can be sig-
nificant if the fluid loading is large, which could occur in
underwater applications. A paper by Henriquez and Young®
discussed practical issues related to the design and use of
low-frequency underwater Helmholtz resonators. In the
present paper the mechanism that excites the resonator is a
simple plane wave. For more complicated excitations asso-
ciated with vortices we refer to Howe.® Also, no internal
dissipation is considered here, our objective being to describe
the contribution of the wall elasticity. The only damping is
from radiation loss. However, it is well known’® that dissi-
pation due to viscosity and heat conduction greatly exceeds
the radiation loss in air. These mechanisms must certainly be
taken into account for a complete description of the resona-
tor. Finally, we note that the present treatment of the Helm-
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holtz resonator includes the possibility of singular but inte-
grable velocity fields at the aperture edge. As noted by
Ingard,” a thorough analysis of the problem should include
nonlinear effects and realistic treatments of sharp corners.

I. THE GENERAL THEORY

We consider time harmonic motion of radial frequency
o. The term Re[ -+ -e~ ‘] will be understood but omitted
everywhere. OQur main object is to analyze the specific case of
a spherical resonator of radius @ with a circular mouth or
aperture of semi-angle ¢, see Fig. 1. Spherical polar coordi-
nates » and 6 are used, where 8 =0 is the center of the
mouth, and no assumptions are made at this stage about the
size of the opening. The related problem of a cylindrical reso-
nator of infinite length with an opening in the form of an arc
may be treated by similar methods. The details are in Appen-
dix C. However, it is both convenient and instructive to first
formulate the scattering problem for a thin elastic cavity of
arbitrary shape with a general aperture, which we will do in
this section, proceeding to the specific case of interest in the
next section. The general method is based upon the use of a
polarization velocity across the aperture, which allows us to
reduce the issue to an integral equation over the same region.
Applications of this approach to other scattering problems
in acoustics and elasticity are discussed by Wickham.?

Let p denote the acoustic pressure in the fluid and w the
outward normal velocity on the shell. The pressure satisfies
the Helmholtz equation in the fluid, which is assumed to be
inviscid and occupying both the interior (r < a) and the exte-
rior (> a) of the resonator. Thus, at all points excepting
sources, the total pressure satisfies

V’p + k?p =0, in the fluid, (H

where k = w/c and c is the sound speed. The jump in pres-
sure across the shell is defined as

(p1(6) =p(a—0,0) —pla+0,0). (2)

The actual pressure jump across a shell of thickness 4 is
[p(a —h/2,0) — p(a+ h/2,60)]. However, if the acoustic
wavelength is much greater than # then it isjustifiable to take
the limit of #—0. The present analysis could be developed
with the jump for finite values of the shell thickness. How-
ever, for simplicity we neglect this effect as a higher order
contribution to the resonance.
The equations on the shell are

w=L "'[p],

0- |2
orl r = a, on the shell. 3)
. _, 6p

w= (i B
(ipw) or

The first condition defines the equation of motion of the
shell. The quantity L denotes an operator on w, which will
generally include supplementary equations for the insurface
compounds of the velocity of the shell. Specific examples of
L are presented in Appendix A, but for the moment we will
keep it general. The inverse operator L ~'is used specifical-
ly to emphasize that there are additional edge conditions that
must be satisfied at the edges of the shell, which defines the
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FIG. 1. The geometry of the spherical shell resonator of radius a with aper-
ture semiangle a. The numerical results in Sec. V consider the incident plane
wave shown.

mouth. The edge conditions are implicitly accounted for in
L ~'. In the present case, where the fluid is assumed to be
inviscid, the bending moment and shear must vanish at the
edges. The inverse operator L ~ ' is the Green’s operator for
the fluid-loaded finite shell, and could be represented as a
convolution integral operator with the kernel being the
Green’s function. If L were a scalar then it could be identi-
fied as the local shell impedance. The second condition in
(3) states that the radial velocity in the fluid is continuous
across the shell. The third condition stipulates that the fluid
and shell radial velocities are identical, where p is the fluid
mass density per unit volume. Across the mouth the pressure
and radial velocity must be continuous, implying the com-
plementary conditions

[p] =0

[3_[7] _o,[ "= @ onthemouth. (4)
or

We decompose the total solution into two parts:

p=p +p", (5a)

w=w® + wo, (5b)

Here, p‘® and w'® contain the incident fields and the re-

sponse from the complete shell, i.e., as if the mouth were not
there. The solution for the full shell satisfies

Pp'®
[ or ]_ ’ r=a, allé. (6)
(0)

w(O)(G) — (lpa)) —1 aP ,
ar

The effects of the mouth are described by the additional
fields p"’ and w'". The full-shell response is the driving
force for the additional pressure and shell vibration, which
solve, from Eqs. (3)-(6).

w" — L ~'[p'Y] =0 on the shell,

[p°1= — [p®], on the mouth, (7)

and

(@8]
)
4 all 6. (8)

e r=a,

W (8) = (ipw) ~' 2,
ar
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We now introduce the velocity polarization, W(8), de-
fined as

wWe)=w—L '[p]

:w(l)_L 7I[p(l)]_ (9)
It is clear from (7}, that the polarization vanishes for all
values of 8 except on the mouth, where from (7), we have

LW(8) — Lw'" = (10)

Equation (10) turns out to be the crucial relation which
must be solved for W(#) in order to calculate the response of
the shell cavity. First, however, we must use (9) to eliminate
Lw'" in favor of W(8), which requires using the acoustic
Green’s function associated with the particular geometry.
However, as we will see, there is no need to explicitly involve
the Green’s function for the spherical geometry considered
here. We note that the classical case of a rigid enclosure may
be considered by taking L to be a scalar and then letting
L — «. In general, the total radial velocity may be written

w(8) = W) + L ~'[pl. (11)

In the rigid limit W is just the radial velocity on the mouth,
but in general the polarization does not have this simple in-
terpretation.

[#”], on the mouth.

Il. APPLICATION TO THE SPHERICAL RESONATOR
A. The full shell solution

Before solving the integral equation for the shell with
the mouth present, we present the solution to (6) for the full
shell subject to an incident wave of the form

=Y C,j,(kr)P,(cos 9), (12)

n 0
where j,, are spherical Bessel functions of order n and P, are
the Legendre polynomials. The constants C,, in (12) define
the type of incident wave. For instance,
C, = (2n + 1)( — )" if the incident wave is the plane wave

p™ = e~ *r<»¥propagating directly into the mouth, see Fig.
1. It is easily shown by standard separation of variables that
-3 a2
n=0 Z !+ Z),
j.(kr), forr<a,
P 04 Jj. (ka
X P, (cos 0)y Jn (Xa) h,(kr), forr>a. (13)
h'(ka)

Here, A, are spherical Hankel functions of the first kind of
order n, and the scalars Z/ and Z |, are impedances associat-
ed with the fluid and shell,

zZ4 = Pe :
(ka)%j, (ka)h ', (ka)
The shell impedances are the eigenvalues of the shell opera-

tor L for normal velocity w = P, (cos ), i.e., they are de-
fined by

LP,(cos )

(14)

=Z,P,(cos ), (15)

for each n = 0,1,2,... . The existence of Legendre polynomi-
als as pure modes follows from the symmetry of the full
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sphere, although the precise values of Z; depend upon the
particular thin-shell theory used. A specific example will be
considered later (see Appendix A ). Finally, we note that the
p'® solution is quite distinct from the solution for the spheri-
cal shell which is empty, i.e., the pressure vanishes on the
interior surface. In that case the solution for r < a is irrele-
vant, but the solution in the exterior can be represented in
the same manner, but with the replacement

A Z;5 +ipc(j,(ka)/j, (ka) ]
zZ:+Z! Z‘ + ipc| h, (ka)/h ,,(ka)]

It is important to remember this difference, since most nu-
merical results in the literature are for empty shells,’ or for
shells loaded by water on the outside with air inside,'™"’

which are almost identical in their response to the empty
shell.

(16)

B. The kernel

Let the mouth be centered at the north pole, § =0 in
spherical polar coordinates, with extent 0<f<a. We as-
sume, for simplicity, that the total response possesses azi-
muthal symmetry about the direction & = 0. Then the radial
velocity due to the presence of the mouth may be expanded
as

z A, P,(cos ),
n-0

where A, are to be determined. The pressure in the fluid
follows from (8) as

w(8) = an

h, (kr)
) _ < h (ka) ’ ,
P :tpw"ZOA"P,,(cosa) i k) (18)
2 (k) , r<a.

It now follows from (2), (15), (17), (18) and the Wrons-
kian relation for spherical Bessel functions,'” that

= Zy+Z]
L—l[p(l)]= Z Z‘

wh — A, P, (cos ).

n=0

(19)

Substituting from (9) for the left member in (19) and then
taking inner products with P, (cos 8}, using the fact that
W(0) =0 for 9> a, gives'?

A,,:(n+ ) JW(G)
Zf-}—Z:

X P, (cos 8")sin 8" db. (20)
1t follows from (15), (17), and (20) that
= 1\ (Z3)?
L™ = (n + —)——— P, (cos )
,,§=:o 2 Z{; +Z3
Xf W(B8")P,(cosf')sin 0'db". (21)
0
We note the identity
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a0

LW(8) = Z (n + %)ZZP,, (cos 6)

n=0

Xf W(O8')P,(cos@')sin @' db’, (22)
0

which follows by expanding W as a Legendre series and then
using (15). Subtracting (21) from (22) and using (10) we
finally deduce the desired integral equation for W(48),

J W(6")K(6,60")sin8'd0’' = [p'V](8), 0<bO<a.
V]

(23)
The kernel K(8,0") = K(8',08) is
K66 =S K,P,(cos )P, (cos §"), (24)
n=20
where
1\ Z4Z;
K, = (n +—>_—. (25)
2/7Z1 +Z¢

Equation (23) is a Fredholm integral equation of the first
kind with a symmetric kernel. Note that the effective imped-
ance in K, is the result of the enclosed fluid and shell acting
in series, as one might expect. The integral equation for the
rigid cavity is of exactly the same form with W (60) = w(6),
the total velocity on the mouth. The kernel is the same with
the effective impedance given by the limit of Z, - «, i.e.,

K,=mn+ l)Z,,, rigid. (26)

C. An infinite set of equations

We wish to solve the integral equation (23) for the po-
larization W(8) on the mouth 0<f<ea. The polarization,
although it vanishes for 8 > o, may behave in a singular, but
integrable, manner as 8 —«. Examination of the shell equa-
tions in Appendix A shows that the singularity for Wis the
same as that for a rigid enclosure: W~ (a — 8) ~'*, f1a.
The singular part of W(8) can be removed in the following
manner. Expand the forcing in Eq. (23) in terms of Le-
gendre polynomials

i [pi]P, (cos 6),

n=0

(p1(8) = (27)
where the coefficients [p.”] for the incident wave of Eq.
(12) are

7] = [p.'],

(28)
I+ Z,
and [p{"® ] are the coefficients of the pressure jump for the
rigid sphere,

[p(rig) ] — - [Cn

S — 29
(ka)*h ' (ka) (29)

Now using (24) and the Mehler-Dirichlet integral represen-
tation for the Legendre polynomials'?

1
P, (cos @) = ‘/‘J- cos(n +3)u —  _du,

COS U — COS 6’

(30)
the integral equation (23) may be written as
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0= sin " W(8")

Bl

i K, P, (cos 0’)cos<n + %)u]d&’

n=20

— Z [p“)’]cos(n + %)u] .

n=0

(31

Because this holds for all 8, 0<0<a, it follows that

J sin ' W8’ )‘f J _
o \/m
[ z K, cos(n + ! )u cos(n + —

n=0

]da de’

= Z [PZ(”]COS('I +%)u, O<u <a. (32)

n=0
Note that (30) has been used again here. Now interchange
the order of integration in (32), to give

Lﬂ H(u,v)q(v)dv

= ;:;0 [PL‘”]COS(n + %)u O<u<a, (33)
with

H(uw) = é‘(o K, cos(n + %)u cos(n + %)v, (34)
and

gy =2 [ _HOsind 4, )

T Jv \Jcosv —cos

Equation (35) is an Abel integral equation for the determin-
ation of W. Its solution is

-1 d * g(u)sin u du
V2sin@ 40 Jo Jcos 0 — cos u

This can be further simplified as

W(8) =

(36)

1 g(6)
V2 Jcos @ —cos a

_LJ“ q'(u)du
V2 Jé Jcos @ — cos u

This form clearly shows the singular behavior of W at the
mouth edge, and implies that g is smoothly behaved and
bounded function over the entire month, including positions
arbitrarily close to the edges.

The transformed integral equation (33) is therefore
more desirable than the original integral equation (23) for
the polarization. We now look for a solution to ¢ in terms of a
complete orthogonal set of functions on [0,a]. We assume

W) =

(37)

q(v) = Z q, cOs mr%. (38)

n=20

Substitute this expansion into the integral equation (33),
then multiply by cos mmu/a and integrate over u. This gives
the algebraic system of equations
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Zo Z [z (39)
where
M m — 2 Klplnplm’ (40)
=0
and
[ eos(1+3Jooosnm
Pm =1 cos|!+—)vcosnr—dv
o 2 a
!4 Dsin(f + !
—(— 1) (+Dsin(l+Da (41)

(I+13) — (na/a)®

Notice that the matrix M is symmetric.

In summary, the main problem is to solve the system of
equations (40}, which amounts to inverting a truncated ver-
sion of the symmetric matrix M. We will see below that this
becomes relatively simple in the limit of low frequency and
small a, for which we need only consider the single term
M o, . The singular behavior of the velocity polarization at
the mouth edge has been removed by the introduction of the
function ¢(@), which is defined only on the mouth. Once
g(8), or equivalently its moments q,,, has been obtained, the
scattered field due to the mouth follows from (18) and (20).
The integral in (20) may be simplified, using (30), (35),
(38), and (41), as

f P,(cos YW(D)sin 0dO="3 Pt (42)
0 m—=0Q

The additional radiated pressure caused by the mouth may
then be written, from (18), (20), (25), and (42), as

o

p" =i(ka)’ Z(KJ;(ka) i pnmqm)
m=0

n=0

X h, (kr)P,(cos ). (43)

The radial displacement, both on the mouth and the shell,
follows from (18), (20), and (42). Finally, we note that the
polarization, which is nonzero only on the mouth and singu-
lar at the edges, may be expressed as

w(8) (44)

X ALAC)
n=0

where the functions W,{(0) are given by (37) with
q(8) = cos nm8 /. The integral in (37) may be reduced to
an infinite sum by the use of the identity,"*

1

:—
ycas 8@ —cos u

—\Z 3 P, (cos a)sin(m +—;—)u, u> 0. (45)

m-=0
We find
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W,(8)
_ 1 _cos nmé /a i P_(cos 6)
V2 Jm 2 &0
Ina sin(m + §)a
( a [(m +1)2— (mr/a)z]
sin(m+4 +nn/a)d  sin(m+4—nu/a)d
m+34 na/a B m+4—nr/a )

(46)

These functions clearly display the singular behavior at the
edges and thus they provide a suitable basis set for obtaining
a uniformly convergent series for the polarization. It is diffi-
cult to imagine how one might have predicted the form of the
W, (8) prior to performing the analysis in this section. On
the other hand, if we were to be content with a nonuniformly
convergent representation we could follow the method used
by Vinogradov et al.'* For the special case of a rigid shell the
latter authors proceed from the slightly different perspective
of dual series equations. Those are solved by noting that, in
the static limit ka—0, the integral operator in (23) has an
explicit inverse. It then follows that for all ka0, their dual
series equation or, equivalently, (23) may be recast as a cer-
tain Fredholm second-kind system of algebraic equations
whose “kernel matrix” appears as a perturbation about the
static solution. In deriving (39) we have set out to explicitly
obtain the singular behavior of W(8) and we conclude that
our algebraic system is simply the appropriate rearrange-
ment of that given in Ref. 14.

IIl. ASYMPTOTIC ANALYSIS OF THE RESONANCE

We now analyze the Helmholtz resonance in detail, tak-
ing advantage of the small parameters in the problem. By
assumption, the resonance is a low-frequency phenomenon,
so we assume that ka < 1. The corresponding asymptotic be-
havior of the acoustic impedances of Eq. (14) are as follows:

z5=ifS 3(1

ka

- %(ka)2 - é(ka)’ + ) . (47a)

. 3 3 i
Z{ = _ ipck —(1+——k 2y ik 1+---),
4 ipcka 10(a) 6(0)

(47b)
+ O((ka)?),

n>2. (47c)

Z1 = — ipcka ——=~
n{n+1)
Note that to leading order Z4 is a stiffness, whereas all the
other Z”, n>1, are mass-like. The low-frequency behavior
of the shell impedances follow from Appendix A as

2
Z5= lﬂ(—(l v Ly s ) (48a)
ka 7

2
Zi = — ljacka(i+;c—’;(ka)2 + ) s
n (1+vinpc
(48b)
A, —2
2o Sl e
ka 1]02[( (/l —14 ) B
+ O((ka)?), n>2. (48c)
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Note that Z | is purely mass-like, all the others are pure
stiffnesses. In the following we will not use these specific
forms of the shell impedances. The only thing required is
that the shell, whatever it may be, has the same low-frequen-
cy behavior for its impedances, in that all of them are stiff-
ness-like except for the n = 1 impedance, which is mass-like.
Also, we are not including any loss terms in the shell in this
analysis, so that the shell impedances are purely imaginary
with zero real parts.

We now make the further assumptions that (1) the
mouth opening is small, @ <1, and (2) the resonance is gov-
erned by the low-frequency behavior of the single element
M o, . This is equivalent to saying that the polarization near
resonance is dominated by the first term in its expansion.
The accuracy of this assumption is borne out by the numeri-
cal results. The exact form of My, follows from (25), (40),
and (41) as )

o A in? 1
M, — z VAN AR (n+2)a. 49)
o 24+ 7 n+1
Taking into account the asymptotic form of the impedances,
and anticipating the final dependence upon a, this may be
approximated as

My = Zhy [2 sin’ % RO(I —%E,(kaﬁ - %Ro(kaf)

_(_i_p(a) —%R,sin2%a>(ka)2] , (50)

where

L Zy o Ll

=, | e ——
Zok + Zik Ziy+Zy

Here, Z4, and Z ;. denote the leading order stiffness contri-

butions to Z} and Z 3, while Z{,, and Z },, are the leading

order mass-like parts of Z/ and Z | . The number R, depends

upon the next term in Z, and for the thin shell theory de-
scribed by (48a) it is

(31

R()

5 4
R,=R,+ (1 —R))———————. (52)
0 0 0 5(1+1}) Cﬁ
The real-valued function D(a) in (50) is
= sin’(n + Na
Da)=% - ¥
=1 a(n+1)
:(i—a)sina+sin2£. (53)
2 2

Details on the evaluation of the infinite sum may be found in
Appendix B. The form of M, in (50) is motivated by the
desire to find both the real resonance frequency and the
width of the resonance. Note that no explicit approxima-
tions have yet been made using the fact that « is also small.
We note that for the thin shell model of Appendix A,

2 —1
R() = (1 + i 3pc 5 ) ’
h 2(1 4+ v)pc,

1
Rl=<1+£_p_) , (54)
h 2p,
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where the parameters are defined in Appendix A. Hence,
both R,and R tend to zero for very thin shells (A /a—0)and
to unity for very stif and dense shells
(pc’/p.ct 0, p/p,—0).

Setting the real part of M ¢, to zero we see from (50) that
the resonance frequency occurs at k= k,, where

ko =VR,S/V5 . (55)

Here we have written the resonance frequency in classical
form, with S = 27a*(1 — cos @) the spherical area of the
mouth, ¥ = 4ra’/3 the cavity volume, and § is the “‘end
correction” for the aperture, which follows from (50) as

6 = .,a 1 .5 3
S=alD — R R, sin? — — — 51n2—a).
a( (a) + 5 oRo 3 5 7
(56)

Thus, the effect of the elastic stiffness is to increase the end
correction, while the mass contributions decreases it. How-
ever, it should be borne in mind that both effects are of sec-
ond order in a since D(a) = an/2 + O(a?) for small aper-
tures. The Q value of the resonance, defined in Eq. (60)
below, also follows from (50) as

Q=4n/R.k}V. (57)
These approximations have been deduced under the assump-
tion that ka is small at resonance, which is true only if « is

also small. We can now take the limiting forms for these
expressions for a €1, giving

T
Ja 2 .5 3
X[l+E(1—?R0R()+?Rl)+'”], (58a)
2
0=3(2) Ry (58b)

We have retained enough terms so that the expansion for the
resonance frequency agrees with the expansion found by
Rayleigh® for the rigid cavity, which follows by setting
R,=R,=1and R, = 0, yielding

koa = 3—“(1+-9£+-~>. (59)
2 207

The subsequent term, of order ¢, in the expansion for the

rigid cavity has been derived by Levine.*

Thus, to leading order the elasticity of the cavity de-
creases the resonance frequency and increases the ( value of
the resonance. Both results are in qualitative agreement with
the findings of Photiadis,” although he concluded that Q is
increased by a factor of R ; '/? relative to the rigid value
whereas we find the larger factor of R ;~ >~

Using the above definitions, 3 ,, may be expressed in
resonance form,

Mo =3 Zhcab[k} —k* — (/Q)k}] . (60)

The system of equations (39) can now be solved approxi-
mately by focusing on the # = m = 0 terms, to give

‘10:(‘1R0/M00)[P((J“g)] - (61)
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Also, at low frequency it follows from (29) that
[p§"®] = — C,, where C, = 1 for an incident plane wave of
unit amplitude. Combining these approximations with equa-
tion (43), the radiation associated with the Helmholtz reso-
nance becomes quite simply

(62)

p(l):co(i)-‘( Q —“I )eikr .
ko) \1— (k/ky)>—iQ —" ] kr

The small-opening approximations (58) have been used in
simplifying the numerator in (62).

It is instructive to recast this result within the context of
lumped parameters systems, which are commonly used for
Helmbholtz resonators. First, we need to find the net volume
flow near resonance. The radial velocity on the spherical
surface r = a is best expressed using equation (11) rather
than (17), since the latter does not capture the rapid vari-
ation near the mouth. Referring to (17) and (19), we have
L~ '[pl=(1 — R, ")A,, where A4, follows from (20),
(41), and (42) as A,~aRyq,/2. The radial velocity then
follows from equations (11), (44), and (46) as

o , on the mouth,
w(8) =1 2 Jcos § — cos a (63)
— (a/2)(1 — R,)qy, on the shell.

The shell motion is therefore out of phase with the fluid
motion in the mouth. The former is small in comparison
with the latter, the ratio of the average velocities being
a’(1 — R,)/4. However, the total fluxes are comparable, as
can be seen by integrating the velocities in (63) over the
respective surface areas and using the fact that « is small,
yielding

mward flux of shell

=1—R,

= (64)
outward flux of mouth

Define the net volume flux out of r<a per unit time as

= wds
= 2ma’aR g, (65)
We now rewrite Eq. (61) in the suggestive form
_ M
—pm L. (66)

T 2m(aaR,)?
Here we have used the low-frequency approximation
[P§™] = — p™. Equation (66) implies that the net vol-
ume flow is driven by the incident field. Using Egs. (55),
(57), and (60) this can be expressed in the form of a forced,
single degree of freedom damped oscillator,

— P = (Zyn + r4)iD, (67)
where
Zug = (—iCy) ™' — ivM,, (68a)
and
c, =RV y, P P (esp)
pc* R‘Z)S 41T

The parameter r is the radiation resistance for a monopole
source.'s It depends only upon the exterior acoustic medium
and is independent of the nature of the monopole, in this case
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an elastic Helmholtz resonator. The volume impedance of
the resonator, Z,, contains a stiffness and a mass, but no
dissipative term. One could add an internal dissipation to
Z,,» , but we neglect this here, preferring instead to focus on
the elasticity effects. The effective compliance, or capaci-
tance, C,, and the effective inertia, M ,, are both similar to
their standard forms for Helmholtz resonators,'® but modi-
fied in the present circumstances by the elasticity parameter
R,. Note that the capacitance is decreased relative to the
rigid value ¥ /pc’, but the mass is enhanced by a greater
amount, with the net result that the resonant frequency
w, = 1//C, M, is lowered. The increased effective stiffness,
1/C,, and effective mass, M ,, appear at first glance to be
counter to one’s expectations. However, it should be kept in
mind that the effective impedance Z,; refers to the net vol-
ume flow i of Eq. (65) and not the volume flow across the
mouth, which equals /R,> . Similarly, the enhanced
mass can be ascribed to the increase in kinetic energy asso-
ciated with the greater volume of fluid entrained in the out of
phase motions of the shell and the fluid in the mouth.

We conclude this section with an analysis of the scatter-
1ng cross section near resonance. The far-field monopole ra-
diation resulting from a compact volume source i is

(69)
Eliminate iv between (67) and (69), and use p*™ = C,, to get

PV = (— iwp/dmr)e™iv.

9 . tkr
y__ Ipck e

~ 0 .
Amr Zyg + 1y

(70)

It may be verified, using the identities of (67), that the scat-
tered pressures of Egs. (62) and (70) are identical near the
resonant frequency w, = ck,. It is interesting to note that
right at resonance,

PV =iCy(e™/kr), (71

which is independent of the shell elasticity. Hence the total
scattering cross section at resonance, ¢, which is dominated
by the field p'", is increased relative to the corresponding
rigid resonator. Using Eq. (58a), we see that

o/a" =R, . (72)

This contrasts with Photiadis™ finding of a reduction at reso-
nanceby a factor of R §. The identity (71) for the strength of
the scattered field at resonance can be found in Rayleigh’s
treatise of 1896.' Subsequent papers by Lamb'® and Ray-
leigh'” discuss its generalization to arbitrary multipole reso-
nators. Hence, the increase in scattering cross section is
purely a consequence of the lowered resonance frequency
and is completely independent of the intrinsic properties of
the resonator.

IV. NUMERICAL RESULTS AND DISCUSSION

Before considering an elastic resonator we first apply
the asymptotic theory of the previous section to the rigid
cavity. Ingard"® reported some measured frequencies of a
spherical cavity in air which may be compared with the pre-
dictions of Eq. (55). Ingard also provided comparisons with
two other approximate theories in which the velocity field
across the mouth was approximated as either uniform or
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TABLE 1. Resonance frequencies of a spherical resonator,a =0.09m, A =10~ * m. From Ingard (Ref. 18). The acoustic speed has been taken as ¢ = 340

m/s.

Measured Uniform Variable This

resonance distribution distribution paper, Eqs.
Hole frequency from Deviation from Deviation (56) and Deviation

diameter (cm) (Hz) Ref. 18 % Ref. 18 (%) (73) (%)

1.6 120 117 —25 123 2.5 121 0.64
2.05 135 134 —0.75 142 5.2 138.5 2.53
3.1 168 168 0 180 7.8 174 3.45
37 190 185.5 —2.27 202 6.3 192 0.92
382 195 189 -3 206 5.65 195 0.11
49 224 216 —3.57 242 7.4 225 0.36

with the distribution w = wy(cos 8 — cos a)'”?. The theo-
retical expressions use the well-known formula for the reso-
nance frequency of a rigid cavity

ko=~S/V(h+8), (73)

where S is the area of the mouth, ¥ the cavity volume, and
the “end correction” for the aperture neck. The thickness A
is also included here and may be understood as the “neck”
length. The numbers in Table I were calculated using Eq.
(73) with the end correction of Eq. (56). Also shown are the
experimental values reported by Ingard and the predictions
of the two theories discussed by Ingard, which differ in their
choice of an end correction 8. It can be argued from Table I
that the present theory is at least as good or better than the
commonly used formula based upon the velocity being uni-
form across the aperture'®?

The curves in Figs. 2-9 summarize extensive numerical
calculations for both rigid and elastic resonators. We have
focused on the far-field backscattered amplitude for plane
wave incidence as shown in Fig. 1. The far-field scattering
amplitude is defined as

f(a) = hm (2’.)(D—1)/Ze—ikr(p_Pim:),

(r— )

(74)

10
RIGID " Fexact
8 8
o=0.1 R ASYMPTOTIC
6 4
110)| )
4
0
I 0.2 03
9 |
0 1 2 2 2 2 1 n n 1 1 P 1 1 1
0 5 10 ka 15 20

FIG. 2. The backscatter from a rigid cavity with @ = 0.1. The dashed curve
shows the response of a rigid sphere for comparison. Note the low-frequency
Helmholtz resonance and the higher frequency cavity resonances. The aver-
age response at higher frequencies is decreased relative to the full sphere.
The insert compares the Helmholtz resonance of the exact theory with the
asymptotic approximation of Eq. (62) (dashed curve).

624 J. Acoust. Soc. Am., Vol. 93, No. 2, February 1993

where D =3 or 2 is the appropriate dimensionality for the
sphere or the cylinder (see Appendix C). Numerical results
are presented here for D = 3 only. The numerical computa-
tions required two truncations, at » = 300 for the Legendre
polynomial series, as in Egs. (13) and (18), and a truncation
for the series expansion (38) for the polarization. The latter
was taken as » = 12 and convergence checks were underta-
ken by comparing the results with smaller values, n = 8 or
n = 10. In all cases the solution was found to converge to the
degree of accuracy discernible in the graphs. These are re-
ferred to as the “‘exact” results, in contrast to some approxi-
mate calculations based upon the asymptotic results in the
previous section.

The acoustic backscatter from rigid cavities of different
aperturesisillustrated in Figs. 2-5. Several aspects are worth
noting. First, as expected, the Helmholtz resonance is the
largest feature for small values of «, see Figs. 2 and 3. Also,
as Fig. 2 shows, the resonance is well approximated by the
asymptotic theory of Sec. III for small apertures, although
higher-order discrepancies can be seen in Fig. 3 fora = 0.25.
In addition to the Helmholtz resonance there are obviously
higher frequency “internal” resonances excited, which grow
in significance as the aperture is increased. These modes are
a combination of the pure modes inside the full, rigid con-
tainer, modified by the access to the exterior region, of creep-
ing waves, whispering gallery modes, and edge diffraction.
Precise explanations for these are beyond the scope of this

6 -
RIGID
o =0.25 e I\ asvmeTaTIc
4 i G
If(0)] ¢ 2 S
2 b A
1 x’ M i
RN
: UL
0 5 10 o 15 20

FIG. 3. The same as Fig. 2 but for the larger aperture o = 0.25.
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FIG. 4. The rigid backscatter for @ = 7/6. Note the decrease in strength of
the Helmholtz resonance and the stronger cavity modes. The general linear
increase in the response with increasing frequency is suggestive of specular
reflection—in this case from the inside of the sphere.

paper, but we note that for @ = 7/6, for example, these high-
er frequency effects are comparable to or larger than the
Helmholtz resonance. Furthermore, the overall response for
larger mouths clearly shows the reflection of the plane wave
from the inner concave surface. This is evident from the
overall linear increase in amplitude as a function of ka, char-
acteristic of specular reflection. Thus, for @ = 7#/3, although
the Helmholtz resonance is the main feature for ka<l1, it is
quickly dominated by high-frequency effects for ka > 1. In
contrast, the average high frequency response (ka>3) for
o = 0.1 in Fig. 2 appears to be consistently less than that for
the full sphere. The hole in the sphere thus allows energy to
enter the sphere, in the process causing a reduction in the
specular return.

The remaining numerical results in Figs. 6-9 are for
steel resonators in water, with ¢ = 1482.5 m/s, p = 1000
kg/m', ¢, =5431 m/s, p,=7700 kg/m’, v=0.29,
a/h = 90, and the same range of values for & considered in
Figs. 2-5. No internal dissipation is included in the compu-
tations, the only loss mechanism is from radiation.

In comparing Figs. 2 and 6t is clear that the Helmholtz
resonance frequency has been decreased and the response at

or RIGID 01.7\1:/3

8r 0
e
10) ) A ﬂ\‘{\

4t

FIG. 5. The rigid sphere with @ = 7/3. The Helmholtz resonance has virtu-
ally disappeared in comparison with the cavity modes, while the specular
reflection eflect is more pronounced.
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FIG. 6. The backscatter from a thin steel shell in water, a/h = 90, @ = 0.1.
The two dominant shell modes near Aa = 1 correspond ton =2 and n =3
in Table 11, and their positions are accurately predicted using the conversion
ka = 3.663 ). The dashed curve showing the full shell response of Eq. (13)
is difficult to distinguish, but may be more clearly seen in Figs. 7, 8, and 9.
The insert compares the exact computations with the asymptotic theory of
Eq. (62).

resonance is larger, with both effects accurately described by
the asymptotic theory of the previous section. However,
there are more striking differences at higher frequencies,
ka = O(1), where the shell modes dominate the response of
the elastic resonator. In particular, the full shell response
displays strong resonances near ka = 1 and these resonances
are more significant than the Helmholtz resonance itself, see
Figs. 6 and 7. These relatively low-frequency structural
modes are associated with the lower of the two branches
predicted by ignoring the bending effects and keeping only
the membrane effects in the thin shell theory.'® The effect of
fluid loading on these modes has been examined by Junger'”
and Strifors and Gaunaurd'' for the case of one-sided load-
ing from the exterior, but not for symmetric loading on both
sides, which is the case of relevance to the Helmholtz resona-
tor. We note that Strifors and Gaunaurd'® have provided
numerical results for the response of water-filled shells in
water, but they do not discuss the quantitative nature of the
low frequency resonances. In general, the fluid-loaded mod-
al frequency of order # is given by the smaller root of the
equation

Im(Z: +Z,) =0, (75)

where 2" is the fluid loading impedance. Three cases may be

12
10F a=0.25

8
1o i
6

2F ) .
i MWW TR e
2

4 ka 6 8 10

FIG. 7. The same steel shell of Fig. 6 but for the large aperture = 0.25.
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FIG. 8. The same as Fig. 7 but for a = /6.

distinguished: (i) no loading, for which 2,, = 0; (ii) one-
§ided loading on the exterior surface only,
Z, =ipch, (ka)/h, (ka) A[see Eq. (16)]; and two-sided
loading by the same fluid, Z, = Z7 of (14). At the frequen-
cy range of interest the bending effects in the shell impedance
may be ignored. Hence, using Eq. (A8) with 8 = 0, the fre-
quency equation may be reduced to a transcendental equa-
tion in O (Refs. 19 and 20),

VA +794,) —Q[1+3v+ A, +h,(4, —1+v)]
+ (1 —-v)(4, -2)=0. (76)

The quantities €}, 7, and 4,, are defined in Appendix A, and
we have introduced dimensionless radiation loss and iner-
tance terms by Z, = pc(?, — ika,,). Table Il summarizes
the results for the three cases. In general, the modal frequen-
cies decrease as the fluid inertial loading is increased. The
radiation loss 7, is also included in Table IT as it provides an
estimate of the width of the associated resonance.

Is it possible for the Helmholtz resonance to coincide
with the lowest of the structural resonances? In order to
answer this it helps to focus on the dependence of both reso-
nance frequencies on the same parameter, which we take as
the fluid loading parameter 7 of Eq. (A3). The lowest struc-
tural frequency, () = €},, where §) = kac/c,, can be reasona-
bly approximated from (76) by using the low-frequency esti-
mate of 1, ~5/6 from (47a). At the same time, we assume 7
is large, in fact 7 = 11.69 in Table II. Then we find

2T 14 3v+ (5+v)59/6
This yields ,~=0.2483 as compared to ), = 0.2423 from

Table II. At the same time, the Helmholtz resonance is at
Qur = koac/cp, which follows from (51) and (58a) as

, _af m 2 _) a
QHp‘w1r(l+v+3c2 ’
It is apparent from Eqs. (77) and (78) that both frequencies
decrease as 7 increases. However, the Helmholtz resonance
frequency is always much less than the lowest structural fre-
quency because a/7 € 1 by assumption. Hence, the two reso-
nance phenomena will always be distinct and the answer to
the above question is in the negative. These conclusions are
consistent with the results of Figs. 6-9, which also show how
the Helmholtz resonance disappears as a becomes larger.

(77)

(78)
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FIG. 9. The same as Fig. 7 but for a = 7/3.

Another obvious feature of Figs. 6-9 is the appearance
of many sharp structural resonances. The first six or so of
these for 1 <ka<2 can be associated with the higher modes of
Table I1. The other modes for ka>2, roughly, do not corre-
spond to either solution branch of (76) but appear to be
flexural waves on the shell. This conjecture is supported by
the trend k,,a ~m? for these frequencies, which one would
expect for higher-order standing waves of flexural type. We
note that as the mouth size is increased the membrane modes
become less significant in comparison with the bending
modes. Also, the membrane modes are shifted to higher fre-
quencies, which can be thought of in terms of the “effective”
shell becoming smaller. We note that the flexural modes are
all subsonic, in fact the coincidence frequency for this shell is
at ka>40. Also, the specular reflection effect, so apparent
for the rigid cavity at larger values of «, is missing in Figs. 8
and 9. This is simply explained by the small reflection coeffi-
cient for a thin steel plate in water at these frequencies.

V. CONCLUSIONS

A general theory for acoustic scattering from elastic
Helmholtz resonators has been described and applied to the
specif{c case of thin spherical shells with circular apertures.
The resulting integral equation can be solved numerically
and is amenable to asymptotic analysis for small mouth

TABLE II. The lower branch of the modal frequencies of a fluid-loaded
spherical steel shell in water, a/ft = 90.

Mode

order In pacuo Loading on exterior only Loading on both sides
n Q, 0, F, 0, ¥,
1 0 0 0 0 0
2 0.7049 0.3364 0.03742 0.2423 0.00561
3 0.8338 0.4228 0.00740 03118 0.00071
4 0.8842 0.4829 0.00084 0.3611 0.00005
5 0.9089 0.5277 0.00006 0.4001 0
6 0.9228 0.5631 0 0.4326 0
7 0.9315 0.5923 0 0.4606 0
8 0.9372 0.6169 0 0.4851 0
9 0.9412 0.6382 [} 0.5069 0
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sizes. The asymptotic results indicate that wall elasticity re-
duces the resonance frequency by a factor of R &/? in com-
parison with a rigid cavity, where Ry <1 is defined in Eq.
(51). Both the Q value of the resonance and the scattering
cross section are enhanced by the wall compliance, by fac-
torsof R ; ¥?and R ; ', respectively. The increased scatter-
ing strength is a consequence of the lowered resonance fre-
quency and is independent of the type of thin shell theory
used. Numerical results for thin steel shells in water indicate
that the asymptotic theory is adequate for describing the
resonance behavior for small apertures, and for larger aper-
tures the Helmholtz resonance is relatively insignificant in
comparison with structural modes.
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APPENDIX A: SPHERICAL SHELL THEORIES

Define the shell parameters

B*=h?*/124% (Al)
Here, 4 and a are the shell thickness and radius, respectively,
with A €a by assumption. The plate speed ¢, is

c2=E/p (1=, (A2)

where E and v are the Young's modulus and Poisson’s ratio,
and p, the density of the shell. The fluid loading on the shell
may be characterized by the fluid loading parameter

n =pa/p.h. (A3)

It is assumed for simplicity that there is no dependence
upon the azimuthal angle ¢. Only one in-surface component
is zero, the one associated with @ and we denote it by u. Let
L =cos 6, then the operator L of (3) for the spherical shell is
defined by

Q) = wa/c,.

— ip.hc’
Lw=—"-*%
wa’

X(Qlw—Z(l +Vw—-BVi (Vi + 1 —vIw

(A4)

+(1+V);7(\“_H2u))’

where

d d
Vi=—o(1 —p)—.
g d,u( 'U)d,u

The subsidiary equation for u is

2
(Q2+1 Wut+ 17 52
7]

x (V1 —p'u)—(1+v)\}1—#'2—w=0-
3

(A5)

(A6)
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These are the shell equations of Green and Zerna®' applied
to a sphere. The equations are similar to those of Junger and
Feit, Eqs. (7.102), (7.103) et seq., which contain addi-
tional terms proportional to 32. If we put w = P, (cos 6),
then it is a simple matter to show that the impedance defined
by Eq. (15) is

- 2
A =E.CL(2(1 +W) =0+ B, (A4, —14V)
ka nc?

(AT)

A, (1 4+ v)* )
A, —14+v—0)"
where 1, = n(n + 1). The effect of including the higher-

order terms in the Junger and Feit equations® is that Z
changes to

. 2
z: =ﬂc_f;(z(1 Fv) — B, — 1+ )
ka nc’

(A8)

A1 +v—-pB1 —v—/l,,)]l)
A, =1+ +8H -0 ]
Whether Green and Zerna's or Junger and Feit's equations

are used, the tangential velocity field is of the form
u = B, sin P (cos @). In the latter case,
1+v—B*(1—v—A4,)
P+ -v—21,)0+8%"
and for Green and Zerna’s theory B, is the same but with the
32 terms eliminated. The impedance function (A8) was
used in the numerical computations discussed in Sec. 1V,

although it was found that (A7) gaveidentical curves for the
cases considered.

(A9)

"

APPENDIX B: AN INFINITE SUM
The infinite sum in (53) may be determined as follows.
= sin*(n + Da
= on(nr 1)

1 & 1
—?,,.(n(n+1) —n(n+1)

cos(2n + l)a)

_ i[] & (cos(Zn + 1)a  cos(2n + l)a)]
2 n n n+1

=1

1 = 1
=—1—cosa+ —[cos(2n — 1)
2( nzl ”[ (

—cos{2n + 1)a])

= sin 2na
Z .

:sinZ%—l-sina (B1)

n=1 n

Then (53) follows using Eq. (1.448.1) of Ref. 22 for the
infinite sum in (B1).
APPENDIX C: THE CYLINDRICAL RESONATOR

The solution to (6) for the full shell subject to an inci-
dent wave of the form

p= Y C,J,(kr)cos no, (ChH
n=10
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is now
‘ o A
(0): me C n
PP =p "ZO " 1z
J, (kr),
xcos ndq J! (ka)
H' (ka)

Here, H, are Hankel functions of the first kind of order »
and J, are Bessel functions. The fluid impedances are

for r<a,

(C2)

H, (kr), forrya.

7t = e , (c3)
mkal ] (ka)H | (ka)
and the solid impedances are the eigenvalues of
L cosnf@ =Z* cos nb, (C4)

for each n = 0,1,2,... . Again, the values of Z*, depend upon
the shell theory used. Finally, we note that for the plane
wave incidence traveling directly towards the mouth,
p™ =e %% the constants in (C1) are C, = 2( — i)".
The mouth now has semi-angle a, and is defined by
— a <0 <a, where — 7 <8< is the polar angle about the
center. The general solution may be split into the sum of
parts which are symmetric and antisymmetric about the di-
rection 8 = 0. We will only discuss the symmetric solution
here, since it yields the Helmholtz resonance behavior. The
antisymmetric solution could be handled in a similar manner
but it would not exhibit the same resonance. The symmetric
part of the radial velocity caused by the presence of the
mouth can be expressed as

@«

w8 = A, cos nb. (C5)
n=0
The fluid pressure then follows from (8) as
H, (kr)
—,, r>g,
o o kH ! (ka)
" =ipw ”ZOA,, cos n8 7 (kr) (C6)
_— r<a.
kJ, (ka)

The procedure is obviously very similar to that for a spheri-
cal shell. We will not repeat the steps analogous to (19)-
(22), except to note that the coefficients 4, may be ex-
pressed in terms of the symmetric polarization
W)= W(—0)as

B
€ H Z H

A, =L "
T Z,+Z;

f W(6')cos nb’ db’, (CT
Q

where €, = 1 and ¢, = 2, n> 0. The resulting integral equa-
tion for W(8) over 0<8<a becomes

f WK (6.6)d6" = [p©](6), 0<f<a. (C8)
0
The kernel K(6,6"') = K(6',8) is now

K(68,6') = i K, cos nf cos nf’, (C9)

n=0

where
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. Z1Z,
T ZL 4+ Z5

€
K, =

(C10)
The derivation of the matrix equations is slightly differ-
ent than for the spherical case. We begin by assuming that
the polarization may be represented as
_96)
Jaz =67
This form contains the correct singularity near the edge, and
means that the function ¢(#) should remain bounded for all
6, — a<f<a. Because we are only considering the symme-
try problem, the range of interest is 0< #<a. Comparing Eqgs.
(37) and (C11) it is clear that the function g(8) bears some

similarity to the function for the spherical case.
With regard to (C8), we note that

W) = (CI1)

faW(H')cos(nH')dH’
0

w/2
:f g{a cos ¢)cos(na cos ¢)dp. (C12)
0

This suggests we try an expansion of g(a cos ¢) as a cosine
series in ¢, or since ¢ = cos ™' (¢ /a), we assume

q(68) = i q, cos(Zn cos ™! i) .

n=20 a

(C13)

Note that cos(2n cos = ' x) = T,, (x), which are the Cheby-
shev polynomials.'> We have omitted the Chebyshev poly-
nomials of odd order from the sum (C13) as these all have
discontinuous slopes at # = 0. This makes them inadmissible
because ¢(8), being symmetric, should have zero slope at
¢ = 0. Substituting the expansion (C13) into (C8) and
(C12) reduces the integral equation to

i K, cos né i Pomm = [pP1(6), 0<b<a,

n=20 m=0Q
(C14)
where now'?
T/2
P = f cos(2nd)cos(la cos ¢)dd
0
= (= 1D)"(7/2)],, (la). (C15)
We now expand the right member of (C14) as
Pl = S (C16)

[p(” Jcos né.
n=0
Next, multiply both sides of (C14) by T,,, (8 /a)/a® — 6
and integrate over the mouth. This results in a system of
linear equations for the unknowns ¢,, which is identical to
the spherical case, i.e., Egs. (39). The symmetric matrix M
is again given by (40), where now p,, are defined in Eq.
(C15). We note that the coefficients [p{>’ ] for the incident
wave of Eq. (C1) are of the same form as those for the
sphere, Eq. (28), where the rigid coefficients are now

—c,

—_— (C17)
wkaH ! (ka)

[P2¥] =

We note that the singular integral equation for the cylindri-
cal resonator is similar to one obtained by Yang and Nor-
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ris™ in analyzing the scattering from a partially bonded fiber
in a matrix. The same type of Helmholtz resonance occurs in
that problem, but with different interpretations on the effec-
tive inertia and stiffness. Further discussion of the fiber reso-
nance can be found in Refs. 24 and 25.

The cylindrical shell equations are>”
2d*w du

— , (C18
do* d6) (C18)

— ip.hc’

Lw= 5 p(sz—w—ﬂ

wa

where u is the tangential velocity in the direction of §and the
other parameters are defined in Appendix A. The subsidiary
equation for u is

d’u  dw
a0t~
The eigenvalue Z3, of Eq. (C4) can then be easily deter-
mined as

0%+

(C19)

H2

s __ _—_tp_c i:_( 2_ _n n2 4)
VA o 17c20 l+n2—02 Bnt). (C20)

The asymptotic analysis of the resonance follows the
same lines as that of the sphere. The major details are sum-
marized here. The impedances follow from Eqs. (C3) and

(C20) as

Z{;:tﬁ
ka

><2(1 — (ka)’A(ka) — i%(/m)2 + 0((kﬂ)2)).

(C21a)
zZ = —ipcka—2—+ HN(ka)?), n>1, (C21b)
n
where
A(ka) =}[1 — 4y — 4 log(ka/2)], (C22)
y is Euler’s constant, and
R pC cf, 1 2
Zi=it—H—-5——(ka)"+--), (C23a)
ka\nc® 7
2
zs :iﬂc_[-c—"’-/ﬁn‘—-l—(l +i7)(ka)2
ka Lnc* n n*
+0((ka)4)], n>1 (C23b)

Applying these approximations we find

Moy = (7/2)D(@) Z{ [F(ka,a) — (ka)> (1 +iQ ~ 1],

(C24)
where
F(ka,a) = R,
2D(a)
2
x[l ~ dka(a1 —R.,)%+R(,A(ka))] :
c
’ (C252)
BD(a)
_ 80() C25b
Q mR2 ( )
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D(a) = z_ﬂ

n=1 n

(C25¢)

Quantities like Z/, have the same meaning as before, al-
though different values, and R, is again defined by Eq. (51).
The main difference compared with the spherical resonator
is the presence of the logarithmic term. Also, the sum D(«a)
cannot be reduced to a simple expression, but it can be as-
ymptotically approximated for small a,**

D(a) =log(2/a) + O(a?), a<l. (C26)

The resonance frequency is given by the root of
F(ka,a) — (ka)? = 0, which simplifies for small apertures
to
2 1 R
2log =—=— 4+ -2
B a (ka)? 2
1 k 2
x(r—++0g22) + (1= RS

P

(27

Norris and Yang?* obtained a formula for the resonance
frequency of a fiber partially attached to an elastic matrix,
and their Eq. (34) agrees with (C27) in the rigid limit
(R, = 1). Taking the leading order approximation to the
root of (C27), the resonance frequency and the Q value may
be expressed as

[R,S 8
k= [=2 Q= ,
¢ Ve Q RV

where S = 2aa and ¥V = 7a® are the two-dimensional ana-
logs of the aperture area and cavity volume, and the “end
correction” is

b= (2/m)aaD(a)
=~ (2/m)aa log (2/a). (C29)

Finally, we note that the scattered field near resonance can
be approximated as

iQ 'C Hy(kr)

(C28)

= . (C30)
F(kaa) — (ka)>(1 +iQ ")
Hence, right at the resonance the response is
PV = — CoHy(kr), (C31)

which is similar in its simplicity to the three-dimensional
result (71).
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