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Weak elastic anisotropy and the tube wave

Andrew N. Norris* and Bikash K. Sinha‡

ABSTRACT

Tube-wave speed in the presence of a weakly aniso-
tropic formation can be expressed in terms of an
effective shear modulus for an equivalent isotropic
formation. When combined with expressions for the
speeds of the SH- and quasi-SV-waves along the
borehole axis, a simple inversion procedure can be
obtained to determine three of the five elasticities of a
transversely isotropic (TI) formation tilted at some
known angle with respect to the borehole axis. Subse-
quently, a fourth combination of elastic moduli can be
estimated from the expression for the  speed
along the borehole axis. The possibility of determining
all five elasticities of a TI formation based on an
assumed correlation between two anisotropy parame-
ters is discussed.

INTRODUCTION

It is well recognized that sedimentary rocks are not, in
general, elastically isotropic, but suffer from some degree of
anisotropy. Anisotropy may arise from intrinsic microstruc-
tural effects such as layering of thin zones, or from local
biaxial or triaxial tectonic stresses within the formation.
Thomsen (1986) provided a useful review of the measured
anisotropy in many different rock types; based on the data,
he concluded that most crustal rocks display weak anisot-
ropy. The objectives of this paper are to examine the effect
of weak anisotropy on the limiting low-frequency speed of
the symmetric Stoneley mode, or the tube-wave speed, and
to propose some possible uses for the resulting approximate
formula.

In addition to Thomsen (1986), several other authors have
discussed the implications of anisotropy for elastic wave
propagation in applications relevant to exploration geophys-
ics. Leveille and Seriff (1989) examined the possibility that
the tube wave in a borehole might have a preferential

polarization in the presence of azimuthal anisotropy, and
concluded that the degree of polarization eccentricity was
not significant. Nicoletis et al. (1990) used a combination of
analytical and numerical methods to compute the tube-wave
speed in anisotropic formations. Their analysis was based
upon the fact (White, 1983) that the effect of the formation on
tube-wave speed may be related to a purely static deforma-
tion in the formation. This observation is also useful in
determining the influence of other parameters such as bore-
hole eccentricity on tube-wave speed. Thus, Nicoletis et al.
(1990) obtained an analytical expression for tube-wave speed
in a borehole of elliptical cross section, while the more
general formula for a borehole of arbitrary shape derived by
Norris (1990) indicates that in an isotropic formation, the
tube-wave speed is greatest for a circular bore. There has
also been some recent work on the effect of anisotropy on
the flexural and higher order modes in a borehole (Ellefsen et
al., 1990, 1991a, b).

In this paper we examine the influence of anisotropy on
tube-wave speed. We use a perturbation method that as-
sumes that the anisotropy is weak. The method first esti-
mates the speed of plane waves in an infinite homogeneous
anisotropic medium. This application is simpler than the
tube-wave speed analysis,but it illustrates the general
method and also allows us to introduce some anisotropy
parameters used later. The main result of the paper is
described and illustrated for a transversely isotropic forma-
tion with its axis of symmetry tilted with respect to the
borehole axis. Some implications of the tube-wave speed
result are also discussed. Finally, we illustrate the applica-
tion of this inversion procedure for determining the elastic
constants of a TI formation in terms of the quasi-static tube
wave and three head-wave speeds, assuming that the bore-
hole inclination with respect to the TI symmetry axis is
known.

WAVE SPEEDS IN THE PRESENCE OF ANISOTROPY

Consider an elastic solid of mass density  and arbitrary
anisotropy, i.e., it may have as many as 21 independent
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elasticity parameters. The equations of motion at
frequency  are

circular

     0. (1)

Here  are the components of displacement,  =  2, 3,
and the summation convention on repeated subscripts is
assumed. The strain components are    +

 and the elastic moduli  satisfy the general
symmetries    and    which are
consequences of the symmetry of the stress tensor and the
assumed existence of a strain energy function. The moduli
can be succinctly represented by  where the suffixes 
and J run from 1 to 6, with ij   according to 11, 22, 33, 23,
31, 12  1, 2, 3, 4, 5, 6.

Bulk waves

Ignoring the borehole problem for the moment, we con-
sider the propagation of plane waves in the formation, which
for simplicity is assumed to be spatially uniform. Substitut-
ing the plane-wave solution    exp  into
equation (1) where n is the unit direction of propagation, and
then multiplying by where a is the unit polarization
vector, gives an explicit expression for the phase speed v

 (2)

The apparent simplicity of this expression is tempered by the
difficulty of determining the polarization a, which requires
solving a 3 x 3 matrix eigenvalue problem, also known as the
Kelvin-Christoffel equation (Musgrave, 1970). However, if
the anisotropy is weak then neither the eigenvalues nor the
eigenvectors deviate much from their underlying isotropic
counterparts. In particular, the polarization in equation (2)
can be approximated by the equivalent isotropic polariza-
tion.

A more rigorous justification for this approximation may
be developed by writing the exact equations (1) in a pertur-
bative form, with the leading order operator being the
isotropic equations and the perturbed part involving  
C where C  are the isotropic moduli. One can then use
the artillery of formal asymptotic expansions (Courant and
Hilbert, 1962) to develop an asymptotic series for both v and
a in terms of the “small parameter”      This
analysis indicates that the first correction to the isotropic
speed is on the order of  while the change in a is of order

 Hence, the first correction to the isotropic speed can be
obtained from equation (2) using the isotropic polarization
vector. This simple result is complicated by the degeneracy
of the shear wave in isotropic solids. The degeneracy is
broken by anisotropy, and it is often necessary to find the
correct vector basis for the shear waves before using equa-
tion (2). Generally, this is not a major problem, and in fact,
the appropriate directions are known for transverse isot-
ropy, i.e., the  and  directions are (not normalized)
m A n and n A (m A n), respectively, where m is the
symmetry axis and the prefix  stands for quasi.

Consider a transversely isotropic (TI) material with axis of
symmetry coincident with the x3-direction. The five inde-
pendent moduli are   ,    and  such that

where  =   It is more convenient to work
with the two moduli  and  and three dimensionless
anisotropy parameters,   and  each of which vanishes
when the medium is isotropic,

       
 

(3)

The parameters  and  were introduced by Thomsen (1986);
however,  is close to but not exactly the same as Thom-
sen’s third anisotropy parameter  The difference is dis-
cussed below.

The three wavespeeds in a TI medium can be expressed in
closed form (Rudzki, 1911; Musgrave, 1970). For instance, if
n = (sin  0, cos  then the exact expression for the
SH-phase speed is

 =  +   (4)

The identity in equation (4) follows directly from equation (2)
and the fact that the  polarization is a = (0, 1, 0). The
formulas for the  and  speeds are slightly more
complicated, but well known (Thomsen, 1986). Since the

 V and  polarizations must be in the x    plane, both
may be expressed in the form (a  ,  a  Substituting into
equation (2) yields

        

       2

         (5)

If the anisotropy is weak, the qP polarization is almost
(sin  0, cos  while the qSV is approximately (cos  0,
-sin  The discussion above implies that if these are used
in equation  the result is a first-order approximation in 
and  to the phase speeds,

            (6)

             . (7)

Because   and  are small, one could use the approx-
imation (1 + x)  1 + x/2 for small x to get reasonable
approximations to   and  in weakly anisotropic
TI media. The resulting expression for  agrees with
equation (16c) of Thomsen (1986), but those for  and

 do not agree with the corresponding formulas in
Thomsen, equations (16a) and (16b). Perfect agreement is
obtained if the substitution    is made, where

2 2
6

 +     

   
. (8)
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Thomsen (1986) derived the approximate wavespeeds for the
TI medium by explicit expansion of the known expressions
for the speeds and was led by this route to the nondimen-
sional parameter 6. It is clear from the algebraic identity

2  - - 1

that  is slightly smaller than  but the two parameters are
interchangeable in the limit of weak anisotropy; their differ-
ence is of second order. Hence, the differences between
these results and Thornsen’s are of second order in the
anisotropy. In his paper, Thomsen (1986) demonstrated that
 (and hence  is of critical significance to exploration

geophysics, but that it is“an awkward combination of
elastic parameters.” Because of its simpler form [compare
equations (3) and (S)], we suggest that  rather than  be used
as a measure of anisotropy.

Borehole modes

The same type of perturbative analysis may be performed
for the modes of a borehole. The major difference between
this situation and that of plane waves in an infinite homoge-
neous medium is that borehole modes are complicated
functions of position and are also highly dispersive. No
particular type of mode is assumed at this stage, and in fact
the analysis below includes the possibility of a nonuniform
formation, although it is assumed that all material parame-
ters are invariant with respect to the axial direction.

The equations of motion (1) are valid at every point in the
formation. Similar equations can be written for the motion in
the fluid in the bore, supplemented by the continuity condi-
tions at the fluid/solid interface for pressure and normal
particle velocity. A mode is defined as a solution of these
equations that propagates in the direction of the borehole
axis and decays exponentially away from the axis. Let us
assume that u of equation (1) is a particular mode at frequency

 Multiply equation (1) by  and then integrate the resulting
identity over an arbitrary plane perpendicular to the borehole
axis. The integral involving  may be expressed in a more
symmetric form by integrating by parts and using the decay far
from the bore and the continuity conditions at the fluid/solid
interface. We eventually deduce that

(9)

where the integration is over the entire plane. This identity is
the analog of equation (2) and is our starting point for a
calculation of the mode speed in the presence of anisotropy.

In the same way that equation (2) is correct to first order
in the presence of weak anisotropy if the isotropic polariza-
tion vector a is used, so it can also be demonstrated using
formal asymptotic methods that equation (9) is also correct
to leading order when the isotropic mode is used in the
integrals. This modal perturbation method is standard and has
been recently used by Ellefsen et al. (1991a, b) to analyze

Stoneley and flexural waves in anisotropic formations. The
modal integrals in equation (9) are generally very complicated.
However, at very low frequencies some modes have particu-
larly simple spatial dependence and the integrals can be eval-
uated explicitly. For example, the tube or Stoneley mode, the
flexural mode, and the torsional mode, all behave in a relatively
simple manner in the quasi-static limit. The limiting speeds of
the tube and torsional modes in an anisotropic formation are
considered in the next section, but discussion of the low-
frequency behavior of the flexural mode in the presence of
anisotropy is deferred to a separate paper.

QUASI-STATIC TUBE- AND TORSIONAL-WAVE SPEEDS

The tube-wave speed

Consider a circular borehole, a in cylindrical coordi-
nates (r,  which is occupied by an inviscid fluid of
density  and bulk modulus  =  , where  is the
fluid-wave speed. The formation, a, is an arbitrary aniso-
tropic solid, and for simplicity is assumed to be spatially
uniform. The tube wave is the quasistatic or limiting low-
frequency form of the azimuthally symmetric Stoneley wave
mode in an isotropic formation (White, 1983), with speed

(10)

where  is the formation shear modulus. The displacement
field in the formation is proportional to the plane strain dis-
placement that results from an applied uniform pressure, say p,
on  = a. The static displacement for a is (White, 1983)

= 1, 2; u3 = 0. (11)

Although this displacement has a simple form, substituting
it directly into equation (9) leads to some difficulty, since the
integral becomes unbounded as  This
problem is solved in Appendix A where it is shown that the
proper form for the integral in the denominator of
equation (9) is

 = 
 l

(12)

The apparent blowup of the integral is due to the fact that it
is of order  in the quasistatic limit. We can now calculate
the shift in frequency for an arbitrary perturbation in the
formation elastic moduli, i.e., for arbitrary  . Combin-
ing equations (9), (11), and (12), and eliminating the arbitrary
parameter p, which has no influence on the answer, we can
arrive at a formula for  for fixed axial wavenumber 
Alternatively, the shift in the tube-wave speed is

 2

(13)

where the strain components are

2= a, = 1, 2; = 0, = 1, 2, 3.

(14)
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The integral in equation (13) is performed in Appendix A. It
follows from the result in equation (A-6) that the change in
the tube-wave speed for arbitrarily weak anisotropy is

 +  + (15)

This is the main result of the paper.
The explicit nature of equation (15) permits selecting the

background shear modulus of the isotropic formation in such
a way that  0. The proper choice for the effective
modulus follows by comparison of equation (15) with the
isotropic equivalent, equation (A-2), which implies  = 
where

 +  + (16)

Explicit calculation shows that  =  where  are
the average moduli obtained by rotating the frame of  and
x2-axes about the  are the effective moduli of
the rotationally averaged transversely isotropic medium. Of
course, the resulting equation (16) is not restricted to any
particular material symmetry and is equally valid for a
triclinic or a TI formation.

In summary, the tube-wave speed in a weakly anisotropic
formation is  given by equation (10) where the effective
shear modulus for the formation is 

A tilted TI formation

The moduli appearing in the effective modulus  are
defined relative to the borehole axis, coincident with the

 and any pair of orthogonal axes. The compass
orientation of the and x2-axes is arbitrary, since the
combination of moduli involved in  is invariant with
respect to the orientation of these axes; the invariance
follows from the fact that  is defined by a rotational
average about the borehole axis.

Consider the particular case of a TI medium with its axis
of symmetry tilted through an angle  with respect to the
borehole axis. The moduli C  ,  C  and  in the
borehole coordinate system can be related to the five TI
moduli by simple transformation rules (Auld, 1973). The
resulting form of the effective modulus  is

1
 +  + (17)

where  and  are the anisotropy parameters of equation
 and  and  are the TI moduli defined with respect

to the TI symmetry axis, not the borehole axis. The variation
of  with angle depends upon two dimensionless parame-
ters,  and  where

N

and the “modulus” N is  or

(18)

The range of these parameters based upon the compilation of
data in Thomsen (1986) is illustrated in Figure 1. The larger
range in values for  is caused, to a great extent, by the fact
that the ratio  is approximately  which is
often quite large. The parameter  is obviously related to the
difference in shear properties, but the parameter  or
equivalently, the modulus N, is a more complicated combi-
nation of moduli.

Leveille and Seriff (1989) derived the tube-wave speed for
a particular type of transversely isotropic medium with its
axis perpendicular to the borehole. The general perturbation
theory is compared with this exact case in Appendix B.
Based upon the analytical results of Appendix B we con-
clude that the approximate theory is accurate for mildly
anisotropic formations.

The torsional mode

The torsional mode in a borehole is another mode that has
a zero cutoff frequency (White, 1983). It is characterized by
pure torsional motion in the formation and no motion of the
borehole fluid. We now prove that its behavior in a weakly
anisotropic formation depends on the same modulus that
defines the tube wave speed. We first note that the quasis-
tatic displacement field is of the form

A
U = 

r

where A is a constant and  is the unit vector in the
azimuthal direction. The torsional wave speed in an isotropic
formation is the shear speed,  =  As before,
we can use equation (9) to obtain an expression for the speed
in an anisotropic formation. The integral in the denominator
again becomes unbounded at low frequency, but this can be
handled in the same way that equation (12) was deduced,
with the result, by analogy to equation (13), that the shift in
the torsional-wave speed in a weakly anisotropic formation
becomes

FIG. 1. The correlation, or lack thereof, between the two
anisotropy parameters  The points correspond to the
44 cases of anisotropy in sedimentary rocks listed by
Thomsen (1986).N =  + l (19)
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(20)

where  are strain components for the torsional displace-
ment field analogous to the strains  of equation (14). In
fact, it may be easily seen that  =   
therefore the integral in equation (20) can be directly evalu-
ated using the methods of Appendix A to give

(21)

By comparison with the shift in speed for an isotropic
formation we conclude that the correct choice of effective
shear modulus for the anisotropic formation is again  of
equation ( 16).

AN INVERSION PROCEDURE

We now examine the specific case of a borehole in a tilted TI
formation, for which the tube-wave speed follows from equa-
tions (10) and (16) with  =  Assuming that the properties of
the bore fluid are known, then  can, in principle, be deter-
mined from measurement of the tube-wave speed.

An acoustic measurement in a borehole generates head
waves as well as borehole modes. The head waves are caused
by coupling to bulk elastic waves in the formation that propa-
gate in the direction of the borehole axis. Specifically, there are
three head waves for the borehole in the tilted TI formation,
corresponding to the SH, the qP and the qSV waves previously
discussed, with speeds given by equations (4), (6), and (7) when
the anisotropy is weak. We note that only three elastic param-
eters are involved in  of equation (17), and in  and 
i.e.,   and  The threeequations for   and 
may be written in a matrix form that emphasizes dependence
upon the three elastic parameters:

(22)

This may be formally inverted and rearranged into the form

(23)

where

           (24)

and N was defined in equation (19).
The explicit and simple form of equation (22) suggests a

means to infer three of the five TI moduli if both the tilt angle

and the formation density are known. These must be ob-
tained independently, and the issues involved in their deter-
mination will not be addressed here. We note some proper-
ties of the inversion formula (23). First, if  = 0, then both
the SH and SV waves have identical speeds, and only two
elastic parameters can be obtained from the tube-wave speed
and the shear head-wave speed:  and  The third
modulus N can be found if   0, except at the two angles for
which  = 0:   47 degrees and   69 degrees. At
these angles the “measured” quantities satisfy

for any combination of   and N, according to the
weak anisotropy approximations for  and  There-
fore, at these angles only one independent elastic modulus
may be determined, using the identity (4) for example, as
opposed to three moduli in general.

Transverse isotropy can be caused by the existence of
finely layered isotropic constituents (Backus, 1962). This
leads to certain constraints upon the effective TI moduli,
beyond the fundamental requirement that they be positive
definite. Berryman (1979) and Helbig (1979) have demon-
strated that    for TI media formed from laminated
isotropic materials. Since    it follows that     0, or
equivalently N  0, for a layered TI medium. This can be
seen more directly by using Backus’s (1962) formula for the
effective constants   ,   and  which give

(26)

where   denotes the spatial average,      and  and
 are the isotropic Lame moduli. The inequality N  0, then

follows from the observation that the two terms in the right
member of equation (26) are non-negative, while the second is
the smaller because   1. This digression implies that it is
feasible, in principle, to exclude the possibility of microstruc-
tural isotropic layering simply by determining the sign of the
anisotropy parameter         

Finally, a fourth combination of elastic moduli can be
estimated from equation (6) in terms of the anisotropy
parameter N and the compressional head-wave speed. The
resulting expression takes the form

              (27)

EXAMPLE

An example helps demonstrate the accuracy of the simple
expressions for the  and  velocities presented
in the preceding sections, and illustrate their application in
inverting for four of the five elastic moduli in terms of the
three head wave, quasi-static tube-wave (or equivalently,
torsional wave) velocities, provided the tilt of the borehole
with respect to the TI symmetry axis is also known. We
examine the case of a liquid-filled borehole surrounded by a
formation characterized by Cotton Valley shale (a fast TI
medium). When referred to the Cartesian axes with  as the
TI symmetry axis, the elastic moduli have the values
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(Thomsen, 1986): = 74.73     =
14.75   = 25.29   = 58.84 x  and

= 22.05 x  The mass density  = 2640 kg/m3. The
anisotropy parameters defined by equation (3) are   0.135,

= 0.179, and  = 0.180.
Figure 2 shows a comparison of the qP-wave velocity

obtained from equation (6) (dotted line) and its exact value
(solid line) from the solution of the Kelvin-Christoffel equa-
tions as a function of propagation direction measured from
the TI symmetry axis. Agreement between the two values is
excellent, with the maximum difference on the order of
0.1 percent. Figure 3 illustrates a comparison of SH- and
qSV- wave velocities determined from the approximate ex-
pressions (4) and (7), and the exact results from the solution
of the Kelvin-Christoffel equations. While the results for the
SH-wave velocity are the same in the two cases, the
maximum difference between the values for the 
velocity from the approximate expression and that from the
exact result is less than 1 percent.

Figure 3 also displays the torsional-wave velocity obtained
from the equivalent shear modulus  for the anisotropic
formation given by equation (17). Note that this equivalent
shear modulus is the same as that appearing in the expres-

FIG. 2. The qP-wave velocity as a function of propagation
direction from the TI symmetry axis. Solid and dotted lines
denote the exact and approximate results, respectively.

FIG. 3. Torsional-, SH- and qSV-wave velocities as a
function of propagation direction from the TI symmetry axis.
Solid and dotted lines represent the exact and approximate
results, respectively.

sion for the quasi-static tube-wave velocity (10). The result-
ing quasi-static tube-wave velocity as a function of the
propagation direction is shown in Figure 4.

On the assumption that the inclination of the borehole with
respect to the TI symmetry axis is known, the two shear
moduli  and the third elasticity parameter N can be
estimated from equation (22) in terms of the available
quasi-static tube, SH-,  V-wave velocities along the bore-
hole axis. The results for the three elastic moduli thus
obtained from equation (22) are plotted in Figure 5 as a
function of the borehole inclination. The solid lines represent
the results when the borehole inclination  is known exactly.
When we introduce an error of  1 degree in the actual value
of 8, the corresponding results for the inverted three moduli
are shown by dotted lines. These results demonstrate that of
the three elastic parameters, the third moduli N is most
sensitive to an error in the borehole inclination  with
respect to the TI symmetry axis. In addition, the error in the
estimate of N is significantly larger in the vicinity of  = 47
degrees and 69 degrees when the denominator  tends to
zero (in fact, the error becomes unbounded at these angles
and the numerical results shown in Figures 5 and 6 have been
clipped accordingly). On the other hand, the estimates for

 and  remain quite good even when N is significantly
in error. High sensitivity of N to an error in  is not
surprising in view of its value being rather small and hover-
ing around zero, its value for isotropic formations. Figure 6
shows the results for the inverted moduli as the error in the
borehole inclination is increased to  degrees. A compar-
ison of Figures 5 and 6 indicates that the errors in the
estimated values of the moduli are proportional to the
inaccuracy in the tilt angle  for small values of the latter.

The fourth elastic parameter can be obtained directly from
equation (27) in terms of qP-wave velocity, borehole inclina-
tion  and the elastic moduli N. Thus, any error in the estimate
of N will mitigate the accuracy of the fourth elastic parameter
except when = 0 degrees or 90 degrees, insofar as this
quantity is independent of the value of N. Finally, if we accept
a correlation between the two anisotropy parameters  and  as
indicated in Figure 1, we have in principle, the fifth relationship
to estimate all five elastic constants of a TI formation.

FIG. 4. Quasi-static tube-wave velocity as a function of the
propagation direction from the TI symmetry axis. The bore-
hole liquid is assumed to have a compressional speed of 1500
m/s and mass density of 1000 kg/m .
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FIG. 5. Inverted elastic moduli. Solid lines denote the results
for actual borehole inclination  with respect to the TI
symmetry axis. Dotted lines show the corresponding results
when the error in  is  1 degree.

FIG. 6. The same as in Figure 5, but for an assumed error in
 of  degrees.

CONCLUSIONS

The geometry of the borehole severely restricts the ability
to determine the intrinsic anisotropy of the surrounding
formation. Furthermore, acoustical measurement tech-
niques in the borehole obtain indirect information such as
the speed of head waves in the axial direction, but they do
not provide the freedom of access necessary to fully define
the formation anisotropy. Despite these environmental dis-
advantages it is possible, in principle, to completely deter-
mine three of the five elastic parameters of a tilted TI
formation. The inversion procedure relies upon knowledge
of the two shear head-wave speeds and the effective forma-
tion shear modulus which in turn can be related to the
speed of either the tube wave or the torsional wave. The
formation density and the tilt angle of the TI medium must be
determined independently. The numerical examples shown
here suggest that the moduli  and  of the TI medium
can be determined fairly accurately despite some error in the
value of the tilt angle. However, the third anisotropy param-
eter N is more sensitive to such errors. In addition, it is
possible to estimate a fourth combination of elastic moduli
from the expression for the quasi-compressional wave speed
along the borehole axis. These inversion algorithms are
based on the assumption that the TI formation is weakly
anisotropic in the sense that it does not deviate appreciably
from isotropy.
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APPENDIX A

SOME TUBE WAVE INTEGRALS

The problem of the infinite limit for the integral in the
denominator of equation (9) using equation (11) for the
displacement can be circumvented by using a variational
argument. In the purely isotropic case, we have

T (A-1)

where k is the axial wavenumber. Let k be fixed, and
consider a small variation  in the formation shear modu-
lus. The shift in frequency follows from equations (10) and
(A-l) as

(A-2)

The frequency shift can also be estimated from equation (9).
The integral in the numerator then becomes proportional to

 and can be worked out quite easily using equation (11),
as

  =   (A-3)

Combining equations (9) and (A-l) through (A-3) we obtain
equation (12).

Referring to the integral in equation (13), we note that the
strain tensor  of equation (14) is independent of  and so
the  integration can be performed readily, yielding

   

Here we have also used the fact that the strain is planar, and
the repeated Greek indices only assume the values 1 and 2.
Do not confuse the Greek letters here for the anisotropy
parameters elsewhere. Substituting the explicit form for the
strain tensor, the right member of equation (A-4) can be
expanded as

where  = cos  and  sin  Substituting for the
componentsof  gives integrals of powers of sin  and
cos  which can be integrated easily. The final result is

  +   + (A-6)

APPENDIX B

COMPARISON WITH AN EXACT RESULT

The formula in equation (17) reduces to the correct mod-
ulus for a TI formation with its symmetry axis coincident
with the borehole axis, i.e.,  =  +   
(White, 1983). This case exhibits axial symmetry in the
displacement field, and it is not surprising that the perturba-
tion analysis provides the correct result since it is based on
a symmetric trial field. A more stringent test of our result
occurs when there is true azimuthal anisotropy in the for-
mation. This situation was considered by Leveille and Seriff
(1989) who drew upon results of Savin (1961).

In general, the tube-wave speed can be expressed in the
form of equation (10) with the modulus  of the isotropic
formation replaced by an effective formation modulus 
which may be related to the average radial displacement at
the bore wall due to an applied pressure (White, 1983). Thus,
for the circular bore

1 1 
 (B-1)

 

Savin (1961) presents the radial displacement  for a
material that exhibits azimuthal anisotropy. The material
corresponds to a TI medium with its axis of symmetry
perpendicular to the borehole  =  and such that the
moduli satisfy the constraint  = 0, or from equations (3)

and (18),  +      = 0. In this case the
approximate effective modulus according to equation (17)
with  =  and  =  is  =  whereas the exact
formation modulus for the tube-wave speed follows from
Savin (1961) (and also from Leveille and Seriff (1989) after
some sign errors are corrected) as

 ( B - 2 )

where  is a Poisson’s ratio,  =  +  Expand-
ing equation (B-2) gives

     (B-3)

Assuming that  1     the relative error in the weakly
anisotropic theory is at most  The range of  is from 0
to about 0.2 for most of the rocks listed by Thomsen (1986),
and hence we conclude that the approximate theory is
generally accurate for mildly anisotropic formations.


