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Weak elastic anisotropy and the tube wave

Andrew N. Norris* and Bikash K. Sinhat

polarization in the presence of azimuthal anisotropy, and
ABSTRACT concluded that the degree of polarization eccentricity was
not significant. Nicoletis et al. (1990) used a combination of
analytical and numerical methods to compute the tube-wave
speed in anisotropic formations. Their analysis was based
upon the fact (White, 1983) that the effect of the formation on
tube-wave speed may be related to a purely static deforma-
tion in the formation. This observation is also useful in
determining the influence of other parameters such as bore-
hole eccentricity on tube-wave speed. Thus, Nicoletis et al.
(1990) obtained an analytical expression for tube-wave speed
in a borehole of elliptical cross section, while the more
general formula for a borehole of arbitrary shape derived by
Norris (1990) indicates that in an isotropic formation, the
tube-wave speed is greatest for a circular bore. There has
also been some recent work on the effect of anisotropy on
the flexural and higher order modes in a borehole (Ellefsen et
al., 1990, 19914, b).
In this paper we examine the influence of anisotropy on
tube-wave speed. We use a perturbation method that as-
INTRODUCTION sumes that the anisotropy is weak. The method first esti-
mates the speed of plane waves in an infinite homogeneous
It is well recognized that sedimentary rocks are not, in @nisotropic medium. This application is simpler than the
general, elastically isotropic, but suffer from some degree oftube-wave speed analysigut it illustrates the general
anisotropy. Anisotropy may arise from intrinsic microstruc- Method and also allows us to introduce some anisotropy
tural effects such as layering of thin zones, or from local Parameters used later. The main result of the paper is
biaxial or triaxial tectonic stresses within the formation. described and illustrated for a transversely isotropic forma-
Thomsen (1986) provided a useful review of the measuredtion with its axis of symmetry tilted with respect to the
anisotropy in many different rock types; based on the data,borehole axis. Some implications of the tube-wave speed
he concluded that most crustal rocks display weak anisot-result are also discussed. Finally, we illustrate the applica-
ropy. The objectives of this paper are to examine the effecttion of this inversion prqced_ure for determlnlng_the glastlc
of weak anisotropy on the limiting low-frequency speed of constants of a Tl formation in terms of the quasi-static tube
the symmetric Stoneley mode, or the tube-wave speed, andvave and three head-wave speeds, assuming that the bore-
to propose some possible uses for the resulting approximatd'ole inclination with respect to the Tl symmetry axis is
formula. known.
In addition to Thomsen (1986), several other authors have
discussed the implications of anisotropy for elastic wave WAVE SPEEDS IN THE PRESENCE OF ANISOTROPY
propagation in applications relevant to exploration geophys-
ics. Leveille and Seriff (1989) examined the possibility that  Consider an elastic solid of mass denpitgnd arbitrary
the tube wave in a borehole might have a preferential anisotropy, i.e., it may have as many as 21 independent

Tube-wave speed in the presence of a weakly aniso-
tropic formation can be expressed in terms of an
effective shear modulus for an equivalent isotrop|
formation. When combined with expressions for th
speeds of thesH- and quasi-SV-waves along the
borehole axis, a simple inversion procedure can pe
obtained to determine three of the five elasticities of a
transversely isotropic (Tl) formation tilted at some
known angle with respect to the borehole axis. Subse-
quently, a fourth combination of elastic moduli can he
estimated from the expression for igP-wave speed
along the borehole axis. The possibility of determining
all five elasticities of a Tl formation based on an
assumed correlation between two anisotropy parame-
ters is discussed.

® O

Manuscript received by the Editor April 28, 1992; revised manuscript received November 16, 1992.
*Deﬁt. of Mechanical and Aeroslpace Engineering, Rutgers University, Piscataway, NJ 088550909.
FSchlumberger-Doll Research, Old Quarry Road, Ridgefield, CT 06877-4108.

© 1993 Society of Exploration Geophysicists. All rights reserved.

1091



1092 Norris and Sinha

elasticity parameters. The equations of motiorcietular Chy Cpn Cz 0 0 0
frequencyn are Cp, Cy Cpis 0 0 0
4 C= Ciz Ciz Ciz 0 0 0
R Cijkfekf + p(OZM,' = 0. (1) 0 0 0 Cus 0 (VB
9x; 0 0 0 0 Cu4 O
Here u; are the components of displacement; 1, 2, 3, 0 0 0 0 0 Ces

and the summation convention on repeated subscripts i

. Swhere C¢¢ = (Cy; — C12)/2. It is more convenient to work
assumed. The strain components eje= (du;/dx; + 6 = (Cu 12)

) 3 ] with the two moduliC;; andCy44, and three dimensionless
a“f/axi)/z’. and the elastic moduc'y, satisfy the; general anisotropy parameterg, n andy, each of which vanishes
symmetriesCyy, = Cjixe and Cyp = Cyey, Which are when the medium is isotropic,

consequences of the symmetry of the stress tensor and the

assumed existence of a strain energy function. The moduli  C;; - C33 Ci3 +2Cy4 — C33 Ces — Cuy
can be succinctly represented C;;, where the suffixed Y, » M= C YT o0
andJ run from 1 to 6, with i I according to 11, 22, 33, 23, 3 3 44

31,12 1,2,3,4,5, 6. 3)

Bulk waves The parametersandy were introduced by Thomsen (1986);
however,n is close to but not exactly the same as Thom-

Ignoring the borehole problem for the moment, we con- sen’s third anisotropy parametsr The difference is dis-

sider the propagation of plane waves in the formation, which cussed below.

for simplicity is assumed to be spatially uniform. Substitut- The three wavespeeds in a Tl medium can be expressed in

ing the plane-wave solution; = a; exp (iwn;x;/v) into closed form (Rudzki, 1911; Musgrave, 1970). For instance, if

equation (1) where n is the unit direction of propagation, andn = (sin 8, 0, cos#), then the exact expression for the

then multiplying bya;, where a is the unit polarization SH-phase speed is

vector, gives an explicit expression for the phase speed v ) .,

pvsg = Cag(1 + 2y sin” 6). (4)

2 = . . .
pu” = a;arCkenine. (2) The identity in equation (4) follows directly from equation (2)

The apparent simplicity of this expression is tempered by theand the fact that thSH polarization isa = (0, 1, 0). The
difficulty of determining the polarization a, which requires formulas for theqSV and gP speeds are slightly more
solving a 3 x 3 matrix eigenvalue problem, also known as the complicated, but well known (Thomsen, 1986). Since the
Kelvin-Christoffel equation (Musgrave, 1970). However, if ¢SV andgP polarizations must be in the » x; plane, both
the anisotropy isveakthen neither the eigenvalues nor the may be expressed in the fof, , 0, a ;). Substituting into
eigenvectors deviate much from their underlying isotropic equation (2) yields

counterparts. In particular, the polarization in equation (2)

2 _ . 2
can be approximated by the equivalent isotropic polariza-  P7 Caslay sin 6 + as cos 6)

tion. ) o . o + Cy44(ay cos 8 — aj sin (-))2

A more rigorous justification for this approximation may
be developed by writing the exact equations (1) in a pertur- + 2C33a, sin 0 (ea; sin 6 + maz cos 8).  (5)
bative form, with the leading order operator being the . . e
isotropic equations and the perturbed part invohC e — If the anisotropy isweak, the gP polarization is almost

C® where G, are the isotropic moduli. One can then use (sin 8, 0, cosb), while theqSVis approximately (cos, O,

the artillery of formal asymptotic expansions (Courant and “S'" 0). The discussion apove _|mpl|es that if these _are.used
Hilbert, 1962) to develop an asymptotic series for both v and N €quation(s), the result is a first-order approximationein

a in terms of the “small parameteCi;, — C{% = a. This andn to the phase speeds,

analysis indicates that the first correction to the isotropic
speed is on the order &; while the change in a is of order
«?. Hence, the first correction to the isotropic speed can be 5 Cs; . )

obtained from equation (2) using the isotropic polarization pugsy = Cagll +2 E—(E —m) sin” § cos” 0. (7)
vector. This simple result is complicated by the degeneracy 4

of the shear wave in isotropic solids. The degeneracy is Because, v, andy are small, one could use the approx-
broken by anisotropy, and it is often necessary to find the imation (1 + x)2 = 1 + x/2 for small x to get reasonable
correct vector basis for the shear waves before using equaapproximationsto vgy, v,p andv,sy in weakly anisotropic

tion (2). Generally, this is not a major problem, and in fact, TI media. The resulting expression fog;, agrees with

the appropriate directions are known for transverse isot-equation (16¢) of Thomsen (1986), but those vz and
ropy, i.e., theSH andgqSV directions are (not normalized) wv,gy do not agree with the corresponding formulas in
m A n and n A (m A n), respectively, where m is the Thomsen, equations (16a) and (16b). Perfect agreement is

puop = C33[1 + 2¢ sin® 0 + 27 sin® 0 cos? 6],  (6)

symmetry axis and the prefy stands for quasi. obtained if the substitutioy — & is made, where
Consider a transversely isotropic (TI) material with axis of c 2_ 2
symmetry coincident with thesxlirection. The five inde- =( 13 + Caa)™= (G5 = Cud)

pendent moduli arCy, , Cs3, Cy3, C44 andCeq, such that 2C33 (C33 — Cua) ' ®)
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Thomsen (1986) derived the approximate wavespeeds for theStoneley and flexural waves in anisotropic formations. The
TI medium by explicit expansion of the known expressions modal integrals in equation (9) are generally very complicated.
for the speeds and was led by this route to the nondimen-However, at very low frequencies some modes have particu-
sional parameter 6. It is clear from the algebraic identity  larly simple spatial dependence and the integrals can be eval-
uated explicitly. For example, the tube or Stoneley mode, the

5 = m flexural mode, and the torsional mode, all behave in a relatively
=n+—", . ; S A
Cs; simple manner in the quasi-static limit. The limiting speeds of
2 cu” 1 the tube and torsional modes in an anisotropic formation are
44

considered in the next section, but discussion of the low-

thaty is slightly smaller thasi, but the two parameters are frequency behavior of the flexural mode in the presence of

interchangeable in the limit of weak anisotropy; their differ- anisotropy is deferred to a separate paper.

ence is of second order. Hence, the differences between

these results and Thornsen’s are of second order in the QUASI-STATIC TUBE- AND TORSIONAL-WAVE SPEEDS

anisotropy. In his paper, Thomsen (1986) demonstrated thatrne tpe-wave speed

d (and hencen) is of critical significance to exploration

geophysics, but that it iSan awkward combination of Consider a circular boreholr< a in cylindrical coordi-

elastic parameters.” Because of its simpler form [compare nates(r, ¢, x3;), which is occupied by an inviscid fluid of

equations (3) and (S)], we suggest thatther thars be used densityp, and bulk moduluk, = ps vfz , Wherev, is the

as a measure of anisotropy. fluid-wave speed. The formation> a, is an arbitrary aniso-

tropic solid, and for simplicity is assumed to be spatially

uniform. The tube wave is the quasistatic or limiting low-
The same type of perturbative analysis may be performedfreque.nCy fqrm of _the azimuthally ;ymmetric S_toneley wave

for the modes of a borehole. The major difference between mode in an isotropic formation (White, 1983), with speed

this situation and that of plane waves in an infinite homoge- K\ ~172

neous medium is that borehole modes are complicated T = vf (1 + —) , (10)

functions of position and are also highly dispersive. No b

particular type of mode is assumed at this stage, and in facwherey is the formation shear modulus. The displacement

the analysis below includes the possibility of a nonuniform field in the formation is proportional to the plane strain dis-

formation, although it is assumed that all material parame- placement that results from an applied uniform pressurep,say

Borehole modes

ters are invariant with respect to the axial direction. onr = a. The static displacement fac a is (White, 1983)
The equations of motion (1) are valid at every point in the

formation. Similar equations can be written for the motion in _pa‘ xa —1 2 u3=0

the fluid in the bore, supplemented by the continuity condi- Uo = 2 207 1,2, u3=0. (11)

tions at the fluid/solid interface for pressure and normal o . o
particle velocity. Amodeis defined as a solution of these | Although this displacement has a simple form, substituting
equations that propagates in the direction of the boreholeit directly 'PIEO equation (9) leads to some difficulty, since the
axis and decays exponentially away from the axis. Let usintégralf;=; pu;u; dS becomes unbounded Re— . This
assume that u of equation (1) is a particular mode at frequencyProblem is solved in Appendix A where it is shown that the
. Multiply equation (1) by; and then integrate the resulting Proper form for the integral in the denominator of
identity over an arbitrary plane perpendicular to the borehole €guation (9) is

axis. The integral involvinCy, may be expressed in a more plmra’

symmetric form by integrating by parts and using the decay far f puiu; dS = ———
from the bore and the continuity conditions at the fluid/solid o prurl
interface. We eventually deduce that

(12)

The apparent blowup of the integral is due to the fact that it
is of orden/w? in the quasistatic limit. We can now calculate

f Cikeeijere dS the shift in frequency for an arbitrary perturbation in the
w?= ) formation elastic moduli, i.e., for arbitraAC,;, . Combin-

’ ing equations (9), (11), and (12), and eliminating the arbitrary

f pu;u; ds parameteip, which has no influence on the answer, we can

arrive at a formula foAw? for fixed axial wavenumbek.

where the integration is over the entire plane. This identity is Alternatively, the shift in the tube-wave speed is
the analog of equation (2) and is our starting point for a 22
calculation of the mode speed in the presence of anisotropy. Avr prvrd

In the same way that equation (2) is correct to first order
in the presence of weak anisotropy if the isotropic polariza-
tion vector a is used, so it can also be demonstrated usingvhere the strain componerk,; are
formal asymptotic methods that equation (9) is also correct
to leading order when the isotropimodeis used in the _ _,XaXp _ = =
integrals. This modal perturbation method is standard and hasFes(®) = 3ep =275, A, B= 1 2 B3 = 0,02 1,2,3,
been recently used by Ellefsen et al. (1991a, b) to analyze (14)

as
f ACijke Eij ($)Ege (b) 7 (13

- 2
ur 8‘"“‘ r>a
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The integral in equation (13) is performed in Appendix A. It The range of these parameters based upon the compilation of
follows from the result in equation (A-6) that the change in data in Thomsen (1986) is illustrated in Figure 1. The larger
the tube-wave speed for arbitrarily weak anisotropy is range in values fct is caused, to a great extent, by the fact
that the ratioC;3/Cy44 is approximately(vp/vg)?, which is
often quite large. The paramezis obviously related to the
difference in shear properties, but the paramé¢eor
equivalently, the modulus N, is a more complicated combi-
This is the main result of the paper. nation of moduli.

The explicit nature of equation (15) permits selecting the Leveille and Seriff (1989) derived the tube-wave speed for
background shear modulus of the isotropic formation in sucha particular type of transversely isotropic medium with its
a way thatAv; = 0. The proper choice for the effective axis perpendicular to the borehole. The general perturbation
modulus follows by comparison of equation (15) with the theory is compared with this exact case in Appendix B.

Avp pfv%
—_— = P A(C“ + C22 - 2C12 + 4C66)' (15)
ur 16

isotropic equivalent, equation (A-2), which impligs= p*, Based upon the analytical results of Appendix B we con-
where clude that the approximate theory is accurate for mildly
anisotropic formations.
1
p* =3 (C11 + Cyp = 2Cyp + 4Ces). (16) The torsional mode
Explicit calculation shows thau* = C%, whereC%,, are The torsional mode in a borehole is another mode that has
the average moduli obtained by rotatirGfg’ the framéjlkéfand a zero cutoff frequency (White, 1983). It is characterized by

pure torsional motion in the formation and no motion of the
borehole fluid. We now prove that its behavior in a weakly
anisotropic formation depends on the same modulus that

particular material symmetry and is equally valid for a define_s the tube wave ;peed. We first note that the quasis-
triclinic or a T! formation tatic displacement field is of the form

In summary, the tube-wave speed in a weakly anisotropic A
formation isv; given by equation (10) where the effective U=—eq,
shear modulus for the formation u*. r

X-axes about thus-axis. CTj, are the effective moduli of
the rotationally averaged transversely isotropic medium. Of
course, the resulting equation (16) is not restricted to any

where A is a constant ane, is the unit vector in the
azimuthal direction. The torsional wave speed in an isotropic
_ o _ formation is the shear speesyor = (u/p) 2. As before,

The moduli appearing in the effective modul.’s are e can use equation (9) to obtain an expression for the speed
defined relative to the borehole axis, coincident with the in an anisotropic formation. The integral in the denominator
x3-axis, and any pair of orthogonal axes. The compass again becomes unbounded at low frequency, but this can be
orientation of thex, - and x-axes is arbitrary, since the handled in the same way that equation (12) was deduced,
combination of moduli involved irp* is invariant with with the result, by analogy to equation (13), that the shift in

respect to the orientation of these axes; the invariancethe torsional-wave speed in a weakly anisotropic formation
follows from the fact thap* is defined by a rotational pecomes

average about the borehole axis.
Consider the particular case of a TI medium with its axis
of symmetry tilted through an angewith respect to the

A tilted Tl formation

borehole axis. The moduli G , C»,, C,, andCe in the 2 T e T
borehole coordinate system can be related to the five TI C ]
moduli by simple transformation rules (Auld, 1973). The 15 F - -
resulting form of the effective moduly.* is F ]
1 E 3
WO = Cia+ 2yCucos®® + 7 e~ mCpsin®s,  (17)  ° E ]
0.5 [~ P
whereg, y, andm are the anisotropy parameters of equation 0 C . |_'_ v g ) . 3
(3), andC3; andC,4 are the Tl moduli defined with respect - ) . - 5
to the TI symmetry axis, not the borehole axis. The variation C . " -
of w* with angle depends upon two dimensionless parame- % 3 =
ters,y and¢ where » 3
_1 C £l l 11 11 112 LJ 111t I_Ll L1 l | . I L1 Ll 1
N -0.1 0.0 0.1 0.2 0.3
£= 20’ (18) Y

Fic. 1. The correlation. or lack thereof, between the two
anisotropy paramete¢ and . The points correspond to the
44 cases of anisotropy in sedimentary rocks listed by
N = Cyy +Csx3— 2Cy3 — 4Cy4. | (19) Thomsen (1986)

and the “modulus” N i2(s — 1)Cs3, Or
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2

A'UTOR a

ds
oror B f»a AC ke Fij(d)Fre(d) prl (20)
where F; are strain components for the torsional displace-
ment field analogous to the straik;; of equation (14). In
fact, it may be easily seen thF;(¢) = E;(¢ — w/2);
therefore the integral in equation (20) can be directly evalu-
ated using the methods of Appendix A to give

1
=—(Cyy + Cy —2Cy3 + 4Cs).
vror  16p
By comparison with the shift in speed for an isotropic
formation we conclude that the correct choice of effective
shear modulus for the anisotropic formation is ag.*rof
equation ( 16).

Avror

(21)

AN INVERSION PROCEDURE

We now examine the specific case of a borehole in a tilted TI
formation, for which the tube-wave speed follows from equa-
tions (10) and (16) witp. = p*. Assuming that the properties of
the bore fluid are known, the.* can, in principle, be deter-
mined from measurement of the tube-wave speed.

1095

and the formation density are known. These must be ob-
tained independently, and the issues involved in their deter-
mination will not be addressed here. We note some proper-
ties of the inversion formula (23). First,6if= 0, then both

the SH and SV waves have identical speeds, and only two
elastic parameters can be obtained from the tube-wave speed
and the shear head-wave speC,, and C¢. The third
modulus N can be foundéf> 0, except at the two angles for
which D(8) = 0: 6 = 47 degrees andl =~ 69 degrees. At
these angles the “measured” quantities satisfy

w* = puggy + g (vsg — visy)ll = V2] (29

for any combination oC,4, C4, and N, according to the
weak anisotropy approximations fu* and pvgsv. There-

fore, at these angles only one independent elastic modulus
may be determined, using the identity (4) for example, as
opposed to three moduli in general.

Transverse isotropy can be caused by the existence of
finely layered isotropic constituents (Backus, 1962). This
leads to certain constraints upon the effective Tl moduli,
beyond the fundamental requirement that they be positive
definite. Berryman (1979) and Helbig (1979) have demon-

An acoustic measurement in a borehole generates headtrated thate > & for TI media formed from laminated
waves as well as borehole modes. The head waves are caus@sbtropic materials. Sineg< 3, it follows thate —n > 0, or

by coupling to bulk elastic waves in the formation that propa-
gate in the direction of the borehole axis. Specifically, there are
three head waves for the borehole in the tilted TI formation,
corresponding to th&H, the gP and theqSVwaves previously

discussed, with speeds given by equations (4), (6), and (7) whenV _
-4

the anisotropy is weak. We note that only three elastic param
eters are involved iu* of equation (17), and ipv2y andpuZsy,

i.e., Cy, v, and&. The theeequations fop*, pu sy andpviy
may be written in a matrix form that emphasizes dependenc
upon the three elastic parameters:

1 .
1 cos?@ ;Slnzﬂ *

Cus IUL2
1 ) 0 2 cos? 9 2yCus =|PUgsv|. (22)
1 sin? 0 0 £Cy44 sin’ @ PUSH
This may be formally inverted and rearranged into the form
Cya 1
Ces | = ——
N D(9)
4 14
cos™ 6 ~sin® 8 cos” 0 gsin” 8

x (é — cos? 8) sin” 8 cos* 9 —% sin? 8 cos? 0
—ent? 1
cot® 6 cot? 9 —1
2
PUsH
x uz* , (23)
PUgsv

where

D(8) = cos* 6 —sin> § cos? 6 + 3 sin® 0,  (24)

and N was defined in equation (19).
The explicit and simple form of equation (22) suggests a
means to infer three of the five TI moduli if both the tilt angle

equivalently N> 0, for a layered Tl medium. This can be
seen more directly by using Backus’s (1962) formula for the
effective constantC; , , Cs;, Cy3, andCy,, Which give

b -

(26)

)

eWhere() denotes the spatial averades p/(\ + ), andx and

p are the isotropic Lame moduli. The inequality>ND, then
follows from the observation that the two terms in the right
member of equation (26) are non-negative, while the second is
the smaller becausA:=< 1. This digression implies that it is
feasible, in principle, to exclude the possibility of microstruc-
tural isotropic layering simply by determining the sign of the
anisotropy parameteN = Cjy + C33 — 2C3 — 4Cy.

Finally, a fourth combination of elastic moduli can be
estimated from equation (6) in terms of the anisotropy
parameter N and the compressional head-wave speed. The
resulting expression takes the form

Cyy sin” @ + C33 cos? 6 = puJp + N sin® 6 cos? 8. (27)

EXAMPLE

An example helps demonstrate the accuracy of the simple
expressions for thgP- andqSV-wave velocities presented
in the preceding sections, and illustrate their application in
inverting for four of the five elastic moduli in terms of the
three head wave, quasi-static tube-wave (or equivalently,
torsional wave) velocities, provided the tilt of the borehole
with respect to the Tl symmetry axis is also known. We
examine the case of a liquid-filled borehole surrounded by a
formation characterized by Cotton Valley shale (a fast TI
medium). When referred to the Cartesian axes x;iis the
TI symmetry axis,the elastic moduli have the values
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(Thomsen, 1986)C,, = 74.73 x 10° N/m?, C,, = sion for the quasi-static tube-wave velocity (10). The result-
14.75x 10°%, Cy3 = 25.29% 10°, C33 = 58.84 x10°, and ing quasi-static tube-wave velocity as a function of the
C4 = 22.05 x10°. The mass density = 2640 kg/nl. The propagation direction is shown in Figure 4.
anisotropy parameters defined by equation (33 &®.135, On the assumption that the inclination of the borehole with
m = 0.179, ancy = 0.180. respect to the Tl symmetry axis is known, the two shear
Figure 2 shows a comparison of the gP-wave velocity moduli Cy4, Cg, and the third elasticity parameter N can be
obtained from equation (6) (dotted line) and its exact value estimated from equation (22) in terms of the available
(solid line) from the solution of the Kelvin-Christoffel equa- quasi-static tubeSH-,gS V-wave velocities along the bore-
tions as a function of propagation direction measured from hole axis. The results for the three elastic moduli thus
the TI symmetry axis. Agreement between the two values isobtained from equation (22) are plotted in Figure 5 as a
excellent, with the maximum difference on the order of function of the borehole inclination. The solid lines represent
0.1 percent. Figure 3 illustrates a comparison of SH- andthe results when the borehole inclinatéois known exactly.
gSV-wave velocities determined from the approximate ex- When we introduce an error +f1 degree in the actual value
pressions (4) and (7), and the exact results from the solutionof 8, the corresponding results for the inverted three moduli
of the Kelvin-Christoffel equations. While the results for the are shown by dotted lines. These results demonstrate that of
SH-wave velocity are the same in the two cases, thethe three elastic parameters, the third moduli N is most

maximum difference between the values for gSV-wave sensitive to an error in the borehole inclinatibrwith
velocity from the approximate expression and that from the respect to the Tl symmetry axis. In addition, the error in the
exact result is less than 1 percent. estimate of N is significantly larger in the vicinity &F 47

Figure 3 also displays the torsional-wave velocity obtained degrees and 69 degrees when the denomiD(6)rtends to
from the equivalent shear modulw* for the anisotropic zero (in fact, the error becomes unbounded at these angles
formation given by equation (17). Note that this equivalent and the numerical results shown in Figures 5 and 6 have been
shear modulus is the same as that appearing in the expresslipped accordingly). On the other hand, the estimates for
C,44 andC 4 remain quite good even when N is significantly
in error. High sensitivity of N to an error it is not

6400.0 surprising in view of its value being rather small and hover-
ing around zero, its value for isotropic formations. Figure 6
5260.0 - shows the results for the inverted moduli as the error in the
— A
o borehole inclination is increased =2 degrees. A compar-
E  s12004 ison of Figures 5 and 6 indicates that the errors in the
> estimated values of the moduli are proportional to the
D 4080.0- inaccuracy in the tilt angle: for small values of the latter.
% The fourth elastic parameter can be obtained directly from
= 4840.0- equation (27) in terms of gP-wave velocity, borehole inclina-
) tion 6 and the elastic moduli N. Thus, any error in the estimate
00,0 of N will mitigate the accuracy of the fourth elastic parameter
"~ 00 150 300 450 600 750 0.0 except where = O degrees or 90 degrees, insofar as this
Propagation Direction 8 (deg) quantity is independent of the value of N. Finally, if we accept

a correlation between the two anisotropy paramétersdy as
Fic. 2. The qP-wavevelocity as a function of propagation indicated in Figure 1, we have in principle, the fifth relationship

direction from the TI symmetry axis. Solid and dotted lines to estimate all five elastic constants of a TI formation.
denote the exact and approximate results, respectively.

3400.0 T— 1450.0

. 3260.0 Torsional \\ o 1440.0 Tube wave
. @

< - 8
E 312004 2. :
> . 2 1430.0-
g  2080.0- o
K} Tl 3]
> e S e > 1420.0

284004 0 Soell e e

qQSV  Tlonemoes
2700.0 T : . . — 1410.0 T T ' ' '
0.0 150 300 450 800 750 $0.0 . 00 150 300 450 600 750 900
Propagation Direction 8 (deg) Propagation Direction 8 (deg)

Fic. 3. Torsional-, SH- and gSV-wave velocities as a FiG. 4. Quasi-static tube-wave velocity as a function of the
function of propagation direction from the Tl symmetry axis. £ropagatlon direction from the Tl symmetry axis. The bore-
Solid and dotted lines represent the exact and approximateiole liquid is assumed to have a compressional speed of 1500
results, respectively. m/s and mass density of 1000 kg/m .
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CONCLUSIONS

The geometry of the borehole severely restricts the ability
to determine the intrinsic anisotropy of the surrounding
formation. Furthermore, acoustical measurement tech-
niques in the borehole obtain indirect information such as
the speed of head waves in the axial direction, but they do
not provide the freedom of access necessary to fully define
the formation anisotropy. Despite these environmental dis-
advantages it is possible, in principle, to completely deter-
mine three of the five elastic parameters of a tilted TI
formation. The inversion procedure relies upon knowledge
of the two shear head-wave speeds and the effective forma-
tion shear modulup*, which in turn can be related to the
speed of either the tube wave or the torsional wave. The
formation density and the tilt angle of the Tl medium must be
determined independently. The numerical examples shown
here suggest that the modC,4 andCgg of the TI medium
can be determined fairly accurately despite some error in the
value of the tilt angle. However, the third anisotropy param-
eter N is more sensitive to such errors. In addition, it is
possible to estimate a fourth combination of elastic moduli
from the expression for the quasi-compressional wave speed
along the borehole axis. These inversion algorithms are
based on the assumption that the Tl formation is weakly
anisotropic in the sense that it does not deviate appreciably
from isotropy.
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APPENDIX A
SOME TUBE WAVE INTEGRALS

The problem of the infinite limit for the integral in the

1 ds
denominator of equation (9) using equation (11) for the f AC ke Eij (&)Eke (&) —
’

r>a

displacement can be circumvented by using a variational w
argument. In the purely isotropic case, we have
1 2w
(‘)2 = U_Z'ka, (A'l) = 2: AC&BVBEaB(d))E'yB (d)) d¢ (A'4)
0

where k is the axial wavenumber. Ldt be fixed, and o

consider a small variatioAp in the formation shear modu- Here we have also used the fact that the strain is planar, and
lus. The shift in frequency follows from equations (10) and the repeated Greek indices only assume the values 1 and 2.
(A-]) as Do not confuse the Greek letters here for the anisotropy
parameters elsewhere. Substituting the explicit form for the
s, VT strain tensor, the right member of equation (A-4) can be
Aw* = k“pf —M—z Ap. (A-2) expanded as

4

The frequency shift can also be estimated from equation (9). AC _ i 2w AC.osiois db
The integral in the numerator then becomes proportional to aapp T4 aaydry3
. . : . 0
Ap, and can be worked out quite easily using equation (11),
as 4 2w
By +— ACypyshoipkyis do, (A-5)

p P2 N
f ACyreeijere dS = ma? — Ap. (A-3)
B where £, = cos ¢ and %, = sin ¢. Substituting for the
Combining equations (9) and (A-l) through (A-3) we obtain componentsof %, gives integrals of powers of s¢1 and
equation (12). cos¢ which can be integrated easily. The final result is
Referring to the integral in equation (13), we note that the
strain tensoE; of equation (14) is independentryfand so

= -2 +4C¢). -
the r integration can be performed readily, yielding 2 AlCu + Ciz 66) (A-6)

APPENDIX B
COMPARISON WITH AN EXACT RESULT

The formula in equation (17) reduces to the correct mod- and (18),C;; + C33 — 2C;3 — 4C44 = 0. In this case the
ulus for a Tl formation with its symmetry axis coincident approximate effective modulus according to equation (17)
with the borehole axis, i.ep*(0) = Cyy(l + 2v) = Ceg with 8 = w/2 ande = m, iS p* = C44, Whereas the exact
(White, 1983). This case exhibits axial symmetry in the formation modulus for the tube-wave speed follows from
displacement field, and it is not surprising that the perturba- Savin (1961) (and also from Leveille and Seriff (1989) after
tion analysis provides the correct result since it is based onsome sign errors are corrected) as
a symmetric trial field. A more stringent test of our result

occurs when there is true azimuthal anisotropy in the for- " 1+2¢e(l —o0)
mation. This situation was considered by Leveille and Seriff »% = Cas T 1.
(1989) who drew upon results of Savin (1961).

form of equation (10) with the modulys of the isotropic
formation replaced by an effective formation modys*,
which may be related to the average radial displacement at . . , L
the bore wall due to an applied pressure (White, 1983). Thus,Wherec is a Poisson’s raticy = Cy3/Cyy + Cy3. Expand-

- a

In general, the tube-wave speed can be expressed in the 1 —20\112) -1
x{0'+(1—0'){1+2e( )] } , (B-2)

for the circular bore ing equation (B-2) gives
1 1 (2« e? (1 =20
— = . ff = Cyy|t — — + e B-3
o~ map fo ur(¢) db. (B-1) " “iTn (1 - 0) } (B-3)
Savin (1961) presents the radial displacenu,(¢) for a Assuming that 1 =< ¢ <1/2, the relative error in the weakly

material that exhibits azimuthal anisotropy. The material anisotropic theory is at mo3s2/4. The range of is from 0
corresponds to a Tl medium with its axis of symmetry to about 0.2 for most of the rocks listed by Thomsen (1986),
perpendicular to the boreho(¢ = w/2) and such that the and hence we conclude that the approximate theory is
moduli satisfy the constrairgt = 0, or from equations (3) generally accurate for mildly anisotropic formations.



