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Longitudinal wave scattering from a partially bonded fiber
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Analytical and numerical results are presented for in-plane longitudinal wave pulse scattering from & partially bonded
circular fiber. The debonding is assumed to be a curved interface crack with non-contacting faces. The problem is cast in terms
of the unknown stresses on the neck joining the fiber and matrix, which are found by solving a truncated set of equations in
the frequency domain. Computations for both the scattering cross-sections and the dynamiic stress intensity factors on the
crack tips show that a strong rattling resonance occurs at a very jow frequency when the neck becomes sufficiently small in
extent. Transient responses are obtained for pulse incidence through the use of an inverse Fourier transform on the correspond-
ing time hatmonic solutions. Based upon the numerical results, it is suggested that the presence of the low frequency resonance
may provide a feasible way to experimentally determine the extent of fiber debonding,

1. Introduction

The study of elastic waves scattered by interface cracks is of practical importance to the application of
nondestructive evaluation of composite materials and has therefore received considerable attention in recent
years. A brief review of earlier investigations on crack scattering in homogeneous materials was given by
Kraut [1]. One of the first dynamic studies of an interface crack was due to Neerhoff [2] who considered
the problem of Love waves diffracted by a flat crack of finite width situated along the interface of a layered
composite. Neerhoff used an integral equation method in which the diffracted field was represented by the
unknown crack opening displacement (COD). The COD was subsequently expanded in terms of Chebyshev
polynomials and an infinite system of linear algebraic equations was derived for the coefficients of the
polynomials. Using a similar approach, Bostrém [3] considered SH waves scattered from a flat interface
crack between two dissimilar elastic half-planes. Since this method does not involve the use of a Green
function the problem is solved in a relatively simple and straightforward manner.

Coussy [4, 5] first attacked the problems of SH waves and in-plane waves scaitered from an arc-shaped
intesface crack between a circular fiber and its surrounding homogeneous matrix. She obtained closed form
solutions which are valid in the long-wavelength, or Rayleigh limit, by the use of a perturbation method
[4] and a homogenization procedure {5]. The same problem was solved numerically at finite frequencies
by Yang and Norris [6] for incident SH waves using the approach similar to that of Neerhoff [2], Krenk
and Schmidt [7] and Bostrdm [3]. The numerical results of Yang and Norris [6] illustrate that the fiber
can exhibit a strong resonance even at very low frequencies provided that the neck joining the fiber and
matrix is sufficiently small. This resonance was not predicted by the quasistatic theory {4, 5]. Furthermore,
an asymptotic solution for small values of the neck was derived by Norris and Yang [8] to explain the
resonant phenomenon. The analysis is analogous to that of Burrows [9] in his discussions of gravity water
waves incident on a circular harbor.
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It is worthwhile to mention that Kitahara, Nakagwa and Achenbach {10} have considered the scattering
problem from a spherical inclusion by a different approach. In their work the interface is modeled as a
distribution of springs between the inclusion and matrix, and the case of a partial debonding is included
by setting the spring constants to zero over the surfaces of the crack. On the bonded interface the tractions
are assumed to be continuous, but the displacements may be discontinuous. The problem is solved by the
boundary element method which although it is a powerful technique, cannot go to very high frequencies
in practice. The present method can be used to consider fairly high values of the excitation frequency, and
also provides the dynamic stress intensity factors in a straightforward manner. Scatiering by non-planar
cracks has been considered by Bostrém and Olsson [11] using the null field approach. The same method
could, in principle, be used to study three dimensional interface cracks, although no one has yet applied it
to this problem.

We consider the problem of scattering of in-plane waves from a circular fiber partially bonded to an
otherwise homogeneous isotropic ¢lastic medium. The corresponding static problem has been solved by
Tova {12] and his results demonstrate the unrealistic oscillatory character of the stresses in a small region
around the crack tips, For simplicity, we ignore this oscillatory behavior by considering material combina-
tions for which the oscillation parameter vanishes. We still assume that the local stress near the crack tips
has the singular behavior like d ~'/%, where d is the distance from the crack tips. Two distinct approaches
can be taken, depending on whether the problem is formulated in terms of the unknown COD or in terms
of the unknown tractions on the bonded neck. These methods were discussed for the SH problem by Yang
and Norris [6] and Norris and Yang 8], respectively. The solution here will be developed using the stress
approach since the COD approach seems much more complicated algebraically for the in-plane problem.
The problem is solved in the frequency domain by the superposition of the scattered field from a cavity,
which is derived in Section 2, and the additional field generated by a partially jointed fiber, discussed in
Section 3. In the present analysis the additional field is first represented in terms of integrals of the unknown
stresses on the bonded part of the fiber /matrix interface. The unknown stresses are then expanded in terms
of Chebyshev polynomials of the first type. The coefficients of the polynomials can be determined by the
continuity conditions on the interface. Subsequently, displacements, the scattering cross-section, and
dynamic stress intensity factors are obtained. Finally, the scattering of a longitudinal in-plane pulse is
considered and the relation between the scattered signals and the debonding size is discussed.

2. General formulation for plane strain wave incidence

2.1. Definitions and preliminaries

The displacement vector for the present plane strain problem can be decomposed into two potentials ¢
and

u=Vp—Vxye, ey
where (e,, e, ¢,) are cylindrical coordinates. Also, ¢ (v, 8, 1) and y(r, 6, ) satisfy the wave equations

1 8% 1 &y
Vip=——, Viw=-5 3, 2
¢ & of v & or @
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where the longitudinal and transverse wave speeds are

A+2
=y, cT:\/é. &)
g I

Define the Fourier transform pair for any real causal quantity g(z) as

(o) 2J. g(f) e dt, g(t)=l Re j #w)e ™ do 4)
0 T 0

where the hat over a variable represents its Fourier transform. The transformed potentials satisfy the
Helmholtz equations

Vo+ikig=0, V+iiv=0, (5)
where the wavenumbers are

kh=w/c, kr=w/cr. (6)
We will first obtain steady-state solutions to egs. (5) in the frequency domain, and then perform an inverse
Fourier transform defined by eq. (4), to obtain transient responses for a plane pulse.

In particular, we consider the incident plane longitudinal wave, i"=Vg", propagating in the direction
of the x-axis, see Fig. 1. Thus,

$i11=¢0 Gik?'lrcosg-_-"ﬁbo z gpiﬂ P(k'{:r) cos ])9, u‘/i"=0, (7)

=0

pm lm }‘l'm

Fig. . A single circular fiber partially bonded o a homogencous isotropic matrix.
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where g,=1 and ¢,=2, for p>0; superscript m indicates quantities associated with the matrix, and ¢ is
the amplitude of the incident wave. For instance, if the incident displacement pulse is

Uy = Ugui" (! - if;) s u.;‘ =0, (8)
cL
then
Us in
$o= ];,?; (o). )

2.2. Solution for a cavity

Before considering the debonded fiber, it is necessary to solve the simpler problem of scattering from a
cylindrical void. We represent the total displacement as a superposition,

A =a"+ i, r>a, (10)

where #" and #% are the displacements of the incident field and the scattered field from the cavity,
respectively. The two potentials of the scattered field are expressed as

3O =g, Z AP H D (kTr) cos p8, o
p=90
O, Z BOH DKy sin po, {12)

which are symmetric and antisymmetric about the fine =0, respectively. Note that & 0 s used to denote
Hankel functions of the first kind and J,, are Bessel functions.
The displacement vector of the scattered field follows as

ﬁ(0)=ﬁ(0)e +u£;0)89—w Z TF(G)AH;;’(I‘)E(G) (13)
Fop=0
where
cos po 0 ]
T,(0)= , 14
A [ 0 sin p@ (14)

which has the following property

}
* nd,d, p#0,
NT(0)dd= { P (15)
L LT O= g, p=g=0,
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where &, is the Kronecker delta. Also,

PrH () —pHY (i )] Ew)=(A;(vO))

AHm = ’
P(r) l: pH(l)(km) nrrHr(l}(k"f d Bﬁ,o)

Aln Aln

and B =0. The vector form 4" = (&, &) for the incident field may be expressed as

i =5%—’ Y T(0)E,;,

p=0

where

Eji"“: P (_er( i )
])J (k]_,l")

1t can then be shown that the incident traction vector ¢"=(8", 6™)T may be written as

Ain 2].[,,,¢ 2 a1
“_:""";i“”q Y. T,

p=0

where

bm _ ( " ( )) m (r) (p krquZ/z)J (kmr) k;"er(k"’ )
P

() B (ry=pJy(KLr) = pkirJ ,(kir).

The scattered traction vector ¢ = (80, " is
2u,
,.(0) #n¢'0 Z TP(O)DH"'(?')E(O)

where

HE\(r) DH’fz(r)]
HE(ry DHE(NY

HOAr) = (p7— R ) H D (e ~ e H Y (),

DH(r) = B

l(r) pH“)(kml") pkmrH(l)’( mr)
Hia(r)=pH (i) — pkir HY (ki)

DHS,(r) = (p* — K2 /2 H D (k) — KR H Y ().

47

(16)

(17)

(18)

(19)

(20}

(21}

(22)

(23)

Use of the traction free condition at the surface of the cavity r=« and the orthogonality condition (15)

viclds
E}=~|DH} ()] 'b;(a).

(24)

This result, combined with (10), (13), (14), (16), (20), and (22), yields the exact solution to the scattered

field from a void.
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3. The steady-state solution for a partially debonded fiber

3.1. Preliminary definitions

The total displacement vector is now represented as

Airy A(0) (1)
. et r>a,
Hw‘ = { A(1) " (25)
<
ur-, F=da,

The superscript 1 denotes the additional fields generated by the partially bonded fiber, and the subscripts
m and f denote the fields in the matrix and fiber, respectively. Similarly, the associated total potentials are

o [ FO4F0, 1 26
¢ - ‘3(]) r<a ( )
ot JOO D, r>a,

" ‘={"‘f o @n
qj} s r<a,
and they each satisfy Helmholtz equations in their respective domains,
VoD +EP2PN =0, VD +EPP=0, a=mor/, (28)
where
ki=w/l, K=w/ct, a=mor]. (29)

The solutions satisfying the radiation condition in the matrix and which are bounded at r=0 can be
expanded as

B = ¢y S ASpH (kL) cos p0, P =g T BOYH D (kSr) sin p0, (30)
p=0 p=1
o=y T ATk r) cos pb, =gy T BRI, (kL) sin pé. 3n
p=0 p=1
Denote
A(l) A(l)
E([)____( mp), F{l)=( P , (32)
Y2 BY:

then the additional displacement vectors in the matrix and the fiber become

0= ie + ife="" T T0)AHPOED), (33)

! p=90

iV =0Pe, +ih)e, =3;9 Y. T AF(FD, (34)
p=0
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where AJ;C(r) has the same expression as AH ' (r) after replacing Hankel functions of the first kind # },” in
(16) by Bessel functions J,, and replacing m by /. The additional traction vectors in the matrix and the
fiber are expressed as

e = 2”;""5“ Y T,(0)DHI(rES, (35)
p=0

&= 2‘” % S 1(ODINFY, (36)
=0

where DJ(r) has the same expression as DH;'(r) after replacing Hankel functions of the first kind in (23)
by Bessel functions, and replacing m by f.

3.2, Application of the interface conditions

The total traction must be continuous over the entire interface, bonded or debonded, implying

60 =6, r=a, 0<6<n, (37)

which yields

F = i_ [DF(a)] " 'DH?(a)E, (38)
f

The interface traction is of the form

0, —§<f<8,

40y, s<i61<m, (5%

6a(a, )= {
where 4(8) = &,.(0)e, + &,6(0)eg is the unknown total traction on the neck. Use of (35), (39) and (15),
yields

Ed

[DH (@)} J T,(0)¥(8) d6. (40)

8

gd

ES=
chﬁ(}.um

The displacement continuity condition on the neck is
A+ =4, r=a, §<|8i<n ‘ (41)

Substituting from egs. (13), (17), (33) and (34) into (41) and using eq. (38) and (40), we obtain a system
of integral equations for the unknown traction,

2 fre) it =<} .
i&?;ﬂ T g TPA!,J T,(004(0") d0'= ¥ TAOES+AHNQE], &<i0|<m, (42)
O m p=0 8 p=0
where
A,,wi-’f AF (@) DI (a)] ™' ~ AH(@)IDH(a)] ™" (43)

We note that the matrices A, are symmetric, for p=0,1,2, .. ..
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3.3. Solution of the integral equations

In order to solve the integral equations (43), we expand the unknown traction on the neck in terms of
Chebyshev functions of the first type,

n2 @
#(0) =Dk S B,(0)f,, (44)

= ((n—0)/e) nZe

where B,= Br.e.t+ Br.€o, e=n—6, and

Tol(n— )/ ) 0 ]
0 Tonr((n—0)/8) 1

T (;q)= cos (m Arceos (R — 9)) me==1,2,.... (46)
g £

We note that this choice of basis functions permits the traction to have the usual inverse square root
singularity characteristic of cracks in bulk material, but does not include the possibility of oscillatory
singularities that are predicted for interface cracks. This aspect is discussed further in Section 3.

The matrices of (45) have the following useful property

%(9){1 0}, ¢,,<9)=(—1)"[

>0, 45
0 0 (45)

T T(0)9.(0) ne
—df = (—1)F — J.(p8&), (47)
L J1-({(n—0)/8) 2
where
1 Jo(pe) © _{ ol pE) 0
Jo(p«?)—[ 0 0} J(pe) [ 0 Jz,;—l(pf:)}’ n>0. (48)

Therefore, multiplying ®,(6) on both sides of the integral equations (43) and integrating 6 over [4, m],
finally yields a system of linear equations for the unknown traction vector coefficients f,,

o A o o o .
x %5»,05»013# )3 (Z Jm(ps)AMx(Pe)) ,,=—i—( 7)™ Y, (1YL pe)EN + AH(@ES),
n=0 n=1 \p=l p=0
(49)
where
Aoy =" 2 AT@IDIN(@] !~ AHD @DH (@) (50)
73

The eqgs. (49) can also be written as

[es)

anﬁnsz: m=0, 132:-“9 (51)
=0

n
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where
2 = )
No=> T (1Y peNER + AH(DEM), (52)
p=0
A tvel
st:(kra)l[mzﬂ? SudpTot ¥, Jf(pe)ApJ,-(ps)}, Lj=0,1,2,.... (53)
p=1

The symmetry of A, defined by (43) implics the following symmetry property
0= Q. (54}

This symmetry helps to simplify the numerical solution of the truncated version of the infinite set of linear
equations {51).

4. The scattered fields

4.1. Far-fleld approximations

Using the asymptotic expansions of Hankel functions in the far-field £1'r>> 1, we may derive the following
asymptotic expressions for the scattered displacements

1/2 1/2
H M 8 H A
38 = ikl (_8_{5) K= OBV + ikl (—,:l) I B RO e (55)
ki krr.

where £ =0 denotes the scattered field of the void, {=1 the additional field generated by the partially
bonded fiber, and the radiation patterns are

FOB)=— 3 (i) A% cos pb, (56)
2ﬂpmo

Lo
F{"O(Q):ﬂ Zl (—iy’ BY; sin p@. (57)
s

The total radiation patterns may be expressed as
F(0)=F(8)+F(8), (58)
Fo(0)=FP(8)+ F§(6). (59)

4.2. Energy conservation and the scattering cross-section

The time average of energy flux over any surface enclosing the cylinder must be zero, implying for r>a
that ‘

n
#y=21m J @ 2+ DY - (67469 +80)r d0 =0, (60)
4]
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where the superscript * denotes the conjugate of a complex variable, and - denotes the inner product of
two vectors. Define the total scattered energy flux as
@ 2n
(P*y="Tm J @O+ ah* - (69 +63))r db. (61)
o
By the use of the far-field expressions in Section 4.1, we obtain
® 2
<PS°>=(A,,,+2p,,,)wki."2|¢o%2{ Y Mt Al 2 | B3+ Bl } (62)
F=0%p
The total scattering cross-section is defined as
Py 2412 2 i
_PTz_’E Y S AD+ A+ T B+ BLF (63)

p=0 &p p=1

o(w)=
where the time average of the incident flux may be written as
in_. w Ain * , ain — @ m3 2 .
PR == Tmf@"(0)* - 67 (O] = kT G 24t (64)

Letting r — co in (60) and using the method of stationary phase to evaluate the integrals, we deduce a
relation between the total cross-section and the forward scattering amplitude

o) =— i Re(FO0)+ F(0)). (65)

This is the elasto-dynamic optical theorem, and will be used as a check on our numerical computations.

5. The stress intensity factors

5.1. The static stress intensity factors

Before considering numerical results, it is useful to look at the known exact results for the equivalent
static problem. These should follow from the dynamic results in the limit @ — 0, and serve not only as a
check on the numerical accuracy of the dynamic results but also as a reference with which to compare
them. In the static case of arbitrary biaxial tensions applied at infinity, the stresses on the bonded interface
are given in eq. (3.37) of Toya [12] as

ontioe={1(0)+ig(0)lx " (8), (66)
where
1 _ ‘ _ REI ~{i/2}log
x+(9)=_é_(elo_e1§)w*1/1(el(3_e—15) 1/2I:el_0:"gm} , (67)
gzruf-l- (3_4Vf)um (68)

.um + (3 - 4Vm)uf,

and v,., v, are the Poisson’s ratios of the matrix and the fiber respectively.
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We will only consider the case of £=1, ignoring oscillatory behavior near the crack tips. When {#1,
the unknown traction on the jointed neck can be represented by the use of Jacobi functions rather than
Chebyshev functions. This introduces a great deal of extra complexity and will not be considered here.
The functions f(6) and g(8) are given in the Appendix for =1 in terms of the loading parameters 7',
and N, which denote the biaxial tensions at infinity and inclined by an angle 6, with respect to the
direction 0 =0

The stresses on the bonded interface can be derived from eq. (66) as

-1 [ 0
\/2(cos d—cos ) [f(ﬂ) sin w_g(g) oo _2—} ()
- 8y o sin?
o= ot [f {6 cos 5 +g(8) sin 2] (70)

These results allow us to obtain explicit formulae for the static stress intensity factors, defined as

KL= lim, [2a(6 = )] 01 (0) "—““\/fz [f (8) sin 2~ g(5) cos é], (71)
68" sin & 2 7

K= fim [2a(6 - 8)]'*0,0(0) = - \/T
03" sin &

where the subseripts s1 and s2 denote the first and the second (mode I and mode II, respectively) static
stress intensity factors (SIF). Furthermore, the dimensionless stress intensity factors may be written in
vector form

KI, 1
Toda Tuda

where, in the static limit of a longitudinal wave incident from infinity in the direction #=0°, we have
T =~k A and N = (1 =265/ Tor and 6p=0°.

{f(&)cosg-!-g(S) sin g:|, (72)

(KI;;E,."}‘ KISZEG) (73)

5.2. The dynamic stress intensily factors
The dynamic stress intensity factor at the crack tip =24 is defined by
K= lim [2a(6 — 8§)]"*#(8), (74)
g5"

and so it follows from (44) and (45) that
m 2 o
o (=1)"8.. (75}
oof ( ) ngo

where T is defined in the previous subsection and the subscript d denotes dynamic results.

6. Numerical resuits and discussion

The dimensionless dynamic stress intensity factors at the tip of an arc shaped crack embedded in a
homogeneous medium have been computed in the long-wavelength or low frequency limit and compared
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3 Homogeneous Epoxy

\\\The Second SIF

.
p= /A'e::\\
h 30 60 90 120 50 80
3
7 # The First SIF

«
OV
1

Fig. 2. The comparison of the dynamic SIFs (dash) with the static SIFs (solid} in the static limit for a crack embedded in homogeneous
epoLy.

with Toya’s static solutions [12]. They are displayed in Fig. 2 for an incident longitudinal plane wave. The
comparison shows good agreement between eq. (75) of the present study and eq. (73) derived from Toya’s
theory [12]. The deviation between them could be reduced by including more terms in the expansions of
the unknown stresses on the bonded interface.

Since we are more interested in problems concerning interface cracks, the remainder of the numerical
computations are for the material combination of matrix and fiber given by Table 1, where the elastic shear
modulus, g, of the fiber has been adjusted such that the oscillatory character of stresses near the crack
tips will not appear.

The magnitude of the ratios of the first dynamic stress intensity factor (DSIF) to the first static stress
intensity factor (SSIF) and the second DSIF to the second SSIF are plotted in Figs. 3(a) and 4(a) for a
large crack, § =170°. As expected, a strong resonance appears at quite a low frequency with a significant
increase in the magnitude of the DSIF at the resonance frequency. The low frequency resonance is generated
by the rattling of the fiber and its mechanism is similar to that encounted in the problem of SH shear wave
incidence [6]. Unlike the phenomena in the case of SH-wave incidence, there are far more details in the
finite and high frequency behavior of Fig. 3. These resonances at higher frequencies are due to the existence
of surface waves which propagate back and forth across the faces of the crack. Figure 4(a) shows that the
resonances caused by interface waves have considerably more effect on the second DSIF than the first
DSIF, since surface waves are primarily shear waves and probably have a bigger contribution to shear

Table 1

The material constants for the fiber and matrix. Note that the Young's
modulus of the “glass” has been adjusted so that the parameter £ is
identicaily unity. The modulus of glass is actually a good deal Jarger

Epoxy (matrix) “Glass™ (fiber)

E,{GNm™7% 3.09 E (GNm™) 3.35
U (GNmM™H 1.28 iy (GNm™%) 143
Vi 0.205 vy 0.17
P (gm/cc) 1.25 Pr (gl“/GC) 2.55
o/t 1.64 el fek 1.59

/el 1.40
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(b)
(=]
o R —
1 T T 1 T ! | T
[ 1 2 kfﬂ 3 5 0 1.0 20 k{f‘a 30 40 5.0

Fig. 3. {a) The magnitude of the ratio of the first dynamic SIF to the first static SIF versus nondimensionaj frequency kT'a, (b) the
phase of the first dynamic SIF with respect te k'a, 8,=0° for both (a) and (b).

S
) KI§ o
(8) 2
KIS 5= 170°
g 24
(@} A
o . Yo i
" 2.
& a
3
o
3
° T T T T 1 T T T T
¢ 10 28 kEa i3t 40 50 ¢! 1.0 20 kma 3.0 40 5.0
T.

Fig. 4. (a) The magnitude of the ratio of the second dynamic SIF to the second static SIF versus nondimensional frequency ki'a, (o)
the phase of the second dynamic SIF with respect to k'a, 0y=0° for both (&) and (b).

stress near the crack tips. The phases of the first and second DSIFs changing with frequency are presented
in Figs. 3(b) and 4(b), which clearly illustrate the characteristics of resonances.

Scattering cross-sections for different crack sizes are shown in Fig. 5, where the optical theorem has been
used to check the accuracy of the numerical resuits. It is found that a numerical accuracy of 0.1% can be
achieved when ten truncated terms are used in eq. (51) and three hundred terms are taken in the p sum in
eq. (53). In Fig. 5(a), as the width of the crack is increased from zero to sixty degrees, the shapes of the
curves gradually change and the low frequency resonance becomes prominent. Intuitively, one would expect
that the scattering cross-section would approach that of a void when the fiber becomes almost separated
from the matrix. However, this is certainly not true in the low frequency range due to the presence of the
Helmholtz resonance, see Fig. 5(b).

Figure 6 shows the radial or longitudinal and the angular or shear parts of the radiation patterns at four
different values of frequency for a plane harmonic wave incident on a partiaily bonded fiber with 6 =170°,
see Figs. 6(a) and (b), and a void, see Figs. 6(c) and (d), in the direction of 8,=0°. Comparing Fig. 6(a)
with (c) and (b) with (d), we note that the radiation patterns generated by the partially bonded fiber and
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o [8=170"
o I . ®)
a 7T lg=110
!! \\ A NPAN AN
S, I Ao Ry T ek pg
J} Void
= . . 7 T — o T T T T !
c 10 20 kEa 3.0 490 50 0 Lo 20 kra 30 4.0 5.0

Fig. 5. The scattering cross-section for glass/epoxy, 0,=0°, §=0°, 10°, 30° and 60° in (a) and &§=110°, 170° and void in (b).

Epoxy/Glass
§=170° §=170°
F»(6,0) Fo(8,0)

03
3

-C3
-0

(a) )

Void
Fr(8,0)

03

-03

(c) (d)

Fig. 6. The radiation patterns at the low frequency resonance, k'a=0.22 (chaindotted), and slightly off resonance k{’a =0.4 (dash),
2 {dotted) and 4 (solid). The longitudinal and shear patterns for glass/epoxy are displayed in (a) and (b}, respectively, thase for a
void are plotted in (c) and (d) for comparison.

Férd

the void are very similar to each other at the high frequencies ke =2, 4, but quite different at the low
resonance frequency kf'a=0.22 and its nearby frequency 0.4. In Figs. 6(a) and (b) for § =170°, both the
longitudinal and shear radiation patterns are almost symmetric in forward and backward scattering at the
rattling resonance k{’a=0.22, and they are much stronger than those at its nearby frequency 0.4; while in
Figs. 6(c) and (d) for the void, the observations are just the opposite. These phenomena are consistent
with those displayed in Fig. 5{(b). ‘ :
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12

Glass/Epoxy

§=17¢°

o

T T T T 1
0 10 20 pm, 30 40 80
kia

Fig. 7. The spectra of the far-ficld displacement in the radial direction for glass/epoxy at 8= 0°, &=170° (solid) and void (dash).

The harmonic solution to the displacement in the radial direction u, in the far-field is plotted in Fig. 7
for &= 170° at § = . It exhibits characteristics similar to those of the DSIF in Fig. 3. The transient response
of the back-scattered displacement in the radial direction are illustrated in Figs. 8(a) and (b) for an incident
longitudinal pulse of displacement assumed to be in the form of the Blackman window function (sec the
inset in Fig. 8(a)), defined by

. > b,cos(rnt/T), | <
um(!) - {ano ( / o< T, (76)

0, otherwise,

where by = 0.35869, b, = —0.48829, b,=0.14128, b,=—0.01168. In Fig. 8(a}, the width of the pulse is chosen
as T=20.4a/c}., the same period of the lowest resonance for §=170°, so that a strong resonance can be
excited for that particular crack length. Figure 8(a) shows that the durations of the response for 6 =60°
and &= 110° are approximately equal to that of the incident pulse T, while for §=170° the disturbance
Jasts much longer. It is evident from Fig. 8(b) that the frequency of the oscillation at § = 170° is independent
of the incident pulse width and identical to its rattling resonance frequency. The mechanism is that when
0<r< T, the fiber experiences a forced vibration, then as the pulse passes by, the fiber oscillates freely at

ns=110° (idash) 1
= }HI d=060" (solid) s ..... §=170"
I 1
aryhp A M
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AT A il v/\/“v W
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"o 50 w 2y w 200 "o 50 w0 X¢ om0 200
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Fig. 8. The transient response of the far-field displacement in the radial direetion for incidence of the Blackman window pulse at
f,=0°: (a) the pulse duration T=204a/el, (b) T=20.4a/cf (solid), and T=30a/cf (dash).
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Fig. 9. The transient response of the ratio of the first dynamic SIF 1o the first static SIF for incidence of the Blackman window pulse
al Bp=0° with pulse width T=20.4a/cl.

its resonance frequency with damping caused only by the radiation of energy into the matrix. In principle,
once the rattling resonance frequency is determined, the crack length can be found directly from the
numerical results for the time harmonic solution.

The dynamic effects on the stresses near the crack tips are illustrated in Figs. 9(a), (b) and Fig. 10, where
the transient responses of the ratios of the first DSIF to the first static SIF and the second DSIF to the
second static SIF are presented for the same incident pulse as in Fig. 8(a). It is noted that the dynamic SIF
always overshoots the static SIF, particularly when the resonance of the fiber is excited, and the relative
increase can be several orders of magnitude higher than the static vaiue. Therefore, a relatively small
amplitude incident pulse could excite a resonance and result in the propagation of the debond.

Tn conclusion, the present analysis and particularly the discussions on the rattling resonance indicate that
the resonance may be an appreciable effect even at very low frequencies where Rayleigh scattering would
normally be expected. The appearance of the resonance in the scattered fields suggests that it could be used
in ultrasonic nondestructive evaluation to characterize large debonds in fiber reinforced composites.

) : & : 170" ( cheiindotted )
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Fig. 10. The transient response of the ratio of the second dynamic SIF to the second static SIF for incidence of the Blackman window
pulse of duration T=20.4a/c{, 6,=0°.
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Appendix
The parameters f(0) and g(0) of (66) for £=1 follow from Toya {12] as
F(8)= (N + Too— G){cos @ —cos §)+ 3 Hsin 6

+2€£ (Teo= Neo)lc08(200— ) cos & —cos 2(0y— )], o

g(0)=3(No+ To— G) sin 6 — 3 H(cos § —cos §)

+12~:2—i8~ (T — Noo)sin(26,— 6) cos § —sin 2(0o — 9)], (7%)
where
4#,,,(1 - Vf )
pe=—t L, (79)
Hm + (3 - 4vrn))uf
G= [(N00 + T}l —cos &) +%:£ (Too— Noo) sin’ 8 cos 290] —"————E—— ------ s (80)
2 4—-f—fcosd
H=2~BYTw—Ng) sinz(g) sin 28;. (8D
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