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SUMMARY

Several sets of conditions are presented each of which is related 1o the question of
the existence of a plane of material symmetry in an anisotropic elastic solid. The conditions
are defined in terms of possible static deformations that can exist in a sample in static
equilibrium and subject to certain simple types of traction fields. In particular, a necessary
and sufficient condition for the existence of a plane of symmetry is that simple shears
can be maintained by pure shear forces in at least two planes,

it

1. Introduction

Tue underlying anisotropy of an elastic solid can be characterized in terms of
the planes of material symmetry (1,2). Thus, a material of the most general
anisotropy, triclinic, has no symmetry planes. A material with a single plane of
symmetry is known as a monoclinic material, while one with three planes
corresponds to orthorhombic symmetry, etc. A full classification along these
lines has been provided by Cowin and Mehrabadi (2) who derived a set of
conditions necessary and sufficient for the existence of a plane of material
symmetry. These conditions are in the {form of identities involving the tensor
. of elastic moduli and the normal to the plane, and have been recast in a slightly
different form by Cowin (3) and Norris (4). These forms of the conditions
suggest an interpretation in terms of propagating plane waves (3,4); for instance
it is required of the plane of symmetry that a longitudinal wave can propagate
in the direction of its normal. It had previously been determined by Fedorov
(5) that the wave conditions are necessary for the existence of a plane of
symmetry; however, he does not appear to have noted that the same conditions
are also sufficient,

The purpose of the present paper is to provide alternative interpretations of
the conditions of Cowin,(3) and Norris (4) in terms of static deformations as
opposed to a dynamic interpretation involving waves. The wave conditions are
defined in section 2 and are called L and T in view of their connection with
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longitudinal and transverse waves. The necessary and sufficient conditions for
the existence of a plane of symmetry correspond to both L and T combined.
However, each of L and T can be related to a state of static deformation, and
these equivalences are discussed in sections 3 and 4, respectively. Probably the
most interesting results are in section 5, where static interpretations are given
for the conditions required for a plane of symmetry. Several equivalent possible
deformations are discussed, each involving states of simple shear.

2, The longitudinal and transverse conditions

The components of the elastic stiffness tensor are C, s relative to a rectangular
basis and satisfy the standard symmetries

Ciﬁd == st'kb Cijicf = Cs‘jIka Cijk! = Ckle‘j- (2‘1)

Suffixes i, j, k and / range from 1 to 3, and in (2.1) and subsequent equations
" ‘'the summation convention on repeated suffixes will be understood. Lower-case
roman variables will denote unit vectors in three-dimensional space, with the
exception of u, t and x which denote displacement, traction and position vectors.
The stiffness moduli Cy, enter into the generalized Hooke’s law relating the
symmetric, second-order stress and strain tensors, o and ¢ respectively, according
to

055 = Ciinbus (2.2}

where ¢ is the symmetric part of the spatial gradient of the displacement field
u(x). The traction vector t(n) across a surface with normal n has components

t = oun; (2.3)

LA
It is assumed that the stiffnesses satisfy the strong-ellipticity condition
Cimdidie;c, >0 for all d,c # 0. {24)

The standard shorter notation ¢;; will be used occasionally instead of Cijas
where I and J range from 1 to 6, with the understanding that (ij) — I according
to {11,22,33,23,31,12} - {1,2,3,4,5,6)}.

The fundamental relations of interest are the following set of identities first
laid out by Cowin (3), based upon the original work by Cowin and Mehrabadi
(2)and also discussed by Norris (4). The moduli are said to satisfy the longitudinal
or L-condition for the direction a if a is an eigenvector of the second-order
acoustical tensor with components C,;a;a,, that is, if

C;J-k,ajaka, - Aa,-. (L)

The L-condition means that a wave polarized in its direction of propagation
can exist in the solid if it propagates in the direction +a. Kolodner (6} has
shown that there exist at least three distinct directions satisfying L in every
anisotropic solid. The other constraint upon the moduli is the transverse or
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T-condition, which is satisfied for the direction a if
Ciubibia, = u(b)a; for all b such that b.a # 0. {T)

The transverse condition implies that a wave polarized in the direction a may
propagate in all directions orthogonal to a (3,4,5).

Conditions L and T are together equivalent to the statement that a is
perpendicular to a plane of material symmetry (3,4), which in turn is identical
to the result that the material possesses monoclinic symmetry in the direction a.
If, for instance, a is the unit vector e,, then the material is monoclinic with
respect to this direction if and only if

C1a = Cys5 ¥ €4 = C35 = C34 = C35 = Ca == Cs = 0. (M)

For the same choice of a the conditions L and T can be readily shown to be
separately equivalent to

C3q = Ca35 = 0, (L)

Ci4 = €15 = Caq 7 Cp5 = C45 = C56 = 0. (T)

Cowin’s identity (3) that L and T together form necessary and sufficient

conditions for the existence of a plane of symmetry is obvious from the previous
three equations; hence

L+T=M.

3. Static interpretation of the longitudinal condition L
Consider the static displacement field

u{x) = y(a.x)a, (3.1)

where y is a constant. The deformation defined by (3.1} will be called a pure .. .-

extension because the only strain component which is non-zero is the strain in
the a direction, The associated stress tensor is

G = y¢, (3.2)
where ¢ is a symmetric tensor with components
Gy = Cijuaiay. (3.3)

The L-condition implies that a is an eigenvector of ¢ and hence is a principal
direction of stress.

The constant stress field (3.2) associated with the deformation (3.1) trivially
satisfies the homogeneous equations of static equilibrium at every position. The
associated tractions on the surface of a given body are non-zero and for certain
bodies the form of the tractions required to maintain the deformation is relatively
simple when L holds. Thus; let a’ and a” be the other two directions of principal
stress, which are also the other eigenvectors of ¢. Consider a rectangular block
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such that its faces are normal to the directions of principal stress, a, a” and a”,
Then the necessary tractions on each face are also in'the directions of principal
stress, that is, the tractions are all normal and no shear tractions are required.

Let us define the static L-condition (SL): ‘A state of pure extension can be
maintained by the application of only normal tractions to a rectangular block
with one of its faces normal to the direction of extension’. We have just seen
that SL is a consequence of L. It may be easily checked that the reverse is also
true, that is, if SL holds for some direction for a given material then L is also
true for the same direction. In short

L=S5L. (SL)

4. Static interpretation of the transverse condition T

A material is defined to be in a state of simple shear if it is deformed according
to
' u(x) = y(b.x)a, b.a=0, (4.1)

where again y is a constant. The plane spanned by a and b is called the plane
of shear and a and b are defined as the associated shear directions. The
corresponding strain tensor is deviatoric (g, = 0} and the only non-zero
elements are the symmetric components a.(eb) = b.(2a). The stress is also
constant, with components

Gy = '}’C.'jktakbr, (4.2)

and the equations of equilibrium are automatically satisfied.

Tractions must be applied to the surface of a given body to maintain a simple
shear, and in particular, let us consider the traction on an element of surface
with normal n orthogonal to a. Using the decomposition

n=n'b-+n"c, 4.3)
where {a,b,¢} form an orthonormal triad, the traction vector becomes
ti(n) = yn'Cipub by + yn" C e byay. (4.4)

Assuming that T holds, the first term on the right-hand side of (4.4)is yn'u(b)a,,
that is, it represents a vector paraliel to a. The second term is also seen to be
in the direction a by successively contracting Cipac;bia, with by and ¢;, using T
and the orthogonality of {a,b,c} to show that the resuits are zero, Hence, the
tractions required on the lateral surfaces of a cylinder of material with axis a
are pure shears in the axial direction.

On the basis of the previous discussion, define the static transverse condition
(ST)as follows: ‘A cylindrical sample of material with generator in the direction
a is in simple shear, u(x) = p(b.x)a, for at least two distinct b orthogonal to
a. In cach case the tractions on the lateral surfaces required to maintain the
sample in static equilibrium are pure shears in the axial direction’. We have
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seen that ST is implied by T. In order to prove that ST implies 7 let d and e
be two distinct directions orthogonal to a for which the simple shears
u{x) = y(d.x)a and u(x) = y(e.x)a can be maintained by tractions in the axial
direction on the lateral surfaces. Let n and m be two distinct normals to the
lateral surface (the cross-section of any cylinder has at least two distinct normals).
The traction on the face with normal n has components oy = yCiun;and, for
the simple shear u(x) = y(d.x)a. The ST condition implies that this traction
is orthogonal to both n and m. By successive consideration of the different
deformations and tractions we conclude that the following six quantities vanish-

Cntin;aydy, Cijtim;ad;, Cirmmayd,,
Ca‘jklninjakeh Cijki‘”imjaicels Cl‘jklmimjakeI'

For simplicity, but with no loss in generality, let a = ¢,, so that n and m span
the plane-of e; and e,. The first three and second three of the above identities
imply, respectively, that

Ca,fi3l'd1 =0, Caﬁ3lel =0,

for all @ and # which range over the values 1 and 2. Furthermore, because d
and e by assumption also span the plane of e, and e,, we conclude that the
moduli C,p,, vanish for all o, § and § equal to { or 2. This is identical to the
T-condition, and thus we have shown that

T = ST, (ST)

It should be noted that no mention was made in the definition of the ST
condition of the tractions on the end faces of the cylindrical sample. These
tractions are not necessarily zero, and may in fact be in any direction. They
do, however, simplify if the material satisfies both L and T for the direction of
interest, which case will be discussed next. Before concluding this section, we )
note that the ST condition can be equally well defined in terms of the simple
shear u(x) = y(a.x)b, for b.a = 0, because this displacement field induces the
same constant stress tensor as (4.1).

5. Static interpretation of the monoclinic condition M

We have seen that M = L + T, and therefore it is possible to interpret the
monoclinic condition M as a static condition similar to §T = T, but with some
additional physical constraints. These arise from the requirement that certain
tractions must be maintained on the end faces of the cylindrical sample of
section 4. Since the surface normals on these faces are +a, it follows from the
definition of the displacement and stress in (4.1) and (4.2) that the fractions on
the end faces are given by

t(a) = youby, {5.1)

where ¢ is defined in (3.3). Assuming that L holds for direction a implies that
the normal component, yg,a;b,, vanishes, and hence the traction on each end
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of the cylindrical sample is a pure shear. Thus, L and T together imply the first
static monoclinic condition (SM1): ‘A cylinder of finite length and axis a can be
maintained in the state of simple shear u(x) = y(b. x)a for at least two directions
b orthogonal to a by the application of shear tractions on all surfaces and such
that the tractions on the lateral surfaces are in the axial direction”. It may be
shown by the same procedure used in the previous section that SM1 implies
M, so that we have the equivalence

M = SMI. (SM1)

Further understanding and slight variations on the condition SM1 can be
obtained by the introduction of the symmetric, positive definite tensor yr(a)
with components

Y = Cijuasa,. (5.2)

The L-condition implies that a is an eigenvector of ¢; suppose, further, that the
remaining eigenvectors are b’ and b”. Consider the simple shear deformation
of (4.1) with b = b’ specifically. It then foliows as a consequence of [ and T
and the definition of the eigenvectors of y that (i) the traction across a face
with normal a is in the direction of b’, {ii) the traction on a face with normal
b’ is parallel to a, and (iii) the traction vanishes on a face with normal b”. This
prompts the definition of a second static monoclinic condition (SM2): *“There
exists an orthonormal triad {a,h’,b”} for which a rectangular block of material
with faces normal to cach of these directions can be maintained in a state of
simple shear u(x) = p{b.x}a by the application of shear tractions to the faces.
Here b is cither of b’ or b”; the tractions on those faces with normal +a are
paraliel to b, those on the faces with normal +b are directed along a, and the
tractions vanish on the faces with normals +a A b".

It should be clear that SM2 follows from SM 1, and the reverse can be shown
without difficulty, implying that

SM2 = SM1. (§M2)

[t is instructive to sec exactly how SM1, and hence M, follows from the premises
of SM2. Let the directions a, b’ and b” coincide with e, e, and e,, respectively,
and consider first the case of b = e,. The stress tensor follows from {4.2) as
;5 = yCij13, and the traction conditions of SM2 imply the relations

C5113:C31135i3’ Ci213 =0, C|'313=CIBI3(S|‘1’ (5.3)
for i = 1,2,3. These in turn yield the identities
C15 = Ca5 = C35 = Cq5 = Cgqq = (. {5.4)
The same procedure for b = e, yields
Cra = Caaq = C34 = C4q5 = Cqg = 0, (3.5}

and therefore, (5.4} and (5.5) together imply that the material POSSCsses
monoclinic symmetry. Thus it satisfies condition M, and we deduce the identity
SM1 =8M2.
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We note that this choice of basis also implies that additionally the modulus
¢4s vanishes. This is consistent with the observation for materials with
monoclinic symmetry (4,5) that there are at least three coordinate systems in
which the number of non-zero components of the stiffness tensor is less than
or equal to 12. Recently, F. Muir pointed out (in a private communication)
that the constraints (5.4) and (5.5) imply that the components of the compliance
tensor, Sy or s;; for short, satisfy similar identities, viz.

Sya ™ S5 = 534 = 8535 = S34 = S35 = S45 = S46 = S5¢ = 0. (5:6)

Thus, for this particular coordinate system, both the stiffness and compliance
tensors have at most 12 non-zero elements.

Finaily, we note that the shear tractions of SM2 are all in the plane of shear
and they must be of equal magnitude because the sample is in static equilibrium.
This can also be seen as follows. Let b be either of the eigenvectors b’ or b”,
with eigenvalue #, that is,

¥ = b, (5.7)
The traction on an end face follows from (4.2) and (5.7} as
t(a) = ynh. {5.8)

The traction on the face with normal b is in the direction a, and because of the
identity a.t(b) = b.t(a), it follows from (5.8) that

t(b) = yna. (5.9)
Hence, we have
t{(a + b) = yn(a + b), t(a—b) = —yn(a —b), tlaab)=0 (510)

where the final identity follows from SM2. It is evident from (5.10) that a state ..

of plane stress exists in the plane of shear and that the stress is a pure shear.
Denoting this state of stress and strain a state of pure shear, we arrive at the
following general result.

THEOREM. A necessary and sufficient condition that a material possesses a plane
of material symmetry is that there are at least two orthogonal planes of pure shear
with one shear direction in common (see section 4), and for every orthogonal pair
the plane of symmetry is spanned by the normals to the planes of pure shear.
Equivalently, the normal to the plane of symmetry is the common shear direction.
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